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We establish the𝐴
𝑟
(𝐷)-weighted integral inequality for the composition of the Homotopy 𝑇 and Green’s operator 𝐺 on a bounded

convex domain and also motivated it to the global domain by theWhitney cover. At the same time, we also obtain some (𝑝, 𝑞)-type
norm inequalities. Finally, as applications of above results, we obtain the upper bound for the 𝐿𝑝 norms of 𝑇(𝐺(𝑢)) or (𝑇(𝐺(𝑢)))

𝐵

in terms of 𝐿𝑞 norms of 𝑢 or 𝑑𝑢.

1. Introduction

Our purpose is to study the 𝐿𝑝 theory of the composition of
theHomotopy𝑇 andGreen’s operator𝐺 acting on differential
forms on a bounded convex domain. Both operators play an
important role in many fields, including harmonic analysis,
potential theory, and partial equations (see [1–6]). In the
present paper, we will obtain some (𝑝, 𝑞)-type norm inequal-
ities for the composition of the Homotopy 𝑇 and Green’s
operator 𝐺 and also prove the 𝐴

𝑟
(𝐷)-weighted integral

inequality on a bounded convex domain. These results will
provide effective tools for studying behavior of solutions of
𝐴-harmonic equations and related differential systems on
manifolds.

We start this paper by introducing some notations and
definitions. Let𝑀 be a Riemannian, compact, oriented, and
𝐶
∞-smooth manifold without boundary on 𝑅𝑛 and let Ω

be an open subset of 𝑅𝑛. Also, we use 𝐺 to denote Green’s
operator throughout this paper. Furthermore, we use 𝐵 to
denote a ball and 𝜌𝐵 to denote the ball with the same center
as 𝐵 and with diameter (𝜌𝐵) = 𝜌 diameter (𝐵). We do not
distinguish balls from cubs in this paper.

We assume that ∧𝑘 = ∧
𝑘

(𝑅
𝑛

) (𝑘 = 0, 1, 2, . . . , 𝑛)

is the linear space of all 𝑘-forms 𝜔(𝑥) = ∑
𝐼
(𝑥)𝑑𝑥

𝐼
=

∑𝜔
𝑖
1
,𝑖
2
,...,𝑖
𝑘

𝑑𝑥
𝑖
1

∧𝑑𝑥
𝑖
2

∧ ⋅ ⋅ ⋅ ∧𝑑𝑥
𝑖
𝑘

with summation over all
ordered 𝑘-tuples 𝐼 = (𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑘
), 1 ≤ 𝑖

1
≤ 𝑖

2
≤ ⋅ ⋅ ⋅ ≤ 𝑖

𝑘
≤ 𝑛.

If the coefficient 𝜔
𝐼
(𝑥) of 𝑘-form 𝜔(𝑥) is differential on 𝑀,

then we call 𝜔(𝑥) a differential 𝑘-form on 𝑀. A differential
𝑘-form 𝜔(𝑥) on𝑀 is a de Rham current (see [7]) on𝑀 with
values in ∧𝑘(𝑅𝑛). Let ∧𝑘𝑀 be the 𝑘th exterior power of the
cotangent bundle and 𝐶∞

(∧
𝑘

𝑀) be the space of smooth
𝑘-forms on 𝑀. As usual, we use 𝐷󸀠

(𝑀, ∧
𝑘

) to denote the
space of all differential 𝑘-forms and 𝐿𝑃(∧𝑘𝑀) to denote the
𝑘-form 𝜔(𝑥) with the norm

‖𝜔 (𝑥)‖
𝑝,𝑀

= (∫
𝑀

|𝜔 (𝑥)|
𝑝

𝑑𝑥)

1/𝑝

= (∫
𝑀

(∑

𝐼

󵄨󵄨󵄨󵄨𝜔𝐼 (𝑥)
󵄨󵄨󵄨󵄨

2

)

𝑝/2

𝑑𝑥)

1/𝑝 (1)

on 𝑀. Thus 𝐿𝑝(∧𝑘𝑀) is a Banach space. As usual, we still
use ⋆ to denote the Hodge star operator. Also, we use
𝑑 : 𝐷

󸀠

(𝑀, ∧
𝑘

) → 𝐷
󸀠

(𝑀, ∧
𝑘+1

) to denote the differential
operator and use 𝑑⋆ : 𝐷󸀠

(𝑀, ∧
𝑘+1

) → 𝐷
󸀠

(𝑀, ∧
𝑘

) to denote
the Hodge codifferential operator which is defined by 𝑑⋆ =
(−1)

𝑛𝑘+1

⋆ 𝑑⋆ on 𝐷󸀠

(𝑀, ∧
𝑘+1

). The 𝑛-dimensional Lebesgue
measure of a set 𝐸 ⊆ 𝑅𝑛 is denoted by |𝐸|. We call 𝑤 a weight
if 𝑤 ∈ 𝐿

1

loc(𝑅
𝑛

) and 𝑤 > 0, a.e. For 0 < 𝑝 < 1, we denote the
weighted 𝐿𝑝-norm of a measurable function 𝑓 over𝑀 by

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝,𝑀,𝑤

𝛼 = (∫
𝑀

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

𝑝

𝑤
𝛼

𝑑𝑥)

1/𝑝

, (2)

where 𝛼 is a real number.
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Let 𝐷 ⊂ 𝑅
𝑛 be a bounded, convex domain. Iwaniec

and Lutoborski in [1] first introduced a linear operator 𝐾
𝑦
:

𝐶
∞

(𝐷, ∧
𝑘

) → 𝐶
∞

(𝐷, ∧
𝑘−1

) satisfying that

(𝐾
𝑦
𝜔) (𝑥; 𝜉

1
, 𝜉

2
, . . . , 𝜉

𝑘−1
)

= ∫

1

0

𝑡
𝑘−1

𝜔 (𝑡𝑥 + 𝑦 − 𝑡𝑦; 𝑥 − 𝑦, 𝜉
1
, 𝜉

2
, . . . , 𝜉

𝑘−1
) 𝑑𝑡

(3)

and the decomposition 𝜔 = 𝑑(𝐾
𝑦
𝜔) + 𝐾

𝑦
(𝑑𝜔). Then by

averaging 𝐾
𝑦
over all points 𝑦 in 𝐷, they constructed a

Homotopy operator 𝑇 : 𝐶
∞

(𝐷, ∧
𝑘

) → 𝐶
∞

(𝐷, ∧
𝑘−1

)

satisfying that 𝑇𝜔 = ∫
𝐷

𝜑(𝑦)𝐾
𝑦
(𝜔)𝑑𝑦, where 𝜑 ∈ 𝐶∞

0
(𝐷) is

normalized by ∫
𝐷

𝜑(𝑦)𝑑𝑦 = 1. The 𝑘-form 𝜔
𝐷
∈ 𝐷

󸀠

(𝐷, ∧
𝑘

)

is defined by 𝜔
𝐷
= (1/|𝐷|) ∫

𝐷

𝜔(𝑦)𝑑𝑦, if 𝑘 = 0, and if
𝑘 = 1, 2, . . . , 𝑛, then

𝜔
𝐷
= 𝑑 (𝑇𝜔) = 𝜔 − 𝑇 (𝑑𝜔) , (4)

|𝑇𝜔 (𝑥)| ≤ 𝐶∫
𝐷

󵄨󵄨󵄨󵄨𝜔 (𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑦 − 𝑥
󵄨󵄨󵄨󵄨

𝑛−1
𝑑𝑦. (5)

2. Boundedness of the
Composition of the Homotopy and
Green’s Operator in 𝐿𝑝 Space

In this section, we will prove the 𝐴
𝑟
(𝐷)-weighted norm

inequality for the composition of the Homotopy 𝑇 and
Green’s operator 𝐺 on a bounded convex domain. Then
using the Whitney cover, we develop the local result to the
global domain. In [8], Gol’dshtein and Troyanov proved the
following lemma.

Lemma 1. Let 𝐷 ⊂ 𝑅
𝑛 be a bounded convex domain. The

operator 𝑇 maps 𝐿𝑝(𝐷, ∧𝑘) continuously to 𝐿𝑞(𝐷, ∧𝑘−1) in the
following cases:

Either 1 ≤ 𝑝, 𝑞 ≤ ∞,
1

𝑝
−
1

𝑞
<
1

𝑛
,

Or 1 < 𝑝, 𝑞 ≤ ∞,
1

𝑝
−
1

𝑞
≤
1

𝑛
.

(6)

From [3], we have the following lemma about 𝐿𝑠-
estimates for Green’s operator.

Lemma 2. Let 𝑢 ∈ 𝐶∞

(∧
𝑘

𝑀) (𝑘 = 0, 1, 2, . . . , 𝑛) and 1 < 𝑠 <
∞. Then there exists a constant 𝐶, independent of 𝑢, such that

󵄩󵄩󵄩󵄩𝑑𝑑
⋆

𝐺(𝑢)
󵄩󵄩󵄩󵄩𝑠,𝑀

+
󵄩󵄩󵄩󵄩𝑑

⋆

𝑑𝐺(𝑢)
󵄩󵄩󵄩󵄩𝑠,𝑀

+ ‖𝑑𝐺(𝑢)‖
𝑠,𝑀

+
󵄩󵄩󵄩󵄩𝑑

⋆

𝐺(𝑢)
󵄩󵄩󵄩󵄩𝑠,𝑀

+ ‖𝐺(𝑢)‖
𝑠,𝑀

≤ 𝐶‖𝑢‖
𝑠,𝑀
.

(7)

Definition 3. We say that a weight 𝑤(𝑥) satisfies the 𝐴
𝑟
(𝐷)

condition for 𝑟 > 1 and write𝑤(𝑥) ∈ 𝐴
𝑟
(𝐷), if𝑤 > 0 a.e. and

sup
𝐵⊂𝐷

(
1

|𝐵|
∫
𝐵

𝑤𝑑𝑥)(
1

|𝐵|
∫
𝐵

(
1

𝑤
)

1/(𝑟−1)

𝑑𝑥)

𝑟−1

< ∞. (8)

For𝐴
𝑟
(𝐷)weight, we also need the following result which

appears in [9].

Lemma 4. If 𝑤(𝑥) ∈ 𝐴
𝑟
(𝐷), then there exist constants 𝛽 > 1

and 𝐶, independent of 𝑤, such that

‖𝑤‖
𝛽,𝐵
≤ 𝐶|𝐵|

(1−𝛽)/𝛽

‖𝑤‖
1,𝐵

(9)

for all balls 𝐵 ⊂ 𝐷.

Theorem 5. Let 𝐷 ⊂ 𝑅
𝑛 be a bounded convex domain,

𝑛 < 𝑝 < ∞, and let 𝑇 : 𝐿
𝑝

(𝐷, ∧
𝑘

) → 𝐿
𝑝

(𝐷, ∧
𝑘−1

) be
the Homotopy operator, 𝑘 = 1, 2, . . . , 𝑛. Then there exists a
constant 𝐶, independent of 𝑢, such that

‖𝑇 (𝐺 (𝑢))‖
𝑝,𝐵,𝑤

≤ 𝐶‖𝑢‖
𝑝,𝐵,𝑤

(10)

for any ball 𝐵 ⊂ 𝐷, 𝑤(𝑥) ∈ 𝐴
𝑟
(𝐷), and 1 < 𝑟 < 𝑝/𝑛.

Proof. Since 𝑤(𝑥) ∈ 𝐴
𝑟
(𝐷), by Lemma 4, there exist

constants 𝛽 > 1 and 𝐶
1
, independent of 𝑤, such that

‖𝑤‖
𝛽,𝐵
≤ 𝐶

1
|𝐵|

(1−𝛽)/𝛽

‖𝑤‖
1,𝐵

(11)

for any ball 𝐵 ⊂ 𝐷.
Choosing 𝑘 = 𝛽𝑝/(𝛽 − 1), then by Hölder inequality with

1/𝑘 + 1/𝛽𝑝 = 1/𝑝, we have

‖𝑇(𝐺(𝑢))‖
𝑝,𝐵,𝑤

= (∫
𝐵

|𝑇 (𝐺 (𝑢))|
𝑝

𝑤(𝑥)𝑑𝑥)

1/𝑝

≤ (∫
𝐵

|𝑇 (𝐺 (𝑢))|
𝑘

𝑑𝑥)

1/𝑘

(∫
𝐵

𝑤
𝛽

𝑑𝑥)

1/𝛽𝑝

= ‖𝑇(𝐺(𝑢))‖
𝑘,𝐵
‖𝑤(𝑥)‖

1/𝑝

𝛽,𝐵
.

(12)

Thus, substituting (11) into (12), we obtain

‖𝑇 (𝐺 (𝑢))‖
𝑝,𝐵,𝑤

≤ 𝐶
1
|𝐵|

(1−𝛽)/𝛽𝑝

‖𝑇(𝐺(𝑢))‖
𝑘,𝐵
‖𝑤(𝑥)‖

1/𝑝

1,𝐵
.

(13)

Taking 𝑚 = 𝑝/𝑟, it is easy to see that 𝑚 > 1 and (1/𝑚) −
(1/𝑘) < (1/𝑚) < (1/𝑛). Hence communicating Lemmas 1
and 2, we have

‖𝑇(𝐺(𝑢))‖
𝑘,𝐵
≤ 𝐶

2
‖𝐺(𝑢)‖

𝑚,𝐵
≤ 𝐶

3
‖𝑢‖

𝑚,𝐵
. (14)

Combining (13) and (14), we have

‖𝑇(𝐺(𝑢))‖
𝑝,𝐵,𝑤

≤ 𝐶
4
|𝐵|

(1−𝛽)/𝛽𝑝

‖𝑢‖
𝑚,𝐵
‖𝑤(𝑥)‖

1/𝑝

1,𝐵
. (15)

Using Hölder inequality with 1/𝑝 + (𝑟 − 1)/𝑝 = 𝑟/𝑝, we have

‖𝑢‖
𝑚,𝐵

≤ (∫
𝐵

(|𝑢| 𝑤
1/𝑝

)
𝑝

𝑑𝑥)

1/𝑝

(∫
𝐵

(
1

𝑤
)

1/(𝑟−1)

𝑑𝑥)

(𝑟−1)/𝑝

= ‖𝑢‖
𝑝,𝐵,𝑤

(∫
𝐵

(
1

𝑤
)

1/(𝑟−1)

𝑑𝑥)

(𝑟−1)/𝑝

.

(16)

Note 𝑤(𝑥) ∈ 𝐴
𝑟
(𝐷); then,

sup
𝐵⊂𝐷

(
1

|𝐵|
∫
𝐵

𝑤𝑑𝑥)(
1

|𝐵|
∫
𝐵

(
1

𝑤
)

1/(𝑟−1)

𝑑𝑥)

𝑟−1

< 𝐶
5
< ∞.

(17)
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Thus, observing (15) and (16), we immediately obtain that

‖𝑇(𝐺(𝑢))‖
𝑝,𝐵,𝑤

≤ 𝐶
6
|𝐵|

(1−𝛽)/𝛽𝑝+(𝑟/𝑝)

‖𝑢‖
𝑝,𝐵,𝑤

≤ 𝐶
6
|𝐷|

(1−𝛽)/𝛽𝑝+(𝑟/𝑝)

‖𝑢‖
𝑝,𝐵,𝑤

≤ 𝐶
7
‖𝑢‖

𝑝,𝐵,𝑤
.

(18)

Here𝐶
7
is a constant independent of 𝑢.Thus we complete the

proof of Theorem 5.

Furthermore, if 𝑢 is an 𝐴-harmonic tensor on 𝐷, 𝜌 > 1
and 0 < 𝑠, 𝑡 < ∞, then there exists a constant𝐶, independent
of 𝑢, such that

‖𝑢‖
𝑠,𝐵
≤ 𝐶|𝐵|

(𝑡−𝑠)/𝑡𝑠

‖𝑢‖
𝑡,𝜌𝐵

(19)

for all balls or cubs 𝐵 with 𝜌𝐵 ⊂ 𝐷 (for more details about𝐴-
harmonic tensors, see [10]). By the property of 𝐴-harmonic
tensor, using the same method developed in the proof of
Theorem 5, we can easily extend into the following 𝐴

𝑟
(𝐷)-

weighted version.

Corollary 6. Let 𝐷 ⊂ 𝑅
𝑛 be a bounded convex domain, 𝑛 <

𝑝 < ∞, 𝑢 be an A-harmonic tensor, and 𝑇 : 𝐿
𝑝

(𝐷, ∧
𝑘

) →

𝐿
𝑝

(𝐷, ∧
𝑘−1

) be the Homotopy operator, 𝑘 = 1, 2, . . . , 𝑛. Then
there exists a constant 𝐶, independent of 𝑢, such that

‖𝑇 (𝐺 (𝑢))‖
𝑝,𝐵,𝑤

𝛼 ≤ 𝐶‖𝑢‖
𝑝,𝜌𝐵,𝑤

𝛼 (20)

for any ball 𝐵 ⊂ 𝐷, 𝑤(𝑥) ∈ 𝐴
𝑟
(𝐷), and 1 < 𝑟 < 𝑝/𝑛, 0 < 𝛼 ≤

1, 𝜌 > 1.

In order to obtain the boundedness of the composition
𝑇 ∘ 𝐺, we need the following modified Whitney cover in [10]
and see [11] for more details about Whitney cover.

Lemma 7. Each open subset 𝐸 ⊂ 𝑅
𝑛 has a modified

Whitney cover of cubs 𝑊 = {𝑄
𝑖
} satisfying ⋃

𝑖
𝑄
𝑖
= 𝐸 and

∑
𝑄
𝑖
∈𝑊
𝜒
√5/4𝑄

𝑖

≤ 𝑁 ⋅ 𝜒
𝐸
(𝑥), for all 𝑥 ∈ 𝑅𝑛 and some 𝑁 > 1,

where 𝜒
𝐸
(𝑥) is the characteristic function for the set 𝐸.

Theorem 8. Let 𝐷 ⊂ 𝑅
𝑛 be a bounded convex domain, 𝑛 <

𝑝 < ∞. Then the composite operator 𝑇 ∘ 𝐺 : 𝐿𝑝(𝐷, ∧𝑘, 𝑤) →
𝐿
𝑝

(𝐷, ∧
𝑘−1

, 𝑤) is bounded, 𝑘 = 1, 2, . . . , 𝑛. Here𝑤(𝑥) ∈ 𝐴
𝑟
(𝐷)

and 1 < 𝑟 < 𝑝/𝑛.

Proof. From Lemma 7, we know that there exists a sequence
of cubs𝑊 = {𝑄

𝑖
} such that ⋃

𝑖
𝑄
𝑖
= 𝐷 and ∑

𝑄
𝑖
∈𝑊
𝜒
√5/4𝑄

𝑖

≤

𝑁⋅𝜒
𝐸
(𝑥) for all 𝑥 ∈ 𝐷, where𝑁 > 1 is some constant. Hence,

for 𝑢 ∈ 𝐿𝑝(𝐷, ∧𝑘, 𝑤), we have

‖𝑇 (𝐺 (𝑢))‖
𝑝

𝑝,𝐷,𝑤

= ∫
𝐷

|𝑇 (𝐺 (𝑢))|
𝑝

𝑑𝜇 ≤ ∑

𝑄
𝑖
∈𝑊

∫
𝑄
𝑖

|𝑇 (𝐺 (𝑢))|
𝑝

𝑑𝜇

≤ ∑

𝑄
𝑖
∈𝑊

𝐶
1
∫
𝑄
𝑖

|𝑢|
𝑝

𝑑𝜇 ≤ ∑

𝑄
𝑖
∈𝑊

𝐶
1
∫
𝐷

|𝑢|
𝑝

𝜒
𝑄
𝑖
(𝑥) 𝑑𝜇

≤ 𝐶
1
∫
𝐷

∑

𝑄
𝑖
∈𝑊

|𝑢|
𝑝

𝜒
𝑄
𝑖
(𝑥) 𝑑𝜇 ≤ 𝐶

1
∫
𝐷

𝑁 ⋅ |𝑢|
𝑝

𝜒
𝐷
(𝑥) 𝑑𝜇

≤ 𝐶
1
𝑁∫

𝐷

|𝑢|
𝑝

𝑑𝜇 = 𝐶
2
∫
𝐷

|𝑢|
𝑝

𝑑𝜇 = 𝐶
2
‖𝑢‖

𝑝

𝑝,𝐷,𝑤
,

(21)

where 𝑑𝜇 = 𝑤(𝑥)𝑑𝑥 and 𝐶
2
= 𝐶

1
𝑁 is independent of 𝑢 and

each 𝑄
𝑖
. Thus, we complete the proof of Theorem 8.

3. Norm Estimates with Power-Type Weights

Let 𝑆 ⊂ 𝑅
𝑛 be a bounded domain and 𝐷 be a nonempty of

𝑆 = 𝑆⋃𝜕𝑆. If we use dist(𝑥, 𝐷) to denote the distance of the
point 𝑥 from the set 𝐷, then 𝜔(𝑥) = (dist(𝑥, 𝐷))𝜀 for 𝜀 ∈ 𝑅
is called power-type weight. In this section, we will establish
some strong (𝑝, 𝑞)-type norm inequalities with power-type
weights for the composition of the Homotopy 𝑇 and Green’s
operator𝐺 acting on differential form. In the following proof,
we will use the following Lemma which appears in [8].

Lemma 9. The operator 𝑇 : Ω
𝑝,𝑟
(𝐷, ∧

𝑘

) → Ω
𝑞,𝑝
(𝐷, ∧

𝑘−1

) is
bounded provided that

Either 1 ≤ 𝑝, 𝑞, 𝑟 ≤ ∞,
1

𝑝
−
1

𝑞
<
1

𝑛
,

1

𝑟
−
1

𝑝
<
1

𝑛
,

𝑂𝑟 1 < 𝑝, 𝑞, 𝑟 ≤ ∞,
1

𝑝
−
1

𝑞
≤
1

𝑛
,

1

𝑟
−
1

𝑝
≤
1

𝑛
.

(22)

Theorem 10. Let𝐷 ⊂ 𝑅
𝑛 be a bounded convex domain, 1 < 𝑝,

𝑞 < ∞, 0 ≤ 1/𝑝 − 1/𝑞 ≤ 1/𝑛, and let 𝑇 : 𝐿
𝑝

(𝐷, ∧
𝑘

) →

𝐿
𝑞

(𝐷, ∧
𝑘−1

) be the Homotopy operator, 𝑘 = 1, 2, . . . , 𝑛. Then
there exists a constant 𝐶, independent of 𝑢, such that
󵄩󵄩󵄩󵄩𝑇 (𝐺 (𝑢)) − (𝑇 (𝐺 (𝑢)))𝐷

󵄩󵄩󵄩󵄩𝑞,𝐷
≤ 𝐶 (1 + diam (𝐷)) ‖𝑢‖

𝑝,𝐷

(23)

for any 𝑢 ∈ Ω
𝑝,𝑝
(𝐷, ∧

𝑘

).

Proof. From (4), we have the following decomposition:

𝐺 (𝑢) = 𝑇 (𝑑 (𝐺 (𝑢))) + 𝑑 (𝑇 (𝐺 (𝑢))) (24)

for any differential form 𝑢 ∈ Ω
𝑝,𝑝
(𝐷, ∧

𝑘

), 𝑘 = 1, 2, . . . , 𝑛.
Note that 𝑢 is an element of Ω

𝑝,𝑝
(𝐷, ∧

𝑘

), 𝑘 = 1, 2, . . . , 𝑛.
From (4) and Lemmas 1 and 9, we have

󵄩󵄩󵄩󵄩𝑇 (𝐺 (𝑢)) − (𝑇 (𝐺 (𝑢)))𝐷
󵄩󵄩󵄩󵄩𝑞,𝐷

= ‖𝑇 (𝑑 (𝑇 (𝐺 (𝑢))))‖
𝑞,𝐷

≤ 𝐶
1
‖𝑑 (𝑇 (𝐺 (𝑢)))‖

𝑝,𝐷
.

(25)

Here𝐶
1
is a constant independent of 𝑢. Applying (24) and (5),

we have

‖𝑑 (𝑇 (𝐺 (𝑢)))‖
𝑝,𝐷

= ‖𝐺 (𝑢) − 𝑇 (𝑑 (𝐺 (𝑢)))‖
𝑝,𝐷

≤ ‖𝐺 (𝑢)‖
𝑝,𝐷

+ ‖𝑇 (𝑑 (𝐺 (𝑢)))‖
𝑝,𝐷

≤ ‖𝐺 (𝑢)‖
𝑝,𝐷

+ 𝐶
2
diam (𝐷) ‖𝑑 (𝐺 (𝑢))‖

𝑝,𝐷
.

(26)
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Applying Lemma 2 into (26), we obtain

‖𝑑 (𝑇 (𝐺 (𝑢)))‖
𝑝,𝐷

≤ (𝐶
3
+ 𝐶

4
diam (𝐷)) ‖𝑢‖

𝑝,𝐷
. (27)

Thus
󵄩󵄩󵄩󵄩𝑇 (𝐺 (𝑢)) − (𝑇 (𝐺 (𝑢)))𝐷

󵄩󵄩󵄩󵄩𝑞,𝐷

≤ (𝐶
5
+ 𝐶

6
diam (𝐷)) ‖𝑢‖

𝑝,𝐷

≤ 𝐶
7
(1 + diam (𝐷)) ‖𝑢‖

𝑝,𝐷
.

(28)

Here 𝐶
7
= max{𝐶

5
, 𝐶

6
} is independent of 𝑢. Thus, we

complete the proof of Theorem 10.

Next, we consider the following norm comparison
equipped with power-type weights.

Theorem 11. Let𝐷 ⊂ 𝑅
𝑛 be a bounded convex domain, 1 < 𝑝,

𝑞 < ∞, 0 ≤ 1/𝑝 − 1/𝑞 ≤ 1/𝑛, let 𝑇 : 𝐿
𝑝

(𝐷, ∧
𝑘

) →

𝐿
𝑞

(𝐷, ∧
𝑘−1

) be the Homotopy operator, 𝑘 = 1, 2, . . . , 𝑛, and
that continuous functions ℎ and 𝑔 defined in (0, +∞) satisfy
(1) lim

𝑡→0
ℎ(𝑡) = 0; (2) lim

𝑡→0
𝑔(𝑡) = ∞. Then there exists a

constant 𝐶, independent of 𝑢, such that
󵄩󵄩󵄩󵄩𝑇 (𝐺 (𝑢)) − (𝑇 (𝐺 (𝑢)))𝐷

󵄩󵄩󵄩󵄩𝑞,𝐷,𝜇
1

≤ 𝐶 (1 + diam (𝐷)) ‖𝑢‖
𝑝,𝐷,𝜇

2

(29)

for any 𝑢 ∈ Ω
𝑝,𝑝
(𝐷, ∧

𝑘

), 𝑑𝜇
1
= ℎ(dist(𝑥, 𝜕𝐷))𝑑𝑥, 𝑑𝜇

2
=

𝑔(dist(𝑥, 𝜕𝐷))𝑑𝑥.

Proof. FromTheorem 10, we know that there exists a constant
𝐶
1
, independent of 𝑢, such that
󵄩󵄩󵄩󵄩𝑇 (𝐺 (𝑢)) − (𝑇 (𝐺 (𝑢)))𝐷

󵄩󵄩󵄩󵄩𝑞,𝐷
≤ 𝐶

1
(1 + diam (𝐷)) ‖𝑢‖

𝑝,𝐷
.

(30)

Fixing 𝜀 > 0, then there exists 𝛿
1
(𝜀) > 0 such that

ℎ(dist(𝑥, 𝜕𝐷)) < 𝜀 for all 𝑥 ∈ 𝐷 with dist(𝑥, 𝜕𝐷) < 𝛿
1
. Let

𝐷
1
= {𝑥 ∈ 𝐷, dist(𝑥, 𝜕𝐷) < 𝛿

1
} and 𝐷

2
= 𝐷 − 𝐷

1
. Then for

all 𝑥 ∈ 𝐷
2
, we have

𝛿
1
≤ dist (𝑥, 𝜕𝐷) < diam (𝐷) . (31)

Therefore, by the continuity of ℎ, we know that there exists
𝑀

1
> 0, such that

ℎ (dist (𝑥, 𝜕𝐷)) < 𝑀
1

(32)

for all 𝑥 ∈ 𝐷
2
. Thus we have

󵄩󵄩󵄩󵄩𝑇(𝐺(𝑢)) − (𝑇 (𝐺 (𝑢)))𝐷
󵄩󵄩󵄩󵄩𝑞,𝐷,𝜇

1

= (∫
𝐷

󵄨󵄨󵄨󵄨𝑇 (𝐺 (𝑢)) − (𝑇 (𝐺 (𝑢)))𝐷
󵄨󵄨󵄨󵄨

𝑞

⋅ ℎ (dist (𝑥, 𝜕𝐷)) 𝑑𝑥)
1/𝑞

≤ (𝜀∫
𝐷
1

󵄨󵄨󵄨󵄨𝑇 (𝐺 (𝑢)) − (𝑇 (𝐺 (𝑢)))𝐷
󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥

+𝑀
1
∫
𝐷
2

󵄨󵄨󵄨󵄨𝑇 (𝐺 (𝑢)) − (𝑇 (𝐺 (𝑢)))𝐷
󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

≤ 𝐶
2
(∫

𝐷

󵄨󵄨󵄨󵄨𝑇 (𝐺 (𝑢)) − (𝑇 (𝐺 (𝑢)))𝐷
󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

.

(33)

Here 𝐶
2
= max{𝜀1/𝑞,𝑀1/𝑞

1
}. Communicating (30) and (33),

we have
󵄩󵄩󵄩󵄩𝑇(𝐺(𝑢)) − (𝑇 (𝐺 (𝑢)))𝐷

󵄩󵄩󵄩󵄩𝑞,𝐷,𝜇
1

≤ 𝐶
2

󵄩󵄩󵄩󵄩𝑇(𝐺(𝑢)) − (𝑇 (𝐺 (𝑢)))𝐷
󵄩󵄩󵄩󵄩𝑞,𝐷

≤ 𝐶
3
(1 + diam (𝐷)) ‖𝑢‖

𝑝,𝐷
.

(34)

Note that lim
𝑡→0

(1/𝑔(𝑡)) = 0. Then there exists 𝛿
2
(𝜀) > 0

such that 1/𝑔(dist(𝑥, 𝜕𝐷)) < 𝜀 for all𝑥 ∈ 𝐷with dist(𝑥, 𝜕𝐷) <
𝛿
2
. Let𝐷󸀠

1
= {𝑥 ∈ 𝐷, dist(𝑥, 𝜕𝐷) < 𝛿

2
} and𝐷󸀠

2
= 𝐷−𝐷

󸀠

1
.Then

for all 𝑥 ∈ 𝐷󸀠

2
, we have

𝛿
2
≤ dist (𝑥, 𝜕𝐷) < diam (𝐷) . (35)

Therefore, by the continuity of 𝑔, we know that there exists
𝑀

2
> 0, such that

1

𝑔 (dist (𝑥, 𝜕𝐷))
< 𝑀

2 (36)

for all 𝑥 ∈ 𝐷󸀠

2
. Therefore, we obtain

‖𝑢‖
𝑝,𝐷

= (∫
𝐷

|𝑢|
𝑝

1

𝑔 (dist (𝑥, 𝜕𝐷))
𝑑𝜇

2
)

1/𝑝

≤ (𝜀∫
𝐷
󸀠

1

|𝑢|
𝑝

𝑑𝜇
2
+𝑀

2
∫
𝐷
󸀠

2

|𝑢|
𝑝

𝑑𝜇
2
)

1/𝑝

≤ 𝐶
4
(∫

𝐷

|𝑢|
𝑝

𝑑𝜇
2
)

1/𝑝

= 𝐶
4
‖𝑢‖

𝑝,𝐷,𝜇
2

.

(37)

Here 𝐶
4
= max{𝜀1/𝑝,𝑀1/𝑝

2
}. By (34) and (37), we have

󵄩󵄩󵄩󵄩𝑇 (𝐺 (𝑢)) − (𝑇 (𝐺 (𝑢)))𝐷
󵄩󵄩󵄩󵄩𝑞,𝐷,𝜇

1

≤ 𝐶
5
(1 + diam (𝐷)) ‖𝑢‖

𝑝,𝐷,𝜇
2

.
(38)

Here 𝐶
5
is independent of 𝑢. Thus, we complete the proof of

Theorem 11.

InTheorem 11, if we choose ℎ(𝑡) = 𝑡𝑟 and𝑔(𝑡) = 𝑡−𝑠, 0 < 𝑟,
𝑠 < ∞, we can easily obtain the following corollary.

Corollary 12. Let 𝐷 ⊂ 𝑅
𝑛 be a bounded convex domain, 1 <

𝑝, 𝑞 < ∞, 0 ≤ 1/𝑝 − 1/𝑞 ≤ 1/𝑛, and let 𝑇 : 𝐿
𝑝

(𝐷, ∧
𝑘

) →

𝐿
𝑞

(𝐷, ∧
𝑘−1

) be the Homotopy operator, 𝑘 = 1, 2, . . . , 𝑛. Then
there exists a constant 𝐶, independent of 𝑢, such that

∫
𝐷

󵄨󵄨󵄨󵄨𝑇 (𝐺 (𝑢)) − (𝑇 (𝐺 (𝑢)))𝐷
󵄨󵄨󵄨󵄨

𝑞

⋅ (dist (𝑥, 𝜕𝐷))𝑟𝑑𝑥

≤ 𝐶 (1 + diam (𝐷)) (∫
𝐷

|𝑢|
𝑝

1

(dist (𝑥, 𝜕𝐷))𝑠
𝑑𝑥)

1/𝑝

.

(39)

Here 0 < 𝑟, 𝑠 < ∞.

Note that, in the proof ofTheorem 11, if we let the compos-
ite operator 𝑇 ∘𝐺 act on the solution of nonhomogeneous𝐴-
harmonic equation, then we can drop lim

𝑡→0
ℎ(𝑡) = 0. Next,

we state the result as follows.
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Corollary 13. Let 𝐷 ⊂ 𝑅
𝑛 be a bounded convex domain,

1 < 𝑝, 𝑞 < ∞, 0 ≤ 1/𝑝 − 1/𝑞 ≤ 1/𝑛, let 𝑇 : 𝐿
𝑝

(𝐷, ∧
𝑘

) →

𝐿
𝑞

(𝐷, ∧
𝑘−1

) be the Homotopy operator, and 𝑢 ∈ Ω
𝑝,𝑝
(𝐷, ∧

𝑘

)

is a solution of nonhomogeneous 𝐴-harmonic equation, 𝑘 =

1, 2, . . . , 𝑛. If continuous functions ℎ and 𝑔 defined in (0, +∞)

satisfy that lim
𝑡→0

𝑔(𝑡) = ∞, 𝑑𝜇
1
= ℎ(dist(𝑥, 𝜕𝐷))𝑑𝑥 and

𝑑𝜇
2
= 𝑔(dist(𝑥, 𝜕𝐷))𝑑𝑥. Then there exists a constant 𝐶,

independent of 𝑢, such that

󵄩󵄩󵄩󵄩𝑇(𝐺(𝑢)) − (𝑇 (𝐺 (𝑢)))𝐷
󵄩󵄩󵄩󵄩𝑞,𝐵,𝜇

1

≤ 𝐶 (1 + diam (𝐷)) ‖𝑢‖
𝑝,𝜌𝐵,𝜇

2

(40)

for all balls 𝐵 with 𝜌𝐵 ⊂ 𝐷. Here 𝜌 > 1 is some constant.

It is easy to find that the above corollary does not hold for
balls 𝐵 ⊂ 𝐷 with 𝜕𝐵⋂𝜕𝐷 ̸=Φ but holds for those balls with
𝜌𝐵 ⊂ 𝐷. Next, we introduce the following singular integral
inequality.

Theorem 14. Let𝐷 ⊂ 𝑅
𝑛 be a bounded convex domain, 1 < 𝑝,

𝑞 < ∞, 0 ≤ 1/𝑝−1/𝑞 ≤ 1/𝑛, let𝑇 : 𝐿𝑝(𝐷, ∧𝑘) → 𝐿
𝑞

(𝐷, ∧
𝑘−1

)

be the Homotopy operator, and 𝑢 ∈ Ω
𝑝,𝑝
(𝐷, ∧

𝑘

) is a solution
of nonhomogeneous 𝐴-harmonic equation, 𝑘 = 1, 2, . . . , 𝑛. If
continuous functions ℎ and 𝑔 defined in (0, +∞) and ℎ(𝑡) is an
increasing function, then there exists a constant𝐶, independent
of 𝑢, such that

(∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝐺 (𝑢)) − (𝑇 (𝐺 (𝑢)))𝐵
󵄨󵄨󵄨󵄨

𝑞 1

𝑔 (dist (𝑥, 𝜕𝐷))
𝑑𝑥)

1/𝑞

≤ 𝐶 (1 + diam (𝐵))
󵄨󵄨󵄨󵄨𝜌𝐵

󵄨󵄨󵄨󵄨

(𝑝−𝑞)/𝑝𝑞

× (∫
𝜌𝐵

|𝑢|
𝑝

(ℎ (dist (𝑥, 𝜕𝐷)))𝜆
𝑑𝑥)

1/𝑝

(41)

for all balls 𝐵 with 𝜌𝐵 ⊂ 𝐷 and 0 < 𝜆 < 1. Here 𝜌 > 1 is some
constant.

Proof. Let 𝑘 = 𝑞/(1 − 𝜆). From 0 < 𝜆 < 1, it is easy to see that
𝑘 > 𝑞. Using the Hölder inequality, we have

(∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝐺 (𝑢)) − (𝑇 (𝐺 (𝑢)))𝐵
󵄨󵄨󵄨󵄨

𝑞 1

𝑔 (dist (𝑥, 𝜕𝐷))
𝑑𝑥)

1/𝑞

≤ (∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝐺 (𝑢)) − (𝑇 (𝐺 (𝑢)))𝐵
󵄨󵄨󵄨󵄨

𝑘

𝑑𝑥)

1/𝑘

× (∫
𝐵

1

(𝑔(dist(𝑥, 𝜕𝐷)))𝑘/(𝑘−𝑞)
𝑑𝑥)

(𝑘−𝑞)/𝑘𝑞

=
󵄩󵄩󵄩󵄩𝑇(𝐺(𝑢)) − (𝑇 (𝐺 (𝑢)))𝐵

󵄩󵄩󵄩󵄩𝑘,𝐵

× (∫
𝐵

1

(𝑔(dist(𝑥, 𝜕𝐷)))𝑘/(𝑘−𝑞)
𝑑𝑥)

(𝑘−𝑞)/𝑘𝑞

.

(42)

Note that 𝜌𝐵 ⊂ 𝐷. Therefore, there exists a positive number 𝑐
such that

𝑐 < dist (𝑥, 𝜕𝐷) ≤ diam (𝐷) (43)

for all 𝑥 ∈ 𝐵. Furthermore, by the continuity of function 𝑔
in (0, +∞), 𝑔(dist(𝑥, 𝜕𝐷)) has a positive lower bound𝑀 in 𝐵.
Thus, fromTheorem 10 and (42), we have

(∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝐺 (𝑢)) − (𝑇 (𝐺 (𝑢)))𝐵
󵄨󵄨󵄨󵄨

𝑞 1

𝑔(dist(𝑥, 𝜕𝐷))
𝑑𝑥)

1/𝑞

≤ (
1

𝑀
)

1/𝑞

|𝐵|
(𝑘−𝑞)/𝑘𝑞󵄩󵄩󵄩󵄩𝑇 (𝐺 (𝑢)) − (𝑇 (𝐺 (𝑢)))𝐵

󵄩󵄩󵄩󵄩𝑘,𝐵

≤ 𝐶
1
|𝐵|

(𝑘−𝑞)/𝑘𝑞

(1 + diam (𝐵)) ‖𝑢‖
𝑘,𝐵

≤ 𝐶
1
|𝐵|

(𝑘−𝑞)/𝑘𝑞

(1 + diam (𝐵)) ‖𝑢‖
𝑘,𝜌
1
𝐵
,

(44)

where 𝜌
1
> 1 is a constant. Let 𝜀 ∈ (1/𝑝, 1) and𝑚 = 𝜀𝑝. Since

𝑢 is the solution of nonhomogenous 𝐴-harmonic equation.
By (19), we know

‖𝑢‖
𝑘,𝜌
1
𝐵
≤ 𝐶

2

󵄨󵄨󵄨󵄨𝜌1𝐵
󵄨󵄨󵄨󵄨

(𝑚−𝑘)/𝑚𝑘

‖𝑢‖
𝑚,𝜌𝐵

, (45)

where 𝜌 > 𝜌
1
> 1 is a constant. It is easy to find that 1 < 𝑚 <

𝑝. Using the Hölder inequality, we have

‖𝑢‖
𝑚,𝜌𝐵

= (∫
𝜌𝐵

|𝑢|
𝑚

1

(ℎ (dist (𝑥, 𝜕𝐷)))𝑚𝜆/𝑝

⋅ (ℎ (dist (𝑥, 𝜕𝐷)))𝑚𝜆/𝑝𝑑𝑥)
1/𝑚

≤ (∫
𝜌𝐵

|𝑢|
𝑝

(ℎ (dist (𝑥, 𝜕𝐷)))𝜆
𝑑𝑥)

1/𝑝

× (∫
𝜌𝐵

((ℎ (dist (𝑥, 𝜕𝐷)))𝜆/𝑝)
𝑚𝑝/(𝑝−𝑚)

𝑑𝑥)

(𝑝−𝑚)/𝑚𝑝

.

(46)

The continuity and monotonicity of function ℎ imply that

(∫
𝜌𝐵

((ℎ(dist(𝑥, 𝜕𝐷)))𝜆/𝑝)
𝑚𝑝/(𝑝−𝑚)

𝑑𝑥)

(𝑝−𝑚)/𝑚𝑝

= (∫
𝜌𝐵

(ℎ (dist (𝑥, 𝜕𝐷)))𝜀𝜆/(1−𝜀)𝑑𝑥)
(1−𝜀)/𝜀𝑝

≤
󵄨󵄨󵄨󵄨𝜌𝐵

󵄨󵄨󵄨󵄨

(1−𝜀)/𝜀𝑝

(ℎ(diam(𝐷)))𝜆/𝑝.

(47)

Hence, combining (41)–(47), we have

(∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝐺 (𝑢)) − (𝑇 (𝐺 (𝑢)))𝐵
󵄨󵄨󵄨󵄨

𝑞 1

𝑔(dist(𝑥, 𝜕𝐷))
𝑑𝑥)

1/𝑞

≤ 𝐶
3
|𝐵|

(𝑘−𝑞)/𝑘𝑞

(1 + diam (𝐵))
󵄨󵄨󵄨󵄨𝜌1𝐵

󵄨󵄨󵄨󵄨

(𝑚−𝑘)/𝑚𝑘󵄨󵄨󵄨󵄨𝜌𝐵
󵄨󵄨󵄨󵄨

(1−𝜀)/𝜀𝑝

× (ℎ(diam(𝐷)))𝜆/𝑝(∫
𝜌𝐵

|𝑢|
𝑝

(ℎ(dist(𝑥, 𝜕𝐷)))𝜆
𝑑𝑥)

1/𝑝

≤ 𝐶
4
(1 + diam (𝐵))

󵄨󵄨󵄨󵄨𝜌𝐵
󵄨󵄨󵄨󵄨

(𝑝−𝑞)/𝑝𝑞

× (∫
𝜌𝐵

|𝑢|
𝑝

(ℎ (dist (𝑥, 𝜕𝐷)))𝜆
𝑑𝑥)

1/𝑝

.

(48)

Here 𝐶
4
is dependent of 𝐵 and ℎ but independent of 𝑢. Thus,

we complete the proof of Theorem 11.
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4. Application

In this section, we will use the estimates in Section 3 to obtain
the upper bound for the 𝐿𝑝 norms of 𝑇(𝐺(𝑢)) or (𝑇(𝐺(𝑢)))

𝐵

in terms of 𝐿𝑞 norms of 𝑢 or 𝑑𝑢.

Example 15. For 𝑛 ≥ 2, let 𝑢 be a (𝑛 − 1)-form defined in 𝑅𝑛
by

𝑢 =
𝑥
1

√𝑥
2

1
+ 𝑥

2

2
+ ⋅ ⋅ ⋅ + 𝑥2

𝑛

𝑑𝑥
2
∧ 𝑑𝑥

3
∧ ⋅ ⋅ ⋅ ∧ 𝑑𝑥

𝑛

−
𝑥
2

√𝑥
2

1
+ 𝑥

2

2
+ ⋅ ⋅ ⋅ + 𝑥2

𝑛

𝑑𝑥
1
∧ 𝑑𝑥

3
∧ ⋅ ⋅ ⋅ ∧ 𝑑𝑥

𝑛

+ ⋅ ⋅ ⋅ + (−1)
𝑛−1

×
𝑥
𝑛

√𝑥
2

1
+ 𝑥

2

2
+ ⋅ ⋅ ⋅ + 𝑥2

𝑛

𝑑𝑥
1
∧ 𝑑𝑥

2
∧ ⋅ ⋅ ⋅ ∧ 𝑑𝑥

𝑛−1
.

(49)

It is easy to find that

|𝑢| = 1, 𝑑𝑢 =
𝑛 − 1

√𝑥
2

1
+ 𝑥

2

2
+ ⋅ ⋅ ⋅ + 𝑥2

𝑛

𝑑𝑥
1
∧ 𝑑𝑥

2
∧ ⋅ ⋅ ⋅ ∧ 𝑑𝑥

𝑛
.

(50)

If we choose the usual (𝑝, 𝑝)-type norm inequality to estimate
𝑇(𝐺(𝑢))−(𝑇(𝐺(𝑢)))

𝐵
and take𝑝 = 𝑛, where𝐵 = 𝐵(𝑂, 𝑟) ⊂ 𝑅𝑛

is a ball, then byTheorem 10, we have

(∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝐺 (𝑢)) − (𝑇 (𝐺 (𝑢)))𝐵
󵄨󵄨󵄨󵄨

𝑛

𝑑𝑥)

1/𝑛

≤ 𝐶
1
(1 + diam (𝐵)) (∫

𝐵

|𝑢|
𝑛

𝑑𝑥)

1/𝑛

= 𝐶
1
(1 + diam (𝐵)) |𝐵|

1/𝑛

.

(51)

However, if we choose the (𝑝, 𝑞)-type norm inequality to
estimate 𝑇(𝐺(𝑢)) − (𝑇(𝐺(𝑢)))

𝐵
and take 𝑝 = 𝑛 − 1, 𝑞 = 𝑛,

then 𝑝, 𝑞 satisfy the condition 0 ≤ 1/𝑝− 1/𝑞 ≤ 1/𝑛. Hence by
usingTheorem 10, we obtain

(∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝐺 (𝑢)) − (𝑇 (𝐺 (𝑢)))𝐵
󵄨󵄨󵄨󵄨

𝑛

𝑑𝑥)

1/𝑛

≤ 𝐶
2
(1 + diam (𝐵)) (∫

𝐵

|𝑢|
𝑛−1

𝑑𝑥)

1/(𝑛−1)

= 𝐶
2
(1 + diam (𝐵)) |𝐵|

1/(𝑛−1)

.

(52)

Compare (51) and (52), we can easily find that if we choose
different (𝑝, 𝑞)-type norm inequality to estimate the oscilla-
tion 𝑇(𝐺(𝑢)) − (𝑇(𝐺(𝑢)))

𝐵
, we also obtain the different upper

bound.

Example 16. In 𝑅2, consider that

𝑢 (𝑥, 𝑦) = arctan
𝑦

𝑥 − 1
− arctan

𝑦

𝑥 + 1
. (53)

It is easy to check that 𝑢(𝑥, 𝑦) is harmonic in the upper half
plane. Note that

𝑑𝑢 =
𝜕𝑢

𝜕𝑥
𝑑𝑥 +

𝜕𝑢

𝜕𝑦
𝑑𝑦,

∗𝑑𝑢 =
𝜕𝑢

𝜕𝑥
𝑑𝑦 −

𝜕𝑢

𝜕𝑦
𝑑𝑥.

(54)

Therefore, we have

𝑑 ∗ 𝑑𝑢 = (
𝜕
2

𝑢

𝜕𝑥2
+
𝜕
2

𝑢

𝜕𝑦2
)𝑑𝑥 ∧ 𝑑𝑦 = 0, (55)

which implies that ∗𝑑𝑢 is a closed form and hence is a
solution of nonhomogenous 𝐴-harmonic equation. It is easy
to see that

|∗𝑑𝑢| =
1

√((𝑥 − 1)
2

+ 𝑦2) ((𝑥 + 1)
2

+ 𝑦2)

. (56)

Let𝐷 denote a bound convex domain in the upper half plane
and let 𝜎𝐵 ⊂ 𝐷 be a closed ball without the points (−1, 0) and
(1, 0). If 𝜎𝐵 and 𝐷 satisfy that dist(𝜎𝐵, 𝜕𝐷) = 𝑀 > 0, then
both |∗ 𝑑𝑢| and (dist(𝑥, 𝜕𝐷))−1 have the upper bounds in 𝜎𝐵.
Thus, for the term

∫
𝐵

󵄨󵄨󵄨󵄨𝑇 (𝐺 (𝑢)) − (𝑇 (𝐺 (𝑢)))𝐵
󵄨󵄨󵄨󵄨

𝑝 1

𝑔 (dist (𝑥, 𝜕𝐷))
𝑑𝑥, (57)

it is usually not easy to be estimated due to the complexity of
the compositions 𝑇(𝐺(𝑢)) and the function 𝑔. However, by
Theorem 14, (57) can be controlled by the term

∫
𝜌𝐵

|𝑢|
𝑝

(ℎ (dist (𝑥, 𝜕𝐷)))𝜆
𝑑𝑥. (58)

Thus, we obtain an upper bound of (57).
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