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This paper investigates an approach to multiple attribute group decision-making (MAGDM) problems, in which the individual
assessments are in the form of triangle interval type-2 fuzzy numbers (TIT2FNs). Firstly, some Frank operation laws of triangle
interval type-2 fuzzy set (TIT2FS) are defined. Secondly, some Frank aggregation operators such as the triangle interval type-2 fuzzy
Frank weighted averaging (TIT2FFWA) operator and the triangle interval type-2 fuzzy Frank weighted geometric (TIT2FFWG)
operator are developed for aggregation TIT2FNs. Furthermore, some desirable properties of the two aggregation operators are
analyzed in detail. Finally, an approach based on TIT2FFWA (or TIT2FFWG) operator to solve MAGDM is developed. An
illustrative example about supplier selection is provided to illustrate the developed procedures. The results demonstrate the
practicality and effectiveness of our new method.

1. Introduction

Fuzzy multiple attribute group decision making (FMAGDM)
is a hot area of research in fuzzy decision analysis theory. It
involves the process to select the best alternative(s) from the
set of feasible alternatives with respect to multiple attributes,
in which the decision information usually with fuzziness
or uncertainty is provided by a group of decision makes
under fuzzy environment. In recent years, many techniques
have been developed to solve FMAGDM problems [1–8]. Li
and Yang [1] developed a linear programming technique for
multidimensional analysis of preferences inmultiple attribute
group decisionmaking under fuzzy environments.Wang and
Lee [2] generalized TOPSIS method for FMAGDM based
on high and low operators which satisfy the partial ordering
relation on fuzzy numbers. Xu and Chen [3] established an
interactive model for FMAGDM in which the information
about attribute weights is partly known. Lin and Wu [4]
presented a fuzzy DEMATEL method for group decision
making to gather group ideas and analyzed the cause-effect
relationship of complex problems in fuzzy environment.
Guha and Chakraborty [5] developed a FMAGDM technique

considering the degrees of confidence of experts’ opinions
and aggregated the decision information by using similarity.
Hatami-Marbini and Tavana [6] proposed an alternative
fuzzy outranking method by extending the ELECTRE I
method to take into account the uncertain, imprecise, and lin-
guistic assessments provided by a group of decision makers.
Mousavi et al. [7] utilized Monte Carlo simulation technique
to derive a stochastic approach for handling FMAGDM and
applied it in risk selection problem in a highway project. Zhao
et al. [8] utilized the fuzzy prioritized operators to develop
some models for triangular FMAGDM in which both the
attributes and decision makes are in different priority level.

Type-2 fuzzy set (T2FS) was first proposed by Zadeh
[9], which can be viewed as an effective extension of tra-
dition type-1 fuzzy set (T1FS). The membership function of
T2FS, which is characterized by primary function, secondary
function and a footprint of uncertainty (FOU). It is the new
third dimension of T2FS and the footprint of uncertainty can
reflect more additional degrees of freedom that make it more
capable of handling imprecision and imperfect information
in real-world application [10–12]. Hence, T2FS are receiving
more and more attentions from researchers and have been
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successfully developed both in theoretical and in practical
aspects [13–21]. However, because the computational com-
plexity of general T2FS is too high, it is usually difficult
to use in real practice situations [22]. To overcome the
limitation of T2FS, interval type-2 fuzzy set (IT2FS), which
is also called interval-valued fuzzy set (IVFS) and contains
membership values that are crisp interval from zero to one,
is proposed [23] and has been the most useful tool for
modeling uncertainty and complexity in many domains [24–
30]. In particular, many approaches have been presented
in the field of multiple attribute group decision making
(MAGDM). Chen and Lee [31] presented a new method
based on arithmetic operations for handingmultiple attribute
hierarchical group decision-making problems. Chen and Lee
[32] further developed an interval type-2 TOPSIS method
to solve MAGDM and gave some practical examples to
illustrate the procedure of the proposed method. Chen et al.
[33] presented a ranking formula for IT2FS information and
established a framework based on ranking method for han-
dlingMAGDMwith interval type-2 fuzzy information. Hu et
al. [34] presented an approach based on possibility degree for
interval type-2 fuzzy multiple criteria group decision making
and established a maximizing deviation optimal model for
determining the attribute weights, in which the weight infor-
mation is partly known. Wang et al. [35] established some
weight optimal models to determine the weights of attributes
and utilized the interval type-2 weighted averaging (IT2WA)
operator for handling MAGDM under interval type-2 fuzzy
environment. Chen [36] presented a signed-distance-based
method for determining the objective importance of criteria
and handling fuzzy multiple criteria group decision-making
problems in a flexible and intelligent way. Chen et al.
[37] investigated extended QUALIFLEX method for group
decision making, in which the attribute values take the form
of IT2FS, and further applied it in medical decision making.
Baležentis and Zeng [38] further extended MULTIMOORA
method with IT2FS and applied it in the field of human
resource management and performance management. Chiao
[39] introduced the concepts of triangular interval type-
2 fuzzy set and developed the analytic hierarchy process
(AHP) method based on logarithmic regression function
for handling MAGDM problem. Ngan [40] established the
probabilistic linguistic framework with IT2FS MAGDM
problems, and some arithmetic operations, such as union
and intersection between the interval type-2 fuzzy linguistic
numbers, were also defined. Chen [41] developed a new linear
assignment method based on signed distances for handling
MAGDM problems with IT2FS information and applied it
in the selection of landfill site. Z. M. Zhang and S. H. Zhang
[42] proposed the concept of trapezoidal interval type-2 fuzzy
soft set and further developed an MAGDM approach under
interval type-2 fuzzy environment.

For MAGDM problems, an essential important step is
how to aggregate the decision-making information in differ-
ent formats with aggregation operators. As an important tool
for information fusion, aggregation operators are widely used
in various fuzzy set (FS), such as T1FS, intuitionistic fuzzy
set (IFS), and hesitant fuzzy set (HFS). However, up till now,
the researches on type-2 fuzzy aggregation operators are very

rare. Wu and Mendel [43] presented the concept of linguistic
weighted average (LWA), in which the attributes and the
weights both are in the form of IT2FS, the algorithm was
provided and verified the LWA operator can be decomposed
into finding two fuzzy weighted average (FWA). Liu et al.
[44] presented an analytical solution method for the FWA;
themethod had some goodmathematical analysis properties,
which can be used for interval type-2 aggregation process.
Zhou et al. [45, 46] proposed the type-2 OWA operator to
aggregate the linguistic opinions or preferences in human
decision-making modeling by T2FS, and a direct method to
aggregate IT2FS by type-2 OWA operator was provided. Liu
et al. [47–49] developed some aggregation operators, such as
weighted aggregation operators, geometric aggregation oper-
ators, and hybrid harmonic averaging operators to handle
MAGDM problems with interval-valued trapezoidal fuzzy
numbers.

All the above interval type-2 fuzzy aggregation operators
are based on alpha-cut decomposition theorem [9]; the main
difference between the existing interval type-2 fuzzy aggre-
gation operators and other FS aggregation operators is that
the interval type-2 fuzzy aggregation operators are derived by
fuzzy extension principle while the other fuzzy aggregation
operators are obtained by triangle norms [50, 51]. As the
fundamental of information fusion, triangle norms play an
important role and have been successfully used to derive
various fuzzy aggregation operators [52–54]. However, until
now, there is no research about interval type-2 aggregation
operator based on triangle norm operations. In order to fill
this gap, we will utilize the Frank triangle norms to develop
some desirable interval type-2 fuzzy aggregation operators in
this paper.

Frank triangle norms [55], which is the only one type
triangle norm satisfying the compatibility. Since the Frank
triangle norms involve the parameter, this can provide more
flexibility and robustness in the process of information fusion
and make it more adequate to model practical decision-
making problems than other triangle norms [56]. Calvo et
al. [57] study the functional equations of Frank and Alsina
for two classes of commutative, associative, and increasing
binary operators. Yager [58] introduced the extensions opera-
tions to the lattice of closed interval-valued fuzzy set based on
Frank 𝑡-norms and gave necessary and sufficient conditions
such that these operations can form a complete algebraic
structure. Casanovas and Torrens [59] investigated the addi-
tive generating function of Frank 𝑡-norms and established
a framework with Frank 𝑡-norms in approximate reasoning.
Sarkoci [60] made a comparison between the Frank 𝑡-norms
and the Hamacher 𝑡-norms and proved that two different 𝑡-
norms form the same family. However, the previous research
works almost focus on the basic mathematical construct and
properties of Frank 𝑡-norms; the researches of its applications
are very rare, especially in aggregation and decision making.
To date, we have not seen any researches on aggregation
operators based on Frank 𝑡-norms for decision-making
problems. Therefore, it is meaningful to study aggregation
operators based on Frank triangle norms operations and their
application in MAGDM under triangle interval type-2 fuzzy
environment.
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The remainder of this paper is shown as follows. In
Section 2, we briefly introduce some basic concepts of T2FS,
triangle interval type-2 fuzzy set, and Frank triangle norms.
In Section 3, we establish the Frank operational laws of
triangle interval type-2 fuzzy set. In Section 4, we present
triangle interval type-2 fuzzy Frank weighted averaging
(TIT2FFWA) operator and triangle interval type-2 fuzzy
Frank geometric average (TIT2FFWG) operator and also
discuss some desirable properties in detail. In Section 5,
we develop an approach based on the proposed Frank
aggregation operators toMAGDMunder the triangle interval
type-2 fuzzy environment. A practical example is provided to
illustrate the procedure of our method in Section 6. Finally,
we end the paper with some conclusions and point out future
researches in Section 7.

2. Preliminaries

In this section, we will briefly review some basic concepts of
type-2 fuzzy set and Frank triangular norms.

2.1. Type-2 Fuzzy Set

Definition 1 (see [23]). A type-2 fuzzy set 𝐴 in the universe
of discourse 𝑋 can be represented by a type-2 membership
function 𝜇

𝐴
(𝑥, 𝑢) as follows:

𝐴 = {((𝑥, 𝑢) , 𝜇𝐴 (𝑥, 𝑢)) | ∀𝑥 ∈ 𝑋, ∀𝑢 ∈ 𝐽𝑥 ⊆ [0, 1]} , (1)

where 𝐽
𝑥
denotes an interval in [0, 1]. Moreover, the type-2

fuzzy set can also be expressed as the following form:

𝐴 = ∫

𝑥∈𝑋

∫

𝑢∈𝐽
𝑥

𝜇
𝐴 (𝑥, 𝑢)

(𝑥, 𝑢)
= ∫

𝑥∈𝑋

(∫
𝑢∈𝐽
𝑥

𝜇
𝐴 (𝑥, 𝑢) /𝑢)

𝑥
,

(2)

where 𝐽
𝑥
⊆ [0, 1] is the primary membership at 𝑥, and

∫
𝑢∈𝐽
𝑥

𝜇
𝐴
(𝑥, 𝑢)/𝑢 indicates the second membership at 𝑥. For

discreet situations, ∫ is replaced by ∑.

Definition 2 (see [23]). Let 𝐴 be a type-2 fuzzy set in the
universe of discourse𝑋 represented by a type-2 membership
function 𝜇

𝐴
(𝑥, 𝑢). If all 𝜇

𝐴
(𝑥, 𝑢) = 1, then 𝐴 is called an

interval type-2 fuzzy set (IT2FS). An interval type-2 fuzzy set
can be regarded as a special case of the type-2 fuzzy set, which
is defined as

𝐴 = ∫

𝑥∈𝑋

∫

𝑢∈𝐽
𝑥

1

(𝑥, 𝑢)
= ∫

𝑥∈𝑋

(∫
𝑢∈𝐽
𝑥

1/𝑢)

𝑥
.

(3)

It is obvious that the interval type-2 fuzzy set 𝐴 defined
on 𝑋 is completely determined by the primary membership
which is called the footprint of uncertainty (FOU), and the
FOU can be expressed as follows:

FOU (𝐴) = ⋃
𝑥∈𝑋

𝐽
𝑥
= ⋃

𝑥∈𝑋

{(𝑥, 𝑢) | 𝑢 ∈ 𝐽𝑥 ⊆ [0, 1]} . (4)

2.2. Triangular Interval Type-2 Fuzzy Set. Because the opera-
tions on interval type-2 fuzzy sets are very complex according
to the decomposition theorem [23], the interval type-2
fuzzy sets are usually taken in some simplified formations
in applications. Here, we follow the results of Chiao [39],
which adopted triangular interval type-2 fuzzy set for solving
MAGDM problems.

In [39], Chiao proposed the concept of triangular interval
type-2 fuzzy set, in which the upper membership function
(UMF) and the lower membership function (LMF) are
represented by triangular fuzzy number.

Let 𝐴 = ([𝑙
𝐴
, 𝑙
𝐴
], 𝑚

𝐴
, [𝑟

𝐴
, 𝑟
𝐴
]) be a triangular interval

type-2 fuzzy set defined on 𝑋, which is shown in Figure 1,
where 𝑙

𝐴
, 𝑙
𝐴
, 𝑚

𝐴
, 𝑟
𝐴
, 𝑟
𝐴
are the reference points of the trian-

gular interval type-2 fuzzy set, satisfying 0 ≤ 𝑙
𝐴
≤ 𝑙

𝐴
≤ 𝑚

𝐴
≤

𝑟
𝐴
≤ 𝑟

𝐴
≤ 1. The upper and lower membership functions of

𝐴 are defined as

UMF
𝐴
(𝑥) =

{{{{{{

{{{{{{

{

𝑥 − 𝑙
𝐴

𝑚
𝐴
− 𝑙

𝐴

𝑙
𝐴
≤ 𝑥 < 𝑚

𝐴
,

1 𝑥 = 𝑚
𝐴
,

𝑥 − 𝑟
𝐴

𝑚
𝐴
− 𝑟

𝐴

𝑚
𝐴
≤ 𝑥 < 𝑟

𝐴
,

LMF
𝐴
(𝑥) =

{{{{{{

{{{{{{

{

𝑥 − 𝑙
𝐴

𝑚
𝐴
− 𝑙

𝐴

𝑙
𝐴
≤ 𝑥 < 𝑚

𝐴
,

1 𝑥 = 𝑚
𝐴
,

𝑥 − 𝑟
𝐴

𝑚
𝐴
− 𝑟

𝐴

𝑚
𝐴
≤ 𝑥 < 𝑟

𝐴
.

(5)

The footprint of uncertainty (FOU) of the membership
function of 𝐴 is shown as the shaded region in Figure 1.
Obviously, if 𝑙

𝐴
= 𝑙

𝐴
, 𝑟
𝐴
= 𝑟

𝐴
, then UMF

𝐴
(𝑥) = LMF

𝐴
(𝑥) for

all 𝑥 ∈ 𝑋, and the triangular interval type-2 fuzzy set reduces
to the triangular type-1 fuzzy set.

If 𝑋 is a set in which the elements are all real numbers,
then a triangular interval type-2 fuzzy set in 𝑋 is called a
triangular interval type-2 fuzzy number (TIT2FN).

Chen et al. [33] proposed the ranking formula for interval
type-2 fuzzy number as follows.

Definition 3 (see [33]). Let 𝐴 = ([𝑙
𝐴
, 𝑙
𝐴
], 𝑚

𝐴
, [𝑟

𝐴
, 𝑟
𝐴
]) be

a triangular interval type-2 fuzzy number in Figure 1; the
ranking value Rank(𝐴) of the triangular interval type-2 fuzzy
number 𝐴 is defined as follows:

Rank (𝐴) = (
𝑙
𝐴
+ 𝑟

𝐴

2
+ 1) ×

𝑙
𝐴
+ 𝑙

𝐴
+ 𝑟

𝐴
+ 𝑟

𝐴
+ 4𝑚

𝐴

8
.

(6)

The larger the ranking value Rank(𝐴), the greater the TIT2FN
𝐴.

2.3. Frank Triangular Norms. Frank operations include the
Frank product and Frank sum, which are examples of triangle
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Figure 1: A triangular interval type-2 fuzzy set.

norms and triangle conorms, respectively. Frank product⨂
𝐹

is a 𝑡-norm and Frank sum ⨁
𝐹
is a 𝑡-conorm, and the

mathematical forms are defined as follows [55]:

𝑎⨁

𝐹

𝑏 = 1 − log
𝜆
(1 +

(𝜆
1−𝑎
− 1) (𝜆

1−𝑏
− 1)

𝜆 − 1
)𝜆 > 1,

∀ (𝑎, 𝑏) ∈ [0, 1]
2

𝑎⨂

𝐹

𝑏 = log
𝜆
(1 +

(𝜆
𝑎
− 1) (𝜆

𝑏
− 1)

𝜆 − 1
)𝜆 > 1,

∀ (𝑎, 𝑏) ∈ [0, 1]
2
.

(7)

It is pointed out that the Frank product and Frank sum
have the following property [61]:

(𝑎⨁

𝐹

𝑏) + (𝑎⨂

𝐹

𝑏) = 𝑎 + 𝑏,

𝜕 (𝑎⨁
𝐹
𝑏)

𝜕𝑎
+
𝜕 (𝑎⨂

𝐹
𝑏)

𝜕𝑎
= 1.

(8)

Based on the limit theory, we can easily prove the
interesting results as follows [61].

(1) If 𝜆 → 1, then 𝑎⨁
𝐹
𝑏 → 𝑎 + 𝑏 − 𝑎𝑏, 𝑎⨂

𝐹
𝑏 → 𝑎𝑏,

and the Frank product and Frank sum are reduced to
the probability product and probability sum.

(2) If 𝜆 → ∞, then 𝑎⨁
𝐹
𝑏 → min(𝑎 + 𝑏, 1), 𝑎⨂

𝐹
𝑏 →

max(0, 𝑎 + 𝑏 − 1), and the Frank product and Frank
sum are reduced to the Lukasiewicz product and
Lukasiewicz sum.

3. Frank Operations of Triangular Interval
Type-2 Fuzzy Numbers

Based on Frank 𝑡-corm and Frank 𝑡-conorm previously
mentioned, we will establish the basic operation laws of
triangular interval type-2 fuzzy numbers in this section.

Definition 4. Let𝐴,𝐴
1
, and𝐴

2
be three TIT2FNs, and 𝜆 > 1;

then we define their operation laws as follows.
(1) Addition operation:

𝐴
1
⨁

𝐹

𝐴
2

= (
[
[

[

1 − log
𝜆
(1 +

∏
2

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗

− 1)

𝜆 − 1
) ,

1 − log
𝜆
(1 +

∏
2

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗 − 1)

𝜆 − 1
)
]
]

]

,

1 − log
𝜆
(1 +

∏
2

𝑗=1
(𝜆

1−𝑚
𝐴
𝑗 − 1)

𝜆 − 1
) ,

[
[

[

1 − log
𝜆
(1 +

∏
2

𝑗=1
(𝜆

1−𝑟
𝐴
𝑗

− 1)

𝜆 − 1
) ,

1 − log
𝜆
(1 +

∏
2

𝑗=1
(𝜆

1−𝑟
𝐴
𝑗 − 1)

𝜆 − 1
)
]
]

]

) .

(9)

(2)Multiplication operation:

𝐴
1
⨂

𝐹

𝐴
2

= (
[
[

[

log
𝜆
(1 +

∏
2

𝑗=1
(𝜆

𝑙
𝐴
𝑗

− 1)

𝜆 − 1
) ,

log
𝜆
(1 +

∏
2

𝑗=1
(𝜆

𝑙
𝐴
𝑗 − 1)

𝜆 − 1
)
]
]

]

,

log
𝜆
(1 +

∏
2

𝑗=1
(𝜆

𝑚
𝐴
𝑗 − 1)

𝜆 − 1
) ,

[

[

log
𝜆
(1 +

∏
2

𝑗=1
(𝜆

𝑟
𝐴
𝑗

− 1)

𝜆 − 1
) ,

log
𝜆
(1 +

∏
2

𝑗=1
(𝜆

𝑟
𝐴
𝑗 − 1)

𝜆 − 1
)]

]

) .

(10)

(3)Multiplication by an ordinary number:

𝑘⋅
𝐹
𝐴 = ([

[

1 − log
𝜆
(1 +

(𝜆
1−𝑙
𝐴 − 1)

𝑘

(𝜆 − 1)
𝑘−1

) ,

1 − log
𝜆
(1 +

(𝜆
1−𝑟
𝐴 − 1)

𝑘

(𝜆 − 1)
𝑘−1

)]

]

,

1 − log
𝜆
(1 +

(𝜆
1−𝑚
𝐴 − 1)

𝑘

(𝜆 − 1)
𝑘−1

) ,
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[

[

1 − log
𝜆
(1 +

(𝜆
1−𝑟
𝐴 − 1)

𝑘

(𝜆 − 1)
𝑘−1

) ,

1 − log
𝜆
(1 +

(𝜆
1−𝑟
𝐴 − 1)

𝑘

(𝜆 − 1)
𝑘−1

)]

]

) .

(11)

(4) Power operation:

𝐴
∧
𝐹
𝑘
= ([

[

log
𝜆
(1 +

(𝜆
𝑙
𝐴 − 1)

𝑘

(𝜆 − 1)
𝑘−1
) ,

log
𝜆
(1 +

(𝜆
𝑟
𝐴 − 1)

𝑘

(𝜆 − 1)
𝑘−1
)]

]

,

log
𝜆
(1 +

(𝜆
𝑚
𝐴 − 1)

𝑘

(𝜆 − 1)
𝑘−1
) ,

[

[

log
𝜆
(1 +

(𝜆
𝑟
𝐴 − 1)

𝑘

(𝜆 − 1)
𝑘−1
) ,

log
𝜆
(1 +

(𝜆
𝑟
𝐴 − 1)

𝑘

(𝜆 − 1)
𝑘−1
)]

]

) .

(12)

Theorem 5. Let 𝐴, 𝐴
1
, and 𝐴

2
be three TIT2FNs, and 𝑘, 𝑘

1
,

𝑘
2
> 0; then one has

(1) 𝐴
1
⨁

𝐹
𝐴
2
= 𝐴

2
⨁

𝐹
𝐴
1
;

(2) 𝑘⋅
𝐹
(𝐴

1
⨁

𝐹
𝐴
2
) = 𝑘⋅

𝐹
𝐴
1
⨁

𝐹
𝑘⋅
𝐹
𝐴
2
;

(3) 𝑘
1
⋅
𝐹
𝐴⨁

𝐹
𝑘
2
⋅
𝐹
𝐴 = (k

1
+ 𝑘

2
)⋅
𝐹
𝐴;

(4) (𝑘
1
𝑘
2
)⋅
𝐹
𝐴 = 𝑘

1
⋅
𝐹
(𝑘
2
⋅
𝐹
𝐴).

It is easy to prove the formulas inTheorem 5; thus, they are
omitted in here.

4. Frank Aggregation Operators for Triangular
Interval Type-2 Fuzzy Numbers

In this section, we will develop the Frank operator under
triangular interval type-2 fuzzy environment and propose
the triangular interval type-2 fuzzy Frank weighted averaging
(TIT2FFWA) operator and the triangular interval type-
2 fuzzy Frank weighted geometric (TIT2FFWG) operator
based on Frank triangular norms, respectively.

4.1. Triangular Interval Type-2 Fuzzy Frank Weighted
Averaging Operator

Definition 6. Let 𝐴
𝑗
= ([𝑙

𝐴
𝑗

, 𝑙
𝐴
𝑗

], 𝑚
𝐴
𝑗

, [𝑟
𝐴
𝑗

, 𝑟
𝐴
𝑗

]) (𝑗 =

1, 2, . . . , 𝑛) be a collection of TIT2FNs, and let TIT2FFWA:
Ω
𝑛
→ Ω; if

TIT2FFWA
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)

= 𝜔
1
⋅
𝐹
𝐴
1
⨁

𝐹

𝜔
2
⋅
𝐹
𝐴
2
⨁

𝐹

⋅ ⋅ ⋅⨁

𝐹

𝜔
𝑗
⋅
𝐹
𝐴
𝑛
,

(13)

then the function TIT2FFWA is called a triangular interval
type-2 fuzzy Frank weighted averaging (TIT2FFWA) oper-
ator, where 𝜔 = (𝜔

1
, 𝜔

2
, . . . , 𝜔

𝑛
)
𝑇 is the weight vector of

𝐴
𝑗
(𝑗 = 1, 2, . . . , 𝑛), 𝜔

𝑗
≥ 0, and ∑𝑛

𝑗=1
𝜔
𝑗
= 1. In particular,

if 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)𝑇, then the TIT2FFWA operator is
reduced to a triangular interval type-2 fuzzy Frank arithmetic
averaging (TIT2FFAA) operator of dimension 𝑛, which is
defined as follows:

TIT2FFAA
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)

=
1

𝑛
⋅
𝐹
(𝐴

1
⊕
𝐹
𝐴
2
⊕
𝐹
⋅ ⋅ ⋅ ⊕

𝐹
𝐴
𝑛
) .

(14)

Based on the Frank operation laws from Theorem 5, we
can derive the following Theorem 7, which shows that the
FWA of TIT2 fuzzy sets is also a TIT2 fuzzy set.

Theorem 7. Let 𝐴
𝑗
= ([𝑙

𝐴
𝑗

, 𝑙
𝐴
𝑗

], 𝑚
𝐴
𝑗

, [𝑟
𝐴
𝑗

, 𝑟
𝐴
𝑗

]) (𝑗 =

1, 2, . . . , 𝑛) be a collection of TIT2FNs; then their aggregated
value by TIT2FFWA operator is still a TIT2FN, and

TIT2FFWA
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)

= ([

[

1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

) ,

1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗 − 1)

𝜔
𝑗

)]

]

,

1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑚
𝐴
𝑗 − 1)

𝜔
𝑗

) ,

[

[

1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑟
𝐴
𝑗

− 1)

𝜔
𝑗

) ,

1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑟
𝐴
𝑗 − 1)

𝜔
𝑗

)]

]

) ,

(15)
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where 𝜔 = (𝜔
1
, 𝜔

2
, . . . , 𝜔

𝑛
)
𝑇 is the weight vector of 𝐴

𝑗
(𝑗 =

1, 2, . . . , 𝑛), 𝜔
𝑗
> 0, and ∑𝑛

𝑗=1
𝜔
𝑗
= 1.

Proof. Here, we prove Theorem 7 by using the mathematical
induction method as follows.
(1) For 𝑛 = 2, based on the Frank operational laws of

TIT2FNs, we have

𝜔
1
⋅
𝐹
𝐴
1

= (
[
[

[

1 − log
𝜆
(1 +

(𝜆
1−𝑙
𝐴
1 − 1)

𝜔
1

(𝜆 − 1)
𝜔
1
−1
),

1 − log
𝜆
(1 +

(𝜆
1−𝑙
𝐴
1 − 1)

𝜔
1

(𝜆 − 1)
𝜔
1
−1
)
]
]

]

,

1 − log
𝜆
(1 +

(𝜆
1−𝑚
𝐴
1 − 1)

𝜔
1

(𝜆 − 1)
𝜔
1
−1

) ,

[
[

[

1 − log
𝜆
(1 +

(𝜆
1−𝑟
𝐴
1 − 1)

𝜔
1

(𝜆 − 1)
𝜔
1
−1
),

1 − log
𝜆
(1 +

(𝜆
1−𝑟
𝐴
1 − 1)

𝜔
1

(𝜆 − 1)
𝜔
1
−1
)
]
]

]

) ,

𝜔
2
⋅
𝐹
𝐴
2

= (
[
[

[

1 − log
𝜆
(1 +

(𝜆
1−𝑙
𝐴
2 − 1)

𝜔
2

(𝜆 − 1)
𝜔
2
−1
),

1 − log
𝜆
(1 +

(𝜆
1−𝑙
𝐴
2 − 1)

𝜔
2

(𝜆 − 1)
𝜔
2
−1
)
]
]

]

,

1 − log
𝜆
(1 +

(𝜆
1−𝑚
𝐴
2 − 1)

𝜔
2

(𝜆 − 1)
𝜔
2
−1

) ,

[
[

[

1 − log
𝜆
(1 +

(𝜆
1−𝑟
𝐴
2 − 1)

𝜔
2

(𝜆 − 1)
𝜔
2
−1
),

1 − log
𝜆
(1 +

(𝜆
1−𝑟
𝐴
2 − 1)

𝜔
2

(𝜆 − 1)
𝜔
2
−1
)
]
]

]

) .

(16)

In accordance with Definition 2, we obtain

TIT2FFWA
𝜔
(𝐴

1
, 𝐴

2
)

= 𝜔
1
⋅
𝐹
𝐴
1
⨁

𝐹

𝜔
2
⋅
𝐹
𝐴
2

= (

[
[
[

[

1 − log
𝜆
(1 +

∏
2

𝑗=1
(𝜆

1−(1−log
𝜆
(1+(𝜆

1−𝑙
𝐴
𝑗

−1)
𝜔
𝑗 /(𝜆−1)

𝜔
𝑗
−1

))
− 1)

𝜆 − 1
) ,

1 − log
𝜆
(1 +

∏
2

𝑗=1
(𝜆

1−(1−log
𝜆
(1+(𝜆

1−𝑙
𝐴
𝑗 −1)
𝜔
𝑗 /(𝜆−1)

𝜔
𝑗
−1

))
− 1)

𝜆 − 1
)

]
]
]
]

]

,

1 − log
𝜆
(1 +

∏
2

𝑗=1
(𝜆

1−(1−log
𝜆
(1+(𝜆

1−𝑚
𝐴
𝑗 −1)
𝜔
𝑗 /(𝜆−1)

𝜔
𝑗
−1

)
− 1)

𝜆 − 1
) ,

[
[
[

[

1 − log
𝜆
(1 +

∏
2

𝑗=1
(𝜆

1−(1−log
𝜆
(1+(𝜆

1−𝑟
𝐴
𝑗 −1)

𝜔
𝑗

/(𝜆−1)
𝜔
𝑗
−1

))
− 1)

𝜆 − 1
) ,

1 − log
𝜆
(1 +

∏
2

𝑗=1
(𝜆

1−(1−log
𝜆
(1+(𝜆

1−𝑟
𝐴
𝑗 −1)

𝜔
𝑗

/(𝜆−1)
𝜔
𝑗
−1

))
− 1)

𝜆 − 1
)

]
]
]

]

)
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= (
[
[

[

1 − log
𝜆
(1 +

∏
2

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

(𝜆 − 1)
𝜔
1
+𝜔
2
−1

), 1 − log
𝜆
(1 +

∏
2

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗 − 1)

𝜔
𝑗

(𝜆 − 1)
𝜔
1
+𝜔
2
−1

)
]
]

]

, 1 − log
𝜆
(1 +

∏
2

𝑗=1
(𝜆

1−𝑚
𝐴
𝑗 − 1)

𝜔
𝑗

(𝜆 − 1)
𝜔
1
+𝜔
2
−1

) ,

[
[

[

1 − log
𝜆
(1 +

∏
2

𝑗=1
(𝜆

1−𝑟
𝐴
𝑗

− 1)

𝜔
𝑗

(𝜆 − 1)
𝜔
1
+𝜔
2
−1

), 1 − log
𝜆
(1 +

∏
2

𝑗=1
(𝜆

1−𝑟
𝐴
𝑗 − 1)

𝜔
𝑗

(𝜆 − 1)
𝜔
1
+𝜔
2
−1

)
]
]

]

)

= ([

[

1 − log
𝜆
(1 +

2

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

) , 1 − log
𝜆
(1 +

2

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗 − 1)

𝜔
𝑗

)]

]

, 1 − log
𝜆
(1 +

2

∏

𝑗=1

(𝜆
1−𝑚
𝐴
𝑗 − 1)

𝜔
𝑗

) ,

[

[

1 − log
𝜆
(1 +

2

∏

𝑗=1

(𝜆
1−𝑟
𝐴
𝑗

− 1)

𝜔
𝑗

) , 1 − log
𝜆
(1 +

2

∏

𝑗=1

(𝜆
1−𝑟
𝐴
𝑗 − 1)

𝜔
𝑗

)]

]

) .

(17)

If (15) holds for 𝑛 = 𝑘, that is,

TIT2FFWA
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑘
)

= ([

[

1 − log
𝜆
(1 +

𝑘

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

) ,

1 − log
𝜆
(1 +

𝑘

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗 − 1)

𝜔
𝑗

)]

]

,

1 − log
𝜆
(1 +

𝑘

∏

𝑗=1

(𝜆
1−𝑚
𝐴
𝑗 − 1)

𝜔
𝑗

) ,

[

[

1 − log
𝜆
(1 +

𝑘

∏

𝑗=1

(𝜆
1−𝑟
𝐴
𝑗

− 1)

𝜔
𝑗

) ,

1 − log
𝜆
(1 +

𝑘

∏

𝑗=1

(𝜆
1−𝑟
𝐴
𝑗 − 1)

𝜔
𝑗

)]

]

) ,

(18)

then if 𝑛 = 𝑘 + 1, based on the operational laws of the
TIT2FNs, we can deduce that

TIT2FFWA
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑘
, 𝐴

𝑘+1
)

= ([

[

1 − log
𝜆
(1 +

𝑘

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

) ,

1 − log
𝜆
(1 +

𝑘

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗 − 1)

𝜔
𝑗

)]

]

,

1 − log
𝜆
(1 +

𝑘

∏

𝑗=1

(𝜆
1−𝑚
𝐴
𝑗 − 1)

𝜔
𝑗

) ,

[

[

1 − log
𝜆
(1 +

𝑘

∏

𝑗=1

(𝜆
1−𝑟
𝐴
𝑗

− 1)

𝜔
𝑗

) ,

1 − log
𝜆
(1 +

𝑘

∏

𝑗=1

(𝜆
1−𝑟
𝐴
𝑗 − 1)

𝜔
𝑗

)]

]

)

⨁

𝐹

(
[
[

[

1 − log
𝜆
(1 +

(𝜆
1−𝑙
𝐴
𝑘+1

− 1)

𝜔
𝑘+1

(𝜆 − 1)
𝜔
𝑘+1

−1
) ,

1 − log
𝜆
(1 +

(𝜆
1−𝑙
𝐴
𝑘+1 − 1)

𝜔
𝑘+1

(𝜆 − 1)
𝜔
𝑘+1

−1
)
]
]

]

,

1 − log
𝜆
(1 +

(𝜆
1−𝑚
𝐴
𝑘+1 − 1)

𝜔
𝑘+1

(𝜆 − 1)
𝜔
𝑘+1

−1
) ,

[
[

[

1 − log
𝜆
(1 +

(𝜆
1−𝑟
𝐴
𝑘+1

− 1)

𝜔
𝑘+1

(𝜆 − 1)
𝜔
𝑘+1

−1
),

1 − log
𝜆
(1 +

(𝜆
1−𝑟
𝐴
𝑘+1 − 1)

𝜔
𝑘+1

(𝜆 − 1)
𝜔
𝑘+1

−1
)
]
]

]

)

= (
[
[

[

1 − log
𝜆
(1 +

∏
𝑘+1

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

(𝜆 − 1)
∑
𝑘+1

𝑗=1
𝜔
𝑗
−1

) ,

1 − log
𝜆
(1 +

∏
𝑘+1

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗 − 1)

𝜔
𝑗

(𝜆 − 1)
∑
𝑘+1

𝑗=1
𝜔
𝑗
−1

)
]
]

]

,

1 − log
𝜆
(1 +

∏
𝑘+1

𝑗=1
(𝜆

1−𝑚
𝐴
𝑗 − 1)

𝜔
𝑗

(𝜆 − 1)
∑
𝑘+1

𝑗=1
𝜔
𝑗
−1

) ,
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[
[

[

1 − log
𝜆
(1 +

∏
𝑘+1

𝑗=1
(𝜆

1−𝑟
𝐴
𝑗

− 1)

𝜔
𝑗

(𝜆 − 1)
∑
𝑘+1

𝑗=1
𝜔
𝑗
−1

) ,

1 − log
𝜆
(1 +

∏
𝑘+1

𝑗=1
(𝜆

1−𝑟
𝐴
𝑗 − 1)

𝜔
𝑗

(𝜆 − 1)
∑
𝑘+1

𝑗=1
𝜔
𝑗
−1

)
]
]

]

)

= ([

[

1 − log
𝜆
(1 +

𝑘+1

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

) ,

1 − log
𝜆
(1 +

𝑘+1

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗 − 1)

𝜔
𝑗

)]

]

,

1 − log
𝜆
(1 +

𝑘+1

∏

𝑗=1

(𝜆
1−𝑚
𝐴
𝑗 − 1)

𝜔
𝑗

) ,

[

[

1 − log
𝜆
(1 +

𝑘+1

∏

𝑗=1

(𝜆
1−𝑟
𝐴
𝑗

− 1)

𝜔
𝑗

) ,

1 − log
𝜆
(1 +

𝑘+1

∏

𝑗=1

(𝜆
1−𝑟
𝐴
𝑗 − 1)

𝜔
𝑗

)]

]

) .

(19)

That is, (15) holds for 𝑛 = 𝑘+ 1. Therefore, (15) holds for all 𝑛,
which completes the proof of Theorem 7.

In what follows, we can easily prove that the TIT2FFWA
operator has the idempotency, boundary, and other proper-
ties that ordinary aggregation operators usually have.

Theorem 8 (idempotency). Let 𝐴
𝑗

= ([𝑙
𝐴
𝑗

, 𝑙
𝐴
𝑗

], 𝑚
𝐴
𝑗

,
[𝑟
𝐴
𝑗

, 𝑟
𝐴
𝑗

]) (𝑗 = 1, 2, . . . , 𝑛) be a collection of TIT2FNs, where

0 ≤ 𝑙
𝐴
𝑗

≤ 𝑙
𝐴
𝑗

≤ 𝑚
𝐴
𝑗

≤ 𝑟
𝐴
𝑗

≤ 𝑟
𝐴
𝑗

≤ 1. If all 𝐴
𝑗
(𝑗 =

1, 2, . . . , 𝑛) are equal, that is, 𝐴
𝑗
= 𝐴, for all 𝑗, then

TIT2FFWA
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
) = 𝐴. (20)

Proof. By usingTheorem 7, we have

TIT2FFWA
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)

= ([1 − log
𝜆
(1 + (𝜆

1−𝑙
𝐴

− 1)
∑
𝑛

𝑗=1
𝜔
𝑗

) ,

1 − log
𝜆
(1 + (𝜆

1−𝑙
𝐴

− 1)

∑
𝑛

𝑗=1
𝜔
𝑗

)] ,

1 − log
𝜆
(1 + (𝜆

1−𝑚
𝐴

− 1)
∑
𝑛

𝑗=1
𝜔
𝑗

) ,

[1 − log
𝜆
(1 + (𝜆

1−𝑟
𝐴
𝑗

− 1)

∑
𝑛

𝑗=1
𝜔
𝑗

) ,

1 − log
𝜆
(1 + (𝜆

1−𝑟
𝐴
𝑗 − 1)

∑
𝑛

𝑗=1
𝜔
𝑗

)])

= ([1 − log
𝜆
𝜆
1−𝑙
𝐴

, 1 − log
𝜆
𝜆
1−𝑙
𝐴

] , 1 − log
𝜆
𝜆
1−𝑚
𝐴

,

[1 − log
𝜆
𝜆
1−𝑟
𝐴
𝑗

, 1 − log
𝜆
𝜆
1−𝑟
𝐴
𝑗 ])

= ([1 − (1 − 𝑙
𝐴
) , 1 − (1 − 𝑙

𝐴
)] , 1 − (1 − 𝑚

𝐴
) ,

[1 − (1 − 𝑟
𝐴
𝑗

) , 1 − (1 − 𝑟
𝐴
𝑗

)])

= ([𝑙
𝐴
, 𝑙
𝐴
] , 𝑚

𝐴
, [𝑟

𝐴
, 𝑟
𝐴
]) = 𝐴.

(21)

Thus, the proof is completed.

Theorem 9 (boundary). Let 𝐴
𝑗

= ([𝑙
𝐴
𝑗

, 𝑙
𝐴
𝑗

] ,
𝑚
𝐴
𝑗

, [r
𝐴
𝑗

, 𝑟
𝐴
𝑗

]) (𝑗 = 1, 2, . . . , 𝑛) be a collection of TIT2FNs,

where 0 ≤ 𝑙
𝐴
𝑗

≤ 𝑙
𝐴
𝑗

≤ 𝑚
𝐴
𝑗

≤ 𝑟
𝐴
𝑗

≤ 𝑟
𝐴
𝑗

≤ 1, and let

𝐴
+
= {[

𝑛max
𝑗=1

{𝑙
𝐴
𝑗

} ,
𝑛max
𝑗=1

{𝑙
𝐴
𝑗

}] ,
𝑛max
𝑗=1

{𝑚
𝐴
𝑗

} ,

[
𝑛max
𝑗=1

{𝑟
𝐴
𝑗

} ,
𝑛max
𝑗=1

{𝑟
𝐴
𝑗

}]} ,

𝐴
−
= {[

𝑛

min
𝑗=1

{𝑙
𝐴
𝑗

} ,

𝑛

min
𝑗=1

{𝑙
𝐴
𝑗

}] ,

𝑛

min
𝑗=1

{𝑚
𝐴
𝑗

} ,

[

𝑛

min
𝑗=1

{𝑟
𝐴
𝑗

} ,

𝑛

min
𝑗=1

{𝑟
𝐴
𝑗

}]} .

(22)

Then

𝐴
−
≤ TIT2FFWA

𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
) ≤ 𝐴

+
. (23)

Proof. Since

min {𝑙
𝐴
𝑗

} ≤ 𝑙
𝐴
𝑗

≤ max {𝑙
𝐴
𝑗

} ,

min
𝑗

{𝑙
𝐴
𝑗

} ≤ 𝑙
𝐴
𝑗

≤ max
𝑗

{𝑙
𝐴
𝑗

} ,

min
𝑗

{𝑚
𝐴
𝑗

} ≤ 𝑚
𝐴
𝑗

≤ max
𝑗

{𝑚
𝐴
𝑗

} ,

min {𝑟
𝐴
𝑗

} ≤ 𝑟
𝐴
𝑗

≤ max {𝑟
𝐴
𝑗

} ,

min
𝑗

{𝑟
𝐴
𝑗

} ≤ 𝑟
𝐴
𝑗

≤ max
𝑗

{𝑟
𝐴
𝑗

}

(24)

for all 𝑗, then it follows that

1 −max
𝑗

{𝑙
𝐴
𝑗

} ≤ 1 − 𝑙
𝐴
𝑗

≤ 1 −min
𝑗

{𝑙
𝐴
𝑗

} (25)

and then

log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−max

𝑗
{𝑙
𝐴
𝑗

}

− 1)

𝜔
𝑗

)

≤ log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

)

≤ log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−min

𝑗
{𝑙
𝐴
𝑗

}

− 1)

𝜔
𝑗

) .

(26)
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Then, it follows that

log
𝜆
(1 + (𝜆

1−max
𝑗
{𝑙
𝐴
𝑗

}

− 1)

∑
𝑛

𝑗=1
𝜔
𝑗

)

≤ log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

)

≤ log
𝜆
(1 + (𝜆

1−min
𝑗
{𝑙
𝐴
𝑗

}

− 1)

∑
𝑛

𝑗=1
𝜔
𝑗

)

󳨐⇒ log
𝜆
𝜆
1−max

𝑗
{𝑙
𝐴
𝑗

}

≤ log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

) ≤ log
𝜆
𝜆
1−min

𝑗
{𝑙
𝐴
𝑗

}

󳨐⇒ 1 −max
𝑗

{𝑙
𝐴
𝑗

} ≤ log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

)

≤ 1 −min
𝑗

{𝑙
𝐴
𝑗

}

󳨐⇒ min
𝑗

{𝑙
𝐴
𝑗

} ≤ 1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

)

≤ max
𝑗

{𝑙
𝐴
𝑗

} .

(27)

Similarly, we have

min
𝑗

{𝑙
𝐴
𝑗

} ≤ 1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗 − 1)

𝜔
𝑗

)

≤ max
𝑗

{𝑙
𝐴
𝑗

} ,

min
𝑗

{𝑚
𝐴
𝑗

} ≤ 1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑚
𝐴
𝑗 − 1)

𝜔
𝑗

)

≤ max
𝑗

{𝑚
𝐴
𝑗

} ,

min
𝑗

{𝑟
𝐴
𝑗

} ≤ 1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑟
𝐴
𝑗

− 1)

𝜔
𝑗

)

≤ max
𝑗

{𝑟
𝐴
𝑗

} ,

min
𝑗

{𝑟
𝐴
𝑗

} ≤ 1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑟
𝐴
𝑗 − 1)

𝜔
𝑗

)

≤ max
𝑗

{𝑟
𝐴
𝑗

} .

(28)

Let TIT2FFWA
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
) = 𝐴 = ([𝑙

𝐴
, 𝑙
𝐴
] ,

𝑚
𝐴
, [𝑟

𝐴
, 𝑟
𝐴
]); then by using the ranking value formula of

TIT2FN, we have

Rank (𝐴) = (
𝑙
𝐴
+ 𝑟

𝐴

2
+ 1) ×

𝑙
𝐴
+ 𝑙

𝐴
+ 𝑟

𝐴
+ 𝑟

𝐴
+ 4𝑚

𝐴

8

≤ (

max
𝑗
(𝑙
𝐴
𝑗

) +max
𝑗
(𝑟

𝐴
𝑗

)

2
+ 1)

× (max
𝑗

(𝑙
𝐴
𝑗

) +max
𝑗

(𝑙
𝐴
𝑗

) +max
𝑗

(𝑟
𝐴
𝑗

)

+max
𝑗

(𝑟
𝐴
𝑗

) +4max
𝑗

(𝑚
𝐴
𝑗

)) × (8)
−1

= Rank (𝐴+) ,

Rank (𝐴) = (
𝑙
𝐴
+ 𝑟

𝐴

2
+ 1) ×

𝑙
𝐴
+ 𝑙

𝐴
+ 𝑟

𝐴
+ 𝑟

𝐴
+ 4𝑚

𝐴

8

≥ (

min
𝑗
(𝑙
𝐴
𝑗

) +min
𝑗
(𝑟

𝐴
𝑗

)

2
+ 1)

× (min
𝑗

(𝑙
𝐴
𝑗

) +min
𝑗

(𝑙
𝐴
𝑗

) +min(𝑟
𝐴
𝑗

)

+min
𝑗

(𝑟
𝐴
𝑗

) + 4min
𝑗

(𝑚
𝐴
𝑗

)) × (8)
−1

= Rank (𝐴−) .
(29)

Therefore,

𝐴
−
≤ TIT2FFWA

𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
) ≤ 𝐴

+ (30)

which completes the proof of Theorem 9.

Theorem 10. Let 𝐴
𝑗
= ([𝑙

𝐴
𝑗

, 𝑙
𝐴
𝑗

], 𝑚
𝐴
𝑗

, [𝑟
𝐴
𝑗

, 𝑟
𝐴
𝑗

]) (𝑗 =

1, 2, . . . , 𝑛) be a collection of TIT2FNs, where 0 ≤ 𝑙
𝐴
𝑗

≤

𝑙
𝐴
𝑗

≤ 𝑚
𝐴
𝑗

≤ 𝑟
𝐴
𝑗

≤ 𝑟
𝐴
𝑗

≤ 1. If 𝐴
𝑛+1

=

([𝑙
𝐴
𝑛+1

, 𝑙
𝐴
𝑛+1

], 𝑚
𝐴
𝑛+1

, [𝑟
𝐴
𝑛+1

, 𝑟
𝐴
𝑛+1

]) is also a TIT2FN on𝑋, then

TIT2FFWA
𝜔
(𝐴

1
⨁

𝐹

𝐴
𝑛+1
, 𝐴

2
⨁

𝐹

𝐴
𝑛+1
, . . . , 𝐴

𝑛
⨁

𝐹

𝐴
𝑛+1
)

= TIT2FFWA
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)⨁

𝐹

𝐴
𝑛+1
.

(31)
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Proof. Since

𝐴
𝑗
⨁

𝐹

𝐴
𝑛+1

= ([

[

1 − log
𝜆
(1 +

∏
𝑖={𝑗,𝑛+1}

(𝜆
1−𝑙
𝐴
𝑖 − 1)

𝜆 − 1
) ,

1 − log
𝜆
(1 +

∏
𝑖={𝑗,𝑛+1}

(𝜆
1−𝑙
𝐴
𝑖 − 1)

𝜆 − 1
)]

]

,

1 − log
𝜆
(1 +

∏
𝑖={𝑗,𝑛+1}

(𝜆
1−𝑚
𝐴
𝑖 − 1)

𝜆 − 1
) ,

[
[

[

1 − log
𝜆
(1 +

∏
𝑖={𝑗,𝑛+1}

(𝜆
1−𝑟
𝐴
𝑗

− 1)

𝜆 − 1
) ,

1 − log
𝜆
(1 +

∏
𝑖={𝑗,𝑛+1}

(𝜆
1−𝑟
𝐴
𝑗 − 1)

𝜆 − 1
)
]
]

]

) ,

(32)

according toTheorem 7, we have

TIT2FFAA
𝜔
(𝐴

1
⨁

𝐹

𝐴
𝑛+1
, 𝐴

2
⨁

𝐹

𝐴
𝑛+1
, . . . , 𝐴

𝑛
⨁

𝐹

𝐴
𝑛+1
)

= ([

[

1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−(1−log

𝜆
(1+∏

𝑖={𝑗,𝑛+1}
(𝜆
1−𝑙
𝐴
𝑖 −1)/(𝜆−1)))

− 1)

𝜔
𝑗

) ,

1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−(1−log

𝜆
(1+∏

𝑖={𝑗,𝑛+1}
(𝜆
1−𝑙
𝐴
𝑖 −1)/(𝜆−1)))

− 1)

𝜔
𝑗

)]

]

,

1 − log
𝜆
(1 +

𝑘

∏

𝑗=1

(𝜆
1−(1−log

𝜆
(1+∏

𝑖={𝑗,𝑛+1}
(𝜆
1−𝑚
𝐴
𝑖 −1)/(𝜆−1)))

− 1)

𝜔
𝑗

) ,

[

[

1 − log
𝜆
(1 +

𝑘

∏

𝑗=1

(𝜆
1−(1−log

𝜆
(1+∏

𝑖={𝑗,𝑛+1}
(𝜆
1−𝑟
𝐴
𝑖 −1)/(𝜆−1)))

− 1)

𝜔
𝑗

) ,

1 − log
𝜆
(1 +

𝑘

∏

𝑗=1

(𝜆
1−(1−log

𝜆
(1+∏

𝑖={𝑗,𝑛+1}
(𝜆
1−𝑟
𝐴
𝑖 −1)/(𝜆−1)))

− 1)

𝜔
𝑗

)]

]

)

= (

[
[
[

[

1 − log
𝜆
(1 +

∏
𝑛

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

(𝜆
1−𝑙
𝐴
𝑛+1

− 1)

∑
𝑛

𝑗=1
𝜔
𝑗

𝜆 − 1
) , 1 − log

𝜆
(1 +

∏
𝑛

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗 − 1)

𝜔
𝑗

(𝜆
1−𝑙
𝐴
𝑛+1 − 1)

∑
𝑛

𝑗=1
𝜔
𝑗

𝜆 − 1
)

]
]
]

]

,

1 − log
𝜆
(1 +

∏
𝑛

𝑗=1
(𝜆

1−𝑚
𝐴
𝑗 − 1)

𝜔
𝑗

(𝜆
1−𝑚
𝐴
𝑛+1 − 1)

∑
𝑛

𝑗=1
𝜔
𝑗

𝜆 − 1
) ,

[
[

[

1 − log
𝜆
(1 +

∏
𝑛

𝑗=1
(𝜆

1−𝑟
𝐴
𝑗

− 1)

𝜔
𝑗

(𝜆
1−𝑟
𝐴
𝑛+1

− 1)

∑
𝑛

𝑗=1
𝜔
𝑗

𝜆 − 1
) , 1 − log

𝜆
(1 +

∏
𝑛

𝑗=1
(𝜆

1−𝑟
𝐴
𝑗 − 1)

𝜔
𝑗

(𝜆
1−𝑟
𝐴
𝑛+1 − 1)

∑
𝑛

𝑗=1
𝜔
𝑗

𝜆 − 1
)
]
]

]

)

= (
[
[

[

1 − log
𝜆
(1 +

∏
𝑛

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

(𝜆
1−𝑙
𝐴
𝑛+1

− 1)

𝜆 − 1
) , 1 − log

𝜆
(1 +

∏
𝑛

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗 − 1)

𝜔
𝑗

(𝜆
1−𝑙
𝐴
𝑛+1 − 1)

𝜆 − 1
)
]
]

]

,
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1 − log
𝜆
(1 +

∏
𝑛

𝑗=1
(𝜆

1−𝑚
𝐴
𝑗 − 1)

𝜔
𝑗

(𝜆
1−𝑚
𝐴
𝑛+1 − 1)

𝜆 − 1
) ,

[
[

[

1 − log
𝜆
(1 +

∏
𝑛

𝑗=1
(𝜆

1−𝑟
𝐴
𝑗

− 1)

𝜔
𝑗

(𝜆
1−𝑟
𝐴
𝑛+1

− 1)

𝜆 − 1
) , 1 − log

𝜆
(1 +

∏
𝑛

𝑗=1
(𝜆

1−𝑟
𝐴
𝑗 − 1)

𝜔
𝑗

(𝜆
1−𝑟
𝐴
𝑛+1 − 1)

𝜆 − 1
)
]
]

]

) .

(33)

On the other hand, based on Theorem 7 and the opera-
tional laws of TIT2FNs, we have

TIT2FFAA
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)⨁

𝐹

𝐴
𝑛+1

= ([

[

1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

) , 1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗 − 1)

𝜔
𝑗

) ,]

]

1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑚
𝐴
𝑗 − 1)

𝜔
𝑗

) ,

[

[

1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑟
𝐴
𝑗

− 1)

𝜔
𝑗

) , 1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑟
𝐴
𝑗 − 1)

𝜔
𝑗

)]

]

)

⨁

𝐹

([𝑙
𝐴
𝑛+1

, 𝑙
𝐴
𝑛+1

] ,𝑚
𝐴
𝑛+1

, [𝑟
𝐴
𝑛+1

, 𝑟
𝐴
𝑛+1

])

= (
[
[

[

1 − log
𝜆
(1 +

∏
𝑛

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

(𝜆
1−𝑙
𝐴
𝑛+1

− 1)

𝜆 − 1
) , 1 − log

𝜆
(1 +

∏
𝑛

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗 − 1)

𝜔
𝑗

(𝜆
1−𝑙
𝐴
𝑛+1 − 1)

𝜆 − 1
)
]
]

]

,

1 − log
𝜆
(1 +

∏
𝑛

𝑗=1
(𝜆

1−𝑚
𝐴
𝑗 − 1)

𝜔
𝑗

(𝜆
1−𝑚
𝐴
𝑛+1 − 1)

𝜆 − 1
) ,

[
[

[

1 − log
𝜆
(1 +

∏
𝑛

𝑗=1
(𝜆

1−𝑟
𝐴
𝑗

− 1)

𝜔
𝑗

(𝜆
1−𝑟
𝐴
𝑛+1

− 1)

𝜆 − 1
) , 1 − log

𝜆
(1 +

∏
𝑛

𝑗=1
(𝜆

1−𝑟
𝐴
𝑗 − 1)

𝜔
𝑗

(𝜆
1−𝑟
𝐴
𝑛+1 − 1)

𝜆 − 1
)
]
]

]

) .

(34)

Therefore, we have

TIT2FFWA
𝜔
(𝐴

1
⨁

𝐹

𝐴
𝑛+1
, 𝐴

2
⨁

𝐹

𝐴
𝑛+1
, . . . , 𝐴

𝑛
⨁

𝐹

𝐴
𝑛+1
)

= TIT2FFWA
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)⨁

𝐹

𝐴
𝑛+1

(35)

which completes the proof of Theorem 10.

Theorem 11. Let 𝐴
𝑗
= ([𝑙

𝐴
𝑗

, 𝑙
𝐴
𝑗

], 𝑚
𝐴
𝑗

, [𝑟
𝐴
𝑗

, 𝑟
𝐴
𝑗

]) (𝑗 =

1, 2, . . . , 𝑛) be a collection of TIT2FNs, where 0 ≤ 𝑙
𝐴
𝑗

≤ 𝑙
𝐴
𝑗

≤

𝑚
𝐴
𝑗

≤ 𝑟
𝐴
𝑗

≤ 𝑟
𝐴
𝑗

≤ 1. If 𝑟 > 0, then

TIT2FFWA
𝜔
(𝑟⋅

𝐹
𝐴
1
, 𝑟⋅

𝐹
𝐴
2
, . . . , 𝑟⋅

𝐹
𝐴
𝑛
)

= 𝑟⋅
𝐹
TIT2FFWA

𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
) .

(36)
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Proof. Based on the Frank operation laws of TIT2FNs, we
have

𝑟⋅
𝐹
𝐴
𝑗

= (
[
[

[

1 − log
𝜆
(1 +

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝑟

(𝜆 − 1)
𝑟−1

), 1 − log
𝜆
(1 +

(𝜆
1−𝑙
𝐴
𝑗 − 1)

𝑟

(𝜆 − 1)
𝑟−1

)
]
]

]

, 1 − log
𝜆
(1 +

(𝜆
1−𝑚
𝐴
𝑗 − 1)

𝑟

(𝜆 − 1)
𝑟−1

) ,

[
[

[

1 − log
𝜆
(1 +

(𝜆
1−𝑟
𝐴
𝑗

− 1)

𝑟

(𝜆 − 1)
𝑟−1

), 1 − log
𝜆
(1 +

(𝜆
1−𝑟
𝐴
𝑗 − 1)

𝑟

(𝜆 − 1)
𝑟−1

)
]
]

]

) ,

TIT2FFAA
𝜔
(𝑟⋅

𝐹
𝐴
1
, 𝑟⋅

𝐹
𝐴
2
, . . . , 𝑟⋅

𝐹
𝐴
𝑛
)

= ([

[

1 − log
𝜆
(1 +

𝑘

∏

𝑗=1

(𝜆
1−(1−log

𝜆
(1+(𝜆

1−𝑙
𝐴
𝑗

−1)
𝑟

/(𝜆−1)
𝑟−1

))
− 1)

𝜔
𝑗

) , 1 − log
𝜆
(1 +

𝑘

∏

𝑗=1

(𝜆
1−(1−log

𝜆
(1+(𝜆

1−𝑙
𝐴
𝑗 −1)
𝑟

/(𝜆−1)
𝑟−1

))
− 1)

𝜔
𝑗

)]

]

,

1 − log
𝜆
(1 +

𝑘

∏

𝑗=1

(𝜆
1−(1−log

𝜆
(1+(𝜆

1−𝑚
𝐴
𝑗 −1)
𝑟

/(𝜆−1)
𝑟−1

))
− 1)

𝜔
𝑗

) ,

[

[

1 − log
𝜆
(1 +

𝑘

∏

𝑗=1

(𝜆
1−(1−log

𝜆
(1+(𝜆

1−𝑟
𝐴
𝑗

−1)
𝑟

/(𝜆−1)
𝑟−1

))
− 1)

𝜔
𝑗

) , 1 − log
𝜆
(1 +

𝑘

∏

𝑗=1

(𝜆
1−(1−log

𝜆
(1+(𝜆

1−𝑟
𝐴
𝑗 −1)
𝑟

/(𝜆−1)
𝑟−1

))
− 1)

𝜔
𝑗

)]

]

)

= (
[
[

[

1 − log
𝜆
(1 +

∏
𝑘

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗

− 1)

𝑟𝜔
𝑗

(𝜆 − 1)
𝑟−1

) , 1 − log
𝜆
(1 +

∏
𝑘

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗 − 1)

𝑟𝜔
𝑗

(𝜆 − 1)
𝑟−1

)
]
]

]

, 1 − log
𝜆
(1 +

∏
𝑘

𝑗=1
(𝜆

1−𝑚
𝐴
𝑗 − 1)

𝑟𝜔
𝑗

(𝜆 − 1)
𝑟−1

) ,

[
[

[

1 − log
𝜆
(1 +

∏
𝑘

𝑗=1
(𝜆

1−𝑟
𝐴
𝑗

− 1)

𝑟𝜔
𝑗

(𝜆 − 1)
𝑟−1

), 1 − log
𝜆
(1 +

∏
𝑘

𝑗=1
(𝜆

1−𝑟
𝐴
𝑗 − 1)

𝑟𝜔
𝑗

(𝜆 − 1)
𝑟−1

)
]
]

]

) .

(37)

Also since

𝑟⋅
𝐹
TIT2FFWA

𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)

= 𝑟⋅
𝐹
([

[

1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

) , 1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗 − 1)

𝜔
𝑗

)]

]

,

1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑚
𝐴
𝑗 − 1)

𝜔
𝑗

) ,

[

[

1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑟
𝐴
𝑗

− 1)

𝜔
𝑗

) , 1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑟
𝐴
𝑗 − 1)

𝜔
𝑗

)]

]

)
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=(

[
[
[
[

[

1 − log
𝜆
(1 +

(𝜆
1−(1−log

𝜆
(1+∏

𝑛

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗

−1)
𝜔
𝑗 ))
− 1)

𝑟

(𝜆 − 1)
𝑟−1

),1 − log
𝜆
(1 +

(𝜆
1−(1−log

𝜆
(1+∏

𝑛

𝑗=1
(𝜆
1−𝑙
𝐴
𝑗 −1)
𝜔
𝑗 ))
− 1)

𝑟

(𝜆 − 1)
𝑟−1

)

]
]
]
]

]

,

1 − log
𝜆
(1 +

(𝜆
1−(1−log

𝜆
(1+∏

𝑛

𝑗=1
(𝜆
1−𝑚
𝐴
𝑗 −1)
𝜔
𝑗 ))
− 1)

𝑟

(𝜆 − 1)
𝑟−1

),

[
[
[
[
[

[

1 − log
𝜆
(1 +

(𝜆
1−(1−log

𝜆
(1+∏

𝑛

𝑗=1
(𝜆

1−𝑟
𝐴
𝑗

−1)
𝜔
𝑗 ))

− 1)

𝑟

(𝜆 − 1)
𝑟−1

)1 − log
𝜆
(1 +

(𝜆
1−(1−log

𝜆
(1+∏

𝑛

𝑗=1
(𝜆
1−𝑟
𝐴
𝑗 −1)
𝜔
𝑗 ))
− 1)

𝑟

(𝜆 − 1)
𝑟−1

)

]
]
]
]
]

]

)

= (
[
[

[

1 − log
𝜆
(1 +

∏
𝑘

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗

− 1)

𝑟𝜔
𝑗

(𝜆 − 1)
𝑟−1

), 1 − log
𝜆
(1 +

∏
𝑘

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗 − 1)

𝑟𝜔
𝑗

(𝜆 − 1)
𝑟−1

)
]
]

]

, 1 − log
𝜆
(1 +

∏
𝑘

𝑗=1
(𝜆

1−𝑚
𝐴
𝑗 − 1)

𝑟𝜔
𝑗

(𝜆 − 1)
𝑟−1

) ,

[
[

[

1 − log
𝜆
(1 +

∏
𝑘

𝑗=1
(𝜆

1−𝑟
𝐴
𝑗

− 1)

𝑟𝜔
𝑗

(𝜆 − 1)
𝑟−1

), 1 − log
𝜆
(1 +

∏
𝑘

𝑗=1
(𝜆

1−𝑟
𝐴
𝑗 − 1)

𝑟𝜔
𝑗

(𝜆 − 1)
𝑟−1

)
]
]

]

) ,

(38)

therefore, we have

TIT2FFWA
𝜔
(𝑟⋅

𝐹
𝐴
1
, 𝑟⋅

𝐹
𝐴
2
, . . . , 𝑟⋅

𝐹
𝐴
𝑛
)

= 𝑟⋅
𝐹
TIT2FFWA

𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
) .

(39)

Thus, the proof is completed.

Theorem 12. Let 𝐴
𝑗
= ([𝑙

𝐴
𝑗

, 𝑙
𝐴
𝑗

], 𝑚
𝐴
𝑗

, [𝑟
𝐴
𝑗

, 𝑟
𝐴
𝑗

]) (𝑗 =

1, 2, . . . , 𝑛) be a collection of TIT2FNs. If 𝑟 > 0, 𝐴
𝑛+1

=

([𝑙
𝐴
𝑛+1

, 𝑙
𝐴
𝑛+1

], 𝑚
𝐴
𝑛+1

, [𝑟
𝐴
𝑛+1

, 𝑟
𝐴
𝑛+1

]) is a TIT2FN on𝑋, then

TIT2FFWA
𝜔
(𝑟⋅

𝐹
𝐴
1
⨁

𝐹

𝐴
𝑛+1
,

𝑟⋅
𝐹
𝐴
2
⨁

𝐹

𝐴
𝑛+1
, . . . , 𝑟⋅

𝐹
𝐴
𝑛
⨁

𝐹

𝐴
𝑛+1
)

= 𝑟⋅
𝐹
TIT2FFWA

𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)⨁

𝐹

𝐴
𝑛+1
.

(40)

Proof. According to Theorems 10 and 11, we can easily prove
Theorem 12.

Theorem 13. Let 𝐴
𝑗
= ([𝑙

𝐴
𝑗

, 𝑙
𝐴
𝑗

], 𝑚
𝐴
𝑗

, [𝑟
𝐴
𝑗

, 𝑟
𝐴
𝑗

]) (𝑗 =

1, 2, . . . , 𝑛) be a collection of TIT2FNs, and assume that 𝜆 > 1.

As 𝜆 → 1, the TIT2FFAA operator approaches the following
limit:

lim
𝜆→1

TIT2FFWA
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)

= ([

[

1 −

𝑛

∏

𝑗=1

(1 − 𝑙
𝐴
𝑗

)

𝜔
𝑗

, 1 −

𝑛

∏

𝑗=1

(1 − 𝑙
𝐴
𝑗

)

𝜔
𝑗

]

]

,

1 −

𝑛

∏

𝑗=1

(1 − 𝑚
𝐴
𝑗

)

𝜔
𝑗

,

[

[

1 −

𝑛

∏

𝑗=1

(1 − 𝑟
𝐴
𝑗

)

𝜔j
, 1 −

𝑛

∏

𝑗=1

(1 − 𝑟
𝐴
𝑗

)

𝜔
𝑗

]

]

) .

(41)
Proof. FromTheorem 7, we have

lim
𝜆→1

TIT2FFWA
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)

= ([

[

lim
𝜆→1

(1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

)) ,

lim
𝜆→1

(1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗 − 1)

𝜔
𝑗

))]

]

,

lim
𝜆→1

(1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑚
𝐴
𝑗 − 1)

𝜔
𝑗

)) ,
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[

[

lim
𝜆→1

(1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑟
𝐴
𝑗

− 1)

𝜔
𝑗

)) ,

lim
𝜆→1

(1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑟
𝐴
𝑗 − 1)

𝜔
𝑗

))]

]

) .

(42)

Since the five reference points have the same mathemat-
ical form, so we take the first reference point as an example;
that is,

lim
𝜆→1

(1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

))

= 1 −

𝑛

∏

𝑗=1

(1 − 𝑙
𝐴
𝑗

)

𝜔
𝑗

.

(43)

As 𝜆 → 1, then ∏𝑛

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗

− 1)
𝜔
𝑗 → 0, by

logarithmic transform and the rule of equivalent infinitesimal
replacement:

log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

)

=

ln(1 + ∏𝑛

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

)

ln 𝜆
󳨀→

∏
𝑛

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

ln 𝜆
.

(44)

Based on Taylor’s expansion formula, we have

𝜆
1−𝑙A
𝑗

= 1 + (1 − 𝑙
𝐴
𝑗

) ln 𝜆 +
(1 − 𝑙

𝐴
𝑗

)

2
(ln 𝜆)2 + ⋅ ⋅ ⋅ . (45)

Also since 𝜆 > 1, then ln 𝜆 > 0, 𝜆
1−𝑙
𝐴
𝑗

= 1 + (1 − 𝑙
𝐴
𝑗

) ln 𝜆 +
𝑂(ln 𝜆), and it follows that

𝜆
1−𝑙
𝐴
𝑗

− 1 󳨀→ (1 − 𝑙
𝐴
𝑗

) ln 𝜆. (46)

Therefore,

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

󳨀→ ((1 − 𝑙
𝐴
𝑗

) ln 𝜆)
𝜔
𝑗

󳨐⇒ (𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

󳨀→ (1 − 𝑙
𝐴
𝑗

)

𝜔
𝑗

(ln 𝜆)𝜔𝑗

󳨐⇒

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

󳨀→

𝑛

∏

𝑗=1

(1 − 𝑙
𝐴
𝑗

)

𝜔
𝑗

𝑛

∏

𝑗=1

(ln 𝜆)𝜔𝑗

󳨐⇒

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

󳨀→

𝑛

∏

𝑗=1

(1 − 𝑙
𝐴
𝑗

)

𝜔
𝑗

(ln 𝜆)∑
𝑛

𝑗=1
𝜔
𝑗

󳨐⇒

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

󳨀→

𝑛

∏

𝑗=1

(1 − 𝑙
𝐴
𝑗

)

𝜔
𝑗

ln 𝜆

󳨐⇒

∏
𝑛

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

ln 𝜆
󳨀→

𝑛

∏

𝑗=1

(1 − 𝑙
𝐴
𝑗

)

𝜔
𝑗

.

(47)

Then we have

lim
𝜆→1

(1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

))

= lim
𝜆→1

(1 −

ln(1 + ∏𝑛

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

)

ln 𝜆
)

= 1 − lim
𝜆→1

∏
𝑛

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

ln 𝜆

= 1 −

𝑛

∏

𝑗=1

(1 − 𝑙
𝐴
𝑗

)

𝜔
𝑗

.

(48)

Similarly, we have

lim
𝜆→1

(1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗 − 1)

𝜔
𝑗

))

= 1 −

𝑛

∏

𝑗=1

(1 − 𝑙
𝐴
𝑗

)

𝜔
𝑗

,

lim
𝜆→1

(1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑚
𝐴
𝑗 − 1)

𝜔
𝑗

))

= 1 −

𝑛

∏

𝑗=1

(1 − 𝑚
𝐴
𝑗

)

𝜔
𝑗

,

lim
𝜆→1

(1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑟
𝐴
𝑗

− 1)

𝜔
𝑗

))

= 1 −

𝑛

∏

𝑗=1

(1 − 𝑟
𝐴
𝑗

)

𝜔
𝑗

,

lim
𝜆→1

(1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑟
𝐴
𝑗 − 1)

𝜔
𝑗

))

= 1 −

𝑛

∏

𝑗=1

(1 − 𝑟
𝐴
𝑗

)

𝜔
𝑗

(49)

which completes the proof of Theorem 13.

Theorem 14. Let 𝐴
𝑗
= ([𝑙

𝐴
𝑗

, 𝑙
𝐴
𝑗

], 𝑚
𝐴
𝑗

, [𝑟
𝐴
𝑗

, 𝑟
𝐴
𝑗

]) (𝑗 =

1, 2, . . . , 𝑛) be a collection of TIT2FNs, and assume that
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𝜆 > 1. As 𝜆 → +∞, the TIT2FFWA operator approaches
the following limit:

lim
𝜆→∞

TIT2FFWA
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)

= ([

[

𝑛

∑

𝑗=1

𝜔
𝑗
𝑙
𝐴
𝑗

,

𝑛

∑

𝑗=1

𝜔
𝑗
𝑙
𝐴
𝑗

]

]

,

𝑛

∑

𝑗=1

𝜔
𝑗
𝑚
𝐴
𝑗

, [

[

𝑛

∑

𝑗=1

𝜔
𝑗
𝑟
𝐴
𝑗

,

𝑛

∑

𝑗=1

𝜔
𝑗
𝑟
𝐴
𝑗

]

]

) .

(50)

Proof. ByTheorem 7, we have

lim
𝜆→1

TIT2FFWA
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)

= ([

[

lim
𝜆→1

(1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

)) ,

lim
𝜆→1

(1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗 − 1)

𝜔
𝑗

))]

]

,

lim
𝜆→1

(1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑚
𝐴
𝑗 − 1)

𝜔
𝑗

)) ,

[

[

lim
𝜆→1

(1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑟
𝐴
𝑗

− 1)

𝜔
𝑗

)) ,

lim
𝜆→1

(1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑟
𝐴
𝑗 − 1)

𝜔
𝑗

))]

]

) .

(51)

Since the five reference points have the same mathemat-
ical form, so we take the first reference point as an example;
that is,

lim
𝜆→+∞

(1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

)) =

𝑛

∑

𝑗=1

𝜔
𝑗
𝑙
𝐴
𝑗

.

(52)

As 𝜆 → +∞ by logarithmic transform, we have

lim
𝜆→+∞

(1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

))

= 1 − lim
𝜆→+∞

ln(1 + ∏𝑛

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

)

ln 𝜆
.

(53)

Based on L’Hospital’s rule, it follows that

lim
𝜆→+∞

(1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

))

= 1 − lim
𝜆→+∞

ln(1 + ∏𝑛

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

)

ln 𝜆

= 1 − lim
𝜆→+∞

(

∏
𝑛

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

1 + ∏
𝑛

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

× (

𝑛

∑

𝑗=1

𝜔
𝑗
(1 − 𝑙

𝐴
𝑗

)
𝜆
−𝑙
𝐴
𝑗

𝜆
1−𝑙
𝐴
𝑗

− 1

)) × (
1

𝜆
)

−1

= 1 − lim
𝜆→+∞

∏
𝑛

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

1 + ∏
𝑛

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

× (

𝑛

∑

𝑗=1

𝜔
𝑗
(1 − 𝑙

𝐴
𝑗

)
𝜆
1−𝑙
𝐴
𝑗

𝜆
1−𝑙
𝐴
𝑗

− 1

)

= 1 −

𝑛

∑

𝑗=1

𝜔
𝑗
(1 − 𝑙

𝐴
𝑗

)

=

𝑛

∑

𝑗=1

𝜔
𝑗
𝑙
𝐴
𝑗

.

(54)

Similarly, we have

lim
𝜆→∞

(1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑙
𝐴
𝑗 − 1)

𝜔
𝑗

)) =

𝑛

∑

𝑗=1

𝜔
𝑗
𝑙
𝐴
𝑗

lim
𝜆→∞

(1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑚
𝐴
𝑗 − 1)

𝜔
𝑗

)) =

𝑛

∑

𝑗=1

𝜔
𝑗
𝑚
𝐴
𝑗

lim
𝜆→∞

(1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑟
𝐴
𝑗

− 1)

𝜔
𝑗

)) =

𝑛

∑

𝑗=1

𝜔
𝑗
𝑟
𝐴
𝑗

lim
𝜆→∞

(1 − log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
1−𝑟
𝐴
𝑗 − 1)

𝜔
𝑗

)) =

𝑛

∑

𝑗=1

𝜔
𝑗
𝑟
𝐴
𝑗

,

(55)

which completes the proof of Theorem 14.

Theorem 15. For given arguments 𝐴
𝑗
(𝑗 = 1, 2, . . . , 𝑛), and

𝜆 ∈ (1, +∞), the TIT2FFWA operator is monotonically
decreasing with respect to 𝜆.

Proof. In order to verify that the TIT2FFWA operator is
monotonically decreasing with respect to 𝜆, we should only
prove that every reference point function is monotonically
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decreasing with respect to 𝜆. Due to the space limit, we take
the first reference point function as an example.

Let 𝑇
𝑙
𝐴

(𝜆) = 1 − log
𝜆
(1 + ∏

𝑛

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗

− 1)
𝜔
𝑗), and taking

the derivative of 𝑇
𝑙
𝐴

(𝜆) with respect to 𝜆, we obtain

𝑑𝑇
𝑙
𝐴

(𝜆)

𝑑𝜆

= −

∏
𝑛

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗

− 1)

𝑤
𝑗

(∑
𝑛

𝑗=1
(𝑤

𝑗
(1 − 𝑙

𝐴
𝑗

) / (𝜆 − 𝜆
𝑙
𝐴
𝑗

)))

(1 + ∏
𝑛

𝑗=1
(𝜆

1−𝑙
𝐴
𝑗

− 1)

𝑤
𝑗

) ln 𝜆
.

(56)

Since 𝜆 > 1, 0 ≤ 𝑙
𝐴
𝑗

≤ 1, we can easily prove that

𝑑𝑇
𝑙
𝐴

(𝜆)

𝑑𝜆
< 0. (57)

Hence,𝑇
𝑙
𝐴

(𝜆) is monotonically decreasing with respect to
𝜆, which implies that TIT2FFWA operator is monotonically
decreasing with respect to 𝜆. Thus, the proof is completed.

Theorem 16. Let 𝐴
𝑗
= ([𝑙

𝐴
𝑗

, 𝑙
𝐴
𝑗

], 𝑚
𝐴
𝑗

, [𝑟
𝐴
𝑗

, 𝑟
𝐴
𝑗

]) (𝑗 =

1, 2, . . . , 𝑛) be a collection of TIT2FNs, for any 𝜆 ∈ (1, +∞);
then

sup {TIT2FFWA
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)}

= ([

[

1 −

𝑛

∏

𝑗=1

(1 − 𝑙
𝐴
𝑗

)

𝜔
𝑗

, 1 −

𝑛

∏

𝑗=1

(1 − 𝑙
𝐴
𝑗

)

𝜔
𝑗

]

]

,

1 −

𝑛

∏

𝑗=1

(1 − 𝑚
𝐴
𝑗

)

𝜔
𝑗

,

[

[

1 −

𝑛

∏

𝑗=1

(1 − 𝑟
𝐴
𝑗

)

𝜔
𝑗

, 1 −

𝑛

∏

𝑗=1

(1 − 𝑟
𝐴
𝑗

)

𝜔
𝑗

]

]

) ,

inf {TIT2FFWA
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)}

= ([

[

𝑛

∑

𝑗=1

𝜔
𝑗
𝑙
𝐴
𝑗

,

𝑛

∑

𝑗=1

𝜔
𝑗
𝑙
𝐴
𝑗

]

]

,

𝑛

∑

𝑗=1

𝜔
𝑗
𝑚
𝐴
𝑗

, [

[

𝑛

∑

𝑗=1

𝜔
𝑗
𝑟
𝐴
𝑗

,

𝑛

∑

𝑗=1

𝜔
𝑗
𝑟
𝐴
𝑗

]

]

) .

(58)

Proof. Based onTheorems 13–15, the result is obvious.

4.2. Triangular Interval Type-2 Fuzzy Frank Weighted
Geometric Operator

Definition 17. Let 𝐴
𝑗
= ([𝑙

𝐴
𝑗

, 𝑙
𝐴
𝑗

], 𝑚
𝐴
𝑗

, [𝑟
𝐴
𝑗

, 𝑟
𝐴
𝑗

]) (𝑗 =

1, 2, . . . , 𝑛) be a collection of TIT2FNs, and let TIT2FFWG:
Ω
𝑛
→ Ω; if

TIT2FFWG
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)

= 𝐴
⋅
𝐹
𝜔
1

1
⨂

𝐹

𝐴
⋅
𝐹
𝜔
2

2
⨂

𝐹

⋅ ⋅ ⋅⨂

𝐹

𝐴
⋅
𝐹
𝜔
𝑛

𝑛
,

(59)

then the function TIT2FFWG is called a triangular interval
type-2 fuzzy Frank weighted geometric (TIT2FFWG) oper-
ator, where 𝜔 = (𝜔

1
, 𝜔

2
, . . . , 𝜔

𝑛
)
𝑇 is the weight vector of

𝐴
𝑗
(𝑗 = 1, 2, . . . , 𝑛), 𝜔

𝑗
≥ 0, and ∑𝑛

𝑗=1
𝜔
𝑗
= 1. In particular,

if 𝜔 = (1/𝑛, 1/𝑛, . . . , 1/𝑛)𝑇, then the TIT2FFWG operator is
reduced to a triangular interval type-2 fuzzy Frank geometric
averaging (TIT2FFGA) operator of dimension 𝑛, which is
defined as follows:

TIT2FFGA
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)

= (𝐴
1
⨂

𝐹

𝐴
2
⨂

𝐹

⋅ ⋅ ⋅⨂

𝐹

𝐴
𝑛
)

⋅
𝐹
1/𝑛

.

(60)

Based on the Frank operation laws from Theorem 5, we
can derive Theorem 18.

Theorem 18. Let 𝐴
𝑗
= ([𝑙

𝐴
𝑗

, 𝑙
𝐴
𝑗

], 𝑚
𝐴
𝑗

, [𝑟
𝐴
𝑗

, 𝑟
𝐴
𝑗

]) (𝑗 =

1, 2, . . . , 𝑛) be a collection of TIT2FNs; then their aggregated
value by TIT2FFWG operator is still a TIT2FN, and

TIT2FFWG
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)

= ([

[

log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
𝑙
𝐴
𝑗

− 1)

𝜔
𝑗

) ,

log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
𝑙
𝐴
𝑗 − 1)

𝜔
𝑗

)]

]

,

log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
𝑚
𝐴
𝑗 − 1)

𝜔
𝑗

) ,

[

[

log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
𝑟
𝐴
𝑗

− 1)

𝜔
𝑗

) ,

log
𝜆
(1 +

𝑛

∏

𝑗=1

(𝜆
𝑟
𝐴
𝑗 − 1)

𝜔
𝑗

)]

]

) ,

(61)

where 𝜔 = (𝜔
1
, 𝜔

2
, . . . , 𝜔

𝑛
)
𝑇 is the weight vector of 𝐴

𝑗
(𝑗 =

1, 2, . . . , 𝑛), 𝜔
𝑗
> 0, and ∑𝑛

𝑗=1
𝜔
𝑗
= 1.

Proof. The proof of Theorem 18 is similar to Theorem 7.
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Theorem 19 (idempotency). Let 𝐴
𝑗
= ([𝑙

𝐴
𝑗

, 𝑙
𝐴
𝑗

], 𝑚
𝐴
𝑗

,
[𝑟
𝐴
𝑗

, 𝑟
𝐴
𝑗

]) (𝑗 = 1, 2, . . . , 𝑛) be a collection of TIT2FNs, where

0 ≤ 𝑙
𝐴
𝑗

≤ 𝑙
𝐴
𝑗

≤ 𝑚
𝐴
𝑗

≤ 𝑟
𝐴
𝑗

≤ 𝑟
𝐴
𝑗

≤ 1. If all𝐴
𝑗
(𝑗 = 1, 2, . . . , 𝑛)

are equal, that is, 𝐴
𝑗
= 𝐴, for all 𝑗, then

TIT2FFWG
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
) = 𝐴. (62)

Proof. The proof of Theorem 19 is similar to Theorem 8.

Theorem 20 (boundary). Let 𝐴
𝑗

= ([𝑙
𝐴
𝑗

, 𝑙
𝐴
𝑗

], 𝑚
𝐴
𝑗

,
[𝑟
𝐴
𝑗

, 𝑟
𝐴
𝑗

]) (𝑗 = 1, 2, . . . , 𝑛) be a collection of TIT2FNs, where

0 ≤ 𝑙
𝐴
𝑗

≤ 𝑙
𝐴
𝑗

≤ 𝑚
𝐴
𝑗

≤ 𝑟
𝐴
𝑗

≤ 𝑟
𝐴
𝑗

≤ 1, and let

𝐴
+
= ([

𝑛max
𝑗=1

{𝑙
𝐴
𝑗

} ,
𝑛max
𝑗=1

{𝑙
𝐴
𝑗

}] ,
𝑛max
𝑗=1

{𝑚
𝐴
𝑗

} ,

[
𝑛max
𝑗=1

{𝑟
𝐴
𝑗

} ,
𝑛max
𝑗=1

{𝑟
𝐴
𝑗

}]) ,

𝐴
−
= ([

𝑛

min
𝑗=1

{𝑙
𝐴
𝑗

} ,

𝑛

min
𝑗=1

{𝑙
𝐴
𝑗

}] ,

𝑛

min
𝑗=1

{𝑚
𝐴
𝑗

} ,

[

𝑛

min
𝑗=1

{𝑟
𝐴
𝑗

} ,

𝑛

min
𝑗=1

{𝑟
𝐴
𝑗

}]) .

(63)

Then

𝐴
−
≤ TIT2FFWG

𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
) ≤ 𝐴

+
. (64)

Proof. The proof of Theorem 20 is similar toTheorem 9.

Theorem 21. Let 𝐴
𝑗
= ([𝑙

𝐴
𝑗

, 𝑙
𝐴
𝑗

], 𝑚
𝐴
𝑗

, [𝑟
𝐴
𝑗

, 𝑟
𝐴
𝑗

]) (𝑗 =

1, 2, . . . , 𝑛) be a collection of TIT2FNs, where 0 ≤ 𝑙
𝐴
𝑗

≤

𝑙
𝐴
𝑗

≤ 𝑚
𝐴
𝑗

≤ 𝑟
𝐴
𝑗

≤ 𝑟
𝐴
𝑗

≤ 1. If 𝐴
𝑛+1

=

([𝑙
𝐴
𝑛+1

, 𝑙
𝐴
𝑛+1

], 𝑚
𝐴
𝑛+1

, [𝑟
𝐴
𝑛+1

, 𝑟
𝐴
𝑛+1

]) is a triangular interval type-
2 fuzzy number on 𝑋, then

TIT2FFWG
𝜔
(𝐴

1
⨁

𝐹

𝐴
𝑛+1
, 𝐴

2
⨁

𝐹

𝐴
𝑛+1
, . . . , 𝐴

𝑛
⨁

𝐹

𝐴
𝑛+1
)

= TIT2FFWG
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)⨁

𝐹

𝐴
𝑛+1
.

(65)

Proof. The proof ofTheorem 21 is similar toTheorem 10.

Theorem 22. Let 𝐴
𝑗
= ([𝑙

𝐴
𝑗

, 𝑙
𝐴
𝑗

], 𝑚
𝐴
𝑗

, [𝑟
𝐴
𝑗

, 𝑟
𝐴
𝑗

]) (𝑗 =

1, 2, . . . , 𝑛) be a collection of TIT2FNs, where 0 ≤ 𝑙
𝐴
𝑗

≤ 𝑙
𝐴
𝑗

≤

𝑚
𝐴
𝑗

≤ 𝑟
𝐴
𝑗

≤ 𝑟
𝐴
𝑗

≤ 1. If 𝑟 > 0, then

TIT2FFWG
𝜔
(𝐴

⋅
𝐹
𝑟

1
, 𝐴

⋅
𝐹
𝑟

2
, . . . , 𝐴

⋅
𝐹
𝑟

𝑛
)

= (TIT2FFWG
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
))

⋅
𝐹
𝑟

.

(66)

Proof. The proof ofTheorem 22 is similar toTheorem 11.

Theorem 23. Let 𝐴
𝑗
= ([𝑙

𝐴
𝑗

, 𝑙
𝐴
𝑗

], 𝑚
𝐴
𝑗

, [𝑟
𝐴
𝑗

, 𝑟
𝐴
𝑗

]) (𝑗 =

1, 2, . . . , 𝑛) be a collection of TIT2FNs. If 𝑟 > 0, 𝐴
𝑛+1

=

([𝑙
𝐴
𝑛+1

, 𝑙
𝐴
𝑛+1

], 𝑚
𝐴
𝑛+1

, [𝑟
𝐴
𝑛+1

, 𝑟
𝐴
𝑛+1

]) is a TIT2FN on𝑋, then

TIT2FFWG
𝜔
(𝐴

⋅
𝐹
𝑟

1
⨂

𝐹

𝐴
𝑛+1
, 𝐴

⋅
𝐹
𝑟

2
⨂

𝐹

𝐴
𝑛+1
, . . . , 𝐴

⋅
𝐹
𝑟

𝑛
⨂

𝐹

𝐴
𝑛+1
)

= (TIT2FFWG
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
))

⋅
𝐹
𝑟

⨂

𝐹

𝐴
𝑛+1
.

(67)

Proof. The proof ofTheorem 23 is similar toTheorem 12.

Theorem 24. Let 𝐴
𝑗
= ([𝑙

𝐴
𝑗

, 𝑙
𝐴
𝑗

], 𝑚
𝐴
𝑗

, [𝑟
𝐴
𝑗

, 𝑟
𝐴
𝑗

]) (𝑗 =

1, 2, . . . , 𝑛) be a collection of TIT2FNs, and assume that 𝜆 > 1.
As 𝜆 → 1, the TIT2FFWG operator approaches the following
limit:

lim
𝜆→1

TIT2FFWG
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)

= ([

[

𝑛

∏

𝑗=1

(𝑙
𝐴
𝑗

)

𝜔
𝑗

,

𝑛

∏

𝑗=1

(𝑙
𝐴
𝑗

)

𝜔
𝑗

]

]

,

𝑛

∏

𝑗=1

(𝑚
𝐴
𝑗

)

𝜔
𝑗

, [

[

𝑛

∏

𝑗=1

(𝑟
𝐴
𝑗

)

𝜔
𝑗

,

𝑛

∏

𝑗=1

(𝑟
𝐴
𝑗

)

𝜔
𝑗

]

]

) .

(68)

Proof. The proof ofTheorem 24 is similar toTheorem 13.

Theorem 25. Let 𝐴
𝑗
= ([𝑙

𝐴
𝑗

, 𝑙
𝐴
𝑗

], 𝑚
𝐴
𝑗

, [𝑟
𝐴
𝑗

, 𝑟
𝐴
𝑗

]) (𝑗 =

1, 2, . . . , 𝑛) be a collection of TIT2FNs, and assume that 𝜆 >
1. As 𝜆 → +∞, the TIT2FFWG operator approaches the
following limit:

lim
𝜆→∞

TIT2FFWG
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)

= ([

[

𝑛

∑

𝑗=1

𝜔
𝑗
𝑙
𝐴
𝑗

,

𝑛

∑

𝑗=1

𝜔
𝑗
𝑙
𝐴
𝑗

]

]

,

𝑛

∑

𝑗=1

𝜔
𝑗
𝑚
𝐴
𝑗

, [

[

𝑛

∑

𝑗=1

𝜔
𝑗
𝑟
𝐴
𝑗

,

𝑛

∑

𝑗=1

𝜔
𝑗
𝑟
𝐴
𝑗

]

]

) .

(69)

Proof. The proof ofTheorem 25 is similar toTheorem 14.

Theorem 26. For given arguments 𝐴
𝑗
(𝑗 = 1, 2, . . . , 𝑛), and

𝜆 ∈ (1, +∞), the TIT2FFWG operator is monotonically
increasing with respect to 𝜆.

Proof. The proof ofTheorem 26 is similar toTheorem 15.
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Theorem 27. Let 𝐴
𝑗
= ([𝑙

𝐴
𝑗

, 𝑙
𝐴
𝑗

],m
𝐴
𝑗

, [𝑟
𝐴
𝑗

, 𝑟
𝐴
𝑗

]) (𝑗 =

1, 2, . . . , 𝑛) be a collection of TIT2FNs, for any 𝜆 ∈ (1, +∞);
then

sup {TIT2FFWG
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)}

= ([

[

𝑛

∑

𝑗=1

𝜔
𝑗
𝑙
𝐴
𝑗

,

𝑛

∑

𝑗=1

𝜔
𝑗
𝑙
𝐴
𝑗

]

]

,

𝑛

∑

𝑗=1

𝜔
𝑗
𝑚
𝐴
𝑗

,

[

[

𝑛

∑

𝑗=1

𝜔
𝑗
𝑟A
𝑗

,

𝑛

∑

𝑗=1

𝜔
𝑗
𝑟
𝐴
𝑗

]

]

) ,

inf {TIT2FFWG
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)}

= ([

[

𝑛

∏

𝑗=1

𝑙
𝐴
𝑗

𝜔
𝑗

,

𝑛

∏

𝑗=1

𝑙
𝐴
𝑗

𝜔
𝑗

]

]

,

𝑛

∏

𝑗=1

𝑚
𝜔
𝑗

𝐴
𝑗

,

[

[

𝑛

∏

𝑗=1

𝑙
𝐴
𝑗

𝜔
𝑗

,

𝑛

∏

𝑗=1

𝑙
𝐴
𝑗

𝜔
𝑗

]

]

) .

(70)

Proof. Theproof ofTheorem 27 is similar toTheorem 16.

4.3. The Relationship between the TIT2FFWA Operator and
TIT2FFWG Operator

Theorem 28. Let 𝐴
𝑗
= ([𝑙

𝐴
𝑗

, 𝑙
𝐴
𝑗

], 𝑚
𝐴
𝑗

, [𝑟
𝐴
𝑗

, 𝑟
𝐴
𝑗

]) (𝑗 =

1, 2, . . . , 𝑛) be a collection of TIT2FNs, and 𝜆 ∈ (1, +∞); then

TIT2FFWA
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)

≥ TIT2FFWG
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
) .

(71)

Proof. Based onTheorem 12, we have

inf {TIT2FFWA
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)}

= ([

[

𝑛

∑

𝑗=1

𝜔
𝑗
𝑙
𝐴
𝑗

,

𝑛

∑

𝑗=1

𝜔
𝑗
𝑙
𝐴
𝑗

]

]

,

𝑛

∑

𝑗=1

𝜔
𝑗
𝑚
𝐴
𝑗

,

[

[

𝑛

∑

𝑗=1

𝜔
𝑗
𝑟
𝐴
𝑗

,

𝑛

∑

𝑗=1

𝜔
𝑗
𝑟
𝐴
𝑗

]

]

) .

(72)

Then it follows that

TIT2FFWA
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)

≥ ([

[

𝑛

∑

𝑗=1

𝜔
𝑗
𝑙
𝐴
𝑗

,

𝑛

∑

𝑗=1

𝜔
𝑗
𝑙
𝐴
𝑗

]

]

,

𝑛

∑

𝑗=1

𝜔
𝑗
𝑚
𝐴
𝑗

,

[

[

𝑛

∑

𝑗=1

𝜔
𝑗
𝑟
𝐴
𝑗

,

𝑛

∑

𝑗=1

𝜔
𝑗
𝑟
𝐴
𝑗

]

]

) .

(73)

FromTheorem 27, we have

sup {TIT2FFWG
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)}

= ([

[

𝑛

∑

𝑗=1

𝜔
𝑗
𝑙
𝐴
𝑗

,

𝑛

∑

𝑗=1

𝜔
𝑗
𝑙
𝐴
𝑗

]

]

,

𝑛

∑

𝑗=1

𝜔
𝑗
𝑚
𝐴
𝑗

,

[

[

𝑛

∑

𝑗=1

𝜔
𝑗
𝑟
𝐴
𝑗

,

𝑛

∑

𝑗=1

𝜔
𝑗
𝑟
𝐴
𝑗

]

]

) .

(74)

Then

TIT2FFWG
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)

≤ ([

[

𝑛

∑

𝑗=1

𝜔
𝑗
𝑙
𝐴
𝑗

,

𝑛

∑

𝑗=1

𝜔
𝑗
𝑙
𝐴
𝑗

]

]

,

𝑛

∑

𝑗=1

𝜔
𝑗
𝑚
𝐴
𝑗

,

[

[

𝑛

∑

𝑗=1

𝜔
𝑗
𝑟
𝐴
𝑗

,

𝑛

∑

𝑗=1

𝜔
𝑗
𝑟
𝐴
𝑗

]

]

) .

(75)

Therefore, according to the transfer of inequality, we can
easily deduce that

TIT2FFWA
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
)

≥ TIT2FFWG
𝜔
(𝐴

1
, 𝐴

2
, . . . , 𝐴

𝑛
) .

(76)

The proof is completed.

Theorem 28 shows that the values obtained by the
TIT2FFWG operator are not bigger than the ones obtained
by the TIT2FFWA operator for any 𝜆 > 1.

5. An Approach to Multiple Attribute Decision
Making under the Triangular Interval
Type-2 Fuzzy Environment

In this section, we investigate the group decision-making
problems under the triangular interval type-2 fuzzy environ-
ment based on the proposed Frank aggregation operators in
Section 4. First, we describe the MAGDM problems with
triangular interval type-2 fuzzy information in this paper.

Let 𝐴 = (𝐴
1
, 𝐴

2
, . . . , 𝐴

𝑚
) be the set of alternatives,

let 𝐷 = (𝐷
1
, 𝐷

2
, . . . , 𝐷

𝑝
) be the set of decision makers

(DMs), and let 𝑒 = (𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑝
) be the weight vector of

DMs, where 𝑒
𝑘
≥ 0, 𝑘 = 1, 2 . . . , 𝑝, and ∑𝑝

𝑗=1
𝑒
𝑘
= 1. Let

𝐶 = (𝐶
1
, 𝐶

2
, . . . , 𝐶

𝑛
) be a set of attributes, and let 𝜔 =

(𝜔
1
, 𝜔

2
. . . , 𝜔

𝑛
) be a set of weight vectors of them, satisfying

𝜔
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝜔
𝑗
= 1. Let 𝐴(𝑘) = (𝑎

(𝑘)

𝑖𝑗
)
𝑚×𝑛

be a
triangular interval type-2 fuzzy decision matrix, where 𝑎(𝑘)

𝑖𝑗

is measured by TIT2FNs, which is provided by the decision
maker𝐷

𝑘
for the alternative 𝐴

𝑖
with respect to attribute 𝐶

𝑗
.

In the following, we will use the TIT2FFWA (or
TIT2FFWG) operator to develop an approach to MAGDM
with triangular interval type-2 fuzzy information, which
involves the following steps.
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Step 1. Normalize the decision-making information matrix
𝐴
(𝑘)
= (𝑎

(𝑘)

𝑖𝑗
)
𝑚×𝑛

.
In general, attributes are divided into two types; one is

benefit attribute (the bigger the better) and the other is cost
attribute (the smaller the better); in order to maintain the
consistency of the attribute values, we should transform the
decision matrix 𝐴(𝑘) = (𝑎

(𝑘)

𝑖𝑗
)
𝑚×𝑛

into the normalization
matrix 𝑅̃(𝑘) = (𝑟(𝑘)

𝑖𝑗
)
𝑚×𝑛

unless all the attributes are the same
type. In this paper, we use the following formula to obtain the
normalized decision matrix 𝑅̃(𝑘) = (𝑟(𝑘)

𝑖𝑗
)
𝑚×𝑛

:

𝑟
(𝑘)

𝑖𝑗
= {

𝑎
(𝑘)

𝑖𝑗
for benefit attribute𝐶

𝑗
,

(𝑎
(𝑘)

i𝑗 )
𝑐

for cost attribute 𝐶
𝑗
,

(77)

where (𝑎(𝑘)
𝑖𝑗
)
𝑐 is the complement of 𝑎(𝑘)

𝑖𝑗
.

Step 2. Utilize the TIT2FFWA operator

𝑟
𝑖𝑗
= TIT2FFWA (𝑟(1)

𝑖𝑗
, 𝑟
(2)

𝑖𝑗
, . . . , 𝑟

(𝑝)

𝑖𝑗
)

𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛,

(78)

or the TIT2FFWG operator

𝑟
𝑖𝑗
= TIT2FFWG (𝑟(1)

𝑖𝑗
, 𝑟
(2)

𝑖𝑗
, . . . , 𝑟

(𝑝)

𝑖𝑗
)

𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛

(79)

to aggregate all the individual triangular interval type-2 fuzzy
decision matrix 𝑅̃(𝑘) = (𝑟(𝑘)

𝑖𝑗
)
𝑚×𝑛

into the collective triangular
interval type-2 fuzzy decision matrix 𝑅̃ = (𝑟

𝑖𝑗
)
𝑚×𝑛

.

Step 3. Aggregate the triangular interval type-2 fuzzy values
𝑟
𝑖𝑗
for each alternative 𝐴

𝑖
(𝑖 = 1, 2, . . . , 𝑚) by using the

TIT2FFWA (or TIT2FFWG) operator:

𝑟
𝑖
= TIT2FFWA (𝑟

𝑖1
, 𝑟
𝑖2
, . . . , 𝑟

𝑖𝑛
) 𝑖 = 1, 2, . . . , 𝑚 (80)

or

𝑟
𝑖
= TIT2FFWG (𝑟

𝑖1
, 𝑟
𝑖2
, . . . , 𝑟

𝑖𝑛
) 𝑖 = 1, 2, . . . , 𝑚. (81)

Step 4. Calculate the score values 𝑆(𝑟
𝑖
) (𝑖 = 1, 2, . . . , 𝑚) of the

overall preference values 𝑟
𝑖
(𝑖 = 1, 2, . . . , 𝑚).

Step 5. Rank all the alternatives𝐴
𝑖
(𝑖 = 1, 2, . . . , 𝑚) and select

the best one(s) in accordance with 𝑆(𝑟
𝑖
). The greater the score

values 𝑆(𝑟
𝑖
) are, the better the alternatives𝐴

𝑖
(𝑖 = 1, 2, . . . , 𝑚)

will be.

Step 6. End.

6. Illustrative Example

In this section, an illustrative example for MAGDM is
provided as a demonstration of the application based on the
proposed triangular interval type-2 fuzzy Frank aggregation
operator in real-world practice situations.

Let us consider a high-tech company, which aims to select
a supplier of USB connectors (adapted from [42]). There are
four potential suppliers 𝐴

𝑖
(𝑖 = 1, 2, 3, 4) that have been

designated for further evaluation, and assume that there are
four attributes to be considered in the evaluation process:
(1) C

1
: financial; (2) C

2
: performance; (3) C

3
: technical

capacity; and (4) C
4
: organizational culture and strategy, and

𝜔 = (0.35, 0.25, 0.25, 0.15)
𝑇 is the weight vector of them.

The decision committee contains three decision makers
𝐷
𝑘
(𝑘 = 1, 2, 3) including engineering expert, financial

expert, and quality control expert, whose weight vector is
𝑒 = (0.35, 0.35, 0.3)

𝑇. The decision makers 𝐷
𝑘
(𝑘 = 1, 2, 3)

express the attribute values of the potential supplier 𝐴
𝑖
(𝑖 =

1, 2, 3, 4) with respect to 𝐶
𝑖
(𝑖 = 1, 2, 3, 4) by TIT2FNs,

respectively, which are listed in Tables 1, 2, and 3.
Based on the TIT2FFWA operator, the decision-making

steps are shown as follows.

Step 1. Consider that all the attributes are benefit type;
therefore, the decision matrices do not need normalization;
therefore, 𝑅̃(𝑘) = 𝐴(𝑘) = (𝑎(𝑘)

𝑖𝑗
)
4×4
= (𝑟

(𝑘)

𝑖𝑗
)
4×4

.

Step 2. Utilize the TIT2FFWA operator to aggregate all the
individual triangular interval type-2 fuzzy decision matrix
𝑅̃
(𝑘)
= (𝑟

(𝑘)

𝑖𝑗
)
4×4

into the collective triangular interval type-2
fuzzy decision matrix 𝑅̃ = (𝑟

𝑖𝑗
)
4×4

, and without the loss of
generality, we let 𝜆 = 2; the result is shown in Table 4.

Step 3. Utilize the TIT2FFWA operator to aggregate all the
preference values 𝑟

𝑖𝑗
(𝑗 = 1, 2, 3, 4) in the 𝑖th line of 𝑅̃, and

then we can get the overall preference values 𝑟
𝑖
(𝑖 = 1, 2, 3, 4)

as follows:

𝑟
1
= ([0.4738, 0.5751] , 0.6772, [0.7819, 1]) ,

𝑟
2
= ([0.5086, 0.6109] , 0.7146, [0.8224, 1]) ,

𝑟
3
= ([0.3020, 0.4054] , 0.5108, [0.6210, 1]) ,

𝑟
4
= ([0.2872, 0.3901] , 0.4950, [0.6048, 1]) .

(82)

Step 4. Calculate the score values 𝑆(𝑟
𝑖
) (𝑖 = 1, 2, 3, 4) of the

overall preference values 𝑟
𝑖
(𝑖 = 1, 2, 3, 4), respectively:

𝑆 (𝑟
1
) = 1.2027, 𝑆 (𝑟

2
) = 1.2719,

𝑆 (𝑟
3
) = 0.9022, 𝑆 (𝑟

4
) = 0.8821.

(83)

Step 5. Rank all the alternatives 𝐴
𝑖
(𝑖 = 1, 2, 3, 4) and select

the best one(s) in accordance with 𝑆(𝑟
𝑖
).

Since

𝑆 (𝑟
2
) > 𝑆 (𝑟

1
) > 𝑆 (𝑟

3
) > 𝑆 (𝑟

4
) , (84)

therefore, we have

𝐴
2
≻ 𝐴

1
≻ 𝐴

3
≻ 𝐴

4
, (85)

where the symbol “≻” means “superior to.” Thus, the best
supplier is 𝐴

2
.
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Table 1: Triangular interval type-2 fuzzy decision matrix 𝑅̃(1).

C1 C2 C3 C4

𝐴
1

([0.4, 0.5], 0.6, [0.7, 0.8]) ([0.5, 0.6], 0.7, [0.8, 0.9]) ([0.6, 0.7], 0.8, [0.9, 1]) ([0.6, 0.7], 0.8, [0.9, 1])
𝐴
2

([0.5, 0.6], 0.7, [0.8, 0.9]) ([0.5, 0.6], 0.7, [0.8, 0.9]) ([0.4, 0.5], 0.6, [0.7, 0.8]) ([0.6, 0.7], 0.8, [0.9, 1])
𝐴
3

([0.3, 0.4], 0.5, [0.6, 0.7]) ([0.4, 0.5], 0.6, [0.7, 0.8]) ([0.2, 0.3], 0.4, [0.5, 0.6]) ([0.3, 0.4], 0.5, [0.6, 0.7])
𝐴
4

([0.2, 0.3], 0.4, [0.5, 0.6]) ([0.6, 0.7], 0.8, [0.9, 1]) ([0.3, 0.4], 0.5, [0.6, 0.7]) ([0.4, 0.5], 0.6, [0.7, 0.8])

Table 2: Triangular interval type-2 fuzzy decision matrix 𝑅̃(2).

C1 C2 C3 C4

𝐴
1

([0.5, 0.6], 0.7, [0.8, 0.9]) ([0.4, 0.5], 0.6, [0.7, 0.8]) ([0.5, 0.6], 0.7, [0.8, 0.9]) ([0.4, 0.5], 0.6, [0.7, 0.8])
𝐴
2

([0.6, 0.7], 0.8, [0.9, 1]) ([0.6, 0.7], 0.8, [0.9, 1]) ([0.5, 0.6], 0.7, [0.8, 0.9]) ([0.5, 0.6], 0.7, [0.8, 0.9])
𝐴
3

([0.2, 0.3], 0.4, [0.5, 0.6]) ([0.5, 0.6], 0.7, [0.8, 0.9]) ([0.1, 0.2], 0.3, [0.4, 0.5]) ([0.2, 0.3], 0.4, [0.5, 0.6])
𝐴
4

([0.3, 0.4], 0.5, [0.6, 0.7]) ([0.4, 0.5], 0.6, [0.7, 0.8]) ([0.2, 0.3], 0.4, [0.5, 0.6]) ([0.1, 0.2], 0.3, [0.4, 0.5])

Table 3: Triangular interval type-2 fuzzy decision matrix 𝑅̃(3).

C1 C2 C3 C4

𝐴
1

([0.4, 0.5], 0.6, [0.7, 0.8]) ([0.5, 0.6], 0.7, [0.8, 0.9]) ([0.4, 0.5], 0.6, [0.7, 0.8]) ([0.5, 0.6], 0.7, [0.8, 0.9])
𝐴
2

([0.3, 0.4], 0.5, [0.6, 0.7]) ([0.6, 0.7], 0.8, [0.9, 1]) ([0.4, 0.5], 0.6, [0.7, 0.8]) ([0.6, 0.7], 0.8, [0.9, 1])
𝐴
3

([0.1, 0.2], 0.3, [0.4, 0.5]) ([0.6, 0.7], 0.8, [0.9, 1]) ([0.3, 0.4], 0.5, [0.6, 0.7]) ([0.4, 0.5], 0.6, [0.7, 0.8])
𝐴
4

([0.2, 0.3], 0.4, [0.5, 0.6]) ([0.2, 0.3], 0.4, [0.5, 0.6]) ([0.1, 0.2], 0.3, [0.4, 0.5]) ([0.3, 0.4], 0.5, [0.6, 0.7])

Table 4: Triangular interval type-2 fuzzy decision matrix 𝑅̃.

C1 C2 C3 C4

𝐴
1

([0.4367, 0.5372], 0.6379,
[0.7393, 0.8427])

([0.4667, 0.5671], 0.6679,
[0.7692, 0.8722])

([0.5105, 0.6122], 0.7152,
[0.8217, 1])

([0.5059, 0.6078], 0.7109,
[0.8180, 1])

𝐴
2

([0.4862, 0.5893], 0.6944,
[0.8047, 1])

([0.5671, 0.6679], 0.7692,
[0.8722, 1])

([0.4367, 0.5372], 0.6379,
[0.7393, 0.8427])

([0.5671, 0.6679], 0.7692,
[0.8722, 1])

𝐴
3

([0.2081, 0.3086], 0.4094,
[0.5105, 0.6122])

([0.5005, 0.6022], 0.7051,
[0.8116, 1])

([0.1980, 0.2986], 0.3994,
[0.5005, 0.6022])

([0.2986, 0.3994], 0.5005,
[0.6022, 0.7051])

𝐴
4

([0.2362, 0.3364], 0.4367,
[0.5372, 0.6379])

([0.4283, 0.5333], 0.6413,
[0.7577, 1])

([0.2081, 0.3086], 0.4094,
[0.5105, 0.6122])

([0.2733, 0.3750], 0.4773,
[0.5807, 0.6862])

Table 5: Triangular interval type-2 fuzzy decision matrix 𝑅̃.

C1 C2 C3 C4

𝐴
1

([0.4329, 0.5333], 0.6336,
[0.7338, 0.8340])

([0.4628, 0.5633], 0.6636,
[0.7638, 0.8640])

([0.4995, 0.6006], 0.7014,
[0.8020, 0.9024])

([0.4941, 0.5952], 0.6961,
[0.7967, 0.8972])

𝐴
2

([0.4599, 0.5633], 0.6656,
[0.7672, 0.8684])

([0.5633, 0.6636], 0.7638,
[0.8640, 0.9642])

([0.4329, 0.5333], 0.6336,
[0.7338, 0.8340])

([0.5633, 0.6636], 0.7638,
[0.8640, 0.9642])

𝐴
3

([0.1884, 0.2949], 0.3978,
[0.4995, 0.6006])

([0.4895, 0.5906], 0.6914,
[0.7919, 0.8924])

([0.1783, 0.2848], 0.3878,
[0.4895, 0.5906])

([0.2848, 0.3878], 0.4895,
[0.5906, 0.6914])

𝐴
4

([0.2308, 0.3321], 0.4329,
[0.5333, 0.6336])

([0.3789, 0.4869], 0.5918,
[0.6952, 0.7976])

([0.1884, 0.2949], 0.3978,
[0.4995, 0.6006])

([0.2289, 0.3422], 0.4485,
[0.5522, 0.6547])

Table 6: Score values obtained by the TIT2FFWA operator and the rankings of alternatives.

𝐴
1

𝐴
2

𝐴
3

𝐴
4

Ranking
𝜆 → 1 1.2090 1.2746 0.9107 0.8817 𝐴2 ≻ 𝐴 1 ≻ 𝐴3 ≻ 𝐴4

𝜆 = 2 1.2027 1.2719 0.9022 0.8721 𝐴2 ≻ 𝐴 1 ≻ 𝐴3 ≻ 𝐴4

𝜆 = 5 1.2008 1.2685 0.8943 0.8687 𝐴2 ≻ 𝐴 1 ≻ 𝐴3 ≻ 𝐴4

𝜆 = 10 1.2003 1.2663 0.8894 0.8645 𝐴2 ≻ 𝐴 1 ≻ 𝐴3 ≻ 𝐴4

𝜆 = 50 1.1971 1.2652 0.8872 0.8624 𝐴2 ≻ 𝐴 1 ≻ 𝐴3 ≻ 𝐴4

𝜆 → +∞ 1.1184 1.1924 0.7271 0.7020 𝐴2 ≻ 𝐴 1 ≻ 𝐴3 ≻ 𝐴4
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Table 7: Score values obtained by the TIT2FFWG operator and the rankings of alternatives.

𝐴
1

𝐴
2

𝐴
3

𝐴
4

Ranking
𝜆 → 1 1.1082 1.1735 0.6803 0.6662 𝐴2 ≻ 𝐴 1 ≻ 𝐴3 ≻ 𝐴4

𝜆 = 2 1.1113 1.1774 0.6866 0.6710 𝐴2 ≻ 𝐴 1 ≻ 𝐴3 ≻ 𝐴4

𝜆 = 5 1.1133 1.1836 0.6942 0.6767 𝐴2 ≻ 𝐴 1 ≻ 𝐴3 ≻ 𝐴4

𝜆 = 10 1.1144 1.1841 0.6989 0.6805 𝐴2 ≻ 𝐴 1 ≻ 𝐴3 ≻ 𝐴4

𝜆 = 50 1.1151 1.1843 0.7023 0.7004 𝐴2 ≻ 𝐴 1 ≻ 𝐴3 ≻ 𝐴4

𝜆 → +∞ 1.1184 1.1924 0.7271 0.7020 𝐴2 ≻ 𝐴 1 ≻ 𝐴3 ≻ 𝐴4

Based on the TIT2FFWG operator, in order to select the
most desirable supplier, we can also develop a method for
handling MAGDM problems with triangular interval type-2
fuzzy information, which can be described as follows.

Step 1󸀠. It is the same as Step 1.

Step 2󸀠. Utilize the TIT2FFWG operator to aggregate all the
individual triangular interval type-2 fuzzy decision matrix
𝑅̃
(𝑘)
= (𝑟

(𝑘)

𝑖𝑗
)
4×4

into the collective triangular interval type-2
fuzzy decision matrix 𝑅̃ = (𝑟

𝑖𝑗
)
4×4

, and without the loss of
generality, we let 𝜆 = 2; the result is shown in Table 5.

Step 3󸀠. Utilize the TIT2FFWG operator to aggregate all the
preference values 𝑟

𝑖𝑗
(𝑗 = 1, 2, 3, 4) in the ith line of 𝑅̃, and

then we can get the overall preference values 𝑟
𝑖
(𝑖 = 1, 2, 3, 4)

as follows:

𝑟
1
= ([0.4655, 0.5663] , 0.6669, [0.7674, 0.8677]) ,

𝑟
2
= ([0.4918, 0.5938] , 0.6951, [0.7961, 0.8969]) ,

𝑟
3
= ([0.2531, 0.3645] , 0.4704, [0.5741, 0.6766]) ,

𝑟
4
= ([0.2488, 0.3571] , 0.4616, [0.5644, 0.6663]) .

(86)

Step 4󸀠. Calculate the score values 𝑆(𝑟
𝑖
) (𝑖 = 1, 2, 3, 4) of the

overall preference values 𝑟
𝑖
(𝑖 = 1, 2, 3, 4), respectively:

𝑆 (𝑟
1
) = 1.1113, 𝑆 (𝑟

2
) = 1.1774,

𝑆 (𝑟
3
) = 0.6866, 𝑆 (𝑟

4
) = 0.6710.

(87)

Step 5󸀠. Rank all the alternatives 𝐴
𝑖
(𝑖 = 1, 2, 3, 4) and select

the best one(s) in accordance with 𝑆(𝑟
𝑖
).

Since

𝑆 (𝑟
2
) > 𝑆 (𝑟

1
) > 𝑆 (𝑟

3
) > 𝑆 (𝑟

4
) , (88)

therefore, we have

𝐴
2
≻ 𝐴

1
≻ 𝐴

3
≻ 𝐴

4
, (89)

where the symbol “≻” means “superior to.” Thus, the best
supplier is 𝐴

2
.

It is clear to see that they are the same ranking results
for two methods based on TIT2FFWA operator and the
TIT2FFWGoperator. In order to reflect the influencewith the

Table 8: Comparisons with type-2 OWA and type-2 FWA.

Aggregation
operator

Computational
complexity Flexible Order of alternatives

Type-2 OWA
operator High None 𝐴2 ≻ 𝐴 1 ≻ 𝐴3 ≻ 𝐴4

Type-2 FWA
operator Very high None 𝐴2 ≻ 𝐴 1 ≻ 𝐴3 ≻ 𝐴4

The proposed
operators Low High 𝐴2 ≻ 𝐴 1 ≻ 𝐴3 ≻ 𝐴4

different value of parameter𝜆, we use different parameter𝜆 in
our proposed methods to rank the alternatives. The ranking
results are shown in Tables 6 and 7.

As we can see from Tables 6 and 7, the aggregation score
values based on TIT2FFWA and TIT2FFWG operators with
different parameter 𝛾 are different, but the ranking orders of
the alternatives are the same in this example. The decision
makers can choose the appropriate value in accordance with
their preferences. By further analyzing Tables 6 and 7, we can
easily see that the score values obtained by the TIT2FFWA
operator became smaller as the parameter 𝜆 increases for
the same aggregation elements, but the TIT2FFWG operator
became greater as the parameter 𝜆 increases for the same
aggregation elements. Furthermore, the values obtained by
the TIT2FFWA operator are always larger than the ones
obtained by the TIT2FFWG operator for the same value of
the parameter 𝜆 and the same aggregation elements.

In order to verify the validity of our methods, we make a
comparison between our proposed operators with the type-2
OWA operator [46] and the type-2 fuzzy weighted averaging
operator [62] for solving multiple attribute group decision
making with interval type-2 fuzzy information. Due to the
space limit, we give the results directly. The ranking results
are shown in Table 8.

From Table 8, we can see that our methods can obtain
the same ranking results with the type-2 OWA operator
proposed by Zhou et al. [46] and type-2 FWA operator
proposed by Liu and Wang [62] in this example. This fact
verifies that the TIT2FFWA and TIT2FFWG operators we
proposed are reasonable and valid for interval type-2 fuzzy
decision-making problems. Compared with the type-2 OWA
operator and the type-2 FWA operator, the main advantage
of TIT2FFWA and TIT2FFWG operators we proposed is
that it can reduce the cost of computational complexity and
enhance the reliability of the aggregation result under fuzzy
environment. Furthermore, our proposed methods include
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a parameter, which can adjust the aggregate value based
on the real decision needs and reflect the decision maker’s
risk preferences. Therefore, the benefit is that the proposed
operators are more general and more flexible.

According to the comparisons and analysis above, our
proposed aggregation operators are better than the other two
methods.

7. Conclusions

This paper puts forward a new method to solve MAGDM
with triangle interval type-2 fuzzy information. We have
defined Frank operation laws of interval type-2 fuzzy set,
and by using Frank triangular norms, some new aggrega-
tion operators, including the TIT2FFWA and TIT2FFWG
operators, are developed. The properties of these operators
have been discussed in detail. Moreover, we have applied
the TIT2FFWA and TIT2FFWG operators for handling
MAGDM problems under the triangle interval type-2 fuzzy
environment. Finally, an illustrative example about supplier
selection has been provided to demonstrate how to apply the
proposed procedure. In further research, wewill continue our
working and extend the developed aggregation operators to
the fields of data mining [63], technology evaluation [64],
computing with words [65], and cluster analysis [66].
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