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The purpose of this paper is to provide a Jacobi-collocation method for solving second kind Volterra integral equations with a
smooth kernel. This method leads to a fully discrete integral operator. First, it is shown that the fully discrete integral operator
is stable in both 𝐿

∞ and weighted 𝐿
2 norms. Then, the proposed approach is proved to arrive at an optimal (the most possible)

convergent order in both norms. One numerical example demonstrates the efficiency and accuracy of the proposed method.

1. Introduction

In this paper, we provide a Jacobi-collocation approach for
solving the second kindVolterra integral equation of the form

𝑢 (𝑥) + ∫

𝑥

−1

𝑘 (𝑥, 𝑡) 𝑢 (𝑡) 𝑑𝑡 = 𝑓 (𝑥) , 𝑥 ∈ 𝐼 := [−1, 1] , (1)

where the kernel function 𝑘 and the input function 𝑓 are
given smooth functions about their variables and 𝑢 is the
unknown function to be determined.

For ease of analysis, we will write (1) into an operator
form. By introducing the integral operatorK by

(KV) (𝑥) := ∫

𝑥

−1

𝑘 (𝑥, 𝑡) V (𝑡) 𝑑𝑡, 𝑥 ∈ 𝐼, (2)

(1) is reformulated as

(I +K) 𝑢 = 𝑓. (3)

It is well known that there are many numerical methods
for solving second kind Volterra integral equations such as
the Runge-Kutta method and the collocation method based
on piecewise polynomials; see, for example, Brunner [1] and
references therein. For more information of the progress
on the study of the problem, we refer the readers to [2–8].
Recently, a few works touched the spectral approximation
to Volterra integral equations. In [9], Elnagar and Kazemi

provided a novel Chebyshev spectral method for solving
nonlinear Volterra-Hammerstein integral equations. Then,
this method was investigated by Fujiwara in [10] for solving
the first kind Fredholm integral equation under multiple-
precision arithmetic. Nevertheless, no theoretical results were
provided to justify the high accuracy. In [11], Tang et al.
developed a novel Legendre-collocation method for solving
(3). Inspired by the work of [11], Chen and Tang in [5, 12]
obtained the spectral Jacobi-collocation method for solving
the second kind Volterra integral equations with general
weakly singular kernels 𝑘(𝑥, 𝑡)(𝑥−𝑡)−𝜇 for−1 < 𝜇 < 0. In [13],
a spectral and pseudospectral Jacobi-Galerkin approach was
presented for solving (3). In [14], Wei and Chen considered a
spectral Jacobi-collocation method for solving Volterra type
integrodifferential equation. In [15], Cai considered a Jacobi-
collocation method for solving Fredholm integral equations
of second kind with weakly singular kernels.

Unfortunately, all these papers [5, 11–14] give the conver-
gence analysis but suffer from the stability analysis. Because
of lack of the stability analysis, the approximate solutiondoes
not attain the most possible convergence order. Moreover, all
of those papers do not answer that the approximate equation
has a unique solution. Hence, in this paper, we will provide
a Jacobi-collocation method for solving (3), which extends
the Legendre spectral method developed in [11].This spectral
method leads to a fully discrete linear system. We are going
to show that the fully discrete integral operator is stabile; that
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is, the approximate equation has a unique solution, and then,
present the optimal (the most possible) convergent order of
the approximate solution based on the stability analysis. We
organize this paper as follows. In Section 2, as demonstrated
in [13], we review a spectral Jacobi-collocation method for
solving (3). In Section 3, a few important results are presented
to analyze the Jacobi-collocation approach. In Sections 4
and 5, we analyze the Jacobi-collocation method, including
the stability of the approximate equation and the convergent
order of the approximate solution, in both 𝐿

∞ and weighted
𝐿
2 norms, respectively. In Section 6, one numerical example

is presented to show the efficiency and accuracy of this
method.

The problem under study deserves more investigations in
future works. Moreover, we believe that the semianalytical
approaches are useful to investigate the problem. For related
terminologies and applications of semianalytical approaches,
please refer to [16–18].

2. A Spectral Jacobi-Collocation Method

In this section, we are going to review the spectral Jacobi-
collocation method for solving (3). To this end, we introduce
several index sets: N := {1, 2, . . . , 𝑛, . . .}, N

0
:= N ∪ {0} and

Z
𝑛
:= {0, 1, 2, . . . , 𝑛}. We let 𝑤𝛼,𝛽(𝑥) := (1 − 𝑥)

𝛼

(1 + 𝑥)
𝛽 for

𝛼, 𝛽 > −1 be a weight function and then use the notation
𝐿
2

𝑤
𝛼,𝛽(𝐼) to be the set of all square integrable functions

associated with the weight function 𝑤
𝛼,𝛽, equipped with the

norm

‖V‖
𝑤
𝛼,𝛽 := (∫

𝐼

𝑤
𝛼,𝛽

(𝑡)V2(𝑡)𝑑𝑡)
1/2

. (4)

For 𝑛 ∈ N, we denote the points by 𝑥𝛼,𝛽
𝑖

, 𝑖 ∈ Z
𝑛
to be the set of

𝑛 + 1 Jacobi-Gauss points corresponding to the Jacobi weight
function 𝑤

𝛼,𝛽. By introducing

𝜋 (𝑥) := (𝑥 − 𝑥
𝛼,𝛽

0
) (𝑥 − 𝑥

𝛼,𝛽

1
) ⋅ ⋅ ⋅ (𝑥 − 𝑥

𝛼,𝛽

𝑛
) , (5)

we define the Lagrange fundamental interpolation polyno-
mial 𝐿𝛼,𝛽

𝑖
, 𝑖 ∈ Z

𝑛
by

𝐿
𝛼,𝛽

𝑖
(𝑥) :=

𝜋 (𝑥)

(𝑥 − 𝑥
𝛼,𝛽

𝑖
) 𝜋󸀠 (𝑥

𝛼,𝛽

𝑖
)

, 𝑥 ∈ 𝐼. (6)

Let 𝑃
𝑛
be the set of all polynomials of degree not more than

𝑛; clearly,

𝑃
𝑛
= span {𝐿

𝛼,𝛽

𝑖
: 𝑖 ∈ Z

𝑛
} . (7)

We use the notion 𝐶(𝐼) to denote the set of all continuous
functions on 𝐼, equipped with the norm

‖V‖
∞

:= max
𝑥∈𝐼

|V (𝑥)| . (8)

For 𝑠 ∈ 𝐼, we define a linear functional 𝛿
𝑠
on 𝐶(𝐼) such that,

for any V ∈ 𝐶(𝐼),

⟨𝛿
𝑠
, V⟩ := V (𝑠) . (9)

The collocationmethod for solving (3) is to seek a vector u :=

[𝑎
𝑖
: 𝑖 ∈ Z

𝑛
]
𝑇 such that

𝑢
𝑛
(𝑥) := ∑

𝑖∈Z
𝑛

𝑎
𝑖
𝐿
𝛼,𝛽

𝑖
(𝑥) , 𝑥 ∈ 𝐼 (10)

satisfies

⟨𝛿
𝑥
𝛼,𝛽

𝑗

, (I +K) 𝑢
𝑛
⟩ = ⟨𝛿

𝑥
𝛼,𝛽

𝑗

, 𝑓⟩ , 𝑗 ∈ Z
𝑛
. (11)

The above equation can be rewritten as

𝑎
𝑖
+ ∑

𝑗∈Z
𝑛

𝑎
𝑗
∫

𝑥
𝛼,𝛽

𝑖

−1

𝑘 (𝑥
𝛼,𝛽

𝑖
, 𝑡) 𝐿
𝛼,𝛽

𝑗
(𝑡) 𝑑𝑡 = 𝑓 (𝑥

𝛼,𝛽

𝑖
) , 𝑖 ∈ Z

𝑛
.

(12)

For V ∈ 𝐶(𝐼), we define the interpolating operator L𝛼,𝛽
𝑛

:

𝐶(𝐼) → 𝑃
𝑛
by

(L
𝛼,𝛽

𝑛
V) (𝑥𝛼,𝛽
𝑖

) = V (𝑥𝛼,𝛽
𝑖

) , 𝑖 ∈ Z
𝑛
. (13)

It it well known thatL𝛼,𝛽
𝑛

V is written as the form

(L
𝛼,𝛽

𝑛
V) (𝑥) = ∑

𝑖∈Z
𝑛

V (𝑥
𝑖
) 𝐿
𝛼,𝛽

𝑖
(𝑥) , 𝑥 ∈ 𝐼. (14)

Using these notations we can reformulate (12) into an opera-
tor form

(I +L
𝛼,𝛽

𝑛
K) 𝑢
𝑛
= L
𝛼,𝛽

𝑛
𝑓. (15)

The difficulty in solving the linear system (12) is to compute
the integral term in (12), accurately. In this paper, we adopt
the numerical integration rule proposed in [11] to overcome
this difficulty. For this purpose, we introduce a simple linear
transformation

𝑡 = 𝑔 (𝑥, 𝜏) :=
𝑥 + 1

2
𝜏 +

𝑥 − 1

2
, (16)

which transfers the integral operator K into the following
form:

(KV) (𝑥) =
𝑥 + 1

2
∫
𝐼

𝑘 (𝑥, 𝑔 (𝑥, 𝜏)) V (𝑔 (𝑥, 𝜏)) 𝑑𝜏. (17)

Then, by using 𝑁 + 1-point Legendre-Gauss quadrature
formula relative to the Legendre weight 𝑤

𝑖
, 𝑖 ∈ Z

𝑁
, we can

obtain the discrete integral operatorK
𝑁
as follows:

(K
𝑁
V) (𝑥) :=

𝑥 + 1

2
∑

𝑖∈Z
𝑁

𝑤
𝑖
𝑘 (𝑥, 𝑔 (𝑥, 𝑥

0,0

𝑖
)) V (𝑔 (𝑥, 𝑥

0,0

𝑖
)) .

(18)

Thus, using those notations, a fully discrete spectral
Jacobi-collocation method for solving (3) is to seek a vector
ũ := [𝑎

𝑖
: 𝑖 ∈ Z

𝑛
]
𝑇 such that

𝑢̃
𝑛
(𝑥) := ∑

𝑖∈Z
𝑛

𝑎
𝑖
𝐿
𝛼,𝛽

𝑖
(𝑥) , 𝑥 ∈ 𝐼, (19)
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satisfying

(I +L
𝛼,𝛽

𝑛
K
𝑁
) 𝑢̃
𝑛
= L
𝛼,𝛽

𝑛
𝑓. (20)

It is easy to show that the operator equation (20) has the
following form:

𝑎
𝑖
+
𝑥
𝛼,𝛽

𝑖
+ 1

2

× ∑

𝑗∈Z
𝑛

𝑎
𝑗
∑

𝑙∈Z
𝑁

𝑤
𝑙
𝑘 (𝑥
𝛼,𝛽

𝑖
, 𝑔 (𝑥
𝛼,𝛽

𝑖
, 𝑥
0,0

𝑙
)) 𝐿
𝛼,𝛽

𝑗
(𝑔 (𝑥
𝛼,𝛽

𝑖
, 𝑥
0,0

𝑙
))

= 𝑓 (𝑥
𝛼,𝛽

𝑖
) , 𝑖 ∈ Z

𝑛
.

(21)

In [11], for the case 𝑁 = 𝑛, based on the Gronwall’
inequality, Tang et al. analyze the convergence of a spectral
Jacobi-collocation method for solving (3) in both 𝐶(𝐼) and
weighted 𝐿2

𝑤
0,0(𝐼) spaces. However, the stability analysis of the

spectral method is not given. Moreover, we observe that the
convergence order of the approximate solution in the space
𝐿
2

𝑤
0,0(𝐼) is not optimal. Hence, the purpose of this paper is

to illustrate that for sufficiently large 𝑛 and 𝑁, the operator
I +L𝛼,𝛽

𝑛
K
𝑁
: 𝑃
𝑛
→ 𝑃
𝑛
has a uniformly bounded inversion

in both 𝐶(𝐼) and 𝐿
2

𝑤
𝛼,𝛽(𝐼) spaces, respectively. Moreover, we

also show that the approximate solution 𝑢̃
𝑛
attains at themost

possible convergent order.

3. Some Preliminaries and Useful Results

In this section, we will introduce some technical results,
which contribute to analyze the stability and convergence
on the spectral Jacobi-collocation method for solving (3). To
this end, for 𝑖 ∈ N

0
, we use the notation D𝑖

𝑥
to denote the

𝑖th differential operator on the variable 𝑥. For 𝑟 ∈ N, we
introduce the nonuniformly weighted Sobolev space𝐻𝑟

𝑤
𝛼,𝛽
(𝐼)

by

𝐻
𝑟

𝑤
𝛼,𝛽 (𝐼) := {V : D

𝑖

𝑥
V ∈ 𝐿
2

𝑤
𝛼+𝑖,𝛽+𝑖 (𝐼) , 𝑖 ∈ Z

𝑟
} . (22)

It follows from [19] that there exists a positive constant 𝛾
1

independent of 𝑛 such that, for V ∈ 𝐻
𝑟

𝑤
𝛼,𝛽
(𝐼) and 𝑖 ∈ Z

𝑟
,

󵄩󵄩󵄩󵄩󵄩
D
𝑖

𝑥
(V −L

𝛼,𝛽

𝑛
V)
󵄩󵄩󵄩󵄩󵄩𝑤𝛼+𝑖,𝛽+𝑖

≤ 𝛾
1

󵄩󵄩󵄩󵄩D
𝑟

𝑥
V󵄩󵄩󵄩󵄩𝑤𝛼+𝑟,𝛽+𝑟𝑛

𝑖−𝑟

, (23)

which implies that
󵄩󵄩󵄩󵄩󵄩
D
𝑖

𝑥
(L
𝛼,𝛽

𝑛
V)
󵄩󵄩󵄩󵄩󵄩𝑤𝛼+𝑖,𝛽+𝑖

≤ 𝛾
1

󵄩󵄩󵄩󵄩D
𝑟

𝑥
V󵄩󵄩󵄩󵄩𝑤𝛼+𝑟,𝛽+𝑟 +

󵄩󵄩󵄩󵄩󵄩
D
𝑖

𝑥
V
󵄩󵄩󵄩󵄩󵄩𝑤𝛼+𝑖,𝛽+𝑖

. (24)

Moreover, we have the following.

Lemma 1. Suppose that −1 < 𝛼
1
, 𝛽
1
< 1. If the parameters

𝛼, 𝛽 satisfy the next conditions:

−
1

2
+ 𝛼
1
< 𝛼 <

3

2
+ 𝛼
1
, −

1

2
+ 𝛽
1
< 𝛽 <

3

2
+ 𝛽
1
, (25)

then there exists a positive constant 𝛾
2
independent of 𝑛 such

that, for V ∈ 𝐻
𝑟

𝑤
𝛼,𝛽
(𝐼) ∩ 𝐶(𝐼),

󵄩󵄩󵄩󵄩󵄩
V −L

𝛼
1
,𝛽
1

𝑛
V
󵄩󵄩󵄩󵄩󵄩𝑤𝛼,𝛽

≤ 𝛾
2

󵄩󵄩󵄩󵄩D
𝑟

𝑥
V󵄩󵄩󵄩󵄩𝑤𝛼+𝑟,𝛽+𝑟𝑛

−𝑟

. (26)

Proof. This is a consequence ofTheorem 3.4 and (3.13)-(3.14)
in [20].

For 𝑟 ∈ N, 𝑖 ∈ Z
𝑟
, the binomial coefficients are given by

C𝑖
𝑟
:= 𝑟 (𝑟 − 1) ⋅ ⋅ ⋅ (𝑟 − 𝑖 + 1) . (27)

We use the notation 𝐶
𝑟

(𝐼) to denote the set of all functions
whose 𝑟th derivative is continuous on 𝐼, endowed with the
usual norm

‖V‖
𝑟
:= ∑

𝑖∈Z
𝑟

󵄩󵄩󵄩󵄩󵄩
D
𝑖

𝑥
V
󵄩󵄩󵄩󵄩󵄩∞

. (28)

For 𝑟
1
, 𝑟
2
∈ N
0
, the notation 𝐶

𝑟
1
,𝑟
2(𝐼
2

) is used to denote
the set of all functions such that, for V ∈ 𝐶

𝑟
1
,𝑟
2(𝐼
2

), D𝑟1
𝑥
D𝑟2
𝑦
V

is continuous on 𝐼
2. Let

󵄩󵄩󵄩󵄩󵄩
D
𝑟
1

𝑥
D
𝑟
2

𝑦
V
󵄩󵄩󵄩󵄩󵄩∞

:= max
(𝑥,𝑦)∈𝐼

2

󵄨󵄨󵄨󵄨󵄨
D
𝑟
1

𝑥
D
𝑟
2

𝑦
V (𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
. (29)

Next we consider the difference betweenKV andK
𝑁
V.

Lemma 2. Assume that the kernel function 𝑘 ∈ 𝐶
0,𝑚

(𝐼
2

) for
𝑚 ∈ N. If two parameters 𝛼 and 𝛽 satisfy the conditons

−
1

2
< 𝛼, 𝛽 <

3

2
, 𝛼 + 𝛽 ≤ 1, (30)

then there exists a positive constant 𝛾
3
independent of 𝑁 such

that when V ∈ 𝐶
𝑚

(𝐼),

󵄩󵄩󵄩󵄩KV −K
𝑁
V󵄩󵄩󵄩󵄩∞ ≤ 𝛾

3
( ∑

𝑖∈Z
𝑚

󵄩󵄩󵄩󵄩󵄩
D
𝑖

𝑥
V
󵄩󵄩󵄩󵄩󵄩𝑤𝛼+𝑖,𝛽+𝑖

)𝑁
−𝑚

. (31)

Proof. First of all, by setting

𝑏 (𝑥, 𝜏) := 𝑘 (𝑥, 𝑔 (𝑥, 𝜏)) V (𝑔 (𝑥, 𝜏)) ,

(L
0,0

𝑁
𝑏) (𝑥, 𝜏) := ∑

𝑖∈Z
𝑁

𝑏 (𝑥, 𝑥
0,0

𝑖
) 𝐿
0,0

𝑖
(𝜏) , 𝑥, 𝜏 ∈ 𝐼,

(32)

the integral operatorK
𝑁
is written as

(K
𝑁
V) (𝑥) =

𝑥 + 1

2
∫
𝐼

(L
0,0

𝑁
𝑏) (𝑥, 𝜏) 𝑑𝜏, 𝑥 ∈ 𝐼. (33)

In addition, using the hypothesis that 𝑘 ∈ 𝐶
0,𝑚

(𝐼
2

) and V ∈

𝐶
𝑚

(𝐼) implies that 𝑏 ∈ 𝐶
0,𝑚

(𝐼
2

). Thus, we write the difference
betweenKV andK

𝑁
V as follows:

(KV) (𝑥) − (K
𝑁
V) (𝑥)

=
𝑥 + 1

2
∫
𝐼

(𝑤
−𝛼/2,−𝛽/2

(𝜏))

× (𝑤
𝛼/2,𝛽/2

(𝜏) (𝑏 (𝑥, 𝜏) − (L
0,0

𝑁
𝑏) (𝑥, 𝜏))) 𝑑𝜏.

(34)

Employing Cauchy-Schwartz inequality to the right hand
side of the above equation and then using the result (26) with
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𝛼
1
:= 0, 𝛽

1
:= 0, 𝑛 := 𝑁 and 𝑟 := 𝑚 produce that there exists

a positive constant 𝜉 independent of𝑁,

󵄨󵄨󵄨󵄨(KV)(𝑥) − (K
𝑁
V)(𝑥)󵄨󵄨󵄨󵄨

2

≤ 𝜉𝐺 (𝑥) ‖1‖
𝑤
−𝛼,−𝛽𝑁

−2𝑚

, (35)

where 𝐺(𝑥) is given by

𝐺 (𝑥) := (
1 + 𝑥

2
)

2

∫
𝐼

𝑤
𝛼+𝑚,𝛽+𝑚

(𝜏) ((D
𝑚

𝜏
𝑏) (𝑥, 𝜏))

2

𝑑𝜏,

𝑥 ∈ 𝐼.

(36)

It remains to estimate 𝐺(𝑥). A direct computation leads
to

𝐺 (𝑥)

= (
1 + 𝑥

2
)

2𝑚+2

× ∫
𝐼

𝑤
𝛼+𝑚,𝛽+𝑚

(𝜏)

×( ∑

𝑖∈Z
𝑚

C𝑖
𝑚
(D
𝑖

𝑔
V)(𝑔(𝑥, 𝜏))(D𝑚−𝑖

𝑔
𝑘)(𝑥, 𝑔(𝑥, 𝜏)))

2

𝑑𝜏.

(37)

Making use of a linear transform 𝑡 := 𝑔(𝑥, 𝜏) to the right
hand side of the above equation produces

𝐺 (𝑥)

= (
1 + 𝑥

2
)

1−𝛼−𝛽

× ∫

𝑥

−1

(1 + 𝑡)
𝛼+𝑚

(𝑥 − 𝑡)
𝛽+𝑚

×( ∑

𝑖∈Z
𝑚

C𝑖
𝑚
(D
𝑖

𝑡
V)(𝑡)(D𝑚−𝑖

𝑡
𝑘)(𝑥, 𝑡))

2

𝑑𝑡.

(38)

Using the discrete Cauchy Schwartz inequality into the
right hand side of the above equation obtains

𝐺 (𝑥) ≤ max
𝑖∈Z
𝑚

󵄩󵄩󵄩󵄩󵄩
D
𝑖

𝑡
𝑘
󵄩󵄩󵄩󵄩󵄩

2

∞

( ∑

𝑖∈Z
𝑚

(C𝑖
𝑛
)
2

)(
1 + 𝑥

2
)

1−𝛼−𝛽

× ( ∑

𝑖∈Z
𝑚

∫

𝑥

−1

(1 + 𝑡)
𝛼+𝑚

(𝑥 − 𝑡)
𝛽+𝑚

(D
𝑖

𝑡
V)
2

(𝑡) 𝑑𝑡) ,

(39)

where combining the fact that 𝛼 + 𝛽 ≤ 1 leads to

𝐺 (𝑥) ≤ max
𝑖∈Z
𝑚

󵄩󵄩󵄩󵄩󵄩
D
𝑖

𝑡
𝑘
󵄩󵄩󵄩󵄩󵄩

2

∞

( ∑

𝑖∈Z
𝑚

(C𝑖
𝑛
)
2

)( ∑

𝑖∈Z
𝑚

󵄩󵄩󵄩󵄩󵄩
D
𝑖

𝑡
V
󵄩󵄩󵄩󵄩󵄩

2

𝑤
𝛼+𝑖,𝛽+𝑖

) .

(40)

Substituting the above estimate on 𝐺(𝑥) into the right hand
side of (35) yields the desired conclusion (31) with 𝛾

3
being

given by

𝛾
3
:= max
𝑖∈Z
𝑚

󵄩󵄩󵄩󵄩󵄩
D
𝑖

𝑡
𝑘
󵄩󵄩󵄩󵄩󵄩∞

(𝜉‖1‖
𝑤
−𝛼,−𝛽 ∑

𝑖∈Z
𝑚

(C𝑖
𝑚
)
2

)

1/2

. (41)

Using Lemma 2, we can obtain the following.

Corollary 3. Suppose that the conditions of Lemma 2 hold,
then for V ∈ 𝑃

𝑛
, the following two estimates hold:

󵄩󵄩󵄩󵄩KV −K
𝑁
V󵄩󵄩󵄩󵄩∞ ≤ 2𝛾

3
‖V‖
𝑤
𝛼,𝛽(

𝑛

𝑁
)

𝑚

, (42)

󵄩󵄩󵄩󵄩KV −K
𝑁
V󵄩󵄩󵄩󵄩∞ ≤ 2𝛾

3
‖1‖
𝑤
𝛼,𝛽‖V‖
∞
(
𝑛

𝑁
)

𝑚

. (43)

Proof. We observe that if (42) holds, then by using the fact

‖V‖
𝑤
𝛼,𝛽 ≤ ‖1‖

𝑤
𝛼,𝛽‖V‖
∞
, V ∈ 𝑃

𝑛
, (44)

we can easily obtain the result (43). Thus, we only require to
estimate (42). In fact, by using the inverse inequality relative
to two norms weighted with different Jacobi weight functions
in Theorem 3.31 in [19], there exists a positive constant 𝜉
independent of 𝑛 such that, for V ∈ 𝑃

𝑛
and 𝑖 ∈ Z

𝑚
,

󵄩󵄩󵄩󵄩󵄩
D
𝑖

𝑡
V
󵄩󵄩󵄩󵄩󵄩𝑤𝛼+𝑖,𝛽+𝑖

≤ 𝜉𝑛
󵄩󵄩󵄩󵄩󵄩
D
𝑖−1

𝑡
V
󵄩󵄩󵄩󵄩󵄩𝑤𝛼+𝑖−1,𝛽+𝑖−1

. (45)

By the above inequality, we can obtain that

∑

𝑖∈Z
𝑚

󵄩󵄩󵄩󵄩󵄩
D
𝑖

𝑡
V
󵄩󵄩󵄩󵄩󵄩𝑤𝛼+𝑖,𝛽+𝑖

≤ ∑

𝑖∈Z
𝑚

(𝜉𝑛)
𝑖

‖V‖
𝑤
𝛼,𝛽 , (46)

where combining (31) yields the desired conclusion (42).

4. The Stability and Convergence Analysis
under the 𝐿

∞ Norm

In this section, we will establish that, for sufficiently large
𝑛 and 𝑁, the operator I + L𝛼,𝛽

𝑛
K
𝑁

: 𝑃
𝑛

→ 𝑃
𝑛
has

a uniformly bounded inversion in the space 𝐶(𝐼) and then
show that the approximate solution 𝑢̃

𝑛
arrives at the most

possible convergent order under the 𝐿
∞ norm. To this end,

we first give some notations. For 𝑟 ∈ N
0
and ] ∈ (0, 1],

the notation 𝐻
𝑟,]
(𝐼) is used to denote the space of functions

whose 𝑟th derivative isHölder continuous on 𝐼with exponent
]. The norm of the space is defined by

‖V‖
𝑟,] := ‖V‖

𝑟
+ sup
𝑥,𝑦∈𝐼,𝑥 ̸= 𝑦

󵄨󵄨󵄨󵄨󵄨
(D𝑟
𝑥
V) (𝑥) − (D𝑟

𝑦
V) (𝑦)

󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

] . (47)

Lemma 4. Suppose that the kernel function 𝑘 ∈ 𝐶
1,0

(𝐼
2

);
then the operator K is a bounded linear operator from 𝐶(𝐼)

to𝐻0,1(𝐼); that is, for V ∈ 𝐶(𝐼),

‖KV‖
0,1

≤ (4‖𝑘‖
∞

+ 2
󵄩󵄩󵄩󵄩󵄩
D
1

𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩∞

) ‖V‖
∞
. (48)



Abstract and Applied Analysis 5

Moreover, for −1 < 𝛼, 𝛽 < 1, the operator K : 𝐿
2

𝑤
𝛼,𝛽(𝐼) →

𝐶(𝐼) is also a linear bounded operator; that is, for V ∈ 𝐿
2

𝑤
𝛼,𝛽(𝐼),

‖KV‖
∞

≤ ‖𝑘‖
∞
‖1‖
1/2

𝑤
−𝛼,−𝛽

‖V‖
𝑤
𝛼,𝛽 . (49)

Proof. It is easily proved that the operator K is a linear
operator from the space 𝐶(𝐼) to the space 𝐻

0,1

(𝐼) or from
𝐿
2

𝑤
𝛼,𝛽(𝐼) to 𝐶(𝐼).
Next we illustrate that (48) holds. By the definition of the

norm,

‖KV‖
∞

≤ ‖V‖
∞
max
𝑥∈𝐼

∫

𝑥

−1

|𝑘 (𝑥, 𝑡)| 𝑑𝑡, (50)

which implies that

‖KV‖
∞

≤ 2‖𝑘‖
∞
‖V‖
∞
. (51)

On the other hand, for all 𝑥
1
, 𝑥
2
∈ 𝐼, by introducing

𝐼
1
:= ∫

𝑥
1

−1

(𝑘 (𝑥
1
, 𝑡) − 𝑘 (𝑥

2
, 𝑡)) V (𝑡) 𝑑𝑡,

𝐼
2
:= ∫

𝑥
1

𝑥
2

𝑘 (𝑥
2
, 𝑡) V (𝑡) 𝑑𝑡,

(52)

we can obtain that

(KV) (𝑥
1
) − (KV) (𝑥

2
) = 𝐼
1
+ 𝐼
2
, (53)

where using the triangle inequality yields that
󵄨󵄨󵄨󵄨(KV) (𝑥

1
) − (KV) (𝑥

2
)
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝐼1
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝐼2
󵄨󵄨󵄨󵄨 . (54)

The left thing is to give an estimation of 𝐼
1
and 𝐼

2
. First,

employing Lagrange midvalue differential theorem to 𝐼
1

yields that

󵄨󵄨󵄨󵄨𝐼1
󵄨󵄨󵄨󵄨 ≤ 2

󵄩󵄩󵄩󵄩󵄩
D
1

𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩∞

‖V‖
∞

󵄨󵄨󵄨󵄨𝑥1 − 𝑥
2

󵄨󵄨󵄨󵄨 . (55)

A direct estimation for 𝐼
2
produces that

󵄨󵄨󵄨󵄨𝐼2
󵄨󵄨󵄨󵄨 ≤ 2‖𝑘‖

∞
‖V‖
∞

󵄨󵄨󵄨󵄨𝑥1 − 𝑥
2

󵄨󵄨󵄨󵄨 . (56)

Thus, substituting the estimates (55)-(56) into the right hand
side of (54) leads that

󵄨󵄨󵄨󵄨(KV) (𝑥
1
) − (KV) (𝑥

2
)
󵄨󵄨󵄨󵄨

≤ 2 (‖𝑘‖
∞

+
󵄩󵄩󵄩󵄩󵄩
D
1

𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩∞

) ‖V‖
∞

󵄨󵄨󵄨󵄨𝑥1 − 𝑥
2

󵄨󵄨󵄨󵄨 ,

(57)

where (51) yields the desired conclusion (48).
In the following we show that the result (49) holds.

Noticing,

‖KV‖
∞

= max
𝑥∈𝐼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑥

−1

𝑘 (𝑥, 𝑡) V (𝑡) 𝑑𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= max
𝑥∈𝐼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑥

−1

(𝑤
−𝛼/2,−𝛽/2

(𝑡) 𝑘 (𝑥, 𝑡)) (𝑤
𝛼/2,𝛽/2

(𝑡) V (𝑡)) 𝑑𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(58)

Using Cauchy-Schwartz inequality to the right hand side of
the equation above yields

‖KV‖2
∞

≤ max
𝑥∈𝐼

∫

𝑥

−1

(𝑤
−𝛼,−𝛽

(𝑡) 𝑘
2

(𝑥, 𝑡)) ‖V‖2
𝑤
𝛼,𝛽 , (59)

which implies that

‖KV‖2
∞

≤ ‖𝑘‖
2

∞
‖1‖
𝑤
−𝛼,−𝛽‖V‖2

𝑤
𝛼,𝛽 . (60)

This complete the proof of (49).

The next result concerns on the bound of the norm
‖KV −L𝛼,𝛽

𝑛
KV‖
∞

for V ∈ 𝐶(𝐼). For this purpose, we
introduce the result on the Lebesgue constant corresponding
to the Lagrange interpolation polynomials associated with
the zeros of the Jacobi polynomials, which comes from
Lemma 3.4 in [5]:

󵄩󵄩󵄩󵄩󵄩
L
𝛼,𝛽

𝑛

󵄩󵄩󵄩󵄩󵄩∞
= max
‖V‖
∞
=1

󵄩󵄩󵄩󵄩󵄩
L
𝛼,𝛽

𝑛
V
󵄩󵄩󵄩󵄩󵄩∞

=

{

{

{

O (log 𝑛) , −1 < 𝛼, 𝛽 ≤ −
1

2
,

O (𝑛
(1/2)+max{𝛼,𝛽}

) , otherwise.

(61)

Further, we also require to make use of another result of
Ragozin, coming from [21, 22], which states that, for any
V ∈ 𝐻

𝑟,]
(𝐼), there exist a polynomial 𝑞 ∈ 𝑃

𝑛
and a positive

constant 𝜍
1
such that

󵄩󵄩󵄩󵄩V − 𝑞
󵄩󵄩󵄩󵄩∞

≤ 𝜍
1
𝑛
−𝑟−]

‖V‖
𝑟,]. (62)

A combination of (61) and (62) leads to that there exists a
positive constant 𝜍

2
such that

󵄩󵄩󵄩󵄩󵄩
V −L

𝛼,𝛽

𝑛
V
󵄩󵄩󵄩󵄩󵄩∞

≤ 𝜍
2
‖V‖
𝑟,]

{

{

{

𝑛
−𝑟−] log 𝑛, −1 < 𝛼, 𝛽 ≤ −

1

2
,

𝑛
(1/2)+max{𝛼,𝛽}−𝑟−]

, otherwise.

(63)

Lemma 5. Suppose that the kernel function 𝑘 ∈ 𝐶
1,0

(𝐼
2

).Then
there exists a positive constant 𝜍

3
independent of 𝑛 such that

when V ∈ 𝐶(𝐼),
󵄩󵄩󵄩󵄩󵄩
KV −L

𝛼,𝛽

𝑛
KV

󵄩󵄩󵄩󵄩󵄩∞

≤ 𝜍
3
‖V‖
∞

{

{

{

𝑛
−1 log 𝑛, −1 < 𝛼, 𝛽 ≤ −

1

2
,

𝑛
−(1/2)+max{𝛼,𝛽}

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(64)

Proof. It follows from Lemma 4 that KV ∈ 𝐻
0,1

(𝐼) for V ∈

𝐶(𝐼), where combining (63) obtains that there exists a positive
constant 𝜉 independent of 𝑛:

󵄩󵄩󵄩󵄩󵄩
KV −L

𝛼,𝛽

𝑛
KV

󵄩󵄩󵄩󵄩󵄩∞

≤ 𝜉‖KV‖
0,1

{

{

{

𝑛
−1 log 𝑛, −1 < 𝛼, 𝛽 ≤ −

1

2
,

𝑛
−(1/2)+max{𝛼,𝛽}

, otherwise.

(65)
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Substituting the estimate (48) into the right hand side of the
above equation yields the desired conclusion with 𝜍

3
being

given by

𝜍
3
:= 𝜉 (4‖𝑘‖

∞
+ 2

󵄩󵄩󵄩󵄩󵄩
D
1

𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩∞

) . (66)

We use the notation [𝑥] to denote the largest integer not
more than 𝑥. Moreover, byTheorem 3.10 in [23], if the kernel
function 𝑘 is a smooth function, the operatorI+K : 𝐶(𝐼) →

𝐶(𝐼) has a bounded inversion; that is, for any V ∈ 𝑃
𝑛
, there

exists a positive constant 𝜌 such that

‖(I +K) V‖
∞

≥ 𝜌‖V‖
∞
. (67)

Theorem 6. Suppose that 𝑘 ∈ 𝐶
1,𝑚

(𝐼
2

), −1/2 < 𝛼, 𝛽 < 1/2. If
we choose𝑁 as follows:

𝑁 ≥ 𝑁min := [𝑛
1+(1/2𝑚)+(min{𝛼,𝛽}/𝑚)log1/𝑚𝑛] + 1, (68)

then there exists a positive integer 𝑛
0
such that when 𝑛 ≥ 𝑛

0

and for V ∈ 𝑃
𝑛
,
󵄩󵄩󵄩󵄩󵄩
(I +L

𝛼,𝛽

𝑛
K
𝑁
)V
󵄩󵄩󵄩󵄩󵄩∞

≥
𝜌

2
‖V‖
∞
, (69)

where 𝜌 appears in (67).

Proof. It follows from the hypothesis that −1/2 < 𝛼, 𝛽 < 1/2

that 𝑛−(1/2)+max{𝛼,𝛽} tends to zero as 𝑛 tends to∞. Hence, using
(64) there exists a positive integer 𝑛

1
such that 𝑛 ≥ 𝑛

1
,

󵄩󵄩󵄩󵄩󵄩
KV −L

𝛼,𝛽

𝑛
V
󵄩󵄩󵄩󵄩󵄩∞

≤
𝜌

4
‖V‖
∞
. (70)

On the other hand, using (61) with the hypothesis that
−1/2 < 𝛼, 𝛽 < 1/2 yields that there exists a positive constant
𝜉
1
such that, for V ∈ 𝑃

𝑛
,

󵄩󵄩󵄩󵄩󵄩
L
𝛼,𝛽

𝑛
KV −L

𝛼,𝛽

𝑛
K
𝑁
V
󵄩󵄩󵄩󵄩󵄩∞

≤ 𝜉
1

󵄩󵄩󵄩󵄩KV −K
𝑁
V󵄩󵄩󵄩󵄩∞𝑛
(1/2)+max{𝛼,𝛽}

,

(71)

where combining (43) and (68) produces that there exists a
positive constant 𝜉

2
,

󵄩󵄩󵄩󵄩󵄩
L
𝛼,𝛽

𝑛
KV −L

𝛼,𝛽

𝑛
K
𝑁
V
󵄩󵄩󵄩󵄩󵄩∞

≤ 𝜉
2
‖V‖
∞
log−1𝑛. (72)

Similarly as before, by the fact that log−1𝑛 tends to 0 as 𝑛 tends
to∞, there exists a positive integer 𝑛

2
such that, for 𝑛 ≥ 𝑛

2
,

󵄩󵄩󵄩󵄩󵄩
L
𝛼,𝛽

𝑛
KV −L

𝛼,𝛽

𝑛
K
𝑁
V
󵄩󵄩󵄩󵄩󵄩∞

≤
𝜌

4
‖V‖
∞
. (73)

Hence, when 𝑛 ≥ 𝑛
0
:= max{𝑛

1
, 𝑛
2
}, combining these three

estimates (67), (70), and (73) yields that
󵄩󵄩󵄩󵄩󵄩
(I +L

𝛼,𝛽

𝑛
K
𝑁
)V
󵄩󵄩󵄩󵄩󵄩∞

≥ ‖V +KV‖
∞

−
󵄩󵄩󵄩󵄩󵄩
KV −L

𝛼,𝛽

𝑛
KV

󵄩󵄩󵄩󵄩󵄩∞

−
󵄩󵄩󵄩󵄩󵄩
L
𝛼,𝛽

𝑛
KV −L

𝛼,𝛽

𝑛
K
𝑁
V
󵄩󵄩󵄩󵄩󵄩∞

≥
𝜌

2
‖V‖
∞
,

(74)

proving the desired conclusion (69).

Theorem 6 ensures that, for sufficient large 𝑛, the operator
equation (20) has a unique solution 𝑢̃

𝑛
. The next result

considers the convergent order of the approximate solution
𝑢̃
𝑛
in 𝐿
∞ norm.

Theorem 7. Suppose that the kernel function 𝑘 ∈ 𝐶
𝑚,𝑚

(𝐼
2

),
𝑓 ∈ 𝐶

𝑚

(𝐼), and −1/2 < 𝛼, 𝛽 < 1/2. If we choose𝑁 as in (68),
then there exist a positive constant 𝜂 and a positive integer 𝑛

0

such that, for 𝑛 ≥ 𝑛
0
,

󵄩󵄩󵄩󵄩𝑢 − 𝑢̃
𝑛

󵄩󵄩󵄩󵄩∞
≤ 𝜂‖𝑢‖

𝑚
𝑛
(1/2)+max{𝛼,𝛽}−𝑚

. (75)

Proof. We first notice that it follows from the hypothesis that
𝑘 ∈ 𝐶

𝑚,𝑚

(𝐼
2

) and 𝑓 ∈ 𝐶
𝑚

(𝐼) that (3) has a unique solution
𝑢 ∈ 𝐶

𝑚

(𝐼), which implies that 𝑢 ∈ 𝐻
𝑚−1,1

(𝐼). By using the
triangle inequality,

󵄩󵄩󵄩󵄩𝑢 − 𝑢̃
𝑛

󵄩󵄩󵄩󵄩∞
≤
󵄩󵄩󵄩󵄩󵄩
𝑢 −L

𝛼,𝛽

𝑛
𝑢
󵄩󵄩󵄩󵄩󵄩∞

+
󵄩󵄩󵄩󵄩󵄩
L
𝛼,𝛽

𝑛
𝑢 − 𝑢̃
𝑛

󵄩󵄩󵄩󵄩󵄩∞
. (76)

Upon the estimation (63) with V := 𝑢, we only require to
estimate the second term in the right hand side of the above
equation. In fact, employing L𝛼,𝛽

𝑛
to both sides of (3) yields

that

L
𝛼,𝛽

𝑛
𝑢 +L

𝛼,𝛽

𝑛
K𝑢 = L

𝛼,𝛽

𝑛
𝑓. (77)

Adirect computation of the above equation and (20) confirms
that

(I +L
𝛼,𝛽

𝑛
K
𝑁
) (𝑢̃
𝑛
−L
𝛼,𝛽

𝑛
𝑢)

= L
𝛼,𝛽

𝑛
K𝑢 −L

𝛼,𝛽

𝑛
K
𝑁
L
𝛼,𝛽

𝑛
𝑢.

(78)

By Theorem 6, there exists a positive integer 𝑛
0
such that

𝑛 ≥ 𝑛
0
,

󵄩󵄩󵄩󵄩󵄩
𝑢̃
𝑛
−L
𝛼,𝛽

𝑛
𝑢
󵄩󵄩󵄩󵄩󵄩∞

≤
2

𝜌

󵄩󵄩󵄩󵄩󵄩
L
𝛼,𝛽

𝑛
K𝑢 −L

𝛼,𝛽

𝑛
K
𝑁
L
𝛼,𝛽

𝑛
𝑢
󵄩󵄩󵄩󵄩󵄩∞

, (79)

where combining (61) leads that there exists a positive
constant 𝜉

1
such that

󵄩󵄩󵄩󵄩󵄩
𝑢̃
𝑛
−L
𝛼,𝛽

𝑛
𝑢
󵄩󵄩󵄩󵄩󵄩∞

≤ 𝜉
1

󵄩󵄩󵄩󵄩󵄩
K𝑢 −K

𝑁
L
𝛼,𝛽

𝑛
𝑢
󵄩󵄩󵄩󵄩󵄩∞

𝑛
(1/2)+max{𝛼,𝛽}

.

(80)

To obtain the estimation of the right hand side of equation
(80), we let

𝐼
1
:=

󵄩󵄩󵄩󵄩󵄩
K𝑢 −KL

𝛼,𝛽

𝑛
𝑢
󵄩󵄩󵄩󵄩󵄩∞

,

𝐼
2
:=

󵄩󵄩󵄩󵄩󵄩
KL
𝛼,𝛽

𝑛
𝑢 −K

𝑁
L
𝛼,𝛽

𝑛
𝑢
󵄩󵄩󵄩󵄩󵄩∞

.

(81)

Clearly,
󵄩󵄩󵄩󵄩󵄩
K𝑢 −K

𝑁
L
𝛼,𝛽

𝑛
𝑢
󵄩󵄩󵄩󵄩󵄩∞

≤ 𝐼
1
+ 𝐼
2
. (82)

It remains to estimate 𝐼
1
and 𝐼
2
, respectively. First, using the

hypothesis that −1/2 < 𝛼, 𝛽 < 1/2 and the result (49) with
V := 𝑢 −L𝛼,𝛽

𝑛
𝑢 produces that there exists a positive constant

𝜉
2
independent of 𝑛 such that

𝐼
1
≤ 𝜉
2

󵄩󵄩󵄩󵄩󵄩
𝑢 −L

𝛼,𝛽

𝑛
𝑢
󵄩󵄩󵄩󵄩󵄩𝑤𝛼,𝛽

, (83)



Abstract and Applied Analysis 7

where combining the result (23) with 𝑖 := 0, 𝑟 := 𝑚, V := 𝑢

yields that there exists a positive constant 𝜉
3
independent of

𝑛 such that

𝐼
1
≤ 𝜉
3

󵄩󵄩󵄩󵄩D
𝑚

𝑥
𝑢
󵄩󵄩󵄩󵄩𝑤𝛼+𝑚,𝛽+𝑚

𝑛
−𝑚

. (84)

Hence, a combination of (84) and the following inequality
󵄩󵄩󵄩󵄩󵄩
D
𝑙

𝑥
𝑢
󵄩󵄩󵄩󵄩󵄩𝑤𝛼+𝑙,𝛽+𝑙

≤ ‖1‖
𝑤
𝛼,𝛽

󵄩󵄩󵄩󵄩󵄩
D
𝑙

𝑥
𝑢
󵄩󵄩󵄩󵄩󵄩∞

, 𝑙 ∈ N, (85)

produces that there exists a positive constant 𝜉
4
such that

𝐼
1
≤ 𝜉
4
‖𝑢‖
𝑚
𝑛
−𝑚

. (86)

On the other hand, using the results (24) and (31) leads that
there exists a positive constant 𝜉

5
such that

𝐼
2
≤ 𝜉
5
( ∑

𝑖∈Z
𝑚

󵄩󵄩󵄩󵄩󵄩
D
𝑖

𝑥
𝑢
󵄩󵄩󵄩󵄩󵄩𝑤𝛼+𝑖,𝛽+𝑖

)𝑁
−𝑚

, (87)

where combining (68) and (85) yields that there exists a
positive constant 𝜉

6
,

𝐼
2
≤ 𝜉
6
‖𝑢‖
𝑚
𝑛
−𝑚−(1/2)−max{𝛼,𝛽}log−1𝑛. (88)

A combination of the above estimation and (80), (82), and
(86) yields the desired result.

Theorem 7 illustrates that the approximate solution
obtained by the proposedmethod arrives at themost possible
convergent order.

5. The Stability and Convergence Analysis
under the 𝐿

2

𝑤
𝛼,𝛽 Norm

As demonstrated in the previous section, in this section
we are going to prove that, for sufficiently large 𝑛 and 𝑁,
the operator I + L𝛼,𝛽

𝑛
K
𝑁

: 𝑃
𝑛

→ 𝑃
𝑛
has a uniformly

bounded inversion in the 𝐿2
𝑤
𝛼,𝛽(𝐼) space and then show that

the approximate solution arrives at the optimal convergent
order. To this end, we first give a few results.

Lemma 8. Suppose that −1 < 𝜆
1
, 𝜆
2
< 1 and ℎ ∈ [0, 1]. If

𝑥, 𝑥 + ℎ ∈ 𝐼, then one has that

∫

𝑥+ℎ

𝑥

𝑤
𝜆
1
,𝜆
2

(𝑡) 𝑑𝑡 ≤

2max {ℎ, ℎ1+min{𝜆
1
,𝜆
2
}

}

1 +min {𝜆
1
, 𝜆
2
}

. (89)

Proof. Wewill prove that the result (89) holds in the following
four cases: (1) 𝜆

1
≥ 0 and 𝜆

2
≥ 0; (2) 𝜆

1
≥ 0 but 𝜆

2
<

0; (3) 𝜆
1
< 0 while 𝜆

2
≥ 0; (4) 𝜆

1
< 0 and 𝜆

2
< 0.

Firstly, we notice that, for 𝜆
1
≥ 0, 𝜆

2
≥ 0,

(1 − 𝑡)
𝜆
1

(1 + 𝑡)
𝜆
2 ≤ 2, (90)

which confirms the desired conclusion.
If the conditions 𝜆

1
< 0 and 𝜆

2
≥ 0 hold, then using

(1 + 𝑡)
𝜆
2 ≤ 2 (91)

produces

∫

𝑥+ℎ

𝑥

𝑤
𝜆
1
,𝜆
2

(𝑡) 𝑑𝑡 ≤ 2∫

𝑥+ℎ

𝑥

(1 − 𝑡)
𝜆
1𝑑𝑡 ≤

2ℎ
1+𝜆
1

1 + 𝜆
1

, (92)

which ensures the desired conclusion.
In a similar approach as the above case, clearly, the result

(89) holds for the case that 𝜆
1
≥ 0 while 𝜆

2
< 0.

At last, when the conditions𝜆
1
< 0 and𝜆

2
< 0hold, using

the next equation

(1 − 𝑡)
𝜆
1

(1 + 𝑡)
𝜆
2 =

(1 − 𝑡)
𝜆
1 + (1 + 𝑡)

𝜆
2

(1 − 𝑡)
−𝜆
1 + (1 + 𝑡)

−𝜆
2

(93)

can produce

(1 − 𝑡)
𝜆
1

(1 + 𝑡)
𝜆
2 ≤ (1 − 𝑡)

𝜆
1 + (1 + 𝑡)

𝜆
2 . (94)

Thus, again using the same method as before yields the
desired result.

Next we ensure that the operatorK : 𝐿
2

𝑤
𝛼,𝛽(𝐼) → 𝐻

0,𝜅

(𝐼)

is a bounded linear operator with certain positive constant 𝜅.

Lemma 9. Suppose that −1 < 𝛼, 𝛽 < 1, 𝑘 ∈ 𝐶
1,0

(𝐼
2

); then
K is a bounded linear operator from 𝐿

2

𝑤
𝛼,𝛽(𝐼) into𝐻0,𝜅(𝐼)with

𝜅 := min{1/2, (1/2) +min{−𝛼/2, −𝛽/2}}; that is, there exists a
positive constant 𝜁

1
such that, for V ∈ 𝐿

2

𝑤
𝛼,𝛽(𝐼),

‖KV‖
0,𝜅

≤ 𝜁
1
‖V‖
𝑤
𝛼,𝛽 . (95)

Proof. By the estimation (49) in Lemma 5, there exists a
positive constant 𝜉

1
such that, for V ∈ 𝐿

2

𝑤
𝛼,𝛽(𝐼),

‖KV‖
∞

≤ 𝜉
1
‖V‖
𝑤
𝛼,𝛽 . (96)

On the other hand, for 𝑥
1
, 𝑥
2
∈ 𝐼, without loss of generality,

we assume that 𝑥
1
≤ 𝑥
2
. By introducing

𝐼
1
:= ∫

𝑥
2

−1

(𝑘 (𝑥
1
, 𝑡) − 𝑘 (𝑥

2
, 𝑡)) V (𝑡) 𝑑𝑡,

𝐼
2
:= ∫

𝑥
2

𝑥
1

𝑘 (𝑥
1
, 𝑡) V (𝑡) 𝑑𝑡,

(97)

we have

(KV) (𝑥
1
) − (KV) (𝑥

2
) = 𝐼
1
+ 𝐼
2
. (98)

Hence, it remains to estimate 𝐼
1
and 𝐼
2
, respectively. For this

purpose, by reformulating 𝐼
1
and 𝐼
2
as follows

𝐼
1
:= ∫

𝑥
2

−1

(𝑤
−𝛼/2,−𝛽/2

(𝑡) (𝑘 (𝑥
1
, 𝑡) − 𝑘 (𝑥

2
, 𝑡)))

× (𝑤
𝛼/2,𝛽/2

(𝑡) V (𝑡)) 𝑑𝑡,

𝐼
2
:= ∫

𝑥
2

𝑥
1

(𝑤
−𝛼/2,−𝛽/2

(𝑡) 𝑘 (𝑥
1
, 𝑡)) (𝑤

𝛼/2,𝛽/2

(𝑡) V (𝑡)) 𝑑𝑡

(99)
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and then employing Cauchy-Schwarz inequality to 𝐼
1
and 𝐼
2
,

respectively, we can obtain that

𝐼
2

1
≤ (∫

𝑥
2

−1

𝑤
−𝛼,−𝛽

(𝑡) (𝑘(𝑥
1
, 𝑡) − 𝑘(𝑥

2
, 𝑡))
2

𝑑𝑡)

× (∫

𝑥
2

−1

𝑤
𝛼,𝛽

(𝑡) V2 (𝑡) 𝑑𝑡) ,

𝐼
2

2
≤ (∫

𝑥
2

𝑥
1

𝑤
−𝛼,−𝛽

(𝑡) 𝑘
2

(𝑥
1
, 𝑡) 𝑑𝑡)(∫

𝑥
2

𝑥
1

𝑤
𝛼,𝛽

(𝑡) V2 (𝑡) 𝑑𝑡) .

(100)

Using the hypothesis that 𝑘 ∈ 𝐶
1,0

(𝐼
2

) and the Lagrange
midvalue differential theorem yields that

𝐼
2

1
≤
󵄩󵄩󵄩󵄩󵄩
D
1

𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩

2

∞

‖1‖
𝑤
−𝛼,−𝛽‖V‖2

𝑤
𝛼,𝛽

󵄨󵄨󵄨󵄨𝑥1 − 𝑥
2

󵄨󵄨󵄨󵄨

2

. (101)

A direct estimation for 𝐼
2
produces that

𝐼
2

2
≤ ‖𝑘‖
2

∞
‖V‖2
𝑤
𝛼,𝛽 ∫

𝑥
2

𝑥
1

𝑤
−𝛼,−𝛽

(𝑡) 𝑑𝑡. (102)

If the condition 𝑥
2
− 𝑥
1
> 1 holds, then we have

𝐼
2

2
≤ ‖𝑘‖
2

∞
‖V‖2
𝑤
𝛼,𝛽‖1‖
𝑤
−𝛼,−𝛽

󵄨󵄨󵄨󵄨𝑥1 − 𝑥
2

󵄨󵄨󵄨󵄨

𝜅

, (103)

otherwise, using (102), where combining (89) with 𝜆
1

:=

−𝛼, 𝜆
2
:= −𝛽, 𝑥 := 𝑥

1
and 𝑥 + ℎ := 𝑥

2
leads to that there

exists a positive constant 𝜉
2
such that

𝐼
2

2
≤ 𝜉
2
‖V‖2
𝑤
𝛼,𝛽 max {󵄨󵄨󵄨󵄨𝑥1 − 𝑥

2

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑥1 − 𝑥

2

󵄨󵄨󵄨󵄨

1+min{−𝛼,−𝛽}
} . (104)

A combination of (98)–(104) and the triangle inequality
yields that there exists a positive constant 𝜉

3
such that

󵄨󵄨󵄨󵄨(KV) (𝑥
1
) − (KV) (𝑥

2
)
󵄨󵄨󵄨󵄨 ≤ 𝜉
3
‖V‖
𝑤
𝛼,𝛽

󵄨󵄨󵄨󵄨𝑥1 − 𝑥
2

󵄨󵄨󵄨󵄨

𝜅

, (105)

where (96) draws the desired conclusion.

The next result concerns on difference between KV and
L𝛼,𝛽
𝑛

KV for V ∈ 𝐿
2

𝑤
𝛼,𝛽(𝐼). For this purpose, we will make use

of the next result proposed in [5]. For any V ∈ 𝐶(𝐼), there
exists a positive constant 𝜁

2
independent of 𝑛:

󵄩󵄩󵄩󵄩󵄩
L
𝛼,𝛽

𝑛
V
󵄩󵄩󵄩󵄩󵄩𝑤𝛼,𝛽

≤ 𝜁
2
‖V‖
∞
. (106)

A combination of (61) and (106) leads to that there exists
a positive constant 𝜁

3
such that, for V ∈ 𝐻

𝑟,]
(𝐼),

󵄩󵄩󵄩󵄩󵄩
V −L

𝛼,𝛽

𝑛
V
󵄩󵄩󵄩󵄩󵄩𝑤𝛼,𝛽

≤ 𝜁
3
‖V‖
𝑟,]𝑛
−𝑟−]

. (107)

Again using Theorem 3.10 in [23], we know that 0

is the unique eigenvalue of Volterra integral operator K;
consequently, the operator I + K : 𝐿

2

𝑤
𝛼,𝛽(𝐼) → 𝐿

2

𝑤
𝛼,𝛽(𝐼)

has a bounded inversion; that is, for any V ∈ 𝑃
𝑛
, there exists a

positive constant 󰜚 such that

‖(I +K)V‖
𝑤
𝛼,𝛽 ≥ 󰜚‖V‖

𝑤
𝛼,𝛽 . (108)

Theorem 10. Suppose that 𝑘 ∈ 𝐶
1,𝑚

(𝐼
2

) and −1/2 < 𝛼, 𝛽 <

1, 𝛼 + 𝛽 ≤ 1. If one chooses𝑁 as follows:

𝑁 ≥ 𝑁min := [n log1/mn] + 1, (109)

then there exists a positive integer 𝑛
0
such that 𝑛 ≥ 𝑛

0
and for

V ∈ 𝑃
𝑛
,

󵄩󵄩󵄩󵄩󵄩
(I +L

𝛼,𝛽

𝑛
K
𝑁
)V
󵄩󵄩󵄩󵄩󵄩𝑤𝛼,𝛽

≥
󰜚

2
‖V‖
𝑤
𝛼,𝛽 , (110)

where 󰜚 appears in (108).

Proof. This proof is similar to that of Theorem 6. By
Lemma 9, for V ∈ 𝑃

𝑛
, we have KV ∈ 𝐻

0,𝜅

(𝐼), where
combining (95) and (107) obtains that there exists a positive
constant 𝜉

1
,
󵄩󵄩󵄩󵄩󵄩
KV −L

𝛼,𝛽

𝑛
KV

󵄩󵄩󵄩󵄩󵄩𝑤𝛼,𝛽
≤ 𝜉
1
‖V‖
𝑤
𝛼,𝛽𝑛
−𝜅

. (111)

Hence, by the fact that lim
𝑛→∞

𝑛
−𝜅

= 0, there exists a positive
integer 𝑛

1
such that, for 𝑛 ≥ 𝑛

1
,

󵄩󵄩󵄩󵄩󵄩
KV −L

𝛼,𝛽

𝑛
KV

󵄩󵄩󵄩󵄩󵄩𝑤𝛼,𝛽
≤

󰜚

4
‖V‖
𝑤
𝛼,𝛽 . (112)

On the other hand, using (106) obtains that there exists a
positive constant 𝜉

2
such that

󵄩󵄩󵄩󵄩󵄩
L
𝛼,𝛽

𝑛
KV −L

𝛼,𝛽

𝑛
K
𝑁
V
󵄩󵄩󵄩󵄩󵄩𝑤𝛼,𝛽

≤ 𝜉
2

󵄩󵄩󵄩󵄩KV −K
𝑁
V󵄩󵄩󵄩󵄩∞. (113)

By the hypothesis that −1/2 < 𝛼, 𝛽 ≤ 1, and 𝛼 + 𝛽 ≤ 1,
a combination of (42) and (109) yields that there exists a
positive constant 𝜉

3
such that

󵄩󵄩󵄩󵄩KV −K
𝑁
V󵄩󵄩󵄩󵄩∞ ≤ 𝜉

3
‖V‖
𝑤
𝛼,𝛽 log−1𝑛. (114)

Substituting the above estimation into the right hand side of
(113) produces that

󵄩󵄩󵄩󵄩󵄩
L
𝛼,𝛽

𝑛
KV −L

𝛼,𝛽

𝑛
K
𝑁
V
󵄩󵄩󵄩󵄩󵄩𝑤𝛼,𝛽

≤ 𝜉
2
𝜉
3
‖V‖
𝑤
𝛼,𝛽 log−1𝑛. (115)

Again using the same fact that lim
𝑛→∞

log−1𝑛 = 0, there
exists a positive integer 𝑛

2
such that for 𝑛 ≥ 𝑛

2
,

󵄩󵄩󵄩󵄩󵄩
L
𝛼,𝛽

𝑛
KV −L

𝛼,𝛽

𝑛
K
𝑁
V
󵄩󵄩󵄩󵄩󵄩𝑤𝛼,𝛽

≤
󰜚

4
‖V‖
𝑤
𝛼,𝛽 . (116)

When 𝑛 ≥ 𝑛
0
:= max{𝑛

1
, 𝑛
2
}, these three estimates (108),

(112), and (116) yield that
󵄩󵄩󵄩󵄩󵄩
(I +L

𝛼,𝛽

𝑛
K
𝑁
)V
󵄩󵄩󵄩󵄩󵄩𝑤𝛼,𝛽

≥
󰜚

2
‖𝑤‖
𝑤
𝛼,𝛽 , (117)

which infers our result.

This above result shows that (20) has a unique solution 𝑢̃
𝑛

in the space 𝐿
2

𝑤
𝛼,𝛽(𝐼). Next result considers the approximate

order of the solution 𝑢̃
𝑛
.

Theorem 11. Suppose that the kernel function 𝑘 ∈ 𝐶
𝑚,𝑚

(𝐼
2

),
𝑓 ∈ 𝐶

𝑚

(𝐼), and −1/2 < 𝛼, 𝛽 < 1, 𝛼 + 𝛽 ≤ 1. If one chooses 𝑁
as in (109), then there exist a positive constant 𝜃 and a positive
integer 𝑛

0
such that, for 𝑛 ≥ 𝑛

0
,

󵄩󵄩󵄩󵄩𝑢 − 𝑢̃
𝑛

󵄩󵄩󵄩󵄩𝑤𝛼,𝛽
≤ 𝜃( ∑

𝑖∈Z
𝑚

󵄩󵄩󵄩󵄩󵄩
D
𝑖

𝑥
𝑢
󵄩󵄩󵄩󵄩󵄩𝑤𝛼+𝑖,𝛽+𝑖

)𝑛
−𝑚

. (118)
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Table 1: The numerical result based on the collocation nodes 𝑥0,0
𝑖
, 𝑖 ∈ Z

𝑛
.

𝑛 4 6 8 10 12 14
󵄩󵄩󵄩󵄩𝑢 − 𝑢̃

𝑛

󵄩󵄩󵄩󵄩∞
1.40𝑒 − 2 3.16𝑒 − 4 4.28𝑒 − 6 3.83𝑒 − 8 2.60𝑒 − 10 1.20𝑒 − 12

󵄩󵄩󵄩󵄩𝑢 − 𝑢̃
𝑛

󵄩󵄩󵄩󵄩𝑤0,0
1.85𝑒 − 2 4.10𝑒 − 4 5.48𝑒 − 6 4.87𝑒 − 8 3.07𝑒 − 10 1.45𝑒 − 12

Table 2: The numerical result based on the collocation nodes 𝑥1/4,1/3
𝑖

, 𝑖 ∈ Z
𝑛
.

𝑛 4 6 8 10 12 14
󵄩󵄩󵄩󵄩𝑢 − 𝑢̃

𝑛

󵄩󵄩󵄩󵄩∞
1.16𝑒 − 2 2.61𝑒 − 4 3.54𝑒 − 6 4.16𝑒 − 8 2.14𝑒 − 10 9.92𝑒 − 13

󵄩󵄩󵄩󵄩𝑢 − 𝑢̃
𝑛

󵄩󵄩󵄩󵄩𝑤1/4,1/3
1.52𝑒 − 2 3.38𝑒 − 4 4.52𝑒 − 6 4.01𝑒 − 8 2.53𝑒 − 10 1.19𝑒 − 12

Proof. The proof of Theorem 11 is similar as that of
Theorem 7. It follows from Theorem 7 that 𝑢 ∈ 𝐶

𝑚

(𝐼),
which implies that 𝑢 ∈ 𝐻

𝑚

𝑤
𝛼,𝛽
(𝐼). By using the triangle

inequality,
󵄩󵄩󵄩󵄩𝑢 − 𝑢̃

𝑛

󵄩󵄩󵄩󵄩𝑤𝛼,𝛽
≤
󵄩󵄩󵄩󵄩󵄩
𝑢 −L

𝛼,𝛽

𝑛
𝑢
󵄩󵄩󵄩󵄩󵄩𝑤𝛼,𝛽

+
󵄩󵄩󵄩󵄩󵄩
L
𝛼,𝛽

𝑛
𝑢 − 𝑢̃
𝑛

󵄩󵄩󵄩󵄩󵄩𝑤𝛼,𝛽
. (119)

Upon the estimation in (23) with 𝑖 := 0, 𝑟 := 𝑚 and V := 𝑢, we
only need to estimate ‖L𝛼,𝛽

𝑛
𝑢 − 𝑢̃
𝑛
‖
𝑤
𝛼,𝛽 . Employing the result

(78), (106), and Theorem 7, there exist a positive constant 𝜉
1

and a positive integer 𝑛
0
such that 𝑛 ≥ 𝑛

0
,

󵄩󵄩󵄩󵄩󵄩
𝑢̃
𝑛
−L
𝛼,𝛽

𝑛
𝑢
󵄩󵄩󵄩󵄩󵄩𝑤𝛼,𝛽

≤ 𝜉
1

󵄩󵄩󵄩󵄩󵄩
K𝑢 −K

𝑁
L
𝛼,𝛽

𝑛
𝑢
󵄩󵄩󵄩󵄩󵄩∞

(120)

To obtain the estimation of the right hand side of (120), we let

𝐼
1
:=

󵄩󵄩󵄩󵄩󵄩
K𝑢 −KL

𝛼,𝛽

𝑛
𝑢
󵄩󵄩󵄩󵄩󵄩∞

,

𝐼
2
:=

󵄩󵄩󵄩󵄩󵄩
KL
𝛼,𝛽

𝑛
𝑢 −K

𝑁
L
𝛼,𝛽

𝑛
𝑢
󵄩󵄩󵄩󵄩󵄩∞

.

(121)

Clearly,
󵄩󵄩󵄩󵄩󵄩
K𝑢 −K

𝑁
L
𝛼,𝛽

𝑛
𝑢
󵄩󵄩󵄩󵄩󵄩∞

≤ 𝐼
1
+ 𝐼
2
. (122)

Upon the estimation (84), we only require to estimate 𝐼
2
.

In fact, a combination of (87) and (109) yields that there exists
a positive constant 𝜉

2
:

𝐼
2
≤ 𝜉
2
( ∑

𝑖∈Z
𝑚

󵄩󵄩󵄩󵄩󵄩
D
𝑖

𝑥
𝑢
󵄩󵄩󵄩󵄩󵄩𝑤𝛼+𝑖,𝛽+𝑖

)𝑛
−𝑚log−1𝑛. (123)

A combination of (84) and (120)–(123) yields the desired
result.

Theorem 11 illustrates that the proposed method pre-
serves the optimal order of convergence.

6. One Numerical Example

In this section, we are going to present one numerical
example to demonstrate the efficiency of the spectral Jacobi-
collocation method for solving (3). In each example, we
use two spectral collocation approaches associated with the
weight function 𝑤

0,0 and 𝑤
1/4,1/3, respectively. Here, we

compute the Gauss-Jacobi quadrature rule nodes and weights
by Theorems 3.4 and 3.6 discussed in [19]. All computer
programs are compiled by Matlab language.

Example. Consider the second kind Volterra integral equa-
tion (1) with

𝑘 (𝑥, 𝑡) = 𝑒
𝑥𝑡

, 𝑓 (𝑥) = 𝑒
2𝑥

+
𝑒
𝑥(𝑥+2)

− 𝑒
−(𝑥+2)

𝑥 + 2
. (124)

The corresponding exact solution is given by 𝑢(𝑥) = 𝑒
2𝑥.

As expected, the errors show an exponential decay, since in
this semilog representation the error variations are essentially
linear versus the degrees of the polynomial.

From the theoretical results we observe that the numer-
ical errors should decay with an exponential rate, and
we also find that the errors show an exponential decay
(Tables 1 and 2).
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