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Stochastic cooperative predator-prey system with Beddington-DeAngelis functional response is studied. It presents an investigation
of dynamic properties of the system. Our results show that there exists a unique positive solution to the system for any positive initial
value, and the positive solution is stochastically bounded. Moreover, under some conditions, we analyze global asymptotic stability
of the positive solutions. With small environmental noises, the stochastic system is getting more similar to the corresponding
deterministic system. Neither of the species in the system will die out. Finally, simulations are carried out to conform to our result.

1. Introduction

As we all know, in mathematical biology, predator-prey
system, competitive system, and cooperative system are the
three rudimentary and important ecological systems. The
dynamic relationship between species has long been and
will continue to be a dominant theme in ecology due to its
universal existence and importance. It is well-known that
predator-prey systems are very important and extensive in the
nature fields. One significant component of the predator-prey
relationship is predator’s functional response, that is, the rate
of prey consumption by an average predator. There are many
significant functional responses in order to model various dif-
ferent situations. In fact, most of the functional responses are
prey-dependent; however, some biologists have argued that in
many cases, especially when predators have to search for food
and therefore have to share or compete for food, the tradi-
tional predator-prey systems with prey-dependent functional
response fail to model the interference among predators, the
functional response should be predator-dependent. In [1, 2],
Beddington and DeAngelis proposed the following predator-
prey model with Beddington-DeAngelis functional response:
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Skalski and Gilliam [3] compared statistical evidence from
19 predator-prey systems, and then they claimed that three
predator-dependent functional responses (Hassell-Varley,
Beddington-DeAngelis, and Growley-Martin) can provide
better description of predator feeding over a range of
predator-prey abundances. And the Beddington-DeAngelis
type functional response was even suitable in some cases.

But most of this work is restricted to predator-prey
systems, little has been done for cooperative systems [4, 5].
May [6] suggested the following set of equations:
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to describe a pair of mutualists.
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However, there is often the interaction among multiple
species in nature, whose relationship is more complex than
those in two species. Therefore, it is more realistic to con-
sider the multiple-species predator-prey systems. In order
to continue studying such models, in this paper, we con-
sider a cooperative predator-prey system with Beddington-
DeAngelis functional responses at first:
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x x(al 1% 1+0,x+ By 1+oc3x+/33z>
h,y dyx
dy = —by - —2 2 )dt,
4 y<a2 2 f2+gzz+1+“2x+ﬂ2)’
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(3)

where species x is the prey of y and z, y, and z are
cooperative species. All the parameters in system (3) are
positive constants.

In fact, population dynamics is inevitably affected by
environmental white noise which is an important component
in an ecosystem. But the model (3) is deterministic and
does not incorporate the effect of environmental noise. May
[6] also pointed out the fact that due to environmental
fluctuation, the birth rates, carrying capacity, competition
coeflicients, and other parameters involved in system exhibit
random fluctuation to a greater or a lesser extent. Therefore
many scholars rewrote the deterministic models as stochastic
ones subjected to stochastic noises, for studying the effect of
environmental variability on the population dynamics [7-9].

The parameters in the real ecosystems are often subject
to lots of environmental noises, since they relate to climate,
geographical distribution, geological features, human disas-
ter, human intervention, and other environmental factors.
Therefore, the logistics and energy flow, in which they are
determined by groups, are fluctuating. The oscillation in
population biomass is directly manifested as birth and death
rates of random perturbation. Currently, one of the main
ways considered in the literature to model the effect of
the environmental fluctuations in population dynamics is
to assume that the most sensitive parameter is the intrinsic
growth rate. Thus, in this paper we introduce some stochastic
perturbation into the intrinsic growth rate. Therefore, the
intrinsic growth rate can be written as an average growth rate
adding some small random perturbed terms. In general, by
the well-known central limit theorem, the small terms follow
some normal distributions, so we can use standard Brownian
motions to represent the environmental fluctuations.

In this paper, taking into account the effect of randomly
fluctuating environment, we introduce stochastic perturba-
tion into growth rates a;, a,, and a; to become a, + o, B, (t),
a, + 0,B,(t), and a; + 03 B;(t) in system, where o7 represents
the intensity of the noise and B;(t) is a standard white noise,
namely, is B;(t) a standard Brownian motion defined on a
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complete probability space (Q, F, ). Then the stochastic
system takes the following form:

dx = x(al -bx - 2) - G2 >dt
L+o,x+ By l+azx+ sz

+0,xdB, (),

h,y d,x
dy = ~by— —2 2 )dt
4 y(az 2 fz+gzz+1+“2x+ﬁz)’
+0,ydB, (t),
dz=z<a3—b3z— hyz + d;x >dt
f3+93y l+asx+psz
+0,2dB; (1) .

(4)

Considering system (4), the initial conditions x(0) > 0,
¥(0) > 0, and z(0) > 0 will be referred to.

2. Global Positive Solutions

Lemma 1. For any initial value (x,, yy, 2,) € R, where R} =
{(x,y,2) | x > 0,y > 0,z > 0}, system (4) has a unique
positive local solution (x(t), y(t),z(t)) for t € [0,7,] almost
surely, where T, is the explosion time.

Proof. Consider the following equations:

v
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du = <a1 ——0 —be" - B
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- |dt dBy (t),
1+oc3e*’+ﬁ3ew> +oudB, (1)
1 Y h,e"
= (o= 303 -he' -
(5)

u
d,e

——=———— |dt +0,dB, (t),
1+oc2eV+/32e”> 2B, (1)

1 hse”
dw = <a3 ~ ~07 —bye" - L -
2 f3 + gse”
dse" >
— | dt dBs (t),
1 + aze? + Bye? +05dBs (1)
ont > 0 with initial value 4(0) = Inx(0), v(0) = In y(0),
and w(0) = Inz(0). The coeflicients of (5) satisfy the local
Lipschitz condition, thus there is a unique local solution
(u(t), v(t), w(t)) on [0, 7,). Then x(t) = “®, y(t) = "?, and
z(t) = ¢ are the unique positive local solutions with initial
value x, > 0, ¥, > 0, and z, > 0 by Itd’s formula. O

Theorem 2. For any initial value (x,, yo,2,) € R, thereis a
unique solution (x(t), y(t), z(t)) of system (4) ont > 0, and the
solution will remain in R> with probability 1.

Proof. According to Lemma 1, we only need to show that
7, = 00. Let n, > 0 be sufficiently large for x,, y,, and z,
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lying within the interval [1/n,,n,]. For each integer n > n,,
we define the stopping times

T, = inf{t €el0,7,):x(t) ¢ <%,n>,

y(t) ¢ <%,n> or z(t) ¢ <%,n)}
T

Obviously, 7, is increasing as n — ©0. Set 7o, = lim,,_, ,T,;3
hence, 7, < 7, almost surely. Now, we only need to show that
T, = oo. If this statement is false, there is a pair of constants
T > 0and e € (0,1) such that P{r,, < T} > e. Thus there
exists an integer n; > n, such that

bl
3
N
e
%
n
2
Y,

n. (7)
Define a C’ function V: R> — R, by

V(x,,2)=(x-1-Inx)+(y-1-Iny)+(z-1-1nz).
(8)

The nonnegativity of this function can be seen from u — 1 —
Inu > 0and Yu > 0. If (xy, ¥y, 2,) € R}, we have
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2 2
2
—%—Z>dt+ i
1+asx+ B3z 2

h
+(J’—1)<“z—bz}’—#;z
2 2

2
‘12—x>dt+a_2dt )
l+o,x+f,y 2
h,z
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7 f3+ 93y
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—)dt+ 2dt
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+(z—1)05dB;s (1),
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o1
2
h,y d,x
-1 _b _ 2 2 )
Y )<a2 2 f2+gzz+1+“2x+ﬁz}’
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2
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d,
<x(a-bx)+yla-by+—=
%
d 2, 2, 2
ve(a e &), 2o
o 2
SK—)
(10)

where K is a positive number. Substituting this inequality into
(9), we see that

dv (x, y,z) < Kdt + (x - 1) 0,dB, (t)
(11)
+(y—1)0,dB, (t) + (z — 1) 03dB; ().

Integrating both sides of the above inequality from 0 to 7 AT
and then taking the expectations leads to

EV(x(t,AT),y(t,AT),z(t,AT))
(12)
<V (x9, ¥, 29) + KT.
Set Q, = {1, < T}, then we get P(Q,) > € by inequality
(7). Obviously, for every w € Q,, there are at least x(7,, w),

y(1,,w), and z(7,,w) which equal either k or 1/k, then
V(x(t,, w), y(1,, w), 2(1,, w)) is no less than

min{(n—l—lnn),(l—l—lnl>}. (13)
n n
It then follows from (9) that
V (xg, Yo 20) + KT
> E [1Qn(w)V (x (Tn’w) Y (Tn’ w) »Z (Tn’ w))] (14)
. 1 1
>em1n{(n—1—lnn),<— —1—ln—>},
n n

where 1, (,) is the indicator function of (,,, lettingn — oo,
we have that

00 > V (x4, ¥, 29) + KT = 00 (15)

This completes the proof. O

3. Stochastic Boundedness

Definition 3. The solution (x(t), y(t),z(t)) of system (4) is
said to be stochastically ultimately bounded, if for any € €



(0, 1), there is a positive constant 8 = §(¢), such that for any
initial value (x, ¥y, 2,) € Ri, the solution (x(t), y(t), z(t)) of
system (4) has the property that

lim sup? {|x ),y ),z
n— oo (16)

- RO+ O+2 0> 6} <e.

Assumption A. For any initial value (xo, y,2,) € R, there
exists p > 1 such that

a, +(1/2) (p-1) o}

x(0) <

by
2
(0 < a, + (dy/ay) +b(1/2) (p-1)0, ) 17)
2
Z@<%+wmw+ma@—né
b, ’

Lemma 4. Assume that Assumption A holds. Let
(x(t), y(t),z(t)) be a positive solution of (4) with any
initial value (x, yo,2,) € R, forall p > 1, then

E[x* )] <K, (p),
E[y" ()] <K, (p), (18)

E[z" (1)] < K5 (p),

where
2\P
K, (p) = <a1+(1/221(p_1)01> |
P
K, (p) = (a2 + (da/oxy) +b(21/2) (p- 1)05) W
K; (p) = <a3 +(ds/as) +b(31/2) (p-1)0; )p‘

Proof. Define the function V; = x”, For (x(t), y(t), z(t)) € Ri
and p > 0. By It6’s formula we get

v, = pr_ldx+ %p (p- l)xf_z(dx)2
= px? b @Y
px [(al bix 1+a,x+ By

Gz
-——————— |dt+0,dB, (¢
1+a3x+/33z> T 1()]

+ %p(p— l)afdt

Z oonl bix— Q) _ Gz
px [(al 1 lL+o,x+ By l+azx+ sz

+%p(p - l)af> dt + 0,dB, (t) ] )
(20)
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Integrating from 0 to ¢ and taking expectations yields
E[xf ()] - E[xF (0)]

t
— E P —bx-— L
Jo P [x (al lx L+ax+ By

ek +%p(p—1)af)]ds.

1t agx+ Bz
(1)

So,

dE [ ()]
dt

B Q)
L+a,x+ B,y

= pE [xp <a1 -bx

Gz

+p(p-1)a} )]

Cltagxt Bz
< P{(m + % (P - 1)012>E [xp (t)] —-bE [xp+1 (t)]}
<p {((11 + % (P - 1)(7%) E [xP (t)] _ blE[xP (t)](p+1)/p}

= pE [xF (1)] {[(al + % (p- 1)af>] —bE[xF (1)) “P}.
(22)

Let X(t) = E[x(t)], then we have

dx ()
dt

< pX (@) [(al + % (p- 1)af> —px'? (t)] . (23)
From (17), we know

0<bX"7(0)=b,x(0) < a + % (p-1)ai, (24)
which by the standard comparison argument shows that

yp @+ (2) (p-1)o

(E[x* )" = x
b,

, (25

that is,

2\ P
E[x (1)] < (“1 ”1/22(1" 1)“1) . o)
1
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Define the function V, = y*, for (x(t), y(t),z(t)) € Ri
and p > 0. By It6’s formula we get

_ 1 _
dv, = py"dy + 2 p(p=1) ¥ (dy)’

h
2, dyx >dt
fitdgz l+ox+pfy

= py” [(“2 Y-
+0,dB, (f) + % (p-1) ojdt]

hyy d,x
+
Htgz ltax+pfy

=py” [(‘12 Y-

1
+3(p- 1)a§>dt +0,dB, (t)] -
27)

Integrating from 0 to t and taking expectations yields

E[y" )] - E[y" (0]

t h d,x
_ E p<a _ _ 2) + 2 )
«[0 P [;V 27 fit gz 1+opx+ By

1
5 (p- l)o*f] ds.

(28)
So,
dE[y" 0]
dt
S P
+2(p-1a3]
<p{(a+ 2+ (-0 )EL )
~bE [y (t)]} (29)

d
<p{(m+ 2302 EL )
~ bl 0]}
- p bl e
- L O (o 2+ 5 (p- 1))

~ b,E[y* (t)]l/p} '

5
Let Y(t) = E[y?(t)], then we have
day (t)
dt
(30)

< pY(t) a2 + @ + l (p— 1)0'; —szl/P (t) .
o, 2
From (17), we know that
1/p dz 1 2
0<bY'?(0)=by(0)<a,+ P E(p— 1oy, (31
2

which by the standard comparison argument shows that

E[LF O)YF = vV @) < 27 (dy/e) +b(1/2) (p- 1)(,;’
2
(32)

that is,

p
E [}/P (t)] < <a2 + (dz/‘xz) +b(1/2) (P B 1)05) ) (33)
2

Similarly, we can show that

p
E[ ()] < (“3 (/o) + 0 (p = Vo ) ER
3

This completes the proof. O

Theorem 5. Assume that Assumption A holds, the solutions of
system (4) with initial value (x,, vy, z,) € R’ are stochastically
ultimately bounded.

Proof. It (x(t), y(t),z(t)) € R?, its norm here is denoted by
Ix(£), (1), 2(1)] = (x*(£) + y*(£) + 22(t))""?, then

(x 1),y ), z@®)F <3 (Ix @) + |y O +1z®)IF)
(35)

by Lemma 4, E[|x(t), y(t),z(t)|I’] < K(p), t € (0,+00).
K(p) is dependent on (x,, ¥, z,) and is defined by K(p) =
3P12(K,(p) + K, (p) + K5(p)). By virtue of Chebyshev inequal-
ity, we can easily obtain that the solution (x(t), y(¢), z(¢)) of
system (4) is stochastically ultimately bounded. O

4. Stochastic Permanence

Definition 6 (see [10]). The solution (x(t), y(t), z(t)) of sys-
tem (4) is said to be stochastically permanent, if for any € €
(0, 1), there exist a pair of positive constants § = §(e) and
x = x(€) such that for any initial value (x,, vy, 2,) € R, the
solution (x(t), y(t), z(t)) of system (4) has the properties that

i 67 (0, 0,2 )] > 8} > 1 -,

(36)
lim inf{|(x (1), y (0,2 ()] < x} > 1 -€.



Assumption B. One has
1/2(max{o,, 0,,03})* < min{a,, a, — (¢,/a,), a3 — (c3/a3)}.

Theorem 7. Under Assumption B, for any initial value
(x0> Yo 29) € Ri, the solution (x(t), y(t), z(t)) of system (4)
satisfies that

1
lim supE [ 5 ] < H, (37)
tmeo [(x(®),y(1),z0)]
where 0 is an arbitrary positive constant satisfying
0+1 2 . G <
T(max {0,,0,5,05})” < min {al,a2 - z,% - “—33} ,
(38)
and k is an arbitrary positive constant satisfying
0 min {al,az - 3,013 - 6—3}
% &3
(39)

_6(6+1)
2

(max {o,,0,,05})° —k > 0.

Proof. Define V(x, y,z) = x + y + z for (x, y,2) € Ri, then

av (x, y,z)
Q) G2
= —-bx— - dt
x(al X l+oa,x+ B,y 1+oc3x+ﬁ3z>
hyy d,x
~by- —2 2 >dt
+y(a2 2 f2+gzz+1+0‘2x+/32)’
+z<a3—b3z— hy + dx )dt
f3+95y l+asx+fsz

+ 0,xdB, (t) + 0,ydB, (t) + 052dB; (t) .
(40)

Define U(x, y,z) = (1/(V(x, y, 2))) for (x, y,z) € Ri, by Itd’s
formula, we get

dU:—U2[< bx— Qy _ Gz )
Y\ L+o,x+ By 1+asx+ sz

hyy . d,x )
+ 9,2 l+a,x+py
h d
__mE 3% )]dt
f3+95y l+asx+fsz

+y<az—bzy—f
2

+z <a3 -bz
+U° (crfx2 +ooy’ + aizz) dt
— U’ (0,xdB, (t) + 0,ydB, (t) + 032dB, (1))

= LUdt — U” (0,xdB, (t) + 0,ydB, (t) + 052dB, (1)),
(41)
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where

LU =-U° [x (al -bx 2) i )

- 1+oc2x+ﬁ2y_ 1 +a3x + B3z

hyy d,x
_b _ 2 2 )
+y<a2 2 f2+g22+1+062x+ﬁ2y
+z<a -byz - hyz + dsx )]
o f3+95y l+azx+fsz

+U° (crfx2 + 0§y2 + aﬁzz) .
(42)

Under Assumption B, choosing a positive constant 6 such
that it satisfies (38). By It6’s formula, we get

a1 +u)’

vt +u)??

= [9(1 +U) LU + @

X (afxz +a3y + oizz)] dt
—0U*(1 +U)"" (0,xdB, (t) + 0, ydB, () + 052dB; (1)),
(43)

where

La+0)? =00 +U) LU + @w

(44)

x (1+ U)ef2 (afxz + agyz + oizz) ,

then choosing a positive constant k such that it obeys (39), by
1t6’s formula,

de(1+U0)° =Md(1+U) + ke (1 +U)Pdt,  (45)
where
L1+ u)
=1 +U)? + ke (1 + U)?
=M1 +U)?

X {k(1+U)2+ @U“( 2

2 2.2 22
01x" + 05y +03z)

3 2.2 2 2 2_2
+0U (alx +0,y +03z)

—0(1+U)U?
Q) GZ
—bx— _
% [x(al 1 L+a,x+ By 1+oc3x+ﬂ3z)
hyy d,x
_b _ 2 2 )
+y<612 2 f2+gzz+1+“2x+ﬁ2y

+z <a3 -

hsz . dyx )”
f3+95y l+azx+psz
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<1 +U)?

x {k(l sy 4 20D
2

U (o2 + 02? + a22?)

3 2.2 2 2 2_2
+0U (olx +05y +o3z)

00 (o 2 ) (- 2)2)
(oo (s )y (a0 2)e)]

0o+ (- 2) (- £))
(e (e ) (o 3)2))

[<k+9max{bl,b +f2 by + ?3})

+ <2k—6min {al,az 2 , a5 — 6—3}
o

2 &3
+6max{b1,b +h h }
AR

+ 0(max {01,02,63})2>U

+ (k — O min {al,az -

%) G }
2, -2
2%} a3

+9 ©+1) (max {0}, 05, 03})2> Uz] ,
(46)
where
U’ (ofxz +ayt+ agzz) < (max {0, 05, 03})2U,
TOD Ut (o2 + o2y + 32%) @)
< 201D (max o0, 00"

Hence, it implies that there exists a positive constant K such
that

L1 +U)? < K. (48)
Then we have
Mour(1+U)?!

def'(1+U)? < Ke*dt -

x (0,xdB, (t) + 0,ydB, (t) + 032dB; (t)).
(49)

Integrating both sides of the above inequality from 0 to t and
then taking the expectations leads to

E[1+U®)’] <1 +U(0)
K (50)
+ Eekt = (1+U(0)? + H ",

where H, = K/k. So

lim sup E [U(t) ] < 11m supE [(1 + U (t)) ] <Hp. (51

t— 00

Since that (x + y + z) < 3»9(x2 + yz + Zz)e/z = 39|x, y,zlg,
where (x, y,2) € R’, obviously

. 1

lim sup E 7

tooo | |(x(®),y(®),2®) (52)
<3’ limsup E[U()°] < 3°H, = H,
t— 00

as required. O

Theorem 8. Under Assumption B, system (4) is stochastically
permanent.

Proof. By Theorem 5, we know that

li{n sup E|(x ®),y(),z (t))|P <K(p). (53)

Now, for any € > 0, let y = (K(p)/ e)l/ ?_Then by Chebyshev’s
inequality, we can obtain the conclusion easily. O

5. Global Asymptotic Stability

Definition 9. Let (x,(t), y,(t),z,(t)) be a positive solution
of system (4). If we say that (x,(), y,(£), z,(t)) is globally
asymptotically stable in expectation, it means that any other

solution (x,(t), ¥,(t), z,(t)) of system (4) has t > 0 and that
we have initial value (x,, y,,z,) € Ri. That is
P lmE[lx, 031 (0,2, 1)
(54)

(5 0.2, 0,2,@)]] =0} = 1.

Lemma 10 (see [11]). Suppose that an n-dimensional stochas-

tic process X(t) ont > 0 satisfies the condition
EX (1)~ X" >clt =5, 0<s t<oo, (55

for some positive constants «, , and c. Then there exists a
continuous modification X(t) of X(t) which has the property
that for every 9 € (0, B/«) there is a positive random variable
h(w) such that

|X@m-i@m|

It - s|°

Piw: sup
0<|t—s|<h(w), 0<s, t<co

(56)




In other words, almost every sample path of X(t) is locally but
uniformly Hélder continuous with exponent 9.

Lemma 11. Let (x(t), y(t), z(t)) be a solution of system (4) on
t > 0 with initial value (x,, y5,2,) € R, then almost every
sample path of (x(t), y(t), z(t)) is uniformly continuous on t >
0.

Proof. From system (4), we have the following stochastic
integral equation

x(t) = x(0)
+ﬂx®
- <a1 B azx%(f)(i)ﬁzy () G7)
1+ “3;3(’:')(? B3z (s) > @

+ Jt o,x (s) dB, (5).

0

Let f(s) = x(s)(a; — byx(s) = (6 y(s)/(1 + ayx(s) + B, ¥(5))) —
(632(s)/(1 + azx(s) + B52(5)))), g(s) = o,x(s), notice that

E[f 0

:E[

1 1
< SElx|*? + ZE
2 2

d

1 1
< §E|x|2p + EE [|a1 +hx+oy+ c3z|2P]

|

Q) G
—bx— _
x(al 1x 1+a,x+ By 1+0c3x+[33z>

_ Q) B G2
l+a,x+ By l+asx+fsz

a, —bx

|

1 2p-1
< ZEx[? + ——
2
2 2 2 2 2
X (alp + blpE|x| Py ozE|y| P + g Elz| P)
2p-1

2

< 3K (2p) +

x (“fp + blszl (2p) + oK, (2p) + &K (2P))

= K, (p).
(58)
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On the other hand, by the moment inequality (see [12]) for
stochastic integrals, we have that for 0 < t; < ¢, < co and
p>2,

t, p
E L g(s)dB, (s)

M —-1 1p/2 B t,

<| B2 (P2 ) (t, )" L Elg(s)["ds
(p(p-1)1" 1 (59)

— 1 _ t,

< % (t, - tl)(P DIz L olk, (p)ds
r _ 1 T P/2

- % (t, - tl)p/zGl (p)

where G, (p) = ofkl(p). Let0 <t <t, <00, t,—t; <1,and
(1/p) + (1/q) = 1, we obtain
Elx (t,) = x (1)

p
=E

Lz £(s)ds+ Lz 9(s)dB, (s)

p
+2P'E

P
<2P'E

J-: f(s)ds

t, plq t,
< 2P_1<J lqu) E (J |f (s)|‘Dds>
t t

p/2 »
(ty - tl)p G, (p)

jtz g(s)dB, (s)

[p(p-1)]
2

+2P7!

<27t - 1,)"K, (p)

p/2

22D, -G, (p)

2

+2071

<277ty - 1,)"" {(tz —t)" 4 [_P (pz_ ) ]m} K (p)

<2 {1 ; [M]M} Ks () (6~ 1)

(60)

where Ks(p) := max{K,(p),G,(p)}. Then, we have that
almost every sample path of x(t) is locally but uniformly
Holder continuous with exponent O for every 9 € (0,(p —
2)/2p ) and therefore almost every sample path of x(t) is
uniformly continuous on ¢ > 0. Similarly, we can show
that almost every sample path of y(t) and z(¢) is uniformly
continuous on ¢ > 0. O

Lemma 12 (see [13]). Let f(t) be a nonmnegative function
defined on [0, 00) such that f(t) is integrable on [0, 00) and
is uniformly continuous ont > 0. Then lim, _, . f(¢) = 0.
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Theorem 13. If

Q%  GA
A=b-——=-——-d,—d;>0
1 182 ﬁa ? ’
B:i=b,-¢, - % _ dfs _ hsg5 (a2 +dy/a +0§)
. 2 f2 (X2 bzf:,’z >
2hy  difs Mg (a3 +ds/as + 0;)
Ci=by—¢g—— - _ ”
fs &3 bs f;
(61)
then system (4) is globally asymptotically stable.
Proof. Define
V (t) = |1I1 xl (t) - 11'1 x2 (t)l + |1n yl (t) _ 11'1 y2 (t)l (62)

+|lnz, (t) - Inz, ()|,

then V(¢) is a continuous positive function on t > 0. A direct
calculation of the right differential d*V(¢) of V(t), and then
applying Itd’s formula, we have

dv ()

= sgn (x; (t) — x, (1))
X_[[dxla)_(dxlanz]__[dxzu>_(dxzanz}}

x, () 2x2 (1) x, (t) 2x2 (1)

+sgn (y, (t) - y, (1))

[ @ @)
BACEEHON

[dy, () (dy ()]
BCEREHON

+sgn (2, (t) - 2, (1))

X [ dz, (t) B (dz, (t))2 ]
K () 221 (t) ]

(dz, (1) (dz ()"
EAG) 225 (t) |

= sgn (x; (t) — x, (1))

X [—bl (%, (t) = x, (1))

_ ( o (t)
L+oyx, () + Boyy (1)

B Gy, (t) )
L+ ayx, () + By, (t)

_ ( 6z () )

L+oagx; (t) + B3z,

62, (1)

L4, () + Bsz, (1) )] dt

+sgn (y, (1) -y, (1))

XP%MUF%U»

B ( oy, ()
fat 927 (1)

N ( dyx (1)
1+ oy, (t) + oy

hyy, (t) )
foat 922, (1)

(t)

B dyx, (t) )]
L+ a,%x, (1) + By, ()
+sgn (z, () - 2, (1))

x [—b3 (z, (&) -z, (1))

B ( hiz) () hyz (1) )
fitasn () f3+g30,(t)
+ < dsx, (f)

1+ o3x; (£) + B3z

(t)

 dxo >]
Tr o 0+ By 0 )]

(63)

Integrating from 0 to t and taking expectations yields

E[V ()] - E[V(0)]
=E [ Jo [ sgn (x; (s) — x, (s))

X (—bl (%1 (8) — x5 (5))

B ( )1 (5)
L+ o, () + By, (5)

_ G (5) )
L+ oy, () + B, (5)

_( &2, (5)

1+ a3x, (s) + 32,

(s)

_ 62, (s) >>
1+ 3%, (s) + 332, (s)
+sgn (¥, (s) = 3, (9))
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X (_bz (71 () =2, (5))

_ ( hyyy (s) _ hyy, (s) )
fat9:21(s) [+ 9,2, (5)
n ( dyx, (5)

1+ oy, () + By

©)

_ d,yx, (5) ))
L+ 0,5, (s) + B3, (5)
+sgn (2, (s) =2, ()

X <_b3 (21 () — 2, (s))

_ < hsz, (s)
fi+ g8 f3+930,(5)
n ( dsx; (s)

1+ 3%, (s) + 3324

(s)

d3x, (s)

g () )

RETEACIYEAC ))] ds] ‘

So
dE [V ()]
dt

=E [sgn (%, (1) = x, (1))

X (_bl (%1 (1) = x, (1))

_ ( oy ()
L+ ayx; (t) + By (B)

_ 6y, (t) )
1+ a,x, (1) + By, ()

- ( 2y (t)

1+ a3, (t) + B3z

()

_ G2, (t) ))
L+ a3, () + B3z, (1)
+sgn (y; (1) — y, (1))
X <_b2 N ®) =y (1)

_ ( oy () hyy, (B )
it g2 (6) [+ 9,2 (1)

+ ( dyx; (t)
1+o,x, (t) + Bons

(t)

_ dyx, (1) ))
L+ ayx, (£) + By, (t)

(64)
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+sgn (z, () - 2, (1))

X (—b3 (z, (&) =z, (1))

_ ( hizy () hyzy (1) >
fitgsn () f3+g0, (1)
+ ( dsx (t)

L+ ogx; (t) + B3z,

(t)

~ dyx, (t)
1+ oy, (1) + B2, (t) )>]
< =bE [|x; (1) - x, (1)]]

-GE [sgn (x1 (1) = x, (1)

% ( » ()
L+ a,x, () + By, (t)

B ¥, (1) )]
L+ oy, (1) + By, ()
-GE [sgn (%, () = %, (1))

% ( zy (t) )

1+ azx, () + B3z

_ z, (t) >]
1 + ayx, (1) + B3z, (f)
~bE[|y, (t) -y, (®)]]

- h,E [sgn (3 () -y, (®)

n®  »n®
X<f2+gzz1 () f2+gzzz(t)>]

+d,E [sgn () =y D)

xy (t)
X ( 1+ a,x, () + By ®

_ x, (1) )]
1+ o,yx, () + By, (£)
- bE||z, (t) - 2, (t)]]

~hE [Sgn (21 (0 -2, (1)

z(t) 5@
* <f3 +gsn () f3+930 () >]

+d,E [sgn (z;, ) =z, (1))
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» ( x; (1) )

1+ a3, (1) + B3z

i)
L+ oy, () + Bz, (1)
<-bE[|x, () - x, (0)]]

¥y (1)
L+ ayx; (£) + By (8)

) 7 (@ I]
1+ oy, (1) + By, (1)

+02E[

zy ()
1+ a3x, (1) + B52,

+GE [ (t)

) 2 (1) H
1+ a3, (1) + B3z, (1)

-bE[|y, (1) -y, ®)]]

+h2E[

n@ oy I]

Hit gz () fL+9,2 1)
xq (t)

1+ a,x; (1) + By

el
L+ o,x, () + B0, ()

-bE ||z, (t) - z, (1)]]

+d,E [ ()

(t) z, (t)
h,E [ ! __ & H
T f3+9:1 () f3+950, ()
x (t)
+dsE [ 1+ a3x, (t) + 3324 ®

SEreanEye)|
1+ oyx, () + Bz, (t)
S=bE([|x (1) = x, )] + GE [| 31 (1) = y, (1)]]

+ 22E|x, (8) - x, (8)]] + E |2, (8) - 2, ()]
2

¥ %E [, ) =%, O] = BE[|y () - 3, 0)]]
3

ZE [y (1) -y, )]
2

hzgz
fz

E[y O] E[lz, (8) =2, (1)]]

vop TAGESAG!
£

+d,E [|x, (8) - x, (®)|] + 2/32 E[|y; () = 3, ®)]]

11
Ellz, () -2z, 0)]] + 3E (|2, (1) — 2, (1)]]
h
}gSE[Zl )] E |y1 )=y, (t)l
3
+ —3E [|z1 (1) = 2, (O)|] + d3E [|x; () — x, (1)]]
3
+ 3_[33}3 [|Z1 () -z, (f)|]
a3
( b+ 2% 8% d)
B B
X E [|x, (t) = x, (t)|]
( b, +Cz+ f2 zﬁz }ih( [Z? (t)])1/3>
X E[[y (6) = y, @]
(e 8.
3
X E[|z, (1) -z, (®)]].
(65)
By Lemma 4
(e[ 0])" < 2%,
b,
2
( [ 1(t)])1/3 M’ (66)

b,

( [1(t)])1/3 a3+(d3£a3)+a§'
3

Thus
dE[V (t)]

dt

(b ras, c;;% d2+d3>E[|x1(t)—xz(t)|]

2[32 N hsgs (‘12 +dy/o + ‘75) >
fz x b2f32

xE [l)’l )=y, (f)H

h a, +ds /o, + 02
+<—b3+c3+2—h3+d3ﬁ3+ 2g2(3 32 3 3)>
f3 [4%] b3f2

X E ||z, (t) =z, (1)|]

+<—b +cz+

= AE [|x, (£) = x, (t)[] + BE [|y, (t) = y, (1)]]

+CE [|z, (t) — z, (1)]] -
(67)
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Integrating both sides leads to
E[V(O)] < E[V(0)]

¢
+ J AE [|x, (s) = x5 (s)]]
0

+BE [|y1 (8)—» (5)” +CE [lzl (s) -z, (S)H ds.

(68)
Therefore
0<E[V(1)]
o[ AEls -5 @Bl @ - ol
+CE [z, (s) - 2, (s)|] ds
< E[V(0)] < 0.
Then we get
E[|(x, (1), 31 (1), 2, (0) = (%, (8), 32 (8) 2, )]
B[ 0% 0F £ 0 -y OF
Ha @ -2, 0)" 2] (70)

<E [lxl (t) = x, (t)” +E [|Y1 ) =y, (t)“

+E[|z, (1) — 2, (1)]] € L' [0,00).
Therefore from Lemmas 11 and 12, we have

im E[[(x (1)1 (8,2 (1) = (%, (1), 32 (1), 2, ()] = 0.
1)

This completes the proof of Theorem 13. O

6. Extinction

Theorem 14. For any initial value (xy, yo,2z,) € R, the
solution (x(t), y(t), z(t)) of system (4) obeys

2

In x (¢ o
limsupM <a -2,
t— 00 t 2
In y(t d, o,
lim sup ny () <ay+ =2 -2, (72)
t— 0o t (22 2
Inz(t d;, o}
lim sup nz(f) <ag+ = -2,
t— o0 24} 2
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1.2

11 F

1.05

0.95

09

0.85

0 50 100 150 200

— (P +yr+2?)

FIGURE 1: Solutions of system (4) for (x,, ¥, zo) = (0.5,0.5,0.5), 4,
24, = Lyay; = 1.5:b = 3;b, = 2;b, = 25¢, = 0.2;¢5 = 0.1;d,
Lidy, =15, = 1; 8, =055 = 0.6; 35 = 0.8;h, = 0.5;h5 = 1; f,
I; f; =0.3;g9, = 0.5;g; = 150, = 0.05; 0, = 0.05; 05 = 0.05.

Proof. Define Lyapunov functions In x, In y, and In z, respec-
tively, hence by Itd’s formula, we get

O,2
Inx(t) = Inxy + <a1 - 71)1?

) -byx(s)— L+a,x(s)+ By (s)

. Jf &y ()

B ;2 (s)
1+ a3x(s) + B3z (s)

>

2
%
lny(t):lnyo+(a2—7)t

C oy

+ L by () = 2 s ds (73)
t dyx (s)

" ,[0 L+ayx(s)+ By (s) s

2
Inz(t) =lnz,+ <a3 - %)t
t hyz (s)
-b Sl
" JO 2 () f3+ 93y (s) ’
Jt dyx (s)

o 1+a3x(s) + 52 (s) >
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0.9 . . . . . . . . . 0.9
0.85 { 085f J

0.8 0.8
0.75 {1 075
0.7 1 0.7 F

0.65 0651 o LA
0.6 0.6 b e S Pt S NS P B i gt
0.55 0.55 b
0-5 0. 5 1 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
t t
—— Population x —— Population x
—+— Population y —— Population y
- -- Population z - - - Population z
(@ (b)

FIGURE 2: Solutions of system (4) for (x,, ¥y, 2,) = (0.6,0.5,0.5),a, = 2;a, = l;a; = 1.5;b, = 2.5;b, = 2;b; = 1.5;¢, = 0.2;¢; = 0.1;d, =
1.5;d; = Lo, = 1,3, =050, = 153, =0.8h, =05 h; = 1; f, = 1; f; = 0.3; g, = 1, g5 = 0.5;0, = 0.05; 0, = 0.05; 05 = 0.05.

1.5
1.45
1.4
1.35
1.3
1.25 "
1.2
1.15
1.1 f
1]
1.05 3
1 _‘A i -5 .
25 30 35 40 45 50
t t
—— Population x —— Population x
—— Population y —— Population y
- -~ Population z - - - Population z
(a) (b)
0.4~
0.3 4
z 0.2
0.1+
0 sl
6
5
x107

(c)

FIGURE 3: Solutions of system (4) for (x,, y,,2o) = (1.5,1,1),a; = 1.1;a, = 1.2;a; = 1.5;b, = 0.8;b, = 1.1;b; = 1.2;¢, = 0.02;¢; = 0.01;d, =
1.2;d; = L, = 0.7; 3, = 0.5, = 0.8; 33 = 0.5; 1, = 0.8;h, = 0.5; f, = 1; f3 = 0.3; g, = 0.8; g5 = 0.5;0, = 1.8;0, = 1.8;05 = 1.8.
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Then we have

2

Inx(t) <lnx, + (al - %)t+alBl 1),

d, o
Iny() <lny, + B+ - t+0,B, (1), (74)
o

2

2
Inz(t) <lnzy + <a3 + % _ U—3>t+a3B3 ().
o 2

Dividing ¢ on the both sides and letting t — 00, we can
derive

2

In x (¢ o
lim supw <a - =, (75)
t— 00 2
Iny (t d, o,
lim sup ny()<a2+—2——2, (76)
t— 0o t 223 2
1 dy o3
lim sup nz () <az+ =2 - =2, (77)
t— 0o t 3 2
as required. O

So we can obtain that if a; — (0%/2) <0,a,+(d,/a,) -
(0;/2) <0,and a; + (d;/a3) — (0§/2) < 0 hold, then for any
initial value (x, ¥y, 2,) € Ri, the solution (x(t), y(t), z(t)) of
system (4) will be extinct exponentially with probability one.

7. Numerical Simulations

At last, we numerically simulate the solution (x(t), y(t), z(t))
of system (4) to substantiate the analytical findings. By the
method mentioned in [14], we consider the discretization
equation:

Xk+1
= xk + xk
9k G2k
x| a; —bx, — - At
( LR Y ax + By 1+ agx, +/33zk>
1
+ O‘lxk&‘k\/ﬂ + Eo‘ka (Ei - 1) At,
Yi+1
=Vt Yk
h, i dyx; )
x| a,—by, - At
( 2 it gz 1+Hax+ By

1
+ 0, Yt VAL + E(”;)’k (’11% - 1) At,

Abstract and Applied Analysis

21

:Zk+Zk

h d
X <a3 -byz - cil S 3%k > At
i+ 930 1+ogx+ Bz

1
+ 03zk(k \/At + EO':,Z,Zk (C}% - 1) At,
(78)

where &, #;., and {;. are Gaussian random variables that follow
N(0,1).

For example, in Figurel, we choose initial value
(%> ¥9»29) = (0.5,0.5,0.5) and parameters satisfying
conditions of Theorem7; the system is stochastically
permanent. In Figure 2, (a) is the solution to the deterministic
system (4), (b) is the solution to the stochastic system (4),
and (c) is the phase diagram of the stochastic system
(4). Comparing (a) with (b), we find that with small
environmental noise, the stochastic system is getting more
similar to the deterministic. In Figure 3, (a) is the solution
to the deterministic system (4) and (b) is the solution to
the stochastic system (4). Comparing (a) with (b), we find
that the sufficiently large environmental noise make the
stochastic system extinct. The phase diagram of (x, y,z) is
displayed in (c).

8. Discussion

This paper has been devoted to dynamics of a stochastic coop-
erative predator-prey system with Beddington-DeAngelis
functional. Firstly we show that, although the coefficients in
the model neither satisfy the linear growth condition nor
local Lipschitz continuity, the stochastic model has a globally
positive solution. Then we know that the positive solution
is stochastically bounded. Moreover, under some conditions,
we analyze global asymptotic stability of the positive solu-
tions. We can find that the stochastic model will preserve
this nice property provided that the noise is sufficiently small.
Some meaningful questions deserve further investigation.
One way we can consider colored noise in the models owing
to sudden environmental changes caused by seasons or other
reasons. Moreover, it is worth to rebuild our model with some
parameters, not the ones studied above, which are also subject
to stochastic excitation. The ecosystem we considered has
some limitations, for example, both predators (y and z) with
the common prey (x) and we only established a model with
a mutual cooperation between both predators. It is worth
to discuss mechanics of the population contained predators
with a mutual competition in other ecosystems.
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