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The parameter estimation of Chirp signal model in additive noises when all the noises are independently and identically distributed
(i.i.d.) has been considered. A novel iterative algorithm is proposed to estimate the frequency rate of the considered model by
constructing the iterative statistics with one-lag and multilag differential signals. It is observed that the estimator for the iterative
algorithm is consistent and works quite well in terms of biases and mean squared errors. Moreover, the convergence rate of the
estimator is improved from𝑂𝑝(𝑁

−1
) of the initial estimator to𝑂𝑝(𝑁

−3/2
) for one-lag differential signal condition and from𝑂𝑝(𝑁

−2
)

of the initial estimator to 𝑂𝑝(𝑁
−5/2

) for multilag differential signal condition, respectively, by only three iterations. The range of
the lag is discussed and the optimal lag is obtained for the multilag differential signal condition when the lag is of order 𝑁. The
estimator of frequency rate with optimal lag is very close to Cramer-Rao lower bound (CRLB) as well as the asymptotic variance of
least-squares estimator (LSE) at moderate signal-to-noise ratio (SNR). Finally, simulation experiments are performed to verify the
effectiveness of the algorithm.

1. Introduction

Weconsider the followingmodel of single Chirp signalmodel
with additive noise:

𝑦 (𝑡) = 𝐴𝑒
𝑖(𝜔
1
𝑡+𝜔
2
𝑡
2
+𝜑)

+ 𝜀 (𝑡) , 𝑡 = 1, 2, . . . , 𝑁, (1)

where 𝑖 = √−1 and 𝜔1 and 𝜔2 are unknown initial frequency
and frequency rate which both are lying strictly between 0

and 2𝜋. Additive noise {𝜀(𝑡)} is a sequence of i.i.d. complex
random variables with zero mean and finite variance 𝜎

2

0
/2

for both the real and the imaginary parts which are assumed
to be independent. It is known that the frequency rate is
a quadratic parameter and the other parameters can be
estimated by transforming the model to a harmonic model
once the frequency rate is estimated accurately. In this paper
wemainly focus on the estimation of frequency rate𝜔2, given
a sample of size𝑁, namely, 𝑦(1), 𝑦(2), . . . , 𝑦(𝑁).

Chirp signal, also known as LFM (linear frequency
modulation) signal, is a kind of nonstationary signal which
is frequently encountered in signal processing and commu-
nication applications such as radar [1], sonar [2], and wireless
communication [3]. For example, in optical communications,
coding or instability of the laser diode results in Chirp
phenomenon [4]. In most synthetic aperture radars (SARs),
the Doppler signal of a discrete backscattering point is
appropriately modeled by a Chirp signal [5]. The first-order
coefficient is termed the Doppler centroid frequency, and
the second-order coefficient is the Doppler frequency rate.
Furthermore, the frequency rates in the radar return signals
include the important information about the moving targets
such as the velocities and the location parameters of the
moving targets in SAR imaging. Therefore, the estimation of
the frequency rate is critically important in these applications.
The modeling and parameter estimation for nonstationary
signal tend to be a difficult problem [6]. Many research
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efforts have been devoted to estimate the frequency rates.
For a long time, the maximum likelihood estimation (MLE)
has been the statistical optimal solution to the parameter
estimation of LFM signal [7]. The LSE is also statistical
efficient and the corresponding asymptotic variance attains
the CRLB in condition of stationary noise [8, 9]. The LSE
is known to be identical with MLE at i.i.d. Gaussian noise
condition. However, MLE and LSE involve the optimization
of a nonlinear cost function that is computationally expensive
and suffer from local minima. The discrete Chirp-Fourier
transform (DCFT), also known as the discrete form of MLE,
can work well when the sample size is a prime number and
the frequency rate is of Fourier frequency where a Fourier
frequency has the form of 2𝜋𝑘/𝑁 (𝑘 ∈ 𝑁, 1 ≤ 𝑘 ≤

𝑁). However, the DCFT fails when the sample size is of
composite number [10].This problem ismade up in [11, 12] via
introducing a modified DCFT for the parameters estimation
ofChirp signal by increasing the sample rate to𝑂(1/𝑁)where
𝑁 is the sample size. Themodified DCFT in [11, 12] is further
used for constructing the importance function of Population
Monte Carlo (PMC) to estimate the parameters of the Chirp
signal. The mean square error (MSE) of PMC reaches the
CRLB at about 0 dB; however, multiple important functions
are needed to be constructed for selection and resampling
is needed at each iteration and therefore is computationally
complicated [13]. The time-frequency distributions, such as
the Wigner-Ville distribution (WVD) and its related bilinear
class [14], are efficient to reveal the instantaneous frequency
(IF) over the time-frequency plane. Time-frequency trans-
form techniques such as Wigner-Hough transformation [15],
Radon-Wigner transformation [15], and fractional Fourier
transformation [16] were then used to extract the objective
function to be optimized with respect to the initial frequency
and frequency rate. However, these techniques also involve
complex computation and need 1D or 2D searching among
the parameter space. Suboptimal techniques are therefore
desired for practical implementation. Djuric and Kay [17]
used a phase unwrapping algorithm followed by a least-
square fitting for parameter rate estimation of monocompo-
nent LFM signal. The discrete polynomial transform (DPT)
was proposed to reduce the 2D maximization problem in the
MLE to a 1D problem [18, 19]. Both the unwrapping method
and DPT can achieve CRLB at high SNR. The cubic phase
function (CPF) method was proposed in [20] to estimate the
parameters of quadratic LFM signal and the extension of the
CPF which are product cubic phase function (PCPF) and
integrated cubic phase function (ICPF) that were proposed
in [21, 22] to estimate the frequency rate of the LFM signal.
Then, the demodulation was utilized to estimate the other
parameters. It is observed that both PCPF and ICPF have
lower threshold than CPF and can deal withmulticomponent
Chirp signals. The more general extension of CPF, that is,
high-order phase function (HPF) [23–25], was put forward
for higher order polynomial phase signal. It is observed
that most of the suboptimal methods transform the 2D
optimization to 1D optimization when the frequency rate
is of the only interest. The other parameters are estimated
sequentially by demodulation of the frequency rate. However,
a bottleneck associated with all the techniques based on

sequential estimation of phase parameters is that the esti-
mation variance increases successively for lower order phase
parameters. This progression of the estimation error from
higher order phase parameter to lower order phase parameter
is termed as the error propagation effect which has been
acknowledged by many authors. It is necessary to improve
the precision of the higher order phase parameters as high as
possible in a less computation load manner. It is known that
the best convergence rates for the amplitude, the first-order
phase coefficient (initial frequency), and the second-order
phase coefficient (frequency rate) are 𝑂𝑝(𝑁

−1/2
), 𝑂𝑝(𝑁

−3/2
),

and𝑂𝑝(𝑁
−5/2

), respectively [8], which is also the convergence
rate of MLE and LSE.

Recently, Nandi andKundu proposed an efficient iterative
algorithm for parameters estimation of harmonic signal.
The convergence rate for parameters of frequencies attains
𝑂𝑝(𝑁

−3/2
), which is the best convergence rate for the linear

parameter of the phase and also the convergence rate of
LSE [26]. Bian et al. generalized the iterative algorithm
for parameters estimation of harmonic in zero-mean mul-
tiplicative noise [27]. The algorithm proposed in [26, 27]
needs only three steps to converge from the periodogram
maximizers of the observations. Motivated by [26, 27], in
this paper, a novel iterative algorithm with one-lag and
multilag differential signal is proposed for the frequency
rate estimation of Chirp signal. It is observed for the one-
lag differential signal condition that if the initial estimator
is accurate up to the order 𝑂𝑝(𝑁

−1
) (here 𝑂𝑝(𝑁

−𝛿
) means

𝑂𝑝(𝑁
−𝛿
)𝑁
𝛿 is bounded in probability), then the three-step

iterative procedure will improve the convergence rate of the
frequency rate to 𝑂𝑝(𝑁

−3/2
). For the multilag differential

signal condition, it is also observed that if the initial estimator
is accurate up to the order 𝑂𝑝(𝑁

−2
), then the three-step

iterative procedure will improve the convergence rate of the
estimator of frequency rate to 𝑂𝑝(𝑁

−5/2
) which is the same

convergence rate as that of LSE. The initial estimators for
the two iterative procedures in Sections 3 and 4 are based
on discrete Fourier transform (DFT) of the differential signal
and the initial estimates are taken as Fourier frequencies.
It is known that the estimator obtained by taking Fourier
frequencies does not generally provide estimator up to the
orders of 𝑂𝑝(𝑁

−1
) and 𝑂𝑝(𝑁

−2
) for the two procedures,

respectively [28]. To overcome this problem, we use the
varying sample size technique in [26, 27], that is, at the first
step we use a fraction of it and at the last stepwe use the whole
data set by gradually increasing the effective sample sizes.

The rest of the paper is organized as follows. In Section 2,
we present the properties of LSE for ready reference. The
iterative procedure for one-lag differential signal condition
is presented in Section 3. In Section 4, the iterative proce-
dure for multilag differential signal condition is proposed
and discussed. The computational cost of the two iterative
procedures is provided in Section 5. Numerical experiments
for the two iterative procedures are performed in Section 6
and finally we conclude the paper in Section 7. All the proofs
are provided in the appendix.
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2. Existing Results

In this sectionwewill present briefly the properties of the LSE
for ready reference. The LSE of the unknown parameters of
Model (1) can be obtained by minimizing 𝑅𝑁(𝐴, 𝜑, 𝜔1, 𝜔2) as
follows:

𝑅𝑁 (𝐴, 𝜑, 𝜔1, 𝜔2)

=

𝑁

∑

𝑡=1

󵄨󵄨󵄨󵄨󵄨󵄨
𝑦 (𝑡) − 𝐴𝑒

𝑖(𝜔
1
𝑡+𝜔
2
𝑡
2
+𝜑)

󵄨󵄨󵄨󵄨󵄨󵄨

2

= [Y − X (𝜑, 𝜔1, 𝜔2) 𝐴]
𝐻
[Y − X (𝜑, 𝜔1, 𝜔2) 𝐴] ,

(2)

where Y = (𝑦(1), 𝑦(2), . . . , 𝑦(𝑁))
𝑇 and X(𝜑, 𝜔1, 𝜔2) is a

column vector with length 𝑁 and the 𝑡th element of it being
𝑒
𝑖(𝜔
1
𝑡+𝜔
2
𝑡
2
+𝜑). Here “𝑇” and “𝐻” denote the operations of

transposition and conjugate transposition, respectively. It is
noted that if (𝜑, 𝜔1, 𝜔2) is known then the LSE of 𝐴 can be
obtained as 𝐴(𝜔1, 𝜔2, 𝜑):

𝐴 (𝜔1, 𝜔2, 𝜑)

= [X(𝜔1, 𝜔2, 𝜑)
𝐻X (𝜔1, 𝜔2, 𝜑)]

−1

X(𝜔1, 𝜔2, 𝜑)
𝐻Y.

(3)

Therefore, the LSE of 𝐴 can be obtained first by minimizing
𝑄𝑁(𝜔1, 𝜔2, 𝜑) with respect to (𝜔1, 𝜔2, 𝜑) as follows:

𝑄𝑁 (𝜔1, 𝜔2, 𝜑)

= 𝑅𝑁 (𝐴 (𝜔1, 𝜔2, 𝜑) , 𝜔1, 𝜔2, 𝜑) = Y𝐻 [I − PX]Y,
(4)

where PX = X(𝜔1, 𝜔2, 𝜑) [X(𝜔1, 𝜔2, 𝜑)
𝐻X(𝜔1, 𝜔2, 𝜑)]

−1X
(𝜔1, 𝜔2, 𝜑)

𝐻 is the projection matrix on the space spanned
by X(𝜔1, 𝜔2, 𝜑) and 𝑄𝑁(𝜔1, 𝜔2, 𝜑) is obtained by substituting
𝐴 in (2) with 𝐴 in (3). Once the LSE of (𝜔1, 𝜔2, 𝜑), say,
(𝜔̂1, 𝜔̂2, 𝜑), is obtained, the LSE of 𝐴 can be easily obtained
as 𝐴(𝜔̂1, 𝜔̂2, 𝜑), respectively; see [29]. The joint asymptotic
distribution of the parameters can be inferred similarly as in
[9, 29] as follows:

(𝑁
1/2

(𝜑 − 𝜑) ,𝑁
3/2

(𝜔̂1 − 𝜔1) ,𝑁
5/2

(𝜔̂2 − 𝜔2))

L
󳨀󳨀󳨀→ N3 (0, 2𝜎

2

0
Σ) ,

(5)

where “ L
󳨀→” means converging in distribution and

N3(0, 2𝜎20Σ) denotes the 3-variate normal distribution
with mean vector zero and dispersion matrix 2𝜎

2

0
Σ. It can

be seen [9] that the asymptotic variance of 𝜔2 is 90𝜎
4
/𝑁
5
𝐴
4

which is the same as the CRLB [20, 30].

3. Iterative Procedure of One-Lag

3.1. Initial Estimator. The initial estimator is obtained by the
DFT of the differential signal with one-lag as follows:

𝐼1 (𝜔) =
1

𝑁

𝑁

∑

𝑡=1

𝑦 (𝑡 + 1) 𝑦 (𝑡) 𝑒
−𝑖𝜔𝑡

, (6)

𝜔2 =
1

2
argmax
𝜔∈(0,𝜋)

󵄨󵄨󵄨󵄨𝐼1 (𝜔)
󵄨󵄨󵄨󵄨 , (7)

where “𝑦(𝑡)” in (6) denotes the complex conjugation of 𝑦(𝑡).
𝜔2 can be obtained by maximizing |𝐼1(𝜔)| among interval
(0, 𝜋) over Fourier frequencies. The sample sizes are both
taken as 𝑁 + 1 at the stage of initial estimation and the stage
of iterative estimation.

It is noted that the scope of the estimation for 𝜔2 is (0, 𝜋),
which is one-half of the whole interval of (0, 2𝜋). It is because
𝐼1(𝜔) in (6) is actually the DFT of a harmonic signal with
frequency 2𝜔2 and noise mixed with signal parameters. Since
the DFT estimators in (7) are obtained by searching among
the parameter interval by 𝑁 times, the initial estimator of
frequency rate has convergence rate of 𝑂𝑝(𝑁

−1
).

3.2. Iterative Procedure. In this section, we will discuss the
iterative procedure. Given a consistent estimator 𝜔̃2 of model
(1), we compute 𝜔̂2 as follows:

𝜔̂2 = 𝜔̃2 +
6

𝑁2
Im [

𝐴𝑁

𝐵𝑁

] , (8)

where

𝐴𝑁 =

𝑁

∑

𝑡=1

𝑦 (𝑡 + 1) 𝑦 (𝑡) (𝑡 −
𝑁

2
) 𝑒
−2𝑖𝜔̃
2
𝑡
,

𝐵𝑁 =

𝑁

∑

𝑡=1

𝑦 (𝑡 + 1) 𝑦 (𝑡) 𝑒
−2𝑖𝜔̃
2
𝑡
.

(9)

And Im[⋅] denotes the imaginary part of a complex number.
We can start with any consistent estimator 𝜔̃2 and improve
it step by step using (8). The motivation of the algorithm is
based on the following theorem.

Theorem 1. If 𝜔̃2 − 𝜔2 = 𝑂𝑝(𝑁
−1−𝛿

), where 𝛿 ∈ (0, 1/2], then

(a) 𝜔̂2 − 𝜔2 = 𝑂𝑝(𝑁
−1−2𝛿

), if 𝛿 ⩽ 1/4,

(b) 𝑁3/2(𝜔̂2 − 𝜔2)
L
󳨀→ N(0, Σ), if 𝛿 > 1/4,

where Σ = (3𝜎
4
/2𝐴
4
)

Proof. See Appendix A.

We start with the maximizer of the periodogram of the
product of neighbouring signals over Fourier frequencies and
improve it step by step by the recursive algorithm below. The
𝑚th step estimator 𝜔̂(𝑚)

2
is computed from the (𝑚 − 1)th step

estimator 𝜔̂(𝑚−1)
2

by

𝜔̂
(𝑚)

2
= 𝜔̂
(𝑚−1)

2
+

6

𝑁2
𝑚

Im[
𝐴𝑁
𝑚

𝐵𝑁
𝑚

] , (10)

where 𝐴𝑁
𝑚

and 𝐵𝑁
𝑚

can be obtained from (8) by replacing
𝑁 and 𝜔̃2 with 𝑁𝑚 and 𝜔̂

(𝑚−1)

2
, respectively. We repeatedly

choose suitably𝑁𝑚 at each step as follows.

Step 1. With 𝑚 = 1, choose 𝑁1 = 𝑁
0.8 and 𝜔̂

(0)

2
= 𝜔̃2,

the maximizer of the periodogram estimator at the Fourier
frequencies. Note that 𝜔̃2 − 𝜔2 = 𝑂𝑝(𝑁

−1
) = 𝑂𝑝(𝑁

−1−(1/4)

1
).
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Taking𝑁1 = 𝑁
0.8 and 𝜔̂

(0)

2
= 𝜔̃2 in (15), and applying part (a)

of Theorem 1, we obtain

𝜔̂
(1)

2
− 𝜔2 = 𝑂𝑝 (𝑁

−1−(1/2)

1
) = 𝑂𝑝 (𝑁

−1−(1/5)
) . (11)

Step 2. With𝑚 = 2, choose𝑁2 = 𝑁
0.9 and compute 𝜔̂(2)

2
from

𝜔̂
(1)

2
. Since 𝜔̂

(1)

2
− 𝜔2 = 𝑂𝑝(𝑁

−1−(1/5)
) = 𝑂𝑝(𝑁

−1−(1/3)

2
) and

1/3 > 1/4, therefore, using part (b) of Theorem 1, we have

𝜔̂
(2)

2
− 𝜔2 = 𝑂𝑝 (𝑁

−(3/2)

2
) = 𝑂𝑝 (𝑁

−1−(7/20)
) . (12)

Step 3. With 𝑚 = 3, choose 𝑁3 = 𝑁 and compute 𝜔̂
(3)

2
from

𝜔̂
(2)

2
and applying part (b) of Theorem 1 again we have

𝑁
3/2

(𝜔̂
(3)

2
− 𝜔2)

L
󳨀󳨀󳨀→ N (0, Σ) . (13)

Therefore, it is observed that if at any step the estimator is
of the order𝑂𝑝(𝑁

−1−𝛿
), themethod improves the order of the

estimator to𝑂𝑝(𝑁
−1−2𝛿

) for 0 < 𝛿 ⩽ 1/4 and if 1/4 < 𝛿 ⩽ 1/2,
then it improves the convergence rate to 𝑂𝑝(𝑁

−3/2
), which is

the best convergence rate for the nonlinear phase parameter
of the first order [31]. So we can get an initial estimator with
convergence rate of 𝑂𝑝(𝑁

−1−𝛿
) for some 0 < 𝛿 ⩽ 1/2 by

the varying sample size technique, which can just be used
as an initial estimator as Theorem 1 needs a starting value
of order 𝑂𝑝(𝑁

−1−𝛿
) to work. With the increasing number of

iterations, more andmore data points are used to improve the
convergence rate of the frequency rate.

Remark 2. Note that the exponents we use at the three steps
are not unique. There are several other ways that can be
chosen so that the iterative process will converge in three
steps. For example, another set of choices can be 𝑁1 =

𝑁
0.85

, 𝑁2 = 𝑁
0.95, and 𝑁3 = 𝑁; it is not possible to choose a

set of exponents to make the iterative process converge in less
than three steps, but it is possible for several sets of exponents
to take more than three steps to converge.

4. Extension to Multiple Lags

It can be observed that the iterative procedure proposed in
Section 3 is based on one-lag differential operation on the
observations. The asymptotic variance of the estimator of
frequency rate attains the order of 𝑂(𝑁

−3
) which is much

larger than the CRLB. Can multilag differential operation be
applied on the observations? Actually, multilag differential
operation can also be applied on the observations by a similar
way and if the order of the lag is of order𝑂(𝑁), then the order
of asymptotic variance for the estimator of the frequency rate
can be improved to the order of𝑂(𝑁

−5
) which is the order of

CRLB. If we note the lag as 𝜏 = 𝑝𝑁 (0 < 𝑝 < 1), then the
differential signals become

𝑦 (𝑡 + 𝜏) 𝑦 (𝑡) = 𝐴
2
𝑒
𝑖[2𝜔
2
𝜏𝑡+𝜔
1
𝜏+𝜔
2
𝜏
2
]
+ 𝑋 (𝑡) ,

𝑡 ∈ N, 1 ≤ 𝑡 ≤ 𝑁 − 𝜏,

(14)

where 𝑁 is the sample size and 𝑋(𝑡) =

𝐴𝑒
𝑖[𝜔
2
𝑡
2
+(𝜔
1
+2𝜔
2
)𝑡+𝜔
1
𝜏+𝜔
2
𝜏
2
+𝜑]

𝜀(𝑡) + 𝐴𝑒
−𝑖(𝜔
2
𝑡
2
+𝜔
1
𝑡+𝜑)

𝜀(𝑡 + 𝜏)+

𝜀(𝑡)𝜀(𝑡 + 𝜏). It is observed that 𝑦(𝑡 + 𝜏)𝑦(𝑡) is a harmonic
signal with frequency 2𝜏𝜔2. To avoid ambiguities arising
from the cyclic nature of spectral transforms of sampled
signals, it is assumed that

0 < 𝜔2 <
𝜋

𝜏
. (15)

4.1. Initial Estimator. The initial estimator is obtained by the
DFTof consecutive observationswith distance of 𝜏 as follows:

𝐼2 (𝜔) =
1

𝑁 − 𝜏

𝑁−𝜏

∑

𝑡=1

𝑦 (𝑡 + 𝜏) 𝑦 (𝑡) 𝑒
−𝑖𝜔𝑡

, (16)

𝜔2 =
1

2𝜏
argmax
𝜔∈(0,𝜋/𝜏)

󵄨󵄨󵄨󵄨𝐼2 (𝜔)
󵄨󵄨󵄨󵄨 . (17)

𝜔2 can be obtained by maximizing |𝐼2(𝜔)| among interval
(0, 𝜋/𝜏) over Fourier frequencies. Since theDFT estimators in
(16) are obtained by searching among the parameter interval
by𝑁−𝜏 times and𝜔2 is of order𝑂(𝑁

−1
), the initial estimator

of frequency rate has convergence rate of 𝑂𝑝(𝑁
−2
).

4.2. Iterative Procedure. The iterative procedure for multilag
can be described as follows. Given a consistent estimator 𝜔̃2
of Model (1), we compute 𝜔̂2 as follows:

𝜔̂2 = 𝜔̃2 +
6

𝜏(𝑁 − 𝜏)
2
Im [

𝐴𝑁

𝐵𝑁

] , (18)

where

𝐴𝑁 =

𝑁−𝜏

∑

𝑡=1

𝑦 (𝑡 + 𝜏) 𝑦 (𝑡) (𝑡 −
𝑁 − 𝜏

2
) 𝑒
−2𝑖𝜏𝜔̃

2
𝑡
,

𝐵𝑁 =

𝑁−𝜏

∑

𝑡=1

𝑦 (𝑡 + 𝜏) 𝑦 (𝑡) 𝑒
−2𝑖𝜏𝜔̃

2
𝑡
.

(19)

We can start with any consistent estimator 𝜔̃2 and improve
it step by step using (18). The asymptotic properties of the
estimator of 𝜔2 are presented at the following theorem.

Theorem 3. If 𝜔̃2 − 𝜔2 = 𝑂𝑝(𝑁
−2−𝛿

), where 𝛿 ∈ (0, 1/2], then

(a) 𝜔̂2 − 𝜔2 = 𝑂𝑝(𝑁
−2−2𝛿

), if 𝛿 ⩽ 1/4,

(b) 𝑁5/2(𝜔̂2 − 𝜔2)
L
󳨀→ N(0, Σ), if 𝛿 > 1/4,

where

Σ =
3𝜎
2
𝑓1 (𝑝)

𝐴2
+

3𝜎
4
𝑓2 (𝑝)

2𝐴4
,

𝑓1 (𝑝) = (

(𝑝
2
− 6𝑝 + 3)

(1 − 𝑝)
6
𝑝

) ,

𝑓2 (𝑝) = (
1

(1 − 𝑝)
3
𝑝2

) .

(20)
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Proof. See Appendix B.

We start with the maximizer of the periodogram of the
differential signals {𝑦(𝑡+𝜏)𝑦(𝑡)} over Fourier frequencies and
improve it step by step by the recursive algorithm below. The
𝑚th step estimator 𝜔̂(𝑚)

2
is computed from the (𝑚 − 1)th step

estimator 𝜔̂(𝑚−1)
2

by

𝜔̂
(𝑚)

2
= 𝜔̂
(𝑚−1)

2
+

6

𝜏2
𝑚
(𝑁𝑚 − 𝜏𝑚)

2
Im[

𝐴𝑁
𝑚

𝐵𝑁
𝑚

] , (21)

where 𝜏𝑚 = 𝑝𝑁𝑚 and 𝐴𝑁
𝑚

, 𝐵𝑁
𝑚

can be obtained from (18)
by replacing𝑁 and 𝜔̃2 with𝑁𝑚 and 𝜔̂

(𝑚−1)

2
, respectively. It is

also noted that only three steps are needed for the iterative
procedure to work.We repeatedly choose suitably𝑁𝑚 at each
step as follows.

Step 1. With 𝑚 = 1, choose 𝑁1 = 𝑁
0.9 and 𝜔̂

(0)

2
= 𝜔̃2, the

maximizer of the periodogram estimator of 𝑦(𝑡 + 𝜏)𝑦(𝑡) at
the Fourier frequencies. Note that 𝜔̃2 − 𝜔2 = 𝑂𝑝(𝑁

−2
) =

𝑂𝑝(𝑁
−2−(2/9)

1
). Taking 𝑁1 = 𝑁

0.9 and 𝜔̂
(0)

2
= 𝜔̃2 in (21) and

applying part (a) of Theorem 1, we obtain

𝜔̂
(1)

2
− 𝜔2 = 𝑂𝑝 (𝑁

−2−(4/9)

1
) = 𝑂𝑝 (𝑁

−2−(1/5)
) . (22)

Step 2. With 𝑚 = 2, choose 𝑁2 = 𝑁
0.98. Compute 𝜔̂

(2)

2
from

𝜔̂
(1)

2
. Since 𝜔̂(1)

2
− 𝜔2 = 𝑂𝑝(𝑁

−2−(1/5)
) = 𝑂𝑝(𝑁

−2−(12/49)

2
) and

12/49 < 1/4, therefore, using part (a) of Theorem 1, we have

𝜔̂
(2)

2
− 𝜔2 = 𝑂𝑝 (𝑁

−122/49

2
) = 𝑂𝑝 (𝑁

−2−(11/25)
) . (23)

Step 3. With 𝑚 = 3, choose 𝑁3 = 𝑁 and compute 𝜔̂
(3)

2
from

𝜔̂
(2)

2
. Since 𝜔̂(2)

2
− 𝜔2 = 𝑂𝑝(𝑁

−2−(11/25)

3
) and 11/25 > 1/4 and

applying part (b) of Theorem 1, we have

𝑁
5/2

(𝜔̂
(3)

2
− 𝜔2)

L
󳨀󳨀󳨀→ N (0, Σ) . (24)

Therefore, it is observed that if at any step the estimator is
of order 𝑂𝑝(𝑁

−2−𝛿
), the method improves the order of the

estimator to 𝑂𝑝(𝑁
−2−2𝛿

) for 0 < 𝛿 ⩽ 1/4 and if 1/4 <

𝛿 ⩽ 1/2, then it improves the convergence rate to 𝑂𝑝(𝑁
−5/2

),
which is the best convergence rate of LSE. So we can get an
initial estimator with convergence rate of𝑂𝑝(𝑁

−2−𝛿
) for some

0 < 𝛿 ⩽ 1/2 by the varying sample size technique. With the
increasing number of iterations, more and more data points
are used to improve the convergence rate of the parameter
of frequency rate. It can also be observed from Theorem 3
that the estimator of 𝜔2 by the iterative procedure of multilag
differential signal condition attains the order of CRLB.

Remark 4. Asmentioned in Remark 2, the exponentials used
above in the iterative procedure are not unique. The initial
sample size is taken as 𝑁

0.9 above; however, there is a
minimum sample requirement for the first iteration which
will be discussed in the following subsection.

4.3. Restriction of the Sample Size for the First Iteration and
Lag Parameter. We note the sample size taken at the first
iteration as 𝑁1 = 𝑁

𝑙
1 . When 𝑙1 is small enough such that

the convergence rate of 𝜔2 is higher than𝑂𝑝(𝑁
−5/2

1
), then the

convergence rate of 𝜔2 should be no more than 𝑂𝑝(𝑁
−5/2

1
)

which is 𝑂𝑝(𝑁
−5/2𝑙
1). However, the convergence rate of the

estimator for 𝜔2 should be higher than𝑂𝑝(𝑁
−2
) after the first

iteration. So 𝑙1 should satisfy (5/2)𝑙1 > 2 which implies

𝑙1 > 0.8. (25)

Since the initial estimator is related to the differential distance
𝜏 and the convergence rate of the initial estimator after the
varying sample process should be higher than 𝑂𝑝(𝑁

−2
), a

restriction should be made on 𝜏 = 𝑝𝑁. It can be observed
from (17) that the estimation error for the frequency rate 𝜔2

is (2𝜋/(1 − 𝑝)𝑁
2
) = 𝑁

−(2/𝑙)+log
𝑁1
(2𝜋/(1−𝑝))

1
= 𝑁
−2−𝑠

1
where

𝑠 = (2/𝑙1) − 2 − log
𝑁
1

(2𝜋/(1 − 𝑝)). According toTheorem 3, 𝑠
should satisfy 𝑠 > 0 which indicates:

𝑝 < 1 −
2𝜋

𝑁2−2𝑙1
. (26)

Combing (25) with (26), we get

𝑝 < 1 −
2𝜋

𝑁0.4
. (27)

So the scope of the differential distance 𝑝𝑁will increase with
the increase of the sample.

Remark 5. It can be observed from Theorem 3 that the
asymptotic variance of𝜔2 is a function of differential distance
𝜏 = 𝑁𝑝. So it is possible to find the optimal parameter 𝑝

which can minimize the asymptotic variance in the interval
defined in (27). If the sample size 𝑁 is given, the minimum
asymptotic variance for 𝜔2 can be obtained. A detailed
example is provided and discussed in Example 2 at the
numerical experiment part.

5. Computational Cost

The computational cost of the iterative procedure for one-lag
and multilag condition has the same order of computational
cost which can be divided into two parts. The first part is
for the initial estimation (initial) and the second part is for
the iterative procedure (iterative). Since ICPF and PCPF [22]
are two computationally efficient algorithms for parameter
estimation of frequency rate, we compare the computational
cost of the proposed iterative algorithm with that of PCPF
and ICPF [22] and list the results in Table 1 where 𝑀 is the
number of samples in the transformation domain of ICPF
that helps to locate the peak and is usually taken as larger than
𝑁 [32]. The computational cost of the DFT for the proposed
algorithm, PCPF, and ICPF is reduced to 𝑂(𝑁 log

2
𝑁) by

using of subband decomposition in the frequency domain
[20].

It can be observed that the computational cost of the
proposed algorithm lies mainly at the part of the initial
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Table 1: Comparison of the computational cost.

Operation PCPF ICPF Initial Iterative
Multiplications 𝐶1 𝐶2 𝐶1 𝐶3

Additions 𝐶1 𝐶2 𝐶1 𝐶3

Maximization 1-D 1-D 1-D 0
𝐶1: O(𝑁log2𝑁).
𝐶2: O(𝑀𝑁log2𝑁).
𝐶3: O(𝑁).

estimation as the computational cost of each iteration for
the iterative procedure is much smaller than the initial
estimation and only three iterations are needed for the
iteration procedure to work. It can also be observed that the
computational cost is comparable with that of PCPF while
it is smaller than IPCF as no additional transformation like
integral transformation in IPCF is needed. It is also noted that
both PCPF and ICPF can deal with multicomponent Chirp
signal model. Since the initial estimation of the proposed
algorithm needs searching the parameter space just 𝑁 times
while PCPF needs to search the parameter space more than
𝑁 times to obtain the best estimator, the proposed algorithm
needs less time than PCPF.

6. Numerical Experiment

In this section, several numerical experiments are conducted
to observe how the proposed algorithm works for finite
sample size when the differential distance is taken as one and
a number with order𝑁.

6.1. Numerical Experiment for One-Lag Condition

Example 1. We consider the following three signal models:
Model 1: 𝑦1(𝑡) = 𝐴𝑒

𝑖(𝜔
11
𝑡+𝜔
12
𝑡
2
+𝜑)

+ 𝜀(𝑡), Model 2: 𝑦2(𝑡) =

𝐴𝑒
𝑖(𝜔
21
𝑡+𝜔
22
𝑡
2
+𝜑)

+ 𝜀(𝑡), and Model 3: 𝑦3(𝑡) = 𝐴𝑒
𝑖(𝜔
31
𝑡+𝜔
32
𝑡
2
+𝜑)

+

𝜀(𝑡).

In all the cases {𝜀(𝑡)} is taken as a sequence of i.i.d.
Gaussian complex random variables with mean zero and
both the real and the imaginary parts of 𝜀(𝑡) have finite
variance 𝜎

2
/2. We consider three conditions of parameter

setting for 𝜔1 and 𝜔2 which are 𝜋 − 0.5 and 0.5 for Model
1, 𝜋/2 − 0.5 and 0.5 for Model 2, and 𝜋/4 − 0.5 and 0.5

for Model 3, respectively, to observe how the performance
varies when 𝜔1 and 𝜔2 are taken as different values.The other
parameters for Model 1–Model 3 are taken the same; that is,
𝐴 = 2 and 𝜑 = 𝜋/3. To asset the sensitivity of the model
to different noise levels, we plot three different 𝜎2, namely,
𝜎
2

0
= 0.5, 1.0, and 1.5. To present the consistency, we take the

sample sizes as 101, 201, 301, 401, 501, and 1001, respectively.
For illustration purpose, we plot the objective function in (6)
corresponding three data sets generated using Models 1–3 in
Figure 1, respectively. It is known that the number of peaks at
the plot of the objective function roughly gives an estimate
of the number of frequencies. From the Figures 1(a), 1(b),
and 1(c), it is quite clear that there is only one peak. Since
{𝑦(𝑡+1)𝑦(𝑡)} can be decomposed into a harmonic component

and noise component mixed with the signal parameters and
the DFT of the noise component tends to zero which can
be observed obviously from Figure 1, the effectiveness of the
initial estimator is verified.

Now, for each sample size and noise condition in Model
1, we estimate the frequency rate based on the proposed
iterative procedure in Section 3.2. In all cases we consider
the initial estimator as the periodogram maxmizer of {𝑦(𝑡 +
1)𝑦(𝑡)} at the Fourier frequencies. We report the initial
estimates (initial), the estimates of the frequency rate by
the proposed algorithm (proposed), and the square root of
the mean squared errors (SRMSEs) over 100 replications.
For comparison purpose, we also report the corresponding
square root of the asymptotic variances (SRAVs). All the
results are reported in Table 2. For each additive noise
variance 𝜎

2, the first line represents the initial estimates and
the proposed estimates are reported at the second line, the
third line represents the SRMSEs, and the true values of
the frequency rates are given at the fourth line. Finally, we
reported the SRAVs at the last line.

It can be observed from Table 2 that the estimates by the
proposed algorithm in Section 3.2 are very close to the true
parameter values and are better than the initial estimates in
all the cases considered. Moreover, the biases decrease as the
additive noise variance decreases or the sample size increases.
Therefore, the proposed estimator provides asymptotically
unbiased estimator of the frequency rate. It can also be seen
that the SRMSEs of the frequency rate decrease gradually
and approach the SRAVs as the sample size increases, which
verifies the consistency of the the proposed estimator. The
average estimates of the initial and proposed estimator for
Model 2 and Model 3 are similar to that in Model 1, so
we do not report here. To investigate the performance of
the variance for the proposed estimator regarding different
parameters settings of (𝜔1, 𝜔2), we report the SRMSEs of the
proposed estimator for three noise variance levels of 0.5, 1.0,
and 1.5 in Figures 2, 3, and 4, respectively, where Model 1
corresponds to𝜔1+𝜔2 = 𝜋, Model 2 corresponds to𝜔1+𝜔2 =

𝜋/2, and Model 3 corresponds to 𝜔1 + 𝜔2 = 𝜋/4.
It can be observed from Figures 2–4 that the SRMSEs

decrease and approach the SRAVs with the increase of
the sample size. The SRMSEs are very close to the SRAVs
when the sample size is increased to 200 and the difference
between SRMSEs and SRAVs diminishes with the increase of
the sample size. Meanwhile, the SRMSEs attain the SRAVs
when the sample size is increased to 500. Moreover, the
SRMSEs decrease and aremore andmore close to SRAVswith
the decrease of the noise variance. So the consistency and
effectiveness of the proposed estimator are verified. Finally,
the difference of the SRMSEs among Model 1–Model 3 does
not seem very obviouswhen (𝜔1, 𝜔2) varies and the difference
diminishes with the increase of the sample size, which is
reasonable as the sample size is taken as the denominator in
the asymptotic variance expression inTheorem 1.

Finally, to illustrate the influence of the precision of the
parameter of frequency rate on the following estimation for
other parameters, we estimate 𝜔1 by filtering the components
of 𝜔2 where each observation 𝑦(𝑡) is multiplied by 𝑒

−𝑖𝜔
2
𝑡. The
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Figure 1: Plot of 𝐼1(𝜔2) for Model 1 to Model 3 (from (a) to (c)) with𝑁 = 100 and 𝜎
2
= 1.5.

Table 2: The average estimates of the initial and proposed estimator based on 100 replications, as well as the corresponding SRMSEs and
SRAVs of the frequency rate.

𝜎
2 EST 𝑁 = 100 𝑁 = 200 𝑁 = 300 𝑁 = 400 𝑁 = 500 𝑁 = 1000

0.5

Initial 0.477903 0.489394 0.493829 0.496041 0.497366 0.499513
Proposed 0.500008 0.499996 0.500005 0.500001 0.499997 0.499999
SRMSEs 1.9842𝑒 − 4 5.7211𝑒 − 5 3.6321𝑒 − 5 2.1014𝑒 − 5 1.3988𝑒 − 5 5.2447𝑒 − 6

Parameter 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000
SRAVs 1.5542𝑒 − 4 5.4535𝑒 − 5 2.9611𝑒 − 5 1.9209𝑒 − 5 1.3734𝑒 − 5 4.8412𝑒 − 6

1.0

Initial 0.478854 0.489394 0.493829 0.496941 0.493829 0.499014
Proposed 0.500028 0.500007 0.500001 0.500005 0.500006 0.499998
SRMSEs 3.6698𝑒 − 4 1.3035𝑒 − 4 6.1187𝑒 − 5 4.2708𝑒 − 5 2.9261𝑒 − 5 9.7988𝑒 − 6

Parameter 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000
SRAVs 3.1084𝑒 − 4 1.0907𝑒 − 4 5.9221𝑒 − 5 3.8417𝑒 − 5 2.7468𝑒 − 5 9.6680𝑒 − 6

1.5

Initial 0.479807 0.489394 0.493829 0.496041 0.497366 0.499014
Proposed 0.499814 0.500017 0.500015 0.500006 0.500008 0.500000
SRMSEs 1.5133𝑒 − 3 1.8844𝑒 − 4 1.0105𝑒 − 4 5.7788𝑒 − 5 4.2860𝑒 − 5 1.4524𝑒 − 5

Parameter 0.500000 0.500000 0.500000 0.500000 0.500000 0.500000
SRAVs 4.6625𝑒 − 4 1.6361𝑒 − 4 8.8832𝑒 − 5 5.7626𝑒 − 5 4.1203𝑒 − 5 1.4502𝑒 − 5
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Figure 2: Plot of the SRMSEs for Model 1 to Model 3 as well as the
SRAVs for different sample sizes when 𝜎
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Figure 3: Plot of the SRMSEs for Model 1 to Model 3 as well as the
SRAVs for different sample sizes when 𝜎
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0
= 1.0.

periodogram (absolute value of DFT) of the filtered signal is
presented in Figure 5 where Figure 5(a) corresponds to the
periodogram of the signal filtered by the initial estimator
of 𝜔2 and Figure 5(b) corresponds to the signal filtered by
the proposed estimator of 𝜔2. It is very obvious that there
is more than one peak in Figure 5(a) while only one peak
in Figure 5(b) exists, which indicates that the signal filtered
by the initial estimator of 𝜔2 still includes the components
of 𝜔2 and the process of the filtering is not complete while
the filtering process by the proposed estimator can remove
𝜔2 completely. So it is necessary and important to improve the
convergence rate and precision of the estimator of frequency
rate to reduce the error propagation from the frequency rate
to the other parameters of the model.

6.2. Numerical Experiment for Multilag Condition. To verify
the effectiveness of the iterative procedure proposed in
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Figure 4: Plot of the SRMSEs for Model 1 to Model 3 as well as the
SRAVs for different sample sizes when 𝜎
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0
= 1.5.

Section 4.2, we consider another Chirp signal model in the
following example.

Example 2. Consider 𝑦(𝑡) = 𝑒
𝑖((2𝜋/5)𝑡+(𝜋/5𝑁)𝑡

2
)
+ 𝜀(𝑡) where

𝜀(𝑡) is an i.i.d. Gaussian white noise with zero mean and
variance 𝜎

2. To compare the performance of the proposed
algorithm with that of the PCPF method proposed in [21],
the parameters are taken the same as those in Example 5 of
[21] including𝑁 = 515.

According to (27), 𝑝 is restricted in the interval of
(0, 0.4830) when 𝑁 = 515. Since the asymptotic vari-
ance of 𝜔2 is (3𝑓1(𝑝)/𝑁

5SNR) + (3𝑓2(𝑝)/2𝑁
5SNR2) where

SNR = 𝐴
2
/𝜎
2, the asymptotic variance is dominated by

𝑓1(𝑝) when SNR is large enough. We plot 𝑓1(𝑝) at the
interval (0, 0.4830) in Figure 6. It can be calculated that
𝑓1(𝑝) reaches its minimum value when 𝑝 ≈ 0.2233. Then
the minimum asymptotic variance of 𝜔2 is (104.6587 +

64.2028/SNR)/𝑁5SNR. Comparing with the CRLB [21], it
is observed that the minimum asymptotic variance of 𝜔2 is
about 0.6 dB above the CRLB when SNR is large enough.The
SNR in dB is defined as SNR = 10 log

10
𝐴
2
/𝜎
2.

We plot the MSEs of the proposed iterative procedure
with optimal lag of 0.2233𝑁 where the initial estimator
is taken as the periodogram maximizers, the asymptotic
variance of 𝜔2 as well as the CRLB with respect to SNR
in Figure 7. The SNR varies from −8 dB to 8 dB in step of
1 dB. For comparison purpose, we also plot the simulation
results of the method of PCPF [21], the simulation results by
the iterative procedure with one-lag in Section 3.2, and the
simulation results by the iterative procedure with optimal lag
in Section 4.2 where the initial estimator is taken within the
error of the minimum Fourier frequency distance (manual
initial) in Figure 7.The parameter 𝐿 in PCPFmethod is taken
as 5. It can be observed from Figure 7 that the MSEs of the
proposed estimator with optimal lag approach CRLB at about
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Figure 5: Plot of the absolute value of DFT for the filtered signal in Model 1 with𝑁 = 100 and 𝜎
2
= 1.5 where the two figures correspond to

the signal filtered by the initial estimator (a) and proposed estimator (b) of 𝜔2, respectively.
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Figure 6: Plot of 𝑓1(𝑝) at interval (0, 0.4830).

1 dB while the MSEs of the proposed estimator with one-
lag are still much larger than the CRLB even when SNR
attains 8. It is not surprising as the asymptotic variance of the
proposed estimator with one-lag is of order 𝑂𝑝(𝑁

−3
) which

is much larger than the order of CRLB, that is, 𝑂𝑝(𝑁
−5
).

It can also be observed that the threshold of the proposed
estimator with optimal lag and periodogram initial estimator
is larger than the threshold of PCPF. By checking the initial
estimator, it is observed that when the SNR decreases below
1 dB, the estimation error of the initial estimator falls beyond
the error scope of the initial estimator required for the
iterative procedure; however, when the initial estimator error
is restricted in the minimum Fourier frequency distance
as required by Theorem 3, the threshold of the iterative
procedure with optimal lag decreases to −6 dB which is the
threshold of PCPF. Finally, the proposed iterative procedure
with periodogram initial and manual initial both approach
the asymptotic variance with the increase of SNR, which

0 2 4 6 8
SNR (dB)

M
SE

s

One-lag (simulation)
Optimal lag with periodogram initial (simulation)
Optimal lag with manual initial (simulation)
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Figure 7: Plot of the simulated MSEs of the proposed iterative
procedure with one-lag, optimal lag, PCPF, and CRLB.

verifies the unbiasedness and effectiveness of the proposed
estimator.

7. Conclusions

In this paper, we considered the parameter estimation of
the frequency rate of Chirp signal model in i.i.d. additive
noise. A three-step iterative procedure was proposed for
estimating the frequency rate of the considered model (1)
by utilizing iterative statistics with one-lag and multilag
differential signals for each iteration. The consistency of
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the proposed estimator was verified and the asymptotic
distribution of the proposed estimator was also obtained. It
can be observed from the simulation results that the iterative
algorithm works quite well in terms of bias and mean square
errors.TheMSEs of the frequency rate for one-lag differential
signal condition are very close to the asymptotic variance;
however, the order of the asymptotic variance for one-lag
differential signal condition is of 𝑂𝑝(𝑁

−3
) which is far away

from the CRLB. If the lag is of order 𝑁, the MSEs of the
frequency rate for the multilag condition attain the order
of 𝑂𝑝(𝑁

−5
). The optimal lag is obtained and the MSEs of

the frequency rate for optimal lag are very close to CRLB
at about 1 dB if the initial estimator of the frequency rate is
taken as the Fourier frequencies of periodogram maximizers
while the MSEs of the frequency rate approach CRLB as
well as the asymptotic variance of LSE at about −6 dB if the
initial estimator of the frequency rate is takenwithin the error
of the minimum Fourier frequency distance, which verifies
the effectiveness of the iterative procedure. The performance
of the proposed iterative procedure is comparable to the
PCPF proposed recently with respect to the MSEs and
computational cost. Moreover, the precision of the proposed
estimator of frequency rate for one-lag differential signal
condition is high enough to guarantee the frequency rate to
be filtered completely for the method estimating parameters
sequentially while the precision of the initial estimator of
frequency rate is not high enough to filter the frequency
rate completely. Finally, it is also noted that the iterative
procedures work for monocomponent Chirp signal model
and new iterative procedure is needed to deal with the cross-
terms of quadratic phase for multicomponent Chirp signal
model and will be researched later.

Appendices

A. Proof of Theorem 1

Proof. If we note 𝑦(𝑡 + 1)𝑦(𝑡) as 𝑧(𝑡), then

𝑧 (𝑡) = [𝐴𝑒
𝑖(𝜔
1
𝑡+2𝜔
2
𝑡+𝜔
2
𝑡
2
+𝜑+𝜔

1
+𝜔
2
)
+ 𝜀 (𝑡 + 1)]

× [𝐴𝑒
−𝑖(𝜔
1
𝑡+𝜔
2
𝑡
2
+𝜑)

+ 𝜀 (𝑡)]

= 𝐴
2
𝑒
𝑖(2𝜔
2
𝑡+𝜔
1
+𝜔
2
)

+ 𝐴𝑒
𝑖(𝜔
1
𝑡+2𝜔
2
𝑡+𝜔
2
𝑡
2
+𝜑+𝜔

1
+𝜔
2
)
𝜀 (𝑡)

+ 𝐴𝑒
−𝑖(𝜔
1
𝑡+𝜔
2
𝑡
2
+𝜑)

𝜀 (𝑡 + 1) + 𝜀 (𝑡 + 1) 𝜀 (𝑡)

= 𝐴
2
𝑒
𝑖(2𝜔
2
𝑡+𝜔
1
+𝜔
2
)
+ 𝑋 (𝑡) (say) ,

(A.1)

where 𝑋(𝑡) = 𝐴𝑒
𝑖(𝜔
1
𝑡+2𝜔
2
𝑡+𝜔
2
𝑡
2
+𝜑+𝜔

1
+𝜔
2
)
𝜀(𝑡) + 𝐴𝑒

−𝑖(𝜔
1
𝑡+𝜔
2
𝑡
2
+𝜑)

𝜀(𝑡 + 1) + 𝜀(𝑡 + 1)𝜀(𝑡). It can be seen that {𝑋(𝑡)} is a sequence
of random variables with zeromean and variance 2𝐴2𝜎2+𝜎

4.

Nowwe compute𝐴𝑁 and𝐵𝑁, respectively. Firstly, we will
compute 𝐵𝑁 as follows:

𝐵𝑁 =

𝑁

∑

𝑡=1

𝑧 (𝑡) 𝑒
−2𝑖𝜔̃
2
𝑡

= 𝐴
2
𝑒
𝑖(𝜔
1
+𝜔
2
)
𝑁

∑

𝑡=1

𝑒
𝑖2(𝜔
2
−𝜔̃
2
)𝑡
+

𝑁

∑

𝑡=1

𝑋 (𝑡) 𝑒
−2𝑖𝜔̃
2
𝑡

= 𝐴
2
𝑒
𝑖(𝜔
1
+𝜔
2
)
[𝑁 + 𝑂𝑝 (𝑁

1−𝛿
)] + 𝑅1 (𝑁) (say) .

(A.2)

Using the following result ([33]): if {𝑒(𝑡)} is a sequence
of dependent random variables with zero mean and finite
variance, then

𝑁

∑

𝑡=1

𝑒 (𝑡) 𝑡
𝑘
𝑒
𝑖𝜃𝑡

= 𝑂𝑝 (𝑁
𝑘+(1/2)

) , for 𝜃 ̸= 0. (A.3)

We have

𝑅1 (𝑁) =

𝑁

∑

𝑡=1

𝑋 (𝑡) 𝑒
−𝑖𝜔̃
𝑗
𝑡
= 𝑂𝑝 (𝑁

1/2
) . (A.4)

From (A.2)–(A.4), it is immediate that

𝐵𝑁 = 𝐴
2
𝑒
𝑖(𝜔
1
+𝜔
2
)
[𝑁 + 𝑂𝑝 (𝑁

1−𝛿
)] , for 𝛿 ∈ (0,

1

2
] .

(A.5)

Secondly, we will computer 𝐴𝑁 as follows:

𝐴𝑁 =

𝑁

∑

𝑡=1

𝑧 (𝑡) (𝑡 −
𝑁

2
) 𝑒
−2𝑖𝜔̃
2
𝑡

= 𝐴
2
𝑒
𝑖(𝜔
1
+𝜔
2
)
𝑁

∑

𝑡=1

(𝑡 −
𝑁

2
) 𝑒
2𝑖(𝜔
2
−𝜔̃
2
)𝑡

+

𝑁

∑

𝑡=1

𝑋 (𝑡) (𝑡 −
𝑁

2
) 𝑒
−2𝑖𝜔̃
2
𝑡

= 𝐴
2
𝑒
𝑖(𝜔
1
+𝜔
2
)
𝐽 (𝑁) + 𝑅2 (𝑁) (say) .

(A.6)

Now we compute 𝐽(𝑁) and 𝑅2(𝑁). Using (A.3) and Taylor
series approximation of 𝑒2𝑖(𝜔2−𝜔̃2)𝑡 up to 2th order terms for
𝐽(𝑁) and up to 1th order terms for 𝑅2(𝑁), respectively, we
have

𝐽 (𝑁) =

𝑁

∑

𝑡=1

(𝑡 −
𝑁

2
) + 2𝑖 (𝜔2 − 𝜔̃2)

𝑁 (𝑁 + 1) (𝑁 + 2)

12

− 2(𝜔2 − 𝜔̃2)
2
𝑁

∑

𝑡=1

(𝑡 −
𝑁

2
) 𝑡
2
𝑒
2𝑖𝜃(𝜔
2
−𝜔̃
2
)𝑡

= 𝑖 (𝜔2 − 𝜔̃2)
𝑁
3

6
[1 + 𝑂𝑝 (𝑁

−𝛿
)]

(here 0 < 𝜃 < 1) ,

𝑅2 (𝑁) =

𝑁

∑

𝑡=1

𝑋 (𝑡) (𝑡 −
𝑁

2
) 𝑒
−2𝑖𝜔̃
2
𝑡
= Π1 + Π2 + Π3 (say) ,

(A.7)
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where

Π1 =

𝑁

∑

𝑡=1

𝐴𝑒
𝑖(𝜔
1
𝑡+2𝜔
2
𝑡+𝜔
2
𝑡
2
+𝜑+𝜔

1
+𝜔
2
)
𝜀 (𝑡) (𝑡 −

𝑁

2
) 𝑒
−2𝑖𝜔̃
2
𝑡

=

𝑁

∑

𝑡=1

𝐴𝑒
𝑖(𝜔
1
𝑡+𝜔
2
𝑡
2
+𝜑+𝜔

1
+𝜔
2
)
𝜀 (𝑡) (𝑡 −

𝑁

2
) 𝑒
2𝑖(𝜔
2
−𝜔̃
2
)𝑡

=

𝑁

∑

𝑡=1

𝐴𝑒
𝑖(𝜔
1
𝑡+𝜔
2
𝑡
2
+𝜑+𝜔

1
+𝜔
2
)
𝜀 (𝑡) (𝑡 −

𝑁

2
) + 𝑂𝑝 (𝑁

−3/2
) ,

Π2 =

𝑁

∑

𝑡=1

𝐴𝑒
−𝑖(𝜔
1
𝑡+𝜔
2
𝑡
2
+𝜑)

𝜀 (𝑡 + 1) (𝑡 −
𝑁

2
) 𝑒
−2𝑖𝜔̃
2
𝑡

=

𝑁

∑

𝑡=1

𝐴𝑒
−𝑖(𝜔
1
𝑡+2𝜔
2
𝑡+𝜔
2
𝑡
2
+𝜑)

𝜀 (𝑡 + 1) (𝑡 −
𝑁

2
) 𝑒
2𝑖(𝜔
2
−𝜔̃
2
)𝑡

=

𝑁

∑

𝑡=1

𝐴𝑒
−𝑖(𝜔
1
𝑡+2𝜔
2
𝑡+𝜔
2
𝑡
2
+𝜑)

𝜀 (𝑡 + 1) (𝑡 −
𝑁

2
) + 𝑂𝑝 (𝑁

−3/2
) ,

Π3 =

𝑁

∑

𝑡=1

𝜀 (𝑡 + 1) 𝜀 (𝑡) (𝑡 −
𝑁

2
) 𝑒
−2𝑖𝜔̃
2
𝑡

=

𝑁

∑

𝑡=1

𝜀 (𝑡 + 1) 𝜀 (𝑡) (𝑡 −
𝑁

2
) 𝑒
−2𝑖𝜔
2
𝑡
+ 𝑂𝑝 (𝑁

−3/2
) .

(A.8)

From (A.7)-(A.8), it is immediate that

𝐴𝑁 = 𝐴
2
𝑒
𝑖(𝜔
1
+𝜔
2
)
𝑖 (𝜔2 − 𝜔̃2)

𝑁
3

6
[1 + 𝑂𝑝 (𝑁

−𝛿
)]

+

𝑁

∑

𝑡=1

𝐴𝑒
𝑖(𝜔
1
𝑡+𝜔
2
𝑡
2
+𝜑+𝜔

1
+𝜔
2
)
𝜀 (𝑡) (𝑡 −

𝑁

2
)

+

𝑁

∑

𝑡=1

𝐴𝑒
−𝑖(𝜔
1
𝑡+2𝜔
2
𝑡+𝜔
2
𝑡
2
+𝜑)

𝜀 (𝑡 + 1) (𝑡 −
𝑁

2
)

+

𝑁

∑

𝑡=1

𝜀 (𝑡 + 1) 𝜀 (𝑡) (𝑡 −
𝑁

2
) 𝑒
−2𝑖𝜔
2
𝑡
+ 𝑂𝑝 (𝑁

−3/2
) .

(A.9)

Therefore, it can be obtained from (A.5) and (A.9) that

𝜔̂2 = 𝜔̃2 +
6

𝑁2

× Im[(𝐴
2
𝑒
𝑖(𝜔
1
+𝜔
2
)
𝑖 (𝜔2 − 𝜔̃2)

𝑁
3

6
[1 + 𝑂𝑝 (𝑁

−𝛿
)]

+

𝑁

∑

𝑡=1

𝐴𝑒
𝑖(𝜔
1
𝑡+𝜔
2
𝑡
2
+𝜑+𝜔

1
+𝜔
2
)
𝜀 (𝑡) (𝑡 −

𝑁

2
))

× (𝐴
2
𝑒
𝑖(𝜔
1
+𝜔
2
)
[𝑁 + 𝑂𝑝 (𝑁

1−𝛿
)])
−1

]

+
6

𝑁2

× Im[(

𝑁

∑

𝑡=1

𝐴𝑒
−𝑖(𝜔
1
𝑡+2𝜔
2
𝑡+𝜔
2
𝑡
2
+𝜑)

𝜀 (𝑡 + 1) (𝑡 −
𝑁

2
))

× (𝐴
2
𝑒
𝑖(𝜔
1
+𝜔
2
)
[𝑁 + 𝑂𝑝 (𝑁

1−𝛿
)])
−1

]

+
6

𝑁2

× Im[(
𝑁

∑

𝑡=1

𝜀 (𝑡 + 1) 𝜀 (𝑡) (𝑡 −
𝑁

2
) 𝑒
−2𝑖𝜔
2
𝑡
+ 𝑂𝑝 (𝑁

−3/2
))

× (𝐴
2
𝑒
𝑖(𝜔
1
+𝜔
2
)
[𝑁 + 𝑂𝑝 (𝑁

1−𝛿
)])
−1

]

= 𝜔2 + (𝜔̃2 − 𝜔2) 𝑂𝑝 (𝑁
−𝛿
) +

6

𝑁3
Ω (say) .

(A.10)

It can be proved that

Var(
6

𝑁3/2
Ω) 󳨀→

3𝜎
4

2𝐴4
. (A.11)

Therefore, if 𝜔̃2 − 𝜔2 = 𝑂𝑝(𝑁
−1−𝛿

) and 0 < 𝛿 ⩽ 1/4, then,
from (A.10), 𝜔̂2 − 𝜔2 = 𝑂𝑝(𝑁

−1−2𝛿
). If 1/4 < 𝛿 ⩽ 1/2, then

from (A.10)-(A.11) and using the central limit theorem [34],
it follows that𝑁3/2(𝜔̂2 − 𝜔2)

L
󳨀→ N(0, Σ).

B. Proof of Theorem 3

Proof. If we note 𝑦(𝑡 + 𝜏)𝑦(𝑡) as 𝑧(𝑡), then, by (14), we have

𝑧 (𝑡) = 𝐴
2
𝑒
𝑖(2𝜔
2
𝜏𝑡+𝜔
1
𝜏+𝜔
2
𝜏
2
)
+ 𝑋 (𝑡) (say) , (B.1)

where𝑋(𝑡) = 𝐴𝑒
𝑖[𝜔
2
𝑡
2
+(𝜔
1
+2𝜔
2
)𝑡+𝜔
1
𝜏+𝜔
2
𝜏
2
+𝜑]

𝜀(𝑡)+𝐴𝑒
−𝑖(𝜔
2
𝑡
2
+𝜔
1
𝑡+𝜑)

𝜀(𝑡+𝜏)+𝜀(𝑡)𝜀(𝑡+𝜏). It can be seen that {𝑋(𝑡)} is a sequence of
random variables with zero mean and variance 2𝐴2𝜎2 + 𝜎

4.
Nowwe compute𝐴𝑁 and𝐵𝑁, respectively. Firstly, we will

compute 𝐵𝑁 as follows:

𝐵𝑁 =

𝑁−𝜏

∑

𝑡=1

𝑧 (𝑡) 𝑒
−2𝑖𝜏𝜔̃

2
𝑡

= 𝐴
2
𝑒
𝑖(𝜔
1
𝜏+𝜔
2
𝜏
2
)
𝑁−𝜏

∑

𝑡=1

𝑒
𝑖2𝜏(𝜔
2
−𝜔̃
2
)𝑡
+

𝑁−𝜏

∑

𝑡=1

𝑋 (𝑡) 𝑒
−2𝑖𝜏𝜔̃

2
𝑡

= 𝐴
2
𝑒
𝑖(𝜔
1
𝜏+𝜔
2
𝜏
2
)
[𝑁 − 𝜏 + 𝑂𝑝 (𝑁

1−𝛿
)] + 𝑅1 (𝑁) (say) .

(B.2)

Using (A.3), we have

𝑅1 (𝑁) =

𝑁−𝜏

∑

𝑡=1

𝑋 (𝑡) 𝑒
−𝑖𝜏𝜔̃
𝑗
𝑡
= 𝑂𝑝 (𝑁

1/2
) . (B.3)
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From (B.2)-(B.3), it is immediate that

𝐵𝑁 = 𝐴
2
𝑒
𝑖(𝜔
1
𝜏+𝜔
2
𝜏
2
)
[𝑁 − 𝜏 + 𝑂𝑝 (𝑁

1−𝛿
)] , for 𝛿 ∈ (0,

1

2
] .

(B.4)

Secondly, we will computer 𝐴𝑁 as follows:

𝐴𝑁 =

𝑁−𝜏

∑

𝑡=1

𝑧 (𝑡) (𝑡 −
𝑁 − 𝜏

2
) 𝑒
−2𝑖𝜏𝜔̃

2
𝑡

= 𝐴
2
𝑒
𝑖(𝜔
1
𝜏+𝜔
2
𝜏
2
)
𝑁−𝜏

∑

𝑡=1

(𝑡 −
𝑁 − 𝜏

2
) 𝑒
2𝑖𝜏(𝜔
2
−𝜔̃
2
)𝑡

+

𝑁−𝜏

∑

𝑡=1

𝑋(𝑡) (𝑡 −
𝑁 − 𝜏

2
) 𝑒
−2𝑖𝜏𝜔̃

2
𝑡

= 𝐴
2
𝑒
𝑖(𝜔
1
𝜏+𝜔
2
𝜏
2
)
𝐽 (𝑁) + 𝑅2 (𝑁) (say) .

(B.5)

Now we compute 𝐽(𝑁) and 𝑅2(𝑁). Using (A.3) and Taylor
series approximation of 𝑒2𝑖(𝜔2−𝜔̃2)𝑡 up to 2th order terms for
𝐽(𝑁) and up to 1th order terms for 𝑅2(𝑁), respectively, we
have

𝐽 (𝑁) =

𝑁−𝜏

∑

𝑡=1

(𝑡 −
𝑁 − 𝜏

2
) + 2𝑖𝜏 (𝜔2 − 𝜔̃2)

×
(𝑁 − 𝜏) (𝑁 − 𝜏 + 1) (𝑁 − 𝜏 + 2)

12

− 2𝜏
2
(𝜔2 − 𝜔̃2)

2
𝑁−𝜏

∑

𝑡=1

(𝑡 −
𝑁 − 𝜏

2
) 𝑡
2
𝑒
2𝑖𝜃𝜏(𝜔

2
−𝜔̃
2
)𝑡

= 𝑖 (𝜔2 − 𝜔̃2)
𝑁
3
𝜏

6
[1 + 𝑂𝑝 (𝑁

−𝛿
)] ,

(here 0 < 𝜃 < 1) ,

𝑅2 (𝑁) =

𝑁−𝜏

∑

𝑡=1

𝑋(𝑡) (𝑡 −
𝑁 − 𝜏

2
) 𝑒
−2𝑖𝜏𝜔̃

2
𝑡

= Π1 + Π2 + Π3 (say) ,
(B.6)

where

Π1 =

𝑁−𝜏

∑

𝑡=1

𝐴𝑒
𝑖(𝜔
1
𝑡+2𝜔
2
𝜏𝑡+𝜔
2
𝑡
2
+𝜑+𝜔

1
𝜏+𝜔
2
𝜏
2
)
𝜀 (𝑡)

× (𝑡 −
𝑁 − 𝜏

2
) 𝑒
−2𝑖𝜏𝜔̃

2
𝑡

=

𝑁−𝜏

∑

𝑡=1

𝐴𝑒
𝑖(𝜔
1
𝑡+𝜔
2
𝑡
2
+𝜑+𝜔

1
𝜏+𝜔
2
𝜏
2
)
𝜀 (𝑡)

× (𝑡 −
𝑁 − 𝜏

2
) 𝑒
2𝑖𝜏(𝜔
2
−𝜔̃
2
)𝑡

=

𝑁−𝜏

∑

𝑡=1

𝐴𝑒
𝑖(𝜔
1
𝑡+𝜔
2
𝑡
2
+𝜑+𝜔

1
𝜏+𝜔
2
𝜏
2
)
𝜀 (𝑡)

× (𝑡 −
𝑁 − 𝜏

2
) + 𝑂𝑝 (𝑁

−3/2
) ,

Π2 =

𝑁−𝜏

∑

𝑡=1

𝐴𝑒
−𝑖(𝜔
1
𝑡+𝜔
2
𝑡
2
+𝜑)

𝜀 (𝑡 + 𝜏)

× (𝑡 −
𝑁 − 𝜏

2
) 𝑒
−2𝑖𝜏𝜔̃

2
𝑡

=

𝑁−𝜏

∑

𝑡=1

𝐴𝑒
−𝑖(𝜔
1
𝑡+2𝜔
2
𝜏𝑡+𝜔
2
𝑡
2
+𝜑)

𝜀 (𝑡 + 𝜏)

× (𝑡 −
𝑁 − 𝜏

2
) 𝑒
2𝑖𝜏(𝜔
2
−𝜔̃
2
)𝑡

=

𝑁−𝜏

∑

𝑡=1

𝐴𝑒
−𝑖(𝜔
1
𝑡+2𝜔
2
𝜏𝑡+𝜔
2
𝑡
2
+𝜑)

𝜀 (𝑡 + 𝜏)

× (𝑡 −
𝑁 − 𝜏

2
) + 𝑂𝑝 (𝑁

−3/2
) ,

Π3 =

𝑁−𝜏

∑

𝑡=1

𝜀 (𝑡 + 𝜏) 𝜀 (𝑡) (𝑡 −
𝑁 − 𝜏

2
) 𝑒
−2𝑖𝜏𝜔̃

2
𝑡

=

𝑁−𝜏

∑

𝑡=1

𝜀 (𝑡 + 𝜏) 𝜀 (𝑡) (𝑡 −
𝑁 − 𝜏

2
) 𝑒
−2𝑖𝜏𝜔

2
𝑡
+ 𝑂𝑝 (𝑁

−3/2
) .

(B.7)

From (B.6)-(B.7), it is immediate that

𝐴𝑁 = 𝐴
2
𝑒
𝑖(𝜔
1
𝜏+𝜔
2
𝜏
2
)
𝑖 (𝜔2 − 𝜔̃2)

𝑁
3
𝜏

6
[1 + 𝑂𝑝 (𝑁

−𝛿
)]

+

𝑁−𝜏

∑

𝑡=1

𝐴𝑒
𝑖(𝜔
1
𝑡+𝜔
2
𝑡
2
+𝜑+𝜔

1
𝜏+𝜔
2
𝜏
2
)
𝜀 (𝑡) (𝑡 −

𝑁 − 𝜏

2
)

+

𝑁−𝜏

∑

𝑡=1

𝐴𝑒
−𝑖(𝜔
1
𝑡+2𝜔
2
𝜏𝑡+𝜔
2
𝑡
2
+𝜑)

𝜀 (𝑡 + 𝜏) (𝑡 −
𝑁 − 𝜏

2
)

+

𝑁−𝜏

∑

𝑡=1

𝜀 (𝑡 + 𝜏) 𝜀 (𝑡) (𝑡 −
𝑁 − 𝜏

2
) 𝑒
−2𝑖𝜏𝜔

2
𝑡
.

(B.8)

Therefore, it can be obtained from (B.4) and (B.8) that

𝜔̂2 = 𝜔̃2 +
6

(𝑁 − 𝜏)
2
𝜏

× Im [𝐴
2
𝑒
𝑖(𝜔
1
𝜏+𝜔
2
𝜏
2
)
𝑖 (𝜔2 − 𝜔̃2)

× (𝑁
3
𝜏/6) [1 + 𝑂𝑝 (𝑁

−𝛿
)]

× (𝐴
2
𝑒
𝑖(𝜔
1
𝜏+𝜔
2
𝜏
2
)
[𝑁 − 𝜏 + 𝑂𝑝(𝑁

1−𝛿
)])

−1

]

+
6

(𝑁 − 𝜏)
2
𝜏

× Im[(

𝑁−𝜏

∑

𝑡=1

𝐴𝑒
𝑖(𝜔
1
𝑡+𝜔
2
𝑡
2
+𝜑+𝜔

1
𝜏+𝜔
2
𝜏
2
)

×𝜀 (𝑡) (𝑡 −
𝑁 − 𝜏

2
))

× (𝐴
2
𝑒
𝑖(𝜔
1
𝜏+𝜔
2
𝜏
2
)
[𝑁 − 𝜏 + 𝑂𝑝(𝑁

1−𝛿
)])

−1

]
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+
6

(𝑁 − 𝜏)
2
𝜏

× Im[(

𝑁−𝜏

∑

𝑡=1

𝐴𝑒
−𝑖(𝜔
1
𝑡+2𝜔
2
𝜏𝑡+𝜔
2
𝑡
2
+𝜑)

×𝜀 (𝑡 + 𝜏) (𝑡 −
𝑁 − 𝜏

2
))

× (𝐴
2
𝑒
𝑖(𝜔
1
𝜏+𝜔
2
𝜏
2
)
[𝑁 − 𝜏 + 𝑂𝑝(𝑁

1−𝛿
)])

−1

]

+
6

(𝑁 − 𝜏)
2
𝜏

× Im[(

𝑁−𝜏

∑

𝑡=1

𝜀 (𝑡 + 𝜏) 𝜀 (𝑡) (𝑡 −
𝑁 − 𝜏

2
)

×𝑒
−2𝑖𝜏𝜔

2
𝑡
+ 𝑂𝑝 (𝑁

−3/2
))

× (𝐴
2
𝑒
𝑖(𝜔
1
𝜏+𝜔
2
𝜏
2
)
[𝑁 − 𝜏 + 𝑂𝑝(𝑁

1−𝛿
)])

−1

]

= 𝜔2 + (𝜔̃2 − 𝜔2) 𝑂𝑝 (𝑁
−𝛿
) +

6

(𝑁 − 𝜏)
3
𝜏
Ω (say) .

(B.9)

Substituting 𝜏 for 𝑝𝑁 in (B.9), it can be proved that

Var(
6

(1 − 𝑝)
3
𝑝𝑁3/2

Ω) 󳨀→
3𝜎
2
𝑓1 (𝑝)

𝐴2
+

3𝜎
4
𝑓2 (𝑝)

2𝐴4
,

(B.10)

where 𝑓1(𝑝) and 𝑓2(𝑝) are defined in Theorem 3. Therefore,
if 𝜔̃2 − 𝜔2 = 𝑂𝑝(𝑁

−1−𝛿
) and 0 < 𝛿 ⩽ 1/4, then, from (B.9),

𝜔̂2 − 𝜔2 = 𝑂𝑝(𝑁
−1−2𝛿

). If 1/4 < 𝛿 ⩽ 1/2, then from (B.9),
(B.10) and using the central limit theorem [34], it follows that
𝑁
5/2

(𝜔̂2 −𝜔2)
L
󳨀→ N(0, Σ)where Σ is the right term in (B.10).
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