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We study several algebraic properties of dual covariance andweighted dual covariance sets in rings with involution and𝐶∗-algebras.
Moreover, we show that the weighted dual covariance set, seen as a multivalued map, has some kind of continuity. Also, we prove
weighed dual covariance set invariant under the bijection multiplicative ∗-functions.

1. Introduction

SupposeR is a ring with unity 1 ̸= 0. A mapping ∗ : 𝑥 → 𝑥
∗

ofR into itself is called an involution if

(𝑥
∗

)

∗

= 𝑥, (𝑥 + 𝑦)

∗

= 𝑥
∗

+ 𝑦
∗

, (𝑥𝑦)

∗

= 𝑦
∗

𝑥
∗

,

(1)

for all 𝑥 and 𝑦 in R. Throughout this paper R will be a ring
R with an involution.

An element 𝑎 ∈ R is called regular if it has a generalized
inverse inR.

It is well known that every regular element in a𝐶∗-algebra
has theMoore-Penrose inverse (denoted byMP-inverse from
this point on). Generally MP-inverse is uniquely determined
inR if it exists. We will denote the MP-inverse of 𝑎 by 𝑎†.

In the following, we will denote byR−1 andR† the set of
an invertible and MP-invertible elements ofR, respectively.

Assume that 𝑎 is an element in R−1. Its inverse 𝑎
−1 is

covariant with respect to R−1; that is, for all 𝑏 ∈ R−1, we
have

(𝑏𝑎𝑏
−1

)

−1

= 𝑏𝑎
−1

𝑏
−1

. (2)

In general, the elements of R† are not covariant under
R−1 (see [1]). For a given element 𝑎 ∈ R† with MP-inverse
𝑎
†, we will denote the covariance set by C(𝑎) and define

C (𝑎) = {𝑏 ∈ R
−1

: (𝑏𝑎𝑏
−1

)

†

= 𝑏𝑎
†

𝑏
−1

} . (3)

For more definitions and notations we refer the interested
readers to [2]. Covariance set was studied by [1, 3–5].

We define the dual covariance set by reversing the roles of
𝑎 and 𝑏 in C(𝑎) and denote it byD(𝑏). In fact,

D (𝑏) = {𝑎 ∈ R
†

: (𝑏𝑎𝑏
−1

)

†

= 𝑏𝑎
†

𝑏
−1

} . (4)

This notion was studied by Robinson in [6] for matrices.
Note that if 𝑎 ∈ R† with MP-inverse 𝑎† and 𝑏 ∈ R−1,

then, from (3) and (4), we obtain

𝑏 ∈ C (𝑎) iff 𝑎 ∈ D (𝑏) . (5)

Also, it should be noted that C(𝑎) ⊂ R−1 ⊂ D(𝑏) ⊂ R† for
every 𝑎 ∈ R† and for each 𝑏 ∈ R−1. Moreover, this inclusion
can be proper; for instance, 0 ∈ D(𝑏) but 0 ∉ C(𝑎).

The aim of this paper is to investigate the properties
of dual covariance and weighted dual covariance set. In
Section 2, we define and characterize the weighted dual
covariance in terms of commutators. Also we prove that the
dual covariance sets of 𝑏−1 and 𝑏

∗ coincide. Moreover, we
collect some interesting properties ofD

𝑒,𝑓
(𝑏) andD(𝑏) in𝐶∗-

algebras and rings with an involution. In addition, we show
that the weighted dual covariance set, seen as a multivalued
map, has some kind of continuity. In Section 3 we study the
relations of D

𝑒,𝑓
(𝑏) and multiplicative ∗-functions. Also, we

prove that weighed dual covariance sets are invariant under
the bijection multiplicative ∗-functions.
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2. Weighted Dual Covariance Set

The weighted Moore-Penrose inverse (weighted MP-inverse
from this point on) for matrices was introduced by Chipman
in [7]. For some historical notes of weighted MP-inverse
see Rao and Mitra [8] and references therein. In the next
definition, it will be introduced in 𝐶

∗-algebras (see also
[9]). In what follows, we will only consider unital 𝐶

∗-
algebras. Indeed,A andB are unital𝐶∗-algebras; the nonzero
elements, 1A and 1B, are the units of A and B, respectively.
We will denote by A−1 and A† the subset of invertible
elements and MP-invertible elements ofA, respectively.

Definition 1. Let A be a 𝐶
∗-algebra and 𝑒, 𝑓 two positive

elements inA−1.We say that an element 𝑎 ∈ A has a weighted
MP-inverse with weights 𝑒, 𝑓 if there exists 𝑏 ∈ A such that

𝑎𝑏𝑎 = 𝑎, 𝑏𝑎𝑏 = 𝑏,

𝑒
−1

(𝑎𝑏)
∗

𝑒 = 𝑎𝑏, 𝑓
−1

(𝑏𝑎)
∗

𝑓 = 𝑏𝑎.

(6)

As already observed in [9], if weighted MP-inverse with
weights 𝑒, 𝑓 exists, then it is unique, and so we will denote it
by 𝑎†
𝑒,𝑓
. Every regular element in a 𝐶∗-algebra has a weighted

MP-inverse [9, Theorem 4] and it can be written as

𝑎
†

𝑒,𝑓
= 𝑓
−1/2

(𝑒
1/2

𝑎𝑓
−1/2

)

†

𝑒
1/2

. (7)

Next, we extend the definition of dual covariance set to
weighted dual covariance set.

Definition 2. Suppose 𝑏 ∈ A−1 and 𝑒, 𝑓 are positive elements
inA−1. We define weighted dual covariance set by

D
𝑒,𝑓

(𝑏) = {𝑎 ∈ A
†

: 𝑏
−1

𝑎
†

𝑏 is weighted MP-inverse

of 𝑏−1𝑎𝑏 with weights 𝑒, 𝑓} .
(8)

In the following theoremwe characterizeD
𝑒,𝑓
(𝑏) in terms

of commutators.

Theorem 3. Assume 𝑏 ∈ A−1 and 𝑒, 𝑓 are positive elements in
A−1. Then the following statements are equivalent:

(i) 𝑎 ∈ D
𝑒,𝑓
(𝑏);

(ii) [𝑎†𝑎, 𝑏∗𝑒𝑏] = 0 and [𝑎𝑎†, 𝑏∗𝑓𝑏] = 0.

Proof. (i)⇒(ii): suppose 𝑎 ∈ C
𝑒,𝑓
(𝑏). Then 𝑏

−1

𝑎
†

𝑏 is a
weighted MP-inverse of 𝑏

−1

𝑎𝑏 with weights 𝑒, 𝑓. Thus,
𝑓
−1

(𝑏𝑎
†

𝑎𝑏
−1

)

∗

𝑓 = 𝑏𝑎
†

𝑎𝑏
−1. Therefore, (𝑏∗𝑓)−1𝑎†𝑎𝑏∗𝑓𝑏 =

𝑏𝑎
†

𝑎. This implies that [𝑎
†

𝑎, 𝑏
∗

𝑓𝑏] = 0. In a similar
manner from 𝑒

−1

(𝑏𝑎𝑎
†

𝑏
−1

)

∗

𝑒 = 𝑏𝑎
†

𝑎𝑏
−1 we conclude that

[𝑎𝑎
†

, 𝑏
∗

𝑒𝑏] = 0.
(ii)⇒(i): since 𝑎† is MP-inverse of 𝑎, it suffices to show

that 𝑒
−1

(𝑏𝑎
†

𝑎𝑏
−1

)

∗

𝑒 = 𝑏𝑎
†

𝑎𝑏
−1 and 𝑓

−1

(𝑏𝑎
†

𝑎𝑏
−1

)

∗

𝑓 =

𝑏𝑎
†

𝑎𝑏
−1. By the assumptions [𝑎†𝑎, 𝑏∗𝑓𝑏] = 0. From this we

obtain 𝑓−1(𝑏∗)−1𝑎†𝑎𝑏∗𝑓𝑏 = 𝑏𝑎
†

𝑎. Hence, 𝑓−1(𝑏𝑎†𝑎𝑏−1)∗𝑓 =

𝑏𝑎
†

𝑎𝑏
−1. In a similar manner from [𝑎𝑎

†

, 𝑏
∗

𝑒𝑏] = 0 we get
𝑒
−1

(𝑏𝑎𝑎
†

𝑏
−1

)

∗

𝑒 = 𝑏𝑎𝑎
†

𝑏
−1.

The following result is obtained from Theorem 3 by set-
ting 𝑒 = 𝑓 = 1 for 𝐶∗-algebras. However, it is true for a
generalized case in rings with involution. In fact, consider the
following.

Proposition 4. Assume that 𝑏 ∈ R−1. Then

𝑎 ∈ D (𝑏) 𝑖𝑓𝑓 [𝑎
†

𝑎, 𝑏
∗

𝑏] = 0, [𝑎𝑎
†

, 𝑏
∗

𝑏] = 0. (9)

Proposition 5. Assume that 𝑏 ∈ R−1. ThenD(𝑏
∗

) = D(𝑏
−1

).

Proof. By Proposition 4,

𝑎 ∈ D (𝑏
∗

) iff [𝑎
†

𝑎, 𝑏𝑏
∗

] = 0, [𝑎𝑎
†

, 𝑏𝑏
∗

] = 0. (10)

This is equivalent to

𝑎
†

𝑎𝑏𝑏
∗

= 𝑏𝑏
∗

𝑎
†

𝑎, 𝑎𝑎
†

𝑏𝑏
∗

= 𝑏𝑏
∗

𝑎𝑎
†

. (11)

Multiply (11) from left and right by (𝑏𝑏∗)−1; we get

[𝑎
†

𝑎, (𝑏
−1

)

∗

𝑏
−1

] = 0, [𝑎𝑎
†

, (𝑏
−1

)

∗

𝑏
−1

] = 0. (12)

Again Proposition 4 shows that (12) holds if and only if 𝑎 ∈

D(𝑏
−1

).

Proposition 6. Assume that 𝑏 ∈ R−1and 𝑏 is normal. Then
D(𝑏) = D(𝑏

−1

) = D(𝑏
𝑛

), where 𝑛 is an integer number.

Proof. Since 𝑏 is normal, the first equality is an immediate
consequence of Proposition 5. For proof of the second equal-
ity, obviously D(𝑏

𝑛

) ⊂ D(𝑏). For the converse suppose that
𝑎 ∈ D(𝑏); using Proposition 4, normality of 𝑏, and induction,
one can get 𝑏𝑛 ∈ D(𝑏) for all integer 𝑛. Thus 𝑎 ∈ D(𝑏

𝑛

).
The following example shows that the normality hypoth-

esis cannot be omitted from the above proposition.

Example 7. Set 𝑎 = [

0 1 −1

1 0 1

1 1 0

] and 𝑏 = [

2√7 −2 √7

0 1 2√7

√7 4 0

]. Then 𝑎 =

𝑎
†

∈ D(𝑏) since 𝑏∗𝑏𝑎𝑎† = 𝑎𝑎
†

𝑏𝑏
∗

= 𝑎
†

𝑎𝑏𝑏
∗

= 𝑏𝑏
∗

𝑎
†

𝑎 =

[

14 −21 35

21 42 −21

35 21 14

]. But 𝑎 ∉ D(𝑏
−1

), because

(𝑏
∗

)

−1

𝑏𝑎𝑎
†

=

[

[

[

[

[

[

[

[

−

6

343

−

61

1029

43

1029

37

1029

30

343

−

53

1029

43

1029

15

343

−

2

1029

]

]

]

]

]

]

]

]

̸=

[

[

[

[

[

[

[

[

2

343

−

15

343

17

343

13

1029

74

1029

−

61

1029

19

1029

29

1029

−

10

1029

]

]

]

]

]

]

]

]

= 𝑎𝑎
†

(𝑏
∗

)

−1

𝑏.

(13)

We recall that a cone is a set of rays; in other words𝐾 ⊂ A
is a cone if 𝑥 ∈ 𝐾 implies 𝜆𝑥 ∈ 𝐾 for each 𝜆 ≥ 0. Also,
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an element 𝑎 ∈ R is called simply polar [10] if it has a com-
muting generalized inverse (in the sense of von Neumann);
that is, there exists a generalized inverse 𝑐 of 𝑎, such that
[𝑎, 𝑐] = 0.

In the next result we collect some noteworthy properties
of weighted dual covariance set.

Proposition 8. Assume that 𝑏 ∈ A−1. Then, the following
statements are equivalent:

(i) 𝑎 ∈ D
𝑒,𝑓
(𝑏);

(ii) 𝑎† ∈ D
𝑓,𝑒
(𝑏);

(iii) 𝑎∗ ∈ D
𝑓,𝑒
(𝑏);

(iv) 𝑎𝑎† ∈ D
𝑒,𝑓
(𝑏) and 𝑎†𝑎 ∈ D

𝑒,𝑓
(𝑏);

(v) 𝜆𝑎 ∈ D
𝑒,𝑓
(𝑏) for any nonzero scalar 𝜆.

Moreover, if 𝑎 is simply polar, then the following
statements are equivalent to the above statements:

(vi) 𝑎𝑎† ∈ D
𝑒,𝑓
(𝑏);

(vii) 𝑎†𝑎 ∈ D
𝑒,𝑓
(𝑏).

Proof. First we show that (i)⇔(ii) by Theorem 3 𝑎 ∈ D
𝑒,𝑓
(𝑏)

if and only if

[𝑎
†

𝑎, 𝑏
∗

𝑒𝑏] = 0, [𝑎𝑎
†

, 𝑏
∗

𝑓𝑏] = 0. (14)

Since (𝑎†)† = 𝑎, thus (14) is equivalent to

[𝑎
†

(𝑎
†

)

†

, 𝑏
∗

𝑒𝑏] = 0, [(𝑎
†

)

†

𝑎
†

, 𝑏
∗

𝑓𝑏] = 0. (15)

Again, Theorem 3 shows that (15) holds if and only if 𝑎† ∈
D
𝑓,𝑒
(𝑏).

(i)⇔(iii): in a similar manner, since 𝑎†𝑎 = 𝑎
∗

(𝑎
∗

)

†

and 𝑎𝑎† = (𝑎
∗

)

†

𝑎
∗ by applyingTheorem 3, we get 𝑎 ∈

D
𝑒,𝑓
(𝑏) ⇔ 𝑎

∗

∈ D
𝑓,𝑒
(𝑏).

(i)⇒(iv): 𝑎 ∈ D
𝑒,𝑓
(𝑏) if and only if (14) holds. Since

𝑎𝑎
†

= 𝑎𝑎
†

𝑎𝑎
† and (𝑎𝑎

†

)

†

= 𝑎𝑎
†, thus (14) is equiv-

alent to

[𝑎𝑎
†

(𝑎𝑎
†

)

†

, 𝑏
∗

𝑒𝑏] = 0, [(𝑎𝑎
†

)

†

𝑎𝑎
†

, 𝑏
∗

𝑓𝑏] = 0. (16)

This implies that 𝑎𝑎† ∈ D
𝑒,𝑓
(𝑏). Similarly we get

[𝑎
†

𝑎(𝑎
†

𝑎)

†

, 𝑏
∗

𝑒𝑏] = 0, [(𝑎
†

𝑎)

†

𝑎
†

𝑎, 𝑏
∗

𝑓𝑏] = 0. (17)

Thus, 𝑎†𝑎 ∈ D
𝑒,𝑓
(𝑏).

For the proof of (iv)⇒(i), it is easy to verify that (iv) is
satisfied if and only if (16) and (17) hold.These together imply
(14); that is, (i) holds.

(i)⇔(v): since 𝜆 ̸= 0, (𝜆𝑎)† = (1/𝜆)𝑎
†

= (𝑎𝜆)
†. Now

applyingTheorem 3 we obtain the result.

(vi)⇔(vii): since 𝑎 is simply polar, thus 𝑎𝑎† = 𝑎
†

𝑎 and
so (vi) and (vii) are equivalent.

(iv)⇔(vi) is obvious.

Corollary 9. If 𝑏 ∈ A−1, thenD
𝑒,𝑓
(𝑏) is a cone.

It is well known that every normal element is simply polar.
Hence, consider the following.

Corollary 10. If 𝑎 is normal, then

𝑎 ∈ D
𝑒,𝑓

(𝑏) ⇐⇒ 𝑎𝑎
†

∈ D
𝑒,𝑓

(𝑏) ⇐⇒ 𝑎
†

𝑎 ∈ D
𝑒,𝑓

(𝑏) . (18)

Corollary 11. Assume that 𝑏 ∈ R−1. Then for each 𝜆 ̸= 0,

𝑎 ∈ D (𝑏) ⇐⇒ 𝑎
†

∈ D (𝑏) ⇐⇒ 𝑎
∗

∈ D (𝑏)

⇐⇒ 𝜆𝑎 ∈ D (𝑏) ⇐⇒ 𝑎𝑎
†

∈ D (𝑏) ,

𝑎
†

𝑎 ∈ D (𝑏) .

(19)

Proposition 12. Assume that 𝑏 ∈ A−1 and 𝜆 ̸= 0 is any scalar.
ThenD

𝑒,𝑓
(𝑏) = D

𝑒,𝑓
(𝜆𝑏).

Proof. ByTheorem 3, 𝑎 ∈ D
𝑒,𝑓
(𝑏) if and only if (14) is satisfied

which is equivalent to

[𝑎
†

𝑎, (𝜆𝑏)
∗

𝑒 (𝜆𝑏)] = 0, [𝑎𝑎
†

, (𝜆𝑏)
∗

𝑓 (𝜆𝑏)] = 0. (20)

This holds if and only if 𝑎 ∈ D
𝑒,𝑓
(𝜆𝑏).

Corollary 13. If 𝑏 ∈ R−1 and 𝜆 is a nonzero scalar, then
D(𝑏) = D(𝜆𝑏).

Proposition 14. Let 𝑎, 𝑐 ∈ A† with MP-inverses 𝑎† and 𝑐
†,

respectively. Assume that 𝑐†𝑎 = 0 = 𝑎
†

𝑐 and 𝑎𝑐† = 0 = 𝑐𝑎
†. If

𝑎, 𝑐 ∈ D
𝑒,𝑓
(𝑏), then 𝑎 + 𝑐 ∈ D

𝑒,𝑓
(𝑏).

Proof. It is easy to verify that 𝑎†+𝑏† is theMP-inverse of 𝑎+𝑏.
Then, (𝑎 + 𝑏)

†

= 𝑎
†

+ 𝑏
†. Since 𝑎, 𝑐 ∈ D

𝑒,𝑓
(𝑏),

[𝑎
†

𝑎, 𝑏
∗

𝑒𝑏] = 0, [𝑎𝑎
†

, 𝑏
∗

𝑓𝑏] = 0,

[𝑐
†

𝑐, 𝑏
∗

𝑒𝑏] = 0, [𝑐𝑐
†

, 𝑏
∗

𝑓𝑏] = 0.

(21)

By using the linearity of commutator and the assumptions,
from (21), we conclude that

[(𝑎 + 𝑐) (𝑎
†

+ 𝑐
†

) , 𝑏
∗

𝑒𝑏] = 0,

[(𝑎
†

+ 𝑐
†

) (𝑎 + 𝑐) , 𝑏
∗

𝑓𝑏] = 0.

(22)

Now, Theorem 3 implies that 𝑎 + 𝑐 ∈ D
𝑒,𝑓
(𝑏).

Corollary 15. Let 𝑎, 𝑐 ∈ A† with MP-inverses 𝑎† and 𝑐
†,

respectively. Assume that 𝑐†𝑎 = 0 = 𝑎
†

𝑐. If 𝑎, 𝑐 ∈ D
𝑒,𝑓
(𝑏)

are self-adjoint, then 𝑎 + 𝑐 ∈ D
𝑒,𝑓
(𝑏).
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Corollary 16. Let 𝑎, 𝑐 ∈ R† with MP-inverses 𝑎† and 𝑐
†,

respectively. Assume that 𝑐†𝑎 = 0 = 𝑎
†

𝑐. If 𝑎, 𝑐 ∈ D(𝑏) and
[𝑎, 𝑐
†

] = [𝑎
†

, 𝑐] = 0, then 𝑎 + 𝑐 ∈ D(𝑏).

It should be noted that D
𝑒,𝑓
(𝑏) is not closed under

addition even 𝑒 = 𝑓 = 1. For example, set 𝑏 = [
1 1

0 1
],

𝑎 = [
1 1

1 2
], and 𝑐 = [

−1 −1

0 −2
]; then 𝑏, 𝑎, and 𝑐 are invertible.

Thus 𝑎, 𝑐 ∈ D(𝑏). But (𝑎 + 𝑐)(𝑎 + 𝑐)
†

𝑏𝑏
∗

= [
0 0

1 1
] and 𝑏𝑏∗(𝑎 +

𝑐)(𝑎 + 𝑐)
†

= [
0 1

0 1
]. This means that 𝑎 + 𝑐 ∉ D(𝑏).

The next theorem shows that the weighted dual covari-
ance set, seen as a multivalued map, has some kind of
continuity.

Theorem 17. Assume that {𝑏
𝑛
} is a sequence inA−1 and 𝑏

𝑛
→

𝑏 ∈ A−1. Let 𝑎
𝑛
∈ D
𝑒,𝑓
(𝑏
𝑛
) be such that 𝑎

𝑛
→ 𝑎 ∈ A†. If

sup
𝑛
‖𝑎
†

𝑛
‖ < ∞, then 𝑎 ∈ D

𝑒,𝑓
(𝑏).

Proof. By assumption, sup
𝑛
‖𝑎
†

𝑛
‖ < ∞.Therefore [11,Theorem

1.6] implies that 𝑎†
𝑛
→ 𝑎
†, 𝑎†
𝑛
𝑎
𝑛
→ 𝑎
†

𝑎, and 𝑎
𝑛
𝑎
†

𝑛
→ 𝑎𝑎

†.
Since 𝑎

𝑛
∈ D
𝑒,𝑓
(𝑏
𝑛
),

[𝑎
†

𝑛
𝑎
𝑛
, 𝑏
∗

𝑛
𝑒𝑏
𝑛
] = 0, [𝑎

𝑛
𝑎
†

𝑛
, 𝑏
∗

𝑛
𝑓𝑏
𝑛
] = 0. (23)

Letting 𝑛 → ∞ in (23), we obtain

[𝑎
†

𝑎, 𝑏
∗

𝑒𝑏] = 0, [𝑎𝑎
†

, 𝑏
∗

𝑓𝑏] = 0. (24)

Now, Theorem 3 implies that 𝑎 ∈ D
𝑒,𝑓
(𝑏).

3. Weighted Dual Covariance and ∗-Functions

Let us start with a definition.

Definition 18. Let A and B be unital 𝐶∗-algebras. A multi-
plicative ∗-function 𝜑 : A → B is a map satisfying

(i) 𝜑(𝑎𝑏) = 𝜑(𝑎)𝜑(𝑏) for all 𝑎 and 𝑏 inA;
(ii) 𝜑(𝑎∗) = (𝜑(𝑎))

∗ for all 𝑎 inA;
(iii) 𝜑(1A) = 1B.

Note that every 𝐶∗-algebras homomorphism is a linear
multiplicative ∗-function.

It is easy to verify that if 𝑎 is a positive element, then 𝜑(𝑎)
is positive. In addition, if 𝑎 ∈ A† is positive with MP-inverse
𝑎
†, then 𝜑(𝑎†) is positive because

𝜑 (𝑎
†

) = 𝜑 (𝑎
†

𝑎𝑎
†

) = 𝜑 ((𝑎
1/2

𝑎
†

)

∗

𝑎
1/2

𝑎
†

)

= 𝜑((𝑎
1/2

𝑎
†

))

∗

𝜑 (𝑎
1/2

𝑎
†

) .

(25)

Moreover, formula (7) shows that if 𝑎 is weighted MP-invert-
ible with the weights 𝑒 and 𝑓, then 𝑎

†

𝑒,𝑓
is positive and so

𝜑(𝑎
†

𝑒,𝑓
) is positive.

Proposition 19. Let A andB be unital 𝐶∗-algebras and sup-
pose that 𝜑 : A → B is a multiplicative ∗-function.

(i) If 𝑎 is a regular element inA, then 𝜑(𝑎) is regular inB.
(ii) If 𝑎 is weighted MP-invertible in A with weights 𝑒, 𝑓,

then 𝜑(𝑎) is weighted MP-invertible inB with weights
𝜑(𝑒), 𝜑(𝑓). Moreover

𝜑 (𝑎
†

𝑒,𝑓
) = (𝜑 (𝑎))

†

𝜑(𝑒)𝜑(𝑓)
. (26)

Proof. The first assertion is a consequence of the second one.
So we only prove (ii). Let 𝑎†

𝑒,𝑓
be the weighted MP-inverse of

𝑎 inA with weights 𝑒, 𝑓. Then by definition,

𝑎 = 𝑎𝑎
†

𝑒,𝑓
𝑎, 𝑎

†

𝑒,𝑓
𝑎𝑎
†

𝑒,𝑓
= 𝑎
†

𝑒,𝑓
,

(𝑎𝑎
†

𝑒,𝑓
)

∗

= 𝑒
−1

𝑎𝑎
†

𝑒,𝑓
𝑒, (𝑎

†

𝑒,𝑓
𝑎)

∗

= 𝑓
−1

𝑎
†

𝑒,𝑓
𝑎𝑓.

(27)

Since 𝜑 is a multiplicative ∗-function, so (27) implies that

𝜑 (𝑎) = 𝜑 (𝑎) 𝜑 (𝑎
†

𝑒,𝑓
) 𝜑 (𝑎) ,

𝜑 (𝑎
†

𝑒,𝑓
) 𝜑 (𝑎) 𝜑 (𝑎

†

𝑒,𝑓
) = 𝜑 (𝑎

†

𝑒,𝑓
) ,

𝜑 (𝑒
−1

) (𝜑 (𝑎) 𝜑 (𝑎
†

𝑒,𝑓
)) 𝜑 (𝑒)

= 𝜑 (𝑒
−1

𝑎𝑎
†

𝑒,𝑓
𝑒) = 𝜑 ((𝑎𝑎

†

𝑒,𝑓
)

∗

)

= (𝜑 (𝑎𝑎
†

𝑒,𝑓
))

∗

= (𝜑 (𝑎) 𝜑 (𝑎
†

𝑒,𝑓
))

∗

,

(28)

and similarly

𝜑 (𝑓
−1

) 𝜑 (𝑎
†

𝑒,𝑓
) 𝜑 (𝑎) 𝜑 (𝑓) = (𝜑 (𝑎

†

𝑒,𝑓
) 𝜑 (𝑎))

∗

. (29)

Therefore𝜑(𝑎†
𝑒,𝑓
) is weightedMP-inverse of𝜑(𝑎)withweights

𝜑(𝑒), 𝜑(𝑓). Now by the uniqueness of weighted MP-inverse
we get

𝜑 (𝑎
†

𝑒,𝑓
) = (𝜑 (𝑎))

†

𝜑(𝑒),𝜑(𝑓)
. (30)

Proposition 20. Let A and B be unital 𝐶∗-algebras and 𝑎 ∈

A†.

(i) If 𝜑 : A → B is a multiplicative ∗-function, then
𝜑(D
𝑒,𝑓
(𝑏)) ⊂ D

𝜑(𝑒),𝜑(𝑓)
(𝜑(𝑏)).

(ii) If 𝜑 : A → B is a bijection multiplicative ∗-function,
then 𝜑(D

𝑒,𝑓
(𝑏)) = D

𝜑(𝑒),𝜑(𝑓)
(𝜑(𝑏)).

Proof. (i) Suppose that 𝜑(𝑎) ∈ 𝜑(D
𝑒,𝑓
(𝑏)). Then 𝑎 ∈

D
𝑒,𝑓
(𝑏) and so 𝑏−1𝑎†𝑏 is weighted MP-inverse of 𝑏−1𝑎𝑏 with

weights 𝑒, 𝑓. By applying Proposition 19 we get 𝜑(𝑎) ∈

D
𝜑(𝑒),𝜑(𝑓)

(𝜑(𝑏)).
(ii) Since 𝜑 is bijection multiplicative ∗-function, 𝜑−1 is

also multiplicative ∗-function. From here and part (i) we
obtain the desired assertion.

Corollary 21. If 𝜑 : A → B is a multiplicative ∗-function,
then 𝜑(D(𝑏)) ⊂ D(𝜑(𝑏)). Moreover, if 𝜑 is bijection, then
𝜑(D(𝑏)) = D(𝜑(𝑏)).



Journal of Applied Mathematics 5

Corollary 22. Assume that 𝑏 ∈ A−1. Then,

(i) if 𝑢 ∈ A is a unitary, then D
𝑒,𝑓
(𝑢
∗

𝑏𝑢) =

𝑢
∗D
𝑢
∗
𝑒𝑢,𝑢
∗
𝑓𝑢
(𝑏)𝑢;

(ii) if V ∈ A−1, thenD
𝑒,𝑓
(V−1𝑏V) = V−1DV−1𝑒V,V−1𝑓V(𝑏)V.

Proof. Since the maps 𝑎 → 𝑢
∗

𝑎𝑢 and 𝑎 → 𝑢
−1

𝑎𝑢 are
bijection multiplicative ∗-functions, the results follow from
Proposition 20.

Corollary 23. If 𝑢 ∈ R is a unitary, then D(𝑢
∗

𝑏𝑢) =

𝑢
∗D(𝑏)𝑢, and if V ∈ R−1, thenD(V−1𝑏V) = V−1D(𝑏)V.

Remark 24. The notion of dual covariance is not studied to
Drazin inverses because it is easy to see that, for every Drazin
invertible element 𝑎𝐷 and for every 𝑏 ∈ R−1, we have

(𝑏𝑎𝑏
−1

)

𝐷

= 𝑏𝑎
𝐷

𝑏
−1

. (31)

In fact, for any 𝑏 ∈ R−1 we have {𝑎 ∈ R𝐷 : (𝑏𝑎𝑏
−1

)
𝐷

=

𝑏𝑎
𝐷

𝑏
−1

} = R𝐷 where R𝐷 is the set of all Drazin invertible
elements ofR.
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