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In reality, decision-makers are always in front of imprecise and vague operational conditions.We propose a practical multiobjective
joint replenishment and delivery scheduling (JRD) model with deterministic demand and fuzzy cost. This model minimizes the
total cost defuzzified by the signed distance method and maximizes the credibility that the total cost does not exceed the budget
level. Then, an inverse weight fuzzy nonlinear programming (IWFNLP) method is adopted to formulate the proposed model. This
method embeds the idea of inverse weights into the Max-Min fuzzy model. Thirdly, the fuzzy simulation approach and differential
evolution algorithm (DE) are utilized to solve this problem. Results show that solutions derived from the IWFNLP method satisfy
the decision-maker’s desirable achievement level of the cost objective and credibility objective. It is an effective decision tool since
it can really reflect the relative importance of each fuzzy component. Our study also shows that the improved DE outperforms DE
with a faster convergence speed.

1. Introduction

As a multi-item inventory problem, the joint replenishment
problem (JRP) has been widely applied to lots of sizing
problems in manufacturing applications (Hsu [1]; Goyal [2];
Wang et al. [3, 4]). Beside the possible quantity discount,
gathering several items on a single order to reduce the total
of these fixed ordering costs is pretty reasonable (Kaspi and
Rosenblatt [5]). The studies of the JRPs can be divided into
two categories: (a) heuristics for the classic JRP under con-
stant demand and special applications (Olsen [6]; Lee andYao
[7]; Porras and Dekker [8]) and (b) the JRPs under dynamic
and/or stochastic demand. The extensive literature review is
available in Khouja and Goyal [9] and Narayanan et al. [10].

Typically speaking, if the warehouse is assumed as the
central of a supply chain for all the new JRPs, two extensions
of JRP should be noted; one extension is in the supplying end
and the other extension is in the selling end. For both of two
extensions, the delivery considerations should be considered.
Here we call them the joint replenishment and delivery

scheduling (JRD) problems. In fact, most corporations with
global purchasing have realized that considerable cost savings
can be achieved by a JRD policy (Sindhuchao et al. [11]). The
relatively scarce literature on the JRDs can be classified into
two categories: (a) JRDs with deterministic demand, Chan
et al. [12] addressed scheduling issues for multibuyer joint
replenishments and Cha et al. [13] studied a JRD model of
the one-warehouse and 𝑛-retailer system and developed a
genetic algorithm (GA) and an improved heuristic named
RAND to solve this problem and Moon et al. [14] provided
joint replenishment and consolidated freight delivery policies
with deterministic demand for a third party warehouse; (b)
JRDs with stochastic demand, Wang et al. [15] proposed an
effective and efficient differential evolution algorithm (DE)
for the integrated stochastic JRD. Similar studies can be found
in [16–18]. A limitation common in all the JRDs mentioned
above is that all the key factors are assumed to be certain.

In reality, it is more realistic to handle imprecise values
using the fuzzy theory for the JRD. In fact, decision-makers
are always in front of imprecise and vague operational
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conditions (Pishvaee and Torabi [19]; Zeng et al. [20]).
Uncertainties have been tackled in a lot of ways and fuzzy
set theory has a long history for managing inventory (Chiang
et al. [21]; Kacprzyk and Stanieski [22]; Wang et al. [23, 24];
Wee et al. [25]). Generally, the imprecision may originate
from two aspects in the JRD modeling: (1) the imprecise
specification of objectives, for example, a decision-maker
may have to face vague goals such as “this total cost should
be around $20000”; (2) the imprecise specification of related
parameters, an important task involved in the fuzzy JRD
model is to predict parameters’ values such as the holding cost
and major ordering cost. However, due to the nonavailability
of sufficient and precise input data, the precise predicted
values cannot be obtained easily; just an “approximate” value
may be ascertained, while fuzzy numbers can efficiently
model the imprecise values.

At present, there are two common approaches to handle
fuzzy parameters. (1) Defuzzification. As a favorite approach
in many inventory modeling for its simplicity, defuzzifi-
cation can easily transfer fuzziness to be explicit without
complex analysis (Roy et al. [26]). Handfield et al. [27]
defuzzified a (Q, r) model based on fuzzy-set representations
of various sources of uncertainly in the supply chain. (2)
Fuzzy dependent-chance programming (DCP). Fuzzy DCP
maximizes the credibility of event such that the total cost
in the planning periods does not exceed a certain budget
level (Liu [28]). Wang et al. [29] studied a novel JRP model
based onDCPwith fuzzyminor replenishment cost and fuzzy
inventory holding cost. Similar paper can be found in Peng
and Zhou [30]. For the JRP decision, managers also hope
that the total cost does not exceed the budget level, especially
when enterprises have much cash flow pressure. In this situa-
tion, a fuzzy DCPmodel is always regarded as a good choice.

However, no study has simultaneously considered total
cost and credibility of the total cost does not exceed the
budget level as performance criterions for the JRDwith fuzzy
cost. This unexplored area is important and interesting since
it integrates into a single model two main decision criterions:
total cost and credibility. The aim of this paper is to develop
a practical multiobjective JRD (M-JRD) model with deter-
ministic demand and fuzzy cost firstly. Moreover, an inverse
weight fuzzy nonlinear programming (IWFNLP) adopted by
[25] is applied to the M-JRD to satisfy the decision-maker’s
desirable achievement level of each fuzzy component. At
last, novel hybrid algorithms are provided using the fuzzy
simulation approach (FSA) and DE for this model handled
by IWFNLP method. Results of examples show solutions
derived from the IWFNLP method satisfy the decision-
maker’s desirable achievement level of the cost and credibility
objective. It is an effective decision tool since it can really
reflect the relative importance of each fuzzy component.

The rest of this paper is organized as follows. The
multiobjective JRD model is given in Section 2. In Section 3,
the fuzzy simulation for credibility calculation and DE for
searching for an optimum solution are introduced. Section 4
is numerical examples and analysis. Section 5 contains con-
clusions and future research directions.

2. Mathematical Model and Analysis

2.1. Assumptions and Formulation of Fuzzy JRD Model

(1) Assumptions and Notations. Lu and Posner [31] addressed
the problem of supplyingmultiple retail outlets with constant
and continuous demand from a single warehouse. Each
retailer sells one product, and other retailers sell the same
product. All demands must be met without shortages or
backlogging. Orders placed by a retailer will result in demand
generated at the warehouse. The objective is to minimize
the average total cost. This one warehouse, n-retailer JRD
problemhas received considerable attention from researchers
[13, 14]. In this study, we focus on the JRD model under
fuzzy environment. The following assumptions are similar
with Lu and Posner [31] and Cha et al. [13]. (1) All parameters
including demand rates and costs (except warehouse’s major
ordering cost) are known and constant; (2) replenishment is
instantaneous; (3) replenishment lead time is constant.

As reported in Wang et al. [23], an interesting real prob-
lem is when human originated data like ordering cost are not
precisely known but subjectively estimated or linguistically
expressed because of the lack of the accurate history data.
Suppose that the major ordering cost (S) is not precisely
known. For example, let the linguistic estimates of S be as
follows. “Themajor ordering cost is about 40 dollars per order,
but not less than 20 dollars per order nor more than 60 dollars
per order.” In reality, it is very hard to obtain the precise cost.
So fuzzy variables are also utilized to handle the JRD problem
under uncertainty. In this study, warehouse’s major ordering
cost is treated as a fuzzy number. Our work introduces
fuzziness into the JRDwhichmakes it becomemore practical.
Due to the JRD’s difficult mathematical properties, we just
suppose the major ordering cost as a fuzzy number to
make the study become more possible because two different
objectives are considered simultaneously.

As presented in Cha et al. [13], the warehouse will deliver
to an individual retailer after it replenishes goods jointly from
the suppliers by taking into account the demand of each item
at the retailer. The warehouse that has a lot of associated
retailers can obtain significant cost savings (logistics cost and
ordering cost) by replenishing jointly. The reduction effects
will be higher ifmaterials are imported fromoverseaswith the
high procurement cost. Referring to [13], the JRD model in
this study can be described in Figure 1. Note the warehouse’s
major ordering cost is a fuzzy number.

In order to discuss the JRD problem, the following
notations are defined:

𝑛: number of items;

𝑖: index of item, 𝑖 = 1, 2, . . . , 𝑛;

𝐷
𝑖
: demand rate of item 𝑖;

𝑆: warehouse’s major ordering cost, a triangle fuzzy
number;
𝑠
𝑊

𝑖
: warehouse’s minor ordering cost of item 𝑖;
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Figure 1: The JRD model (source: Cha et al. [13]).

ℎ
𝑊

𝑖
: warehouse’s inventory holding cost of item 𝑖 per

unit time;

𝑠
𝑅

𝑖
: warehouse’s outbound transportation cost of item

𝑖;

ℎ
𝑅

𝑖
: retailer’s inventory holding cost of item 𝑖 per unit

per time;

𝑇: warehouse’s basic cycle time (decision variable);

𝑓
𝑖
: integer number that decides the outbound sched-

ule of item 𝑖 (decision variable);

𝑘
𝑖
: integer number that decides the replenishment

schedule of item 𝑖 (decision variable), it means the
replenishment cycle of item 𝑖 is 𝑘

𝑖
𝑇.

(2) Formulation with Fuzzy Major Ordering Cost. Similar to
[13], we also discuss 𝑛 different types of productions and
assume that all productions can be stored at the warehouse.
Further, we assume that item 𝑖 is stored and sold only by
retailer 𝑖. The warehouse replenishes item 𝑖 at every integer
multiple (𝑘

𝑖
) of the basic cycle time (𝑇) and delivers it to

retailer 𝑖.
Procedures to find optimal policies are very difficult.

There are no knowngood approaches for solving this problem
in time polynomial in the number of retailers (Lu and
Posner [31]). Most scholars have concentrated on developing
good heuristics for special policies. In this study, a popular
stationary policy used in [13] is also adopted that a warehouse
delivers item 𝑖 to retailer 𝑖 at the same time interval with a
fixed order quantity.

The total cost (TC) is composed of the sum of the major
ordering cost, minor ordering cost, inventory holding cost,
and outbound transportation cost of a warehouse as well as
the total of the inventory holding costs of retailers. According
to the above definitions, the total relevant fuzzy cost per unit
time to be minimized is given by

𝐶 (𝑇, 𝑘
󸀠

𝑖
𝑠, 𝑓
󸀠

𝑖
𝑠) =

𝑆 + ∑
𝑛

𝑖=1
(𝑠
𝑊

𝑖
/𝑘
𝑖
)

𝑇

+

𝑛

∑

𝑖=1

(𝑓
𝑖
− 1) 𝑘

𝑖
𝑇𝐷
𝑖
ℎ
𝑊

𝑖

2𝑓
𝑖

+

𝑛

∑

𝑖=1

𝑓
𝑖
𝑠
𝑅

𝑖

𝑘
𝑖
𝑇

+

𝑛

∑

𝑖=1

𝑘
𝑖
𝑇𝐷
𝑖
ℎ
𝑅

𝑖

2𝑓
𝑖

.

(1)

2.2. Proposed Fuzzy Multiobjective JRD (M-JRD)
Model and Analysis

2.2.1. Defuzzified Total Cost by Signed Distance

(1) Defuzzified TC.The signed distance method is simple and
easy to handle, and this is why the extension principle and
centroid method are not applied to this fuzzy JRD model. It
is difficult for the extension principle and centroid to obtain
the estimated TC in fuzzy sense. Moreover, Chiang et al. [21]
found there was not a significant difference between signed
distance method and the extension principle or centroid
method. So the signed distance method is used to obtain the
TC in fuzzy sense.

From (1), we can obtain the following equations:

𝐶 =

𝑆 + ∑
𝑛

𝑖=1
(𝑠
𝑊

𝑖
/𝑘
𝑖
)

𝑇

+

𝑛

∑

𝑖=1

(𝑓
𝑖
− 1) 𝑘

𝑖
𝑇𝐷
𝑖
ℎ
𝑊

𝑖

2𝑓
𝑖

+

𝑛

∑

𝑖=1

𝑓
𝑖
𝑠
𝑅

𝑖

𝑘
𝑖
𝑇

+

𝑛

∑

𝑖=1

𝑘
𝑖
𝑇𝐷
𝑖
ℎ
𝑅

𝑖

2𝑓
𝑖

,

𝐶 =

𝑆 + ∑
𝑛

𝑖=1
(𝑠
𝑊

𝑖
/𝑘
𝑖
)

𝑇

+

𝑛

∑

𝑖=1

(𝑓
𝑖
− 1) 𝑘

𝑖
𝑇𝐷
𝑖
ℎ
𝑊

𝑖

2𝑓
𝑖

+

𝑛

∑

𝑖=1

𝑓
𝑖
𝑠
𝑅

𝑖

𝑘
𝑖
𝑇

+

𝑛

∑

𝑖=1

𝑘
𝑖
𝑇𝐷
𝑖
ℎ
𝑅

𝑖

2𝑓
𝑖

,

𝐶 =

𝑆 + ∑
𝑛

𝑖=1
(𝑠
𝑊

𝑖
/𝑘
𝑖
)

𝑇

+

𝑛

∑

𝑖=1

(𝑓
𝑖
− 1) 𝑘

𝑖
𝑇𝐷
𝑖
ℎ
𝑊

𝑖

2𝑓
𝑖

+

𝑛

∑

𝑖=1

𝑓
𝑖
𝑠
𝑅

𝑖

𝑘
𝑖
𝑇

+

𝑛

∑

𝑖=1

𝑘
𝑖
𝑇𝐷
𝑖
ℎ
𝑅

𝑖

2𝑓
𝑖

.

(2)

From (2), the defuzzified TC to be minimized using
signed distance can be obtained as

𝑑
0
(𝐶, 0) = (

𝑆

2𝑇

+

𝑆

4𝑇

+

𝑆

4𝑇

) +

∑
𝑛

𝑖=1
(𝑠
𝑊

𝑖
/𝑘
𝑖
)

𝑇

+

𝑛

∑

𝑖=1

(𝑓
𝑖
− 1) 𝑘

𝑖
𝑇𝐷
𝑖
ℎ
𝑊

𝑖

2𝑓
𝑖

+

𝑛

∑

𝑖=1

𝑓
𝑖
𝑠
𝑅

𝑖

𝑘
𝑖
𝑇

+

𝑛

∑

𝑖=1

𝑘
𝑖
𝑇𝐷
𝑖
ℎ
𝑅

𝑖

2𝑓
𝑖

.

(3)

2.2.2. Credibility Object Based on DCP. Generally speaking,
DCP is related to maximizing some chance functions events
in an uncertain environment (Liu [28]). As a widely used
type of stochastic programming, DCP has been extended
to the area of fuzzy programming (R. Wang and L. Wang
[32]; Wang et al. [33]). In practice, the goal of JRD policy
cannot be confirmed exactly due to inevitable uncertainty.
Hence, a realistic approach for decision makers (DMs) may
be to maximize the credibility of achieving the optimization
goals. Sometimes, DMs are not concerned with minimizing
the total cost but hope that TC does not exceed the budget
level TC , especially under much cash flow pressure. In this
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situation, a natural idea is to maximize the credibility of the
event such that the total cost is less than or equal toTC . So
an objective function can be written as

max𝐶𝑟 {𝐶 (𝑇, 𝑘󸀠
𝑖
𝑠, 𝑓
󸀠

𝑖
𝑠) ≤ TC } . (4)

2.2.3. Proposed Fuzzy Multiobjective JRD (M-JRD) Model.
Due to the uncertainty of the decision-making, it is quite
natural to assume twomain goals: (1) nonrigid total cost goal;
(2) credibility goal to assure the safety of cash flow. These
goals represent different attitudes of managers for handling
the inevitable uncertainty. In reality, it is not surprising
that managers have their own opinions on the goal under
uncertainty. For the fuzzy objectives, the M-JRD model can
be described as

M̃in 𝑑
0
(𝐶, 0)

M̃ax 𝐶𝑟 {𝐶 (𝑇, 𝑘
󸀠

𝑖
𝑠, 𝑓
󸀠

𝑖
𝑠) ≤ TC }

subject to 𝑇 > 0

𝑘
𝑖
≥ 1: integer, 𝑖 = 1, . . . , 𝑛

𝑓
𝑖
≥ 1: integer, 𝑖 = 1, . . . , 𝑛,

(5)

where the wavy bar “∼” denotes the fuzziness of the two
objectives goal.

To describe the fuzzy objectives in (13), the deci-
sion-maker may subjectively define the acceptable inter-
val [𝑑

0
(𝐶, 0)

0

, 𝑑
0
(𝐶, 0)

1

] for the defuzzification objective and
[𝐶𝑟{⋅}

0
, 𝐶𝑟{⋅}

1
] for the credibility objective, where ⋅ denotes

𝐶(𝑇, 𝑘
󸀠

𝑖
𝑠, 𝑓
󸀠

𝑖
𝑠) ≤ TC .

Alternatively, the following four cases can be solved to
confirm the values of 𝑑

0
(𝐶, 0)

0, 𝑑
0
(𝐶, 0)

1, 𝐶𝑟{⋅}0, and 𝐶𝑟{⋅}1,
respectively.

(1) The first one minimizes

𝑆 + ∑
𝑛

𝑖=1
(𝑠
𝑊

𝑖
/𝑘
𝑖
)

𝑇

+

𝑛

∑

𝑖=1

(𝑓
𝑖
− 1) 𝑘

𝑖
𝑇𝐷
𝑖
ℎ
𝑊

𝑖

2𝑓
𝑖

+

𝑛

∑

𝑖=1

𝑓
𝑖
𝑠
𝑅

𝑖

𝑘
𝑖
𝑇

+

𝑛

∑

𝑖=1

𝑘
𝑖
𝑇𝐷
𝑖
ℎ
𝑅

𝑖

2𝑓
𝑖

,

(6)

and the result is set as 𝑑
0
(𝐶, 0)

0.
(2) The second one minimizes

𝑆 + ∑
𝑛

𝑖=1
(𝑠
𝑊

𝑖
/𝑘
𝑖
)

𝑇

+

𝑛

∑

𝑖=1

(𝑓
𝑖
− 1) 𝑘

𝑖
𝑇𝐷
𝑖
ℎ
𝑊

𝑖

2𝑓
𝑖

+

𝑛

∑

𝑖=1

𝑓
𝑖
𝑠
𝑅

𝑖

𝑘
𝑖
𝑇

+

𝑛

∑

𝑖=1

𝑘
𝑖
𝑇𝐷
𝑖
ℎ
𝑅

𝑖

2𝑓
𝑖

,

(7)

and the result is set as 𝑑
0
(𝐶, 0)

1.
(3) The third one maximizes 𝐶𝑟{𝐶(𝑇, 𝑘󸀠

𝑖
𝑠, 𝑓
󸀠

𝑖
𝑠) ≤

𝑑
0
(𝐶, 0)

0

}, and the result is set as 𝐶𝑟{⋅}0.

(4) The forth one maximizes 𝐶𝑟{𝐶(𝑇, 𝑘󸀠
𝑖
𝑠, 𝑓
󸀠

𝑖
𝑠) ≤

𝑑
0
(𝐶, 0)

1

}, and the result is set as 𝐶𝑟{⋅}1.

Then, the membership function is used to describe the
attainable degree of the two objectives. In this study, the
linear membership functions 𝜇

𝑑0(𝐶̃,0)
(𝑑
0
(𝐶, 0)), 𝜇

𝐶̃𝑟{⋅}
(𝐶𝑟{⋅})

are used, where

𝜇
𝑑0(𝐶̃,0)

(𝑑
0
(𝐶, 0))

=

{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{

{

1 for 𝑑
0
(𝐶, 0) < 𝑑

0
(𝐶, 0)

0

𝑑
0
(𝐶, 0)

1

− 𝑑
0
(𝐶, 0)

𝑑
0
(𝐶, 0)

1

− 𝑑
0
(𝐶, 0)

0
for 𝑑
0
(𝐶, 0)

0

≤ 𝑑
0
(𝐶, 0)

≤ 𝑑
0
(𝐶, 0)

1

0 for 𝑑
0
(𝐶, 0) > 𝑑

0
(𝐶, 0)

1

,

(8)

𝜇
𝐶̃𝑟{⋅}

(𝐶𝑟 {⋅})

=

{
{
{
{

{
{
{
{

{

0 for 𝐶𝑟 {⋅} < 𝐶𝑟{⋅}0

𝐶𝑟 {⋅} − 𝐶𝑟{⋅}
0

𝐶𝑟{⋅}
1
− 𝐶𝑟{⋅}

0
for 𝐶𝑟{⋅}0 ≤ 𝐶𝑟 {⋅} ≤ 𝐶𝑟{⋅}1

1 for 𝐶𝑟 {⋅} < 𝐶𝑟{⋅}1.

(9)

The pictorial representations of these membership func-
tions are given in Figure 2.

2.3. Mathematical Analysis Using IWFNLP Method

2.3.1. Formulation Using Traditional Fuzzy Additive Goal
Programming. In order to specify imprecise aspiration levels
of the goals under fuzzy environment, Narasimhan [34]
had firstly developed fuzzy goal programming (FGP) using
membership functions. Chen and Tsai [35] reformulated the
fuzzy additive goal programming (FAGP) by incorporating
different important and preemptive priorities of fuzzy goals.
In contrast to other methods, the FAGP allows managers to
determine a desirable achievement degree for each fuzzy goal
to reflect explicitly the relative importance of these goals.
In order to better understand the following proposed M-
JRD model using IWFNLP, we give the formulation using
traditional FAGP as follows:

Max 𝑤
1
𝜇
1
+ 𝑤
2
𝜇
2

subject to
𝑑
0
(𝐶, 0)

1

− 𝑑
0
(𝐶, 0)

𝑑
0
(𝐶, 0)

1

− 𝑑
0
(𝐶, 0)

0
= 𝜇
1

𝐶𝑟 {⋅} − 𝐶𝑟{⋅}
0

𝐶𝑟{⋅}
1
− 𝐶𝑟{⋅}

0
= 𝜇
2

𝑇 > 0

𝑘
𝑖
≥ 1: integer, 𝑖 = 1, . . . , 𝑛

𝑓
𝑖
≥ 1: integer, 𝑖 = 1, . . . , 𝑛,

(10)
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0
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𝜇
d̃0(C̃,0)

(d0(C̃, 0))

d0(C̃, 0)
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1

(a)

0

1

𝜇C̃r{·} (Cr{·})

Cr{·}0 Cr{·}1

(b)

Figure 2: Membership functions for fuzzy total cost and credibility objectives.

where𝑤
1
and𝑤

2
are weights for the defuzzification objective

and credibility objective, respectively, and𝑤
1
+𝑤
2
= 1 (𝑤

1
>

0; 𝑤
2
> 0). These weights reflect the relative importance of

each goal in the decision model.

2.3.2. Formulation Using IWFNLP Approach

(1) Rationales of Using IWFNLP. Although the FAGP can
be applied to handle the fuzzy decision problem, Wee et al.
[25] found that the ratio of the achievement levels (𝜇

1
, 𝜇
2
)

obtained by this approach cannot really reflect the ratio of
the weights. To overcome the shortages of the FAGPmethod,
a novel IWFNLP method was adopted. This method embeds
the idea of inverse weights into the Max-Min fuzzy model.
Results of a lot of experiments show IWFNLP method can
give solutions in which the ratio of the fuzzy components
achievement levels is as close to the ratio of the assigned
weights as possible. So the IWFNLP is also adapted to
handle theM-JRD.The effectiveness of this method is further
verified in Section 4.

(2) Formulation. For the weights𝑤
𝑟
(𝑟 = 1, 2, . . . , 𝑚), one-to-

one transformation from the weight 𝑤
𝑟
to the inverse weight

IW
𝑟
is defined as

IW
𝑟
=

1/𝑤
𝑟

∑
𝑚

𝑙1=1
1/𝑤
𝑙1

=

1

𝑤
𝑟
∑
𝑚

𝑙1=1
1/𝑤
𝑙1

. (11)

In this study,𝑚 = 2. So the fuzzy model is formulated as

Max 𝜆

subject to IW
1
(

𝑑
0
(𝐶, 0)

1

− 𝑑
0
(𝐶, 0)

𝑑
0
(𝐶, 0)

1

− 𝑑
0
(𝐶, 0)

0
) ≥ 𝜆

IW
2
(

𝐶𝑟 {⋅} − 𝐶𝑟{⋅}
0

𝐶𝑟{⋅}
1
− 𝐶𝑟{⋅}

0
) ≥ 𝜆

𝑇 > 0

𝑘
𝑖
≥ 1: integer, 𝑖 = 1, . . . , 𝑛

𝑓
𝑖
≥ 1: integer, 𝑖 = 1, . . . , 𝑛

𝜆 ≥ 0,

(12)

where IW
𝑟
= 1/(𝑤

𝑟
∑
2

𝑙1=1
1/𝑤
𝑙1
), 𝑟 = 1, 2.

According to the definition of inverse weight, (12) is
equivalent to

Max 𝜆

subject to
𝑑
0
(𝐶, 0)

1

− 𝑑
0
(𝐶, 0)

𝑑
0
(𝐶, 0)

1

− 𝑑
0
(𝐶, 0)

0
≥ 𝑤
1
𝜆(

2

∑

𝑙=1

1

𝑤
𝑙

)

𝐶𝑟 {⋅} − 𝐶𝑟{⋅}
0

𝐶𝑟{⋅}
1
− 𝐶𝑟{⋅}

0
≥ 𝑤
2
𝜆(

2

∑

𝑙=1

1

𝑤
𝑙

)

𝑇 > 0

𝑘
𝑖
≥ 1: integer, 𝑖 = 1, ..., 𝑛

𝑓
𝑖
≥ 1: integer, 𝑖 = 1, ..., 𝑛

𝜆 ≥ 0.

(13)

3. The Proposed Algorithm for Fuzzy M-JRD
Using FSA and DE

3.1. Outlet of the Proposed Algorithm

(1) The FSA Is Utilized to Solve the Fuzzy DCP. Usually, it is
hard to obtain credibility value with an analytical method.
Wang et al. [33] designed a FSA to calculate the credibility
value for fixed decision variables.The advantage of the FSA is
that it can calculate the credibility whether the membership
functions of the fuzzy numbers are simple or not andwhether
several fuzzy numbers are involved or not. In fact, analytical
methods usually can also be utilized for the same target.
However, it can work only when member functions are sim-
ple, for example, linear functions and triangular functions.
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Moreover, analytical methods do not work well when too
many fuzzy numbers are involved. But the FSA does not
subject to such a restraint. So the FSA is adopted in this study.

(2) DE Is Adopted to Find the Solution Quickly. When the
objective functions to be optimized are multimodal or the
search spaces are particularly irregular, intelligent algorithms
should be designed to solve the fuzzyDCPmodels.Moreover,
optimization algorithms need to be highly robust in order to
avoid getting stuck at the local optimal solution. Among these
algorithms, genetic algorithm (GA) has been proved to be
effective for the DCPmodels (Ke and Liu [36]). However, the
GA displays inherent difficulties in performing local search
for some applications because of the difficulty of the selection
of the suitable probability of crossover and mutation. So it is
important to find a novel algorithm to handle the fuzzy DCP
more effectively.

DE is one of the best evolution algorithms (EAs) for
solving nonlinear, nondifferentiable, and multimodal opti-
mization problems (Storn and Price [37]). Due to its sim-
ple structure, easy implementation, quick convergence, and
robustness, DE has been applied to a variety of fields [38–43].
Wang et al. [4] found that the basic DE is a good candidate
for the similar JRPs. But, the effectiveness of DEs for the
fuzzy JRD should be studied further because of the difficult
mathematical properties.

DE has a good performance in convergence speed, but
the faster convergence may cause the diversity of population
to descend quickly during the solution process [42]. A
good trade-off between convergence and diversity should be
designed. Zou et al. [44] developed an improved DE (IDE)
with a modified mutation factor according to the objective
function values in mutation steps and adjusted crossover
factor in terms of iteration number in crossover step.The IDE
can not only diversify candidate solutions, but also increase
the convergence rate. So the IDE is utilized in case of DE
having unsatisfactory performance.

3.2. Fuzzy Simulation Approach for SolvingDCP-BasedModel.
Usually, it is difficult to compute 𝐶𝑟{⋅} with an analytic
method. Instead, we use a FSA to obtain the value of 𝐶𝑟{⋅}
for a fixed (𝑇, 𝑘󸀠

𝑖
𝑠, 𝑓
󸀠

𝑖
𝑠). According to [33], a classic fuzzy

simulation approach can be adopted as follows.

Step 1. Set 𝑒
1
= 0, 𝑒

2
= 0, and 𝑧 = 1. Set the maximum

iteration times𝑁
1
.

Step 2. Uniformly generate a sequence 𝜃
1𝑧

from Θ such that
Pos {𝜃

1𝑧
} ≥ 𝜀 where 𝜀 is a sufficiently small number. Thus, a

real vector 𝑆(𝜃
1𝑧
) can be obtained.

Step 3. Calculate
𝑆 (𝜃
1𝑧
) + ∑
𝑛

𝑖=1
(𝑠
𝑊

𝑖
/𝑘
𝑖
)

𝑇

+

𝑛

∑

𝑖=1

(𝑓
𝑖
− 1) 𝑘

𝑖
𝑇𝐷
𝑖
ℎ
𝑊

𝑖

2𝑓
𝑖

+

𝑛

∑

𝑖=1

𝑓
𝑖
𝑠
𝑅

𝑖

𝑘
𝑖
𝑇

+

𝑛

∑

𝑖=1

𝑘
𝑖
𝑇𝐷
𝑖
ℎ
𝑅

𝑖

2𝑓
𝑖

(14)

and 𝜇 = 𝜇
𝑆
(𝑆
1𝑧
).

Step 4. If𝐶(𝑇, 𝑘󸀠
𝑖
𝑠, 𝑓
󸀠

𝑖
𝑠) ≤ TCand 𝑒

1
< 𝜇, set 𝑒

1
= 𝜇; otherwise,

if 𝐶(𝑇, 𝑘󸀠
𝑖
𝑠, 𝑓
󸀠

𝑖
𝑠) > TC and 𝑒

2
< 𝜇, set 𝑒

2
= 𝜇.

Step 5. Set 𝑧 = 𝑧 + 1 and return to Step 2 until the maximum
iteration times is reached.

Step 6. Return 𝑒 = (1/2) ∗ (𝑒
1
+ 1 − 𝑒

2
), where 𝑒

1
denotes

Pos{𝐶(𝑇, 𝑘󸀠
𝑖
𝑠, 𝑓
󸀠

𝑖
𝑠) ≤ TC } and 𝑒

2
denotes Pos{𝐶(𝑇, 𝑘󸀠

𝑖
𝑠, 𝑓
󸀠

𝑖
𝑠) >

TC } or 1-Nec{𝐶(𝑇, 𝑘󸀠
𝑖
𝑠, 𝑓
󸀠

𝑖
𝑠) ≤ TC }.

3.3. Basic DE and Improved DE (IDE). When the objective
functions to be optimized are multimodal or the search
spaces are particularly irregular, algorithms need to be highly
robust in order to avoid getting stuck at local optimal
solution. The advantage of DE is just to obtain the global
optimal solution fairly. In the following, we discuss two DEs.

3.3.1. Basic DE. Basic DE consists of three evolution opera-
tors:mutation, crossover, and selection. Inmutation operator,
DE uses the differences between randomly selected individ-
uals to generate a trial individual. Then crossover operator
is used to produce one offspring which is only accepted if it
improves on the fitness of parent individual. The process of
choosing individuals is called selection. A brief description
of the DE algorithm is as follows.

Step 1 (initialization and representation)

Initialization. The initial populationΩ is created by assigning
random values which lies inside the feasible bound of the
decision variable. Each individual is generated by

𝑥
𝑞𝑗,0
= rand [0, 1] ∗ (𝑥(𝑈)

𝑗
− 𝑥
(𝐿)

𝑗
) + 𝑥
(𝐿)

𝑗
,

𝑞 = 1, 2, . . . , 𝑁𝑃, 𝑗 = 1, 2, . . . , 𝑁
𝑑
, 𝑥
(𝐿)

𝑗
< 𝑥
𝑗
< 𝑥
(𝑈)

𝑗
,

(15)

where𝑁𝑃 is the number of individuals;𝑁
𝑑
is the dimension

of each individual; 𝑥(𝐿)
𝑗

and 𝑥(𝑈)
𝑗

represent the low and upper
bound of the 𝑗th decision parameter respectively; rand[0, 1]
is a uniformly distributed random number in range [0,1].

Representation. Now, we will demonstrate how our chromo-
somes can be decoded to a feasible solution and how each
chromosome of population is evaluated. For 𝑛 = 6, Figure 3
shows what the chromosomes is composed of.

Assuming 𝑥
𝑗,min is the lower bound of 𝑗th gene and 𝑥𝑗,max

is the upper bound of 𝑗th gene, it is obviously that 𝑥
𝑗,min

is 1 for 𝑘
𝑖
𝑠 and 𝑓

𝑖
𝑠 and 𝑥

𝑗,min is 0 for 𝑇. It is difficult to
give the maximum values for decision variables of the fuzzy
M-JRD model because 𝑘

𝑖
and 𝑓

𝑖
influence each other. We

consider that RAND algorithmmentioned in Section 3.4 can
obtain the optimum solution for the crisp JRD model. So
we set 𝑥

𝑗,max as values of three times the optimal upper
bounds obtained by the RAND JRD for this fuzzy JRDmodel
following the similar experience of Cha et al. [13]; Wang et al.
[15].
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Figure 3: Decoding chromosome.

Step 2 (mutation). For each target individual 𝑥
𝑞,𝐺

(𝑞 =

1, 2, . . . , 𝑁𝑃) of generation 𝐺, a mutant individual V
𝑞,𝐺+1

is
generated according to

V
𝑞,𝐺+1

= 𝑥
𝑟1 ,𝐺
+ 𝐹 ∗ (𝑥

𝑟2 ,𝐺
− 𝑥
𝑟3 ,𝐺
) , 𝑟

1
̸= 𝑟
2
̸= 𝑟
3

(16)

with randomly chosen integer indexes 𝑟
1
, 𝑟
2
, 𝑟
3

∈

{1, 2, . . . , 𝑁𝑃}. Note that indexes have to be different from
each other and from the running index. 𝐹 is called mutation
factor between [0, 1] which controls the amplification of the
differential variation (𝑥

𝑟2 ,𝐺
− 𝑥
𝑟3 ,𝐺
).

Step 3 (crossover). The basic DE crossover operator imple-
ments a discrete recombination of the trial individual V

𝑞,𝐺+1

and the parent individual 𝑥
𝑞,𝐺

to produce offspring 𝑢
𝑞,𝐺+1

.
The crossover is implemented as follows:

𝑢
𝑞𝑗,𝐺+1

= {

V
𝑞𝑗,𝐺+1

if rand (𝑗) ≤ 𝐶𝑅 or 𝑗 = 𝑟𝑛𝑏 (𝑞)
𝑥
𝑞𝑗,𝐺

otherwise

𝑗 = 1, 2, . . . , 𝑁
𝑑
,

(17)

where 𝑥
𝑞𝑗,𝐺

refers to the 𝑗th element of the individual
𝑥
𝑞,𝐺

. 𝑢
𝑞𝑗,𝐺+1

and V
𝑞𝑗,𝐺+1

are similarly defined. rand(𝑗) is
the 𝑗th evaluation of a uniform random number generator
between [0,1]. 𝑟𝑛𝑏(𝑞) is a randomly chosen index from
1, 2, . . . , 𝑁𝑑 which ensures that 𝑢

𝑞,𝐺+1
gets at least one

parameter from V
𝑞,𝐺+1

. Otherwise, no new parent individual
would be produced and the population would not alter. CR is
the crossover or recombination rate between [0, 1] which has
to be determined by the user.

Step 4 (selection). The selection in DE is deterministic and
simple. The evaluation function of an offspring is one-to-one
competition in the DE. It means the resulting trial individual
will only replace the original if it has a lower objective
function value. Otherwise, the parent will remain in the next
generation

𝑥
𝑞,𝐺+1

=

{
{

{
{

{

𝑢
𝑞,𝐺+1

, if 𝜆 (𝑢
𝑞,𝐺+1

) ≥ 𝜆 (𝑥
𝑞,𝐺
)

𝑥
𝑞,𝐺
, if 𝜆 (𝑢

𝑞,𝐺+1
) < 𝜆 (𝑥

𝑞,𝐺
)

(18)

if 𝜆(𝑢
𝑞,𝐺+1

) = 𝜆(𝑥
𝑞,𝐺
) = 0, and then

𝑥
𝑞,𝐺+1

=

{
{
{
{

{
{
{
{

{

𝑢
𝑞,𝐺+1

, if 𝑑
0
(𝐶 (𝑢

𝑞,𝐺+1
, 0))

< 𝑑
0
(𝐶 (𝑥

𝑞,𝐺
, 0))

𝑥
𝑞,𝐺
, if 𝑑

0
(𝐶 (𝑢

𝑞,𝐺+1
, 0))

≥ 𝑑
0
(𝐶 (𝑥

𝑞,𝐺
, 0)) ,

(19)

where 𝜆 is obtained by (13).This is the same for all variants of
the DE. Although the selection pressure is only one, the best

individual of the next generation will be at least as fit as the
best individual of the current generation.

Step 5 (stop and output results). When stopping criterion is
met, output the optimal results; otherwise, repeat Step 2–Step
4. In this study, stopping criterion is met when maximum
number of iteration (𝐺max) is reached.

3.3.2.The IDE. The key difference between the IDE and basic
DE is in the way of adjusting scale mutation factor 𝐹 and
crossover rate CR. The method modifies mutation factor 𝐹
according to the objective function values of all candidate
solutions in mutation step and adjusts crossover rate CR in
terms of iteration number in crossover step. Both modified
operators can not only diversify candidate solutions, but also
increase the convergence of algorithm. In short, the IDE and
DE are different in two aspects.

(1) For mutation 𝐹 of DE, it is set to a fixed value for
all candidate solutions over all iterations. That is to say, all
candidate solutions have the same magnification factor of
the differential variation 𝑥

𝑟2 ,𝐺
− 𝑥
𝑟3 ,𝐺

. Here, if the objective
function is minimizing the total cost, an adaptive scale factor
𝐹
𝑞
for the 𝑞th candidate solution is stated as follows:

𝐹
𝑞
=

{
{

{
{

{

𝑓
𝑞
− 𝑓min

𝑓aver − 𝑓min
× rand

𝑘
if
𝑓
𝑞
− 𝑓min

𝑓aver − 𝑓min
< 2

2 × rand
𝑞

otherwise.
(20)

If the objective function is maximizing the credibility, an
adaptive scale factor𝐹

𝑞
for the 𝑞th candidate solution is stated

as follows:

𝐹
𝑞
=

{
{

{
{

{

𝑓max − 𝑓𝑞

𝑓max − 𝑓aver
× rand

𝑘
if
𝑓max − 𝑓𝑞

𝑓max − 𝑓aver
< 2

2 × rand
𝑞

otherwise,
(21)

where rand
𝑞
belongs to a uniform distribution in the ranges

[0, 1]; 𝑓
𝑞
represents the objective value of the 𝑞th solution;

𝑓min and 𝑓max represent the minimal and maximal objective
function values of all candidate solutions, respectively; 𝑓aver
represents the average objective function value of all solu-
tions.

(2) For crossover rate CR ofDE, it is set to a fixed value for
any dimension of any candidate solution over all iterations.
In other words, any dimension of any candidate solution has
the same crossover rate, which does not change with the
evolution process. Here, a dynamic crossover CR

𝐺
is adopted

for all candidate solutions at iteration 𝐺, and it is stated at
follows:

CR
𝐺
= 𝑎 × exp (𝑏 × 𝐺2) ,

𝑏 =

1

𝐺
2

max − 1
ln(

CRmax
CRmin

) , 𝑎 = CRmin exp (−𝑏) ,
(22)
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where𝐺 and𝐺max are current iteration number andmaximal
iteration number, respectively; CRmin and CRmax represent
minimal crossover rate and maximal crossover, respectively.

3.4. Modified Algorithm for the Defuzzified JRD Model

(1) Optimal T. For a given set of 𝑘
𝑖
𝑠 and 𝑓

𝑖
𝑠, the optimal basic

cycle time 𝑇 can be easily obtained as shown in (23) from the
first order derivative of the defuzzified TC function since the
TC function is convex in 𝑇:

𝑇
∗
=
√

2 (((𝑆 + 2𝑆 + 𝑆) /4) + ∑
𝑛

𝑖=1
((𝑠
𝑊

𝑖
+ 𝑓
𝑖
𝑠
𝑅

𝑖
) /𝑘
𝑖
))

∑
𝑛

𝑖=1
𝑘
𝑖
𝐷
𝑖
(ℎ
𝑊

𝑖
+ ((ℎ
𝑅

𝑖
− ℎ
𝑊

𝑖
) /𝑓
𝑖
))

.

(23)

(2) Optimal 𝑘
𝑖
and 𝑓
𝑖
.According to experiences of [13–15, 17],

for a given set of 𝑓
𝑖
𝑠 and 𝑇, the optimality condition of 𝑘

𝑖
can

be derived from the following two conditions:

𝑑 (𝐶, 0, 𝑘
𝑖
) ≤ 𝑑 (𝐶, 0, 𝑘

𝑖
+ 1) ,

𝑑 (𝐶, 0, 𝑘
𝑖
) ≤ (𝐶, 0, 𝑘

𝑖
− 1) .

(24)

Therefore, the optimality condition of 𝑘
𝑖
is defined as

follows:

𝑘
𝑖
(𝑘
𝑖
− 1) ≤

2 (𝑠
𝑊

𝑖
+ 𝑓
𝑖
𝑠
𝑅

𝑖
)

𝑇
2
𝐷
𝑖
(ℎ
𝑊

𝑖
+ ((ℎ
𝑅

𝑖
− ℎ
𝑊

𝑖
) /𝑓
𝑖
))

≤ 𝑘
𝑖
(𝑘
𝑖
+ 1) .

(25)

Similarly, the optimality condition of 𝑓
𝑖
is defined as

follows:

𝑓
𝑖
(𝑓
𝑖
− 1) ≤

𝑘
2

𝑖
𝑇
2
𝐷
𝑖
(ℎ
𝑅

𝑖
− ℎ
𝑊

𝑖
)

2𝑠
𝑅

𝑖

≤ 𝑓
𝑖
(𝑓
𝑖
+ 1) . (26)

(3) RAND JRD:AModifiedAlgorithm for theDefuzzified JRD.
Cha et al. [13] proposed a modified RAND algorithm for the
crisp JRDmodel to minimize the TC. Making corresponding
changes in 𝑇max, an algorithm named RAND JRD can be
used to find the optimal solution. The procedures are as
follows:

Step 1. Compute 𝑇max =
√2(((𝑆 + 2𝑆 + 𝑆)/4) + ∑

𝑛

𝑖=1
𝑠
𝑖
)/∑
𝑛

𝑖=1
𝐷
𝑖
ℎ
𝑖

and 𝑇min =
min√2𝑠

𝑖
/𝐷
𝑖
ℎ
𝑖
for each 𝑖.

Step 2.Divide the range [𝑇max, 𝑇min] into𝑚1 different equally
spaced values of 𝑇(𝑇

1
, . . . , 𝑇

𝑗 1
, . . . , 𝑇

𝑚1
). The value of 𝑚

1
is

decided by the decision-maker. Set 𝑗 1 = 0.

Step 3. Set 𝑗 1 = 𝑗 1 + 1 and 𝑟 = 0. Put 𝑇
𝑗 1
(𝑟) = 𝑇

𝑗 1
and

(𝑓
1
(𝑟), 𝑓
2
(𝑟), . . . , 𝑓

𝑛
(𝑟)) = 1.

Step 4. Set 𝑟 = 𝑟 + 1.

Step 5. For a given value of 𝑇
𝑗 1
(𝑟 − 1) and a given set of

𝑓
𝑗 1
(𝑟 − 1)𝑠, find the optimal values of 𝑘

𝑖
using (25). Put

𝑘
𝑖
(𝑟) = 𝑘

𝑖
.

Step 6. For a given value of𝑇
𝑗 1
(𝑟−1) and a given set of 𝑘

𝑖
(𝑟)𝑠,

find the optimal values of 𝑓
𝑖
using (26). Put 𝑓

𝑖
(𝑟) = 𝑓

𝑖
.

Step 7. For a given set of 𝑘
𝑖
(𝑟)s and 𝑓

𝑖
(𝑟)s, find the optimal

value of 𝑇 using (23). Put 𝑇
𝑗 1
(𝑟) = 𝑇

𝑗 1
.

Step 8. If 𝑇
𝑗 1
(𝑟) ̸= 𝑇

𝑗 1
(𝑟 − 1), go to Step 4. Otherwise, put

𝑇
∗

𝑗 1
= 𝑇
𝑗 1
(𝑟), 𝑘∗
𝑖𝑗 1
= 𝑘
𝑖
(𝑟), and𝑓∗

𝑖𝑗 1
= 𝑓
𝑖
(𝑟). Compute TC

𝑗 1

for this (𝑇∗
𝑗 1
, 𝑘
∗

𝑖𝑗 1
𝑠, 𝑓
∗

𝑖𝑗 1
𝑠).

Step 9. If 𝑗 1 ̸= 𝑚
1
, go to Step 3.

Otherwise, stop and select (𝑇∗
𝑗 1
, 𝑘
∗

𝑖𝑗 1
𝑠, 𝑓
∗

𝑖𝑗 1
𝑠) with the

minimum 𝑑
0
(𝐶, 0).

3.5. Flowchart of Proposed Algorithm for Fuzzy M-JRDModel.
Main flowchart of the proposed algorithm is shown in
Figure 4. In the adjustment, if 𝑥

𝑞𝑗,𝐺
> 𝑥
𝑗,max or 𝑥𝑞𝑗,𝐺 < 𝑥𝑗,min,

then𝑥
𝑞𝑗,𝐺
= 𝑥
𝑗,min+rand(1)∗(𝑥𝑗,max−𝑥𝑗,min), where rand(1) ∈

(0, 1).

4. Numerical Examples

4.1. Experiment 1. Basic Experiment 1 is given to compare
the DE and IDE. According to the recommendation of the
inventor of DE [37] and the similar experiences of [4, 15, 17],
the factors setting for DE used in all experiments are listed as
follows: the population𝑁𝑃 = 50, themutation factor𝐹 = 1.6,
the crossover factor CR = 0.7, and the maximum generation
is set to 500. Factors of IDE are set as follows: CRmax =
0.9, CRmin = 0.4. The data and results of this experiment are
shown in Tables 1 and 2. Convergent curves of DE and IDE
are given in Figure 5.

We can calculate 𝑑
0
(𝐶, 0)

0

= 4694.1, 𝑑
0
(𝐶, 0)

1

= 5110.1,
𝐶𝑟{⋅}
0
= 0, and 𝐶𝑟{⋅}1 = 1.

Then, DE and IDE are performed 50 times and the results
are reported in Table 3.

From Table 2, the radios of the achievement levels gained
by DE and IDE can be computed as follows:

𝜇
1
=

𝑑
0
(𝐶, 0)

1

− 𝑑
0
(𝐶, 0)

𝑑
0
(𝐶, 0)

1

− 𝑑
0
(𝐶, 0)

0
=

5110.1 − 4831.7

5110.1 − 4694.1

= 0.6685,

𝜇
2
=

𝐶𝑟 {⋅} − 𝐶𝑟{⋅}
0

𝐶𝑟{⋅}
1
− 𝐶𝑟{⋅}

0
=

0.8417 − 0

1 − 0

= 0.8417;

𝜇
1

𝜇
2

=

0.6685

0.8417

= 0.794 ≈

𝑤
1

𝑤
2

=

0.44

0.56

= 0.785.

(27)

Results in Tables 2 and 3 show (1) the ratios of the
achievement levels and the weights for the fuzzy objectives
are nearly equivalent using IWFNLP and DE/IDE; (2) IDE
outperforms DE with a rapid convergence speed.
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Return 𝜆

Yes

No

No

Yes

Start

Selection: produce an offspring;
both basic DE and IDE use (18-19)

End

Start

End

Calculate 
total cost
by (3) 

Initialization: population NP, parameters
F, CR, G = 1, individual
(T, k󳰀i s, f

󳰀
i s)0,G, Gmax

Mutation: to produce �i,G+1,

basic DE uses (16), andF

has a fixed value, and IDE uses (20)

or  (21) to produce Fq

Adjustment: it is possible some of

xjk,G exceeding the range of value

[xj,min , xj,max ]

Crossover: to produce uq,G+1,

basic DE adopts (17), and IDE

applies (22) to create CRG

Evaluation: calculate 𝜆 that

needs call subprogram

Is G > Gmax?

Given (T, k󳰀i s, f
󳰀
i s)

(1)e1 = 0, e2 = 0 and z=1,

simulation times N1

Step (2) Generate 𝜃1z ,

calculate 𝜇S̃(S(𝜃1z))

Is z > N1?

Calculate 𝜆 by (13)

Step (3) Calculate 𝜃,

if

C(S(𝜃1z)) ≤ TC & e1 < 𝜇S̃(S(𝜃1z)),

then e1 = 𝜇S̃(S(𝜃1z));

else if

C(S(𝜃1z)) > TC & e2 < 𝜇S̃(S(𝜃1z)),

then e2 = 𝜇S̃(S(𝜃1z))

(5) Cr{C < TC } = (e1 + 1-e2)/2

Step 

Step 

Figure 4: Main flowchart of the proposed algorithm.

4.2. Experiment 2withDifferentMajorOrderingCost. Khouja
and Goyal [9] indicated that the value of major ordering cost
affected the performance of algorithms. So three examples
were designed to test the IDE. The data are same for 𝐷

𝑖
, 𝑠𝑊
𝑖
,

ℎ
𝑊

𝑖
, ℎ𝑅
𝑖
, ℎ𝑅
𝑖
, 𝑤
1
, and 𝑤

2
as shown in Table 2. But the values of

𝑆 are different as shown in Table 4. The results are listed in
Table 5. Figure 6 shows the convergent processes.

From Table 5 and Figure 6, we can conclude that the IDE
can also find satisfactory solutions with different values of
major ordering cost. The ratios of the achievement levels and
the weights for the fuzzy objectives are still nearly equivalent
using IWFNLP method and IDE.

Table 1: Data for Experiment 1.

Item 𝑖 1 2 3 4 5 6
𝐷
𝑖

10,000 5,000 3,000 1,000 600 200
𝑠
𝑊

𝑖
45 46 47 44 45 47

ℎ
𝑊

𝑖
1 1 1 1 1 1

𝑠
𝑅

𝑖
5 5 5 5 5 5

ℎ
𝑅

𝑖
1.5 1.5 1.5 1.5 1.5 1.5

𝑆 (175, 185, 255) TC 5000
𝑤
1

0.44 𝑤
2

0.56
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Figure 5: Convergent curve of DE and IDE.

Table 2: The results for Experiment 1.

Algorithm 𝑇 𝑘
𝑖

𝑓
𝑖

𝜆 𝑑(𝐶, 0) 𝐶𝑟{𝐶(𝑇, 𝑘
󸀠

𝑖
𝑠, 𝑓
󸀠

𝑖
𝑠) ≤ TC}

DE 0.195 (1, 1, 1, 2, 2, 4) (4, 3, 2, 3, 2, 2) 0.341 4831.7 0.8417
IDE 0.195 (1, 1, 1, 2, 2, 4) (4, 3, 2, 3, 2, 2) 0.341 4831.7 0.8417

Table 3: Comparison of DE and IDE.

Algorithm Convergence times Average iteration
times

Maximum iteration
times

Minimum iteration
times Average 𝜆 Minimum 𝜆

DE 50 234.88 283 180 0.3704 0.3704
IDE 50 85.66 104 68 0.3704 0.3704

Table 4: Data for Experiments 2a, 2b, and 2c.

Experiment 2a 𝑆 (4, 10, 16) TC 3639
Experiment 2b 𝑆 (38, 45, 52) TC 3912
Experiment 2c 𝑆 (1000, 1060, 1280) TC 8267

5. Conclusions and Future Research

This paper is an interdisciplinary research of the fuzzy
inventory model and intelligent optimization algorithm. Due
to the inevitable uncertainty, it is quite natural for decision-
maker to assume two main goals: (1) nonrigid total cost
goal; (2) credibility goal to assure the safety of cash flow.
We developed a practical JRD model under uncertainty and
provided an effective algorithm for this model. The main
contributions are as follows.

(1) Actually, there are lots of papers discussed inventory
and risk management issues [45]. However, to our best
knowledge, the JRD model under fuzzy costs that simultane-
ously minimizes the total cost and maximizes the credibility
to assure the safety of cash flow is nonexistence. Our work
provides a useful approach for the joint replenishment and
delivery scheduling under uncertainty.

(2) The formulation of the proposed M-JRD model is
handled by the IWFNLP which can make the ratios of the
achievement levels of objectives and the weights for the
fuzzy objectives are nearly equivalent. The IWFNLP method
gives the solution that satisfies the decision-maker’s desirable
achievement level of the total cost objective and credibility
objective. It is an effective decision tool to ensure a decision-
maker’s expectation is achieved.

(3) Hybrid intelligent algorithms are designed to solve the
proposed JRD handled by the IWFNLP method using the
FSA and DE/IDE. Results of numerical examples show the
IDE can find satisfactory solutions faster than DE.

Other intelligent algorithms, such as genetic-simulated
annealing algorithm [46] and quantum evolution algorithm
[47], also show good performances to solve complex opti-
mization problems. In the future, we will design hybrid
algorithms by taking the advantages of the above algorithms
to handle more complex fuzzy JRD problems. Moreover,
another future research direction is to optimize the fuzzy
JRD problem under different operational risks because of the
inevitable uncertainty under supply chain environment for
enterprises in the network economic era [48–50].
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Table 5: Results for Experiment 2 using IDE.

Experiment number 𝑇 𝑘
𝑖

𝑓
𝑖

𝜆 𝑑(𝐶, 0) 𝐶𝑟{⋅} 𝜇1/𝜇2 w1/w2

2a 0.1066 (1, 1, 2, 3, 4, 6) (2, 2, 3, 2, 2, 2) 0.2745 3625.1 0.6240 0.7854 0.7857
2b 0.1410 (1, 1, 1, 2, 3, 5) (3, 2, 2, 2, 2, 2) 0.2781 3899.0 0.6320 0.7861 0.7857
2c 0.3683 (1, 1, 1, 1, 1, 2) (8, 6, 5, 3, 2, 2) 0.3534 8013.0 0.8033 0.7855 0.7857
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Figure 6: Convergent curve of IDE for Experiment 2.
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