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In this work we consider a coupled system of two weakly dissipative wave equations. We show that the solution of this system
decays polynomially and the decay rate is optimal. Computational experiments are conducted in the one-dimensional case in order
to show that the energies properties are preserved. In particular, we use finite differences and also spectral methods.

1. Introduction

This paper is concerned with the polynomial stability and
the optimal rate of decay of the 𝐶

0
-semigroup of the coupled

system of two wave equations:

𝑢
𝑡𝑡
− Δ𝑢 + 𝑢

𝑡
+ 𝛼V = 0 in Ω × ]0,∞[ , (1)

V
𝑡𝑡
− ΔV + 𝛼𝑢 = 0 in Ω × ]0,∞[ , (2)

𝑢 = V = 0 on Γ × ]0,∞[ , (3)

(𝑢 (𝑥, 0) , V (𝑥, 0)) = (𝑢
0
, V
0
) ,

(𝑢
𝑡 (𝑥, 0) , V𝑡 (𝑥, 0)) = (𝑢1 (𝑥) , V1 (𝑥)) ,

in Ω,

(4)

whereΩ is an open bounded set ofR𝑛 with smooth boundary
Γ. Here 𝛼 is a small real positive constant.

This problem is motivated by an analogous problem in
ordinary differential equations for coupled oscillators and
has potential application in isolation of objects from outside
disturbances. As an example in engineering, rubber-like
materials are used to absorb vibration or shield structures
from vibration.Modeling of structures such as beam or plates
sandwiched with rubber or similar materials will lead to
equations similar to those (1)-(2).

The exponential stability of coupled system of wave
equations has been studied by Najafi et al. [1] in the case of

two linear boundary feedback and by Komornik Rao [2] in
the case of two nonlinear boundary feedback.

We should mention that this initial boundary value prob-
lem (1)–(4) has been studied by many authors. For example,
in [3] Alabau Boussoira proved that the energy of associated
coupled weakly dissipative system decays polynomially as 𝑡−1
and this decay rate can improve since the initial data aremore
regular. In [4] Alabau Boussoira et al. showed the decay rates
for an abstract coupled weakly dissipative system of using the
same ideas introduced in [3]. For the case of the system (1)–
(4) we can also cite the work of Santos et al. [5] where the
authors proved 𝑡−1 polynomial decay and this decay rate can
improve since the initial data are more regular. The question
we are interested in is to study optimal polynomial decay rates
to the system (1)–(4). That is, we prove that the associated
semigroup decays at a rate 𝑡−1/2 and it is optimal. This work
improves the results in [3–5]. Our result on the polynomial
stability is based onTheorem 2.4 in [6].

Naturally, the system (1)–(4) is dissipative. Indeed, the
energy of the solutions defined by

𝐸 (𝑡) :=
1

2
∫
Ω

𝑢
2

𝑡
𝑑𝑥 +

1

2
∫
Ω

|∇𝑢|
2
𝑑𝑥 +

1

2
∫
Ω

V2
𝑡
𝑑𝑥

+
1

2
∫
Ω

|∇V|2𝑑𝑥 + 𝛼∫
Ω

𝑢V 𝑑𝑥
(5)

is decreasing in 𝑡 ∈ (0,∞), since
𝑑

𝑑𝑡
𝐸 (𝑡) = −∫

Ω

𝑢
2

𝑡
𝑑𝑥 ≤ 0. (6)
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To verify the asymptotic behavior of systems like (1)–(4),
only the work of Najafi [7] treated numerically the problem
of lack of exponential decay to a system of two coupled
wave equations. Here, we use two numerical approaches:
one is in finite differences and in the other one we use the
spectral methods. In particular, we explore the properties of
numerical energy associated with a particular discretization
in finite differences.

We conclude this introduction with an outline of the
paper. In Section 2, we show the existence of solutions for
the system (1)–(4). In the Section 3 we showed that the
system (1)–(4) is polynomially stable with optimal decay
rate. Section 4 is dedicated with the numerical aspects. We
derive a numerical energy and we show that it preserves
the conservation and dissipation laws. We use also spectral
methods to see the behavior of the numerical eigenvalues
when the damping is weak. Finally, in Section 5, we finished
this work with a conclusion.

2. The Semigroup Setting

In this section we will study the existence and uniqueness of
strong and global solutions for the system (1)–(4) using the
semigroup techniques.

Let us denote by H = 𝐻
1

0
(Ω) × 𝐿

2
(Ω) × 𝐻

1

0
(Ω) × 𝐿

2
(Ω)

the Hilbert space with internal product given by

⟨𝑈, 𝑉⟩H = ∫
Ω

[∇𝑢
1
⋅ ∇V
1
+ 𝑢
2
V
2
+ ∇𝑢
3
⋅ ∇V
3

+𝑢
4
V
4
+ 𝛼 (𝑢

1
V
3
+ 𝑢
3
V
1
)] 𝑑𝑥,

(7)

where 𝑈 = (𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
)
𝑇 and 𝑉 = (V

1
, V
2
, V
3
, V
4
)
𝑇.

Let us consider the unbounded operatorA in the energy
spaceH with

𝐷 (A) = 𝐻
2
(Ω) ∩ 𝐻

1

0
(Ω) × 𝐻

1

0
(Ω)

× 𝐻
2
(Ω) ∩ 𝐻

1

0
(Ω) × 𝐻

1

0
(Ω) ,

(8)

defined by

A =
[
[
[

[

0 𝐼 0 0

Δ −𝐼 −𝛼𝐼 0

0 0 0 𝐼

−𝛼𝐼 0 Δ 0

]
]
]

]

. (9)

Putting 𝜑 = 𝑢
𝑡
and 𝜓 = V

𝑡
, (1) and (2) can be written as

the following initial value problem:

𝑑𝑈

𝑑𝑡
= A𝑈,

𝑈 (0) = 𝑈
0
,

(10)

with 𝑈 = (𝑢, 𝜑, V, 𝜓)𝑇 and 𝑈
0
= (𝑢
0
, 𝑢
1
, V
0
, V
1
)
𝑇. Using the

internal product (7), we obtain

R𝑒⟨A𝑈,𝑈⟩H = −∫
Ω

󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨

2
𝑑𝑥 ≤ 0. (11)

Thus, A is a dissipative operator and therefore, using the
Lumer-PhillipsTheorem (see [8], Theorem 4.3), the operator
A generates a𝐶

0
-semigroup of contractions 𝑆(𝑡) = 𝑒A𝑡 onH.

Thus, we have the following result.

Theorem 1. Let one assume that𝑈
0
∈ 𝐷 (A); then there exists

a unique solution 𝑈 = (𝑢, 𝜑, V, 𝜓) to system (1)–(4) satisfying

𝑈 ∈ 𝐶 (R
+
; 𝐷 (A)) ∩ 𝐶

1
(R
+
;H) . (12)

3. Polynomial Decay and Optimal Result

To study the asymptotic behavior of the semigroup associated
with (1)–(4), let us consider the spectral problem:

−Δ𝑤] = 𝜆]𝑤] in Ω,

𝑤] = 0 on Γ,

(13)

where
lim
]→∞

𝜆] = +∞. (14)

Theorem 2. Let 𝑆(𝑡) be 𝐶
0
-semigroup of contractions gener-

ated byA. Then it follows that 𝑆(𝑡) is not exponentially stable.

Proof. Our main tool is to use Prüss’ result [9], which states
that a semigroup 𝑒A𝑡 is exponentially stable if and only if the
following conditions hold:

𝑖R ⊂ 𝜌 (A) (resolvent set), (15)

∃𝐾 > 0, ∀𝑈 ∈ 𝐷 (A) , ∀𝜆 ∈ R :
󵄩󵄩󵄩󵄩󵄩
(𝑖𝜆𝐼 −A)

−1󵄩󵄩󵄩󵄩󵄩H
≤ 𝐾.

(16)

This way, let us consider the resolvent equation

(𝑖𝜆𝐼 −A) 𝑈 = 𝐹, with 𝜆 ∈ R, 𝐹 ∈H; (17)

that is,

𝑖𝜆𝑢 − 𝜑 = 𝑓
1
, (18)

𝑖𝜆𝜑 − Δ𝑢 + 𝛼V + 𝜑 = 𝑓2, (19)

𝑖𝜆V − 𝜓 = 𝑓3, (20)

𝑖𝜆𝜓 − ΔV + 𝛼𝑢 = 𝑓4. (21)

Let us take 𝑓1 = 𝑓3 = 0 and 𝑓2 = 𝑓4 = 𝑤]. We look for
solution of the form 𝑢 = 𝑎𝑤], V = 𝑏𝑤], 𝜑 = 𝑐𝑤], and𝜓 = 𝑑𝑤],
with 𝑎, 𝑏, 𝑐, 𝑑 ∈ C. From (19)–(21), we get 𝑎 and 𝑏 satisfying

−𝜆
2
(𝑎 + 𝑏)𝑤] + (𝑎 + 𝑏) 𝜆]𝑤] + 𝛼 (𝑎 + 𝑏)𝑤] + 𝑐𝑤] = 2𝑤].

(22)

Now, choosing 𝜆 = √𝜆] + 𝛼, and using the above
equation, we obtain 𝑐 = 2, so we have

𝑎 =
−2𝑖

√𝜆] + 𝛼
, 𝑏 =

2𝑖

√𝜆] + 𝛼
+
1

𝛼
,

𝑑 =
−2𝛼 + 𝑖√𝜆] + 𝛼

𝛼
.

(23)
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Therefore, we have

𝑢 =
−2𝑖

√𝜆] + 𝛼
𝑤], V = (

2𝑖

√𝜆] + 𝛼
+
1

𝛼
)𝑤],

𝜑 = 2𝑤], 𝜓 =
−2𝛼 + 𝑖√𝜆] + 𝛼

𝛼
𝑤].

(24)

Now we claim that

‖𝑈‖H 󳨀→ +∞, as V 󳨀→ +∞. (25)

In fact, using (7) and (24) and noting that

lim
]→∞

𝜆] = ∞, (26)

we conclude that

‖𝑈‖
2

H ≥ ∫
Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(
−2𝛼 + 𝑖√𝜆] + 𝛼

𝛼
𝑤])

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 󳨀→ ∞. (27)

Recalling that

𝑖𝜆𝑈 −A𝑈 = 𝐹 ⇐⇒ 𝑈 = (𝑖𝜆𝐼 −A)
−1
𝐹, (28)

it follows from (27) and (16) that 𝑆(𝑡) is not exponentially
stable.

In order to show the polynomial decay from semigroup
associated with the system (1)–(4), first let us consider the
product inH of 𝑈 = (𝑢, 𝜑, V, 𝜓)𝑇 ∈ 𝐷 (A) with the resolvent
equation ofA; that is,

𝑖𝜆‖𝑈‖
2

H − (A𝑈,𝑈)H = (𝐹,𝑈)H. (29)

Now, noting that

∫
Ω

󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨

2
𝑑𝑥 = −(A𝑈,𝑈)

H
, (30)

we get

𝑖𝜆‖𝑈‖
2

H + ∫
Ω

󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨

2
𝑑𝑥 = (𝐹, 𝑈)H. (31)

Then taking the real part, we obtain

∫
Ω

󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨

2
𝑑𝑥 ≤ ‖𝑈‖H‖𝐹‖H. (32)

Lemma 3. The strong solution of the system (1)–(4) given by
Theorem 1 satisfies

∫
Ω

|∇𝑢|
2
𝑑𝑥 + ∫

Ω

|∇V|2𝑑𝑥 + 𝛼∫
Ω

(𝑢V + V𝑢) 𝑑𝑥

≤ ∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2
𝑑𝑥 + 𝐾‖𝑈‖H‖𝐹‖H,

(33)

where𝐾 is a positive constant.

Proof. Multiplying equalities (19) and (21) by 𝑢 and V, respec-
tively, integrating onΩ, and summing up the result we get

𝑖𝜆 ∫
Ω

𝜑𝑢 𝑑𝑥
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

:=𝐼
1

+ ∫
Ω

|∇𝑢|
2
𝑑𝑥 + 𝛼∫

Ω

V𝑢 𝑑𝑥

+ 𝑖𝜆∫
Ω

𝜓V 𝑑𝑥
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

:=𝐼
2

+ ∫
Ω

|∇V|2 𝑑𝑥 + 𝛼∫
Ω

∫𝑢V 𝑑𝑥

= ∫
Ω

𝑓
2
𝑢 𝑑𝑥 + ∫

Ω

𝑓
4V 𝑑𝑥.

(34)

Substituting 𝑖𝜆𝑢 given in (18) into 𝐼
1
and 𝑖𝜆V given in (20)

into 𝐼
2
, we have

∫
Ω

|∇𝑢|
2
𝑑𝑥 + ∫

Ω

|∇V|2𝑑𝑥 + 𝛼∫
Ω

(V𝑢 + 𝑢V) 𝑑𝑥

= ∫
Ω

󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨

2
𝑑𝑥 + ∫

Ω

󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨

2
𝑑𝑥

+ ∫
Ω

𝜑𝑓1𝑑𝑥 + ∫
Ω

𝜓𝑓3𝑑𝑥

+ ∫
Ω

𝑓
2
𝑢𝑑𝑥 + ∫

Ω

𝑓
4V𝑑𝑥.

(35)

Using (32) our conclusion follows.

Lemma 4. The strong solution of the system (1)–(4) given by
Theorem 1 satisfies

(1 −
𝑐

𝜆
)∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2
𝑑𝑥 ≤

𝑐

|𝜆|
(∫
Ω

|∇V|2𝑑𝑥 + ∫
Ω

|∇𝑢|
2
𝑑𝑥)

+ 𝐾|𝜆|
2
‖𝑈‖H‖𝐹‖H,

(36)

where𝐾 is a positive constant and |𝜆| > 1 large enough.

Proof. Multiplying equality (21) by 𝜓 and integrating on Ω,
we get

𝑖𝜆 ∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2
𝑑𝑥 = ∫

Ω

ΔV𝜓𝑑𝑥 − 𝛼∫
Ω

𝑢𝜓𝑑𝑥

+ ∫
Ω

𝑓
4
𝜓𝑑𝑥.

(37)

Using equality (20) and Poincaré and Young inequalities, we
have

∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2
𝑑𝑥 ≤

𝑐

|𝜆|
(∫
Ω

|∇V|2𝑑𝑥 + ∫
Ω

|∇𝑢|
2
𝑑𝑥)

+
𝑐

|𝜆|
∫
Ω

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

2
𝑑𝑥 + 𝐾‖𝑈‖H‖𝐹‖H,

(38)

where 𝑐 is a positive constant and |𝜆| > 1 is large enough.The
proof is now complete.

Now, we are in the position to prove the main result of
this paper.
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Theorem 5. The semigroup associated with the system (1)–(4)
is polynomially stable and

󵄩󵄩󵄩󵄩𝑆 (𝑡) 𝑈0
󵄩󵄩󵄩󵄩H ≤

𝐾

√𝑡

󵄩󵄩󵄩󵄩𝑈0
󵄩󵄩󵄩󵄩𝐷(A). (39)

Moreover, this result is optimal.

Proof. From Lemmas 3 and 4 and for |𝜆| > 1, we have

‖𝑈‖H ≤ 𝐾|𝜆|
2
‖𝐹‖H, (40)

which is equivalent to

󵄩󵄩󵄩󵄩󵄩
(𝜆𝐼 −A)

−1󵄩󵄩󵄩󵄩󵄩
≤ 𝐾|𝜆|

2
. (41)

Then usingTheorem 2.4 in [6], we obtain

󵄩󵄩󵄩󵄩󵄩
𝑆 (𝑡)A

−1󵄩󵄩󵄩󵄩󵄩
= O (𝑡

−1/2
) 󳨐⇒

󵄩󵄩󵄩󵄩󵄩
𝑆 (𝑡)A

−1
𝐹
󵄩󵄩󵄩󵄩󵄩H

≤
𝐾

√𝑡
‖𝐹‖H.

(42)

Since 0 ∈ 𝜌(A), it follows that A is onto over H; then
takingA𝑈

0
= 𝐹, we get

󵄩󵄩󵄩󵄩𝑆 (𝑡) 𝑈0
󵄩󵄩󵄩󵄩H ≤

𝐾

√𝑡

󵄩󵄩󵄩󵄩𝑈0
󵄩󵄩󵄩󵄩𝐷(A). (43)

Therefore the solution decays polynomially.
To prove that the rate of decay is optimal, we will argue by

contradiction. Suppose that the rate 𝑡−1/2 can be improved;
for example, the rate is 𝑡−1/(2−𝜖) for some 0 < 𝜖 < 2. From
Theorem 5.3 in [10], the operator

|𝜆|
−2+(𝜖/2)󵄩󵄩󵄩󵄩󵄩

(𝜆𝐼 −A)
−1󵄩󵄩󵄩󵄩󵄩L(H)

(44)

should be limited, but this does not happen. For this, let
us suppose that there exists a sequence (𝜆

𝜇
) ⊂ R with

lim
𝜇→∞

|𝜆
𝜇
| = ∞ and (𝑈

𝜇
) ⊂ 𝐷 (A) for (𝐹

𝜇
) ⊂ H such

that

(𝑖𝜆
𝜇
𝐼 −A)𝑈

𝜇
= 𝐹
𝜇

(45)

is bounded inH and

lim
𝜇→∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝜇

󵄨󵄨󵄨󵄨󵄨

−2+(𝜖/2)󵄩󵄩󵄩󵄩󵄩
𝑈
𝜇

󵄩󵄩󵄩󵄩󵄩H
= ∞. (46)

Then, we can consider, for each 𝜇 ∈ N, 𝐹
𝜇
= (0, 𝑤

𝜇
, 0, 𝑤
𝜇
)
𝑇

and 𝑈
𝜇
= (𝑢

𝜇
, 𝜑
𝜇
, V
𝜇
, 𝜓
𝜇
)
𝑇, where, due to the boundary

conditions,𝑈
𝜇
are in the form 𝑢

𝜇
= 𝑎𝑤
𝜇
, V
𝜇
= 𝑏𝑤
𝜇
, 𝜑
𝜇
= 𝑐𝑤
𝜇
,

and 𝜓
𝜇
= 𝑑𝑤
𝜇
.

Then following the same steps as in the proof of Theo-
rem 2 we can conclude that
󵄨󵄨󵄨󵄨󵄨
𝜆
𝜇

󵄨󵄨󵄨󵄨󵄨

−2+(𝜖/2)󵄩󵄩󵄩󵄩󵄩
𝑈
𝜇

󵄩󵄩󵄩󵄩󵄩H
≥ 𝑂 (𝜇

𝜖/2
) 󳨀→ ∞, as 𝜇 󳨀→ ∞. (47)

Therefore the rate cannot be improved. The proof is now
complete.

4. Numerical Approaches

In this section, we give a number of numerical experiments
to certify the analytical results (see Figure 15). We use two
numerical approaches to this aim: the spectral method to
compute the numerical eigenvalues and the explicit time
integration method to compute the numerical solutions and
to derive the associated numerical energy. In particular, the
numerical energy preserves the conservation/dissipation of
energy. Moreover, by means of numerical simulations we can
note a lack of numerical exponential decay considering only
damping (see Figure 17).

Our numerical simulations are realized in the one-
dimensional case. Then we consider the following one-
dimensional system:

𝑢
𝑡𝑡
− 𝑢
𝑥𝑥
+ 𝛼V + 𝑢

𝑡
= 0, in (0, 𝐿) × (0, 𝑇) , (48)

V
𝑡𝑡
− V
𝑥𝑥
+ 𝛼𝑢 = 0, in (0, 𝐿) × (0, 𝑇) , (49)

𝑢 (0, 𝑡) = 𝑢 (𝐿, 𝑡) = 0, V (0, 𝑡) = V (𝐿, 𝑡) = 0,

0 < 𝑡 < 𝑇,

(50)

𝑢 (⋅, 0) = 𝑢
0
(⋅) , 𝑢

𝑡
(⋅, 0) = 𝑢

1
(⋅) ,

V (⋅, 0) = V
0 (⋅) , V

𝑡 (⋅, 0) = V
1 (⋅) .

∀𝑥 ∈ (0, 𝐿) .

(51)

4.1. Explicit Time Integration Method. For our purpose we
define a computational mesh defining Δ𝑥 = 𝐿/(𝐽 + 1) and
Δ𝑡 = 𝑇/(𝑁 + 1) for 𝐽,𝑁 ∈ N and the nets given by

𝑥
0
= 0 < 𝑥

1
= Δ𝑥 < ⋅ ⋅ ⋅ < 𝑥

𝐽
= 𝐽Δ𝑥 < 𝑥

𝐽+1
= 𝐿,

𝑡
0
= 0 < 𝑡

1
= Δ𝑡 < ⋅ ⋅ ⋅ < 𝑡

𝑁
= 𝑁Δ𝑡 < 𝑡

𝑁+1
= 𝑇,

(52)

where 𝑥
𝑗
= 𝑗Δ𝑥 and 𝑡

𝑛
= 𝑛Δ𝑡 for 𝑗 = 0, 1, 2, . . . , 𝐽 + 1 and

𝑛 = 0, 1, 2, . . . , 𝑁 + 1.
We consider the following finite-difference discretization

of (48)-(49):

𝑢
𝑛+1

𝑗
− 2𝑢
𝑛

𝑗
+ 𝑢
𝑛−1

𝑗

Δ𝑡2
−

𝑢
𝑛

𝑗+1
− 2𝑢
𝑛

𝑗
+ 𝑢
𝑛

𝑗−1

Δ𝑥2
+

𝑢
𝑛+1

𝑗
− 𝑢
𝑛−1

𝑗

2Δ𝑡
+𝛼V𝑛
𝑗
=0,

(53)

V𝑛+1
𝑗

− 2V𝑛
𝑗
+ V𝑛−1
𝑗

Δ𝑡2
−

V𝑛
𝑗+1
− 2V𝑛
𝑗
+ V𝑛
𝑗−1

Δ𝑥2
+ 𝛼𝑢
𝑛

𝑗
= 0, (54)

for all 𝑗 = 1, 2, . . . , 𝐽, 𝑛 = 1, 2, . . . , 𝑁. Such scheme is in
fact explicit and its implementation is straightforward. The
boundary conditions are

𝑢
𝑛

0
= 𝑢
𝑛

𝐽+1
= 0, V𝑛

0
= V𝑛
𝐽+1

= 0, ∀𝑛 = 1, 2, . . . , 𝑁, (55)
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and the initial conditions are given by

𝑢
0

𝑗
=𝑢 (𝑥

𝑗
, 0) , 𝑢

1

𝑗
=𝑢
0

𝑗
+ Δ𝑡𝑢

𝑡
(𝑥
𝑗
, 0) , ∀𝑗 = 1, 2, . . . , 𝐽,

(56)

V0
𝑗
=V (𝑥

𝑗
, 0) , V1

𝑗
=V0
𝑗
+ Δ𝑡V
𝑡
(𝑥
𝑗
, 0) , ∀𝑗 = 1, 2, . . . , 𝐽.

(57)

The discretizations above are consistent with truncation
error of second order inΔ𝑥 andΔ𝑡.Therefore, it is immediate
by Lax Lemma [11] that (53)-(54) converges. For convenience,
we use the stability criterion (taking into account the conser-
vative case) due to Courant-Friedrichs-Lewy; namely, Δ𝑡 ≤
Δ𝑥.

4.2. Energy Conserving Scheme. In this section we will build
the numerical energy to system (53)–(57). Following the
techniques performed, for example, in [12, 13], this energy is
given by

𝐸
𝑛
:=
Δ𝑥

2

𝐽

∑

𝑗=0

[

[

(

𝑢
𝑛+1

𝑗
− 𝑢
𝑛

𝑗

Δ𝑡
)

2

+(

𝑢
𝑛+1

𝑗+1
− 𝑢
𝑛+1

𝑗

Δ𝑥
)(

𝑢
𝑛

𝑗+1
− 𝑢
𝑛

𝑗

Δ𝑥
)

+(

V𝑛+1
𝑗

− V𝑛
𝑗

Δ𝑡
)

2

+ (

V𝑛+1
𝑗+1

− V𝑛+1
𝑗

Δ𝑥
)(

V𝑛
𝑗+1
− V𝑛
𝑗

Δ𝑥
)

+𝛼 (V𝑛
𝑗
𝑢
𝑛+1

𝑗
+ 𝑢
𝑛

𝑗
V𝑛+1
𝑗
)]

]

.

(58)

We note that 𝐸𝑛 is the discrete version of the continuous
energy (5) in one-dimensional setting. Moreover, one can
show that 𝐸𝑛 decreases. Instead of computing the time
derivative of the energy we can use the summation by parts.
The discrete energy 𝐸𝑛 is an important numerical instrument
to certify our analytical results concerning the polynomial
stabilization of system (53)–(57).

We have the following result.

Theorem 6 (discrete energy). Let (𝑢𝑛
𝑗
, V𝑛
𝑗
) be a solution of the

finite difference scheme (53)–(57). Then for all Δ𝑡 and Δ𝑥, the
discrete rate of change of energy of the numerical scheme (53)–
(57) at the 𝑡

𝑛
instant of time is given by

𝐸
𝑛
− 𝐸
𝑛−1

Δ𝑡
= −

𝐽

∑

𝑗=1

(

𝑢
𝑛+1

𝑗
− 𝑢
𝑛−1

𝑗

2Δ𝑡
)

2

, (59)

for all 𝑛 = 1, . . . , 𝑁,𝑁 + 1.

Proof. We shortened the proof. It is identical to the proof of
Proposition 1 in [12]. Then, we can write

𝐸
𝑛
+ Δ𝑡

𝐽

∑

𝑗=1

(

𝑢
𝑛+1

𝑗
− 𝑢
𝑛−1

𝑗

2Δ𝑡
)

2

= 𝐸
𝑛−1
, (60)
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from where we have

𝐸
𝑛
≤ 𝐸
0
, ∀𝑛 = 1, . . . , 𝑁,𝑁 + 1. (61)

Considering the conservative case we get

𝐸
𝑛
= 𝐸
0
, ∀𝑛 = 1, 2, . . . , 𝑁. (62)

4.3. Discussion on Numerical Results. In this section, we
consider two numerical approaches to certify the analytical
results established in this work: the pseudospectral method
to compute numerically the eigenvalues and also using the
numerical energy 𝐸𝑛 in (58).

For spectral analysis we apply the spectral method
according to Trefethen’s book [14]. Using this numerical
technique, we can see the numerical behavior of eigenvalues
of (48)-(49). To see how this system is affected by a lack of
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Figure 7: Δ𝑡/Δ𝑥 = 0.9600.

exponential decay bymeans of several numerical simulations,
we can consider two damping 𝛽

1
𝑢
𝑡
and 𝛽
2
V
𝑡
where 𝛽

1
, 𝛽
2
≥ 0.

Then, making 𝛽
2
go to zero, we can see a numerical sequence

of eigenvalues converging to zero.
We consider 𝛽

1
= 1 and we take 𝛽

2
going to zero. Figures

1, 2, 3, and 4 show that when 𝛽
𝑖
̸= 0, 𝑖 = 1, 2, the real part

of complex roots approaches negative asymptotes −𝛽
𝑖
/2, 𝑖 =

1, 2.
On the other hand, in Figures 5 and 6, we can see a

sequence of eigenvalues converging to 0 as 𝛽
2
→ 0.

Next, we show results of numerical simulations of scheme
(53)–(57) and its energy𝐸𝑛. Here we use the stability criterion
Δ𝑡 ≤ Δ𝑥.

4.4. Undamped Case. Here, we consider 𝛼 = 0.25, 𝐿 = 1,
𝑇 = 2 s, 𝑢(𝑥

𝑗
, 0) = V(𝑥

𝑗
, 0) = 2 sin(3𝜋𝑥

𝑗
/𝐿), 𝑢

𝑡
(𝑥
𝑗
, 0) = 0,
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Figure 9: Δ𝑡/Δ𝑥 = 0.7680.

Table 1

𝜇 = 0.9600 𝜇 = 0.8960 𝜇 = 0.7680 𝜇 = 0.7168

𝜀 1.2103 0.2745 0.558 0.128

and V
𝑡
(𝑥
𝑗
, 0) = 3 sin(3𝜋𝑥

𝑗
/𝐿). At continuous level we obtain

that 𝐸(0) ≈ 180,4029.
Figures 7, 8, 9, and 10 show the conservative behavior of

numerical energy 𝐸𝑛 to undamped system. We can see the
conservative behavior of the energy 𝐸𝑛 in agreement with
Proposition 4.1. Moreover, it is clear that the accuracy of the
approximations is achieved by means of refinements of type
𝜇 := Δ𝑡/Δ𝑥 ≤ 1.

A simple analysis, by using absolute error 𝜖 := |𝐸(0) −𝐸0|
for each simulation, shows us the precision of the numerical
energy. Table 1 shows the evolution of this error for each
simulation.
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Figure 10: Δ𝑡/Δ𝑥 = 0.7168.
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4.5. Full and Partial Damping. It is clear that considering
two damping to the system (53)-(54) its numerical energy 𝐸𝑛
decays exponentially. See Figures 11 and 13. Therefore, in this
case the energy 𝐸𝑛 is controllable by an exponential of type
𝑒
−𝜔𝑡
𝑛 for some 𝜔 > 0. On the other hand, taking into account

damping only one dissipative mechanism we observe a slow
decay fromvalue≈180 to value≈90 (see Figures 12 and 14).We
can note a lack of 50 by cent in terms of exponential decay.

Note that the numerical solutions of the function V do not
go to the state of rest. See Figures 16 and 18.

5. Conclusions

In this work we considered a coupled system of two weakly
dissipativewave equations.That is to say, the dampingmecha-
nism acts partially on the system and it is well known that this
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system is not exponentially stable. Our main contribution is
twofold: the optimality of the polynomial decay in accordance
with a recent theoretical contribution due to Borichev and
Tomilov [6] and its numerical certification by using finite
differences method. In particular, we derive a numerical
energy and we show the lack of exponential decay by means
of several numerical experiments.

The analytical and numerical techniques performed in
this work can be applied to systems where there exists a lack
of exponential decay. See, for example, the work of Santos
et al. for examples of systems with the property of lack of
exponential decay and polynomial decay.
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