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Partial fraction expansion (pfe) is a classic technique used in many fields of pure or applied mathematics. The paper focuses on the
pfe of general rational functions in both factorized and expanded form.Novel, simple, and recursive formulas for the computation of
residues and residual polynomial coefficients are derived.The proposed pfe methods require only simple pure-algebraic operations
in the whole computation process. They do not involve derivatives when tackling proper functions and require no polynomial
division when dealing with improper functions. The methods are efficient and very easy to apply for both computer and manual
calculation. Various numerical experiments confirm that the proposed methods can achieve quite desirable accuracy even for pfe
of rational functions with multiple high-order poles or some tricky ill-conditioned poles.

1. Introduction

Partial fraction expansion (pfe) has been a powerful tool
widely used in the field of calculus, differential equations,
control theory, and some other areas of pure or applied
mathematics. It is also a classic topic studied bymany scholars
over the time. Though a sole solution is guaranteed, it is not
an easy task to perform the computation of pfe effectively,
especially when the functions to be expanded contain high-
order or ill-conditioned poles. Many existing methods are
difficult to apply and can lead to considerable errors. We
aim to research this classic topic and propose several novel
more efficient and simpler pfe methods for general rational
functions in both factorized form and expanded form.

Suppose 𝑅(𝑠) = 𝑄(𝑠)/𝑃(𝑠) is the rational function to
be expanded inpfe. The polynomials, 𝑃(𝑠) and 𝑄(𝑠), are
denominator and numerator of 𝑅(𝑠), respectively. Generally,
a polynomial (let us say 𝑄(𝑠)), can be written in either
expanded form 𝑄(𝑠) = ∑

𝑖
𝑎
𝑖
𝑠
𝑖 or factorized form 𝑄(𝑠) =

∏
𝑖
(𝑠 − 𝑧
𝑖
)
𝑛𝑖 in terms of its zeros. Though theoretically equiv-

alent, a method based on one of these forms may exhibit
significant differences from the other in numerical accuracy
and computational efficiency [1]. In pfe problems, as the poles

of 𝑅(𝑠) have to be known, 𝑃(𝑠) is mostly written in factorized
form. Though 𝑄(𝑠) can be written in either factorized or
expanded form, the latter seems to be more in favor in
practice. Most current available pfe methods are designed
for 𝑅(𝑠) with 𝑄(𝑠) written in expanded form. However, one
may still be motivated to design pfe methods for factorized
𝑅(𝑠). For one thing, many functions are originally written in
factorized form. A pfe method for factorized 𝑅(𝑠) can deal
with such functions directly and more efficiently, therefore,
it is more preferable. For another, under many practical
circumstances, even 𝑅(𝑠) is originally written in expanded
form, the zeros and poles of𝑅(𝑠) have to be obtained. In other
words, 𝑅(𝑠) needs to be rewritten in factorized form.This can
be often seen in the field of system analysis and design, where
pfe methods are widely used in the derivation of Inverse
Laplace transformation of transfer function. As the zeros and
poles of the transfer function almost characterize the whole
system, they are often obtained. The zero-pole plot of the
transfer function is almost used as a routine in the analysis of
signal and system. Considering that methods for factorized
functions can be more easily performed, thus they can serve
as an alternative scheme under such circumstances. Some
other practical reasons for the development of pfe methods
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for factorized 𝑅(𝑠) are also mentioned in [2]. In a word, it is
of significance to design methods for the pfe of 𝑅(𝑠) in both
factorized and expanded form.

The most well-known pfe method is Heaviside’ cover-
up formula. It is often introduced as a textbook method.
It provides an elegant compact solution to pfe problems
and often serves as a basis for other pfe methods. However,
this classic method requires successive differentials when
applying to functions with high-order poles, which gives
rise to increasingly higher order polynomials. Evaluation of
these high-order polynomials can eventually lead to large
numerical errors [3]. Another standard pfe method is the
method of undetermined coefficients. This method requires
the construction and solution of a system of equations. It
can also be very complicated and inconvenient when tackling
functions with high-order poles. Besides the standard classic
methods, many pfe methods are also proposed during the
past years. Someof thesemethods tend to performbetter than
classical methods under certain conditions. However, many
of them are only suitable for small-scale problems or some
particular cases and are difficult to fit into computer program.
Two desirable methods are specially designed for the pfe of
functions in factorized form [3, 4]. In [4], Brugia developed
an efficient noniterative method for pfe of functions with
high-order poles by deriving the high-order derivative of the
rational functions directly without passing its lower order
ones. Compared with the classic methods and many other
“tricky” methods, Brugia’s method is more applicable and
efficient. It can be easily programed for computer computa-
tion. Linnér [3] simplified Brugia’smethod by using operators
and extended it to improper functions by Laurent expansion.
In [5], a modification was also made to Brugia’s method,
which leads to relative simpler implementation and a review
of many nice “aged” methods can also be found in [5]. Most
of existing methods assume that the rational function is
written in expanded form. In [6], Karni proposed an algebraic
procedure for pfe. Karni’s algorithm, unfortunately, is limited
to just those cases where the degree of the numerator is
no more than the number of poles. Karni’s method was
further developed yet withmuch implementation costs in [7–
9]. Pottle [10] proposed an iterative method for the digital
computer use, but this method is subject to intolerable
errors when applied to functions with high-order poles. Uraz
and Nagy [11] proposed a method calculating the residues
and coefficients utilizing matrix algebra. Besides the above
relatively “aged” methods, many methods are also proposed
in the recent years, such as the methods in [12–17]. Many of
these methods are also only suitable for some particular cases
and can become very complicated for large-scale problems.
In [17], Ma et al. proposed an efficient pure algebraic method
for pfe of general rational functions with high-order poles.
It exhibits quite good performance and avoids long division
when dealing with improper functions.Themethod does not
involve derivative and can be coded conveniently. The calcu-
lation complexity of some pfemethods is discussed in [18, 19].

In this paper, we develop efficient recursive algebraic
pfe methods for rational functions in both factorized and
expanded form. Simple, elegant, and pure-algebraic formulas
are proposed to compute the pfe coefficients. The proposed

methods can be used for pfe of both proper and improper
rational functions with complex poles. They do not involve
polynomial division or differentiation or the solution of a
system of linear equations for the pfe of a general ratio-
nal function. The remainder of the paper is organized as
follows. In Section 2, we focus on the pfe of functions in
factorized form. Brugia’s and Linnér’s methods are further
developed and simplified for much easier implementation
and extended to more general cases. We also develop novel
simple algebraic methods to compute the coefficients of
the residual polynomial of improper functions that avoids
polynomial division. In Section 3, we focus on the pfe of
rational function in expanded form. Two novel efficient
methods are proposed. Several useful, compact formulas
are derived for the computation of residues. Two efficient
methods that avoid polynomial division are developed to
compute the coefficients of the residual polynomial. In
Section 4, numerical examples are provided to illustrate the
usage and validity of the proposed methods, followed by the
conclusion in Section 5.

2. Partial Faction Expansion of Rational
Functions in Factorized Form

Let the factorized rational function be

𝑅 (𝑠) =

∏
𝑁

𝑗=1
(𝑠 − 𝑧

𝑗
)
𝑛𝑗

∏
𝑀

𝑗=1
(𝑠 − 𝑠
𝑗
)
𝑚𝑗

, (1)

which is expanded as

𝑅 (𝑠) =

𝐸

∑

ℎ=0

𝑒
ℎ
(𝑠 − 𝑠
𝑐
)
ℎ
+

𝑀

∑

𝑘=1

𝑚𝑘

∑

𝐿=1

𝑐
𝑘𝐿

(𝑠 − 𝑠
𝑘
)
𝐿
. (2)

Here 𝑐
𝑘𝐿
are the residues; 𝑧

𝑗
and 𝑠
𝑗
are the zeroes and poles of

𝑅(𝑠), respectively. The poles and zeroes are assumed distinct
in the whole paper; 𝑛

𝑗
and 𝑚

𝑗
are the multiplicities of 𝑧

𝑗

and 𝑠
𝑗
, respectively; 𝑁 is the number of zeros and 𝑀 is

the number of poles; 𝑒
ℎ
are the coefficients of the residual

polynomial which will be zeros for a proper 𝑅(𝑠); 𝑠
𝑐
is a

constant introduced to make the residual polynomial more
general. 𝑠

𝑐
is often set as zero in other articles. From (1)

and (2), we can observe that the degree of the numerator
of 𝑅(𝑠) is 𝑉 = ∑

𝑁

𝑗=1
𝑛
𝑗
; the degree of the denominator is

𝐾 = ∑
𝑀

𝑗=1
𝑚
𝑗
; 𝐸 = 𝑉 − 𝐾. In a pfe problem, 𝑐

𝑘𝐿
, 𝑒
ℎ
are

the unknown coefficients to be calculated. We first propose
a simple recursive formula to obtain the residues and then
provide two algebraic methods for obtaining coefficients of
the residual polynomial for an improper function.

2.1. Computing Residues of Factorized Functions. Brugia [4]
developed a classic pfe method for factorized rational func-
tions. His method is more efficient and easier to apply for
both manual and computer calculation compared with many
other methods. Here we are to further develop and simplify
Brugia’s method. To allow for context and illumination of
differences and to make this paper self-contained, part of
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Brugia’s method is briefly introduced below. According to
Heaviside’s formula, we have

𝑐
𝑘𝐿

=

𝑅
(𝐾)

𝑘

󵄨󵄨󵄨󵄨󵄨𝑠=𝑠𝑘

𝐾!
,

(3)

where𝐾 = 𝑚
𝑘
− 𝐿 and

𝑅
𝑘 (𝑠) =

∏
𝑁

𝑗=1
(𝑠 − 𝑧

𝑗
)
𝑛𝑗

∏
𝑀

𝑗=1,𝑗 ̸=𝑘
(𝑠 − 𝑠
𝑗
)
𝑚𝑗

. (4)

As shown in [4], the Kth derivatives of 𝑅
𝑘
(𝑠) are

𝑅
(𝐾)

𝑘
= (𝑅
𝑘
𝐷
𝑘
)
(𝐾−1)

=

𝐾−1

∑

𝑖=0

𝐶
𝑖

𝐾−1
𝑅
(𝐾−𝑖−1)

𝑘
𝐷
(𝑖)

𝑘
, (5)

where𝐾 > 0 and

𝐷
(𝑖)

𝑘
= (−1)

𝑖
𝑖!(

𝑁

∑

𝑗=1

𝑛
𝑗

(𝑠 − 𝑧
𝑗
)
𝑖+1

−

𝑀

∑

𝑗=1

𝑗 ̸=𝑘

𝑚
𝑗

(𝑠 − 𝑠
𝑗
)
𝑖+1

). (6)

Here 𝐶
𝑖

𝑚
= 𝑚!/(𝑚 − 𝑖)!𝑖!, 𝑖 = 𝑖(𝑖 − 1) ⋅ ⋅ ⋅ 1, and 0! = 1. In

the above equations, we denote 𝑅
𝑘
(𝑠) by 𝑅

𝑘
for simplicity of

expression. Similar notations are also used for other functions
in the following part.This is Brugia’s main result; more details
can be found in [4]. Equations (5) and (6) can generate a
linear system of equations and then Gramer’s method can
used to solve the equations to obtain the derivatives of 𝑅

𝑘
(𝑠).

It represents a very efficient pfe method and the computer
implementation is easier to be accomplished compared with
many other existing “tricky” methods. Here we propose a
simpler method based on (3), (5), and (6). According to (3),
we can obtain

𝑅
(𝑖)

𝑘

󵄨󵄨󵄨󵄨󵄨𝑠=𝑠𝑘
= 𝑖!𝑐
𝑘(𝑚𝑘−𝑖)

. (7)

Making some mathematical transformations on (6) yields

𝐷
(𝑖)

𝑘
= 𝑖!(

𝑀

∑

𝑗=1

𝑗 ̸=𝑘

𝑚
𝑗

(𝑠
𝑗
− 𝑠)
𝑖+1

−

𝑁

∑

𝑗=1

𝑛
𝑗

(𝑧
𝑗
− 𝑠)
𝑖+1

). (8)

Here we mention that the modification on (6) to obtain (8)
is relatively little, but in practice it can reduce computation
costs and facilitate implementation to a considerable extent.
Combining (5) and (3), we have

𝑐
𝑘𝐿

=
1

𝐾!

𝐾−1

∑

𝑖=0

𝐶
𝑖

𝐾−1
𝑅
(𝐾−𝑖−1)

𝑘
𝐷
(𝑖)

𝑘

󵄨󵄨󵄨󵄨󵄨𝑠=𝑠𝑘
. (9)

Using (7) and (8) to substitute the derivatives of 𝑅
𝑘
and𝐷

𝑘
in

the summation of (9) yields

𝑐
𝑘𝐿

=
1

𝐾

𝐾−1

∑

𝑖=0

𝑐
𝑘(𝑚𝑘−(𝐾−𝑖−1))

× (

𝑀

∑

𝑗=1

𝑗 ̸=𝑘

𝑚
𝑗

(𝑠
𝑗
− 𝑠)
𝑖+1

−

𝑁

∑

𝑗=1

𝑛
𝑗

(𝑧
𝑗
− 𝑠)
𝑖+1

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑠=𝑠𝑘

.

(10)

Notice𝐾 = 𝑚
𝑘
− 𝐿. Equation (10) further yields

𝑐
𝑘𝐿

=
1

𝑚
𝑘
− 𝐿

𝑚𝑘−𝐿

∑

𝑖=1

𝑐
𝑘(𝐿+𝑖)

𝜆̂
𝑖

󵄨󵄨󵄨󵄨󵄨𝑠=𝑠𝑘
, (𝐿 = 𝑚

𝑘
− 1 : −1 : 1) ,

(11a)

where

𝜆̂
𝑖
= (

𝑀

∑

𝑗=1

𝑗 ̸=𝑘

𝑚
𝑗

(𝑠
𝑗
− 𝑠)
𝑖
−

𝑁

∑

𝑗=1

𝑛
𝑗

(𝑧
𝑗
− 𝑠)
𝑖
). (11b)

Here we mention that in (11a) 𝐿 = 𝑚
𝑘
− 1 : −1 : 1 means

𝐿 = 𝑚
𝑘
−1,𝑚

𝑘
−2,𝑚

𝑘
−3, . . . , 2, 1.This is aMatlab denotation

which will also be used in the following part for the simplicity
of expression. Obviously 𝑐

𝑘𝑚𝑘
= 𝑅
𝑘
|
𝑠=𝑠𝑘

. By using (11a)
and (11b) and decreasing progressively the value of 𝐿 from
𝑚
𝑘
− 1 to 1, we can then derive other residues successively.

Equations (11a) and (11b) can be implemented recursively in
a straightforward way. It can be achieved without the aid of a
comparatively complex table as done in [3]. It is much easier
to apply for manual calculation than the Brugia’s method [4]
and its modifications [3, 5]. Meanwhile, it can be programed
more easily and reduce calculation costs.

2.2. Computing Residual Polynomial Coefficients of Factorized
Functions. Generally, as practiced by most current articles,
long division or polynomial division can be used to compute
the coefficients of the residual polynomial, namely, 𝑒

ℎ
, in

(2). However, as errors will propagate at each step of the
polynomial division, this scheme is not quite suitable for
large-scale problems. Moreover, for a given factorized ratio-
nal function, the long division requires both the numerator
and denominator be rewritten in expanded form, which
can lead to additional errors and much computation costs.
Here we provide two novel algebraic methods to compute
𝑒
ℎ
that avoid long division and the reformation of 𝑅(𝑠). The

first method described in Section 2.2.1 is obtained by further
developing Linnér’smethod.The othermethod introduced in
Section 2.2.2 is based on derivatives.

2.2.1. Laurent Expansion Applied to Improper Rational Func-
tions for Any 𝑠

𝑐
. Brugia’s method is limited to proper func-

tions. In [3], Linnér proposed an excellent procedure to
compute the residual polynomial coefficient of improper
functions by Laurent expansion. Here we will further develop
Linnér’s method and obtain much simpler and more efficient
calculation formulas. Linnér’s method demands that 𝑠

𝑐
in

(2) not be equal to zeros or poles of 𝑅(𝑠), which can
cause inconvenience in practice. We will extend 𝑠

𝑐
to any

value. Linnér’s method is briefly introduced to allow for
context, completeness, and illumination of differences. With
the substitution 𝑠 − 𝑠

𝑐
= 1/𝑡, (1) transforms into

𝑅 (𝑡) = 𝑡
−𝐸
𝑊

∏
𝑁

𝑗=1
(𝑡 − 𝑧̃

𝑗
)
𝑛𝑖

∏
𝑀

𝑗=1
(𝑡 − 𝑠
𝑗
)
𝑚𝑗

, (12)
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where 𝑧̃
𝑗
= 1/(𝑧

𝑗
− 𝑠
𝑐
), 𝑠
𝑗
= 1/(𝑠

𝑗
− 𝑠
𝑐
), and 𝑊 is a constant.

Now write

𝑅 (𝑡) = 𝑡
−𝐸
𝑅̃ (𝑡) , (13)

where 𝑅̃(𝑡) does not include the factor 𝑡. In (13), applying a
Taylor expansion to 𝑅̃(𝑡) at 𝑡 = 0, we can obtain

𝑅 (𝑠) =

𝐻

∑

ℎ=0

𝑅̃
(ℎ)

(0)

ℎ!
(𝑠 − 𝑠
𝑐
)
𝐸−ℎ

+ 𝑜 [(𝑠 − 𝑠
𝑐
)
𝐸−𝐻

] , (14)

where𝐻 is an integer. Now expand 𝑅(𝑠) as

𝑅 (𝑠) =

𝐸

∑

ℎ=0

𝑒
ℎ
(𝑠 − 𝑠
𝑐
)
ℎ
+ 𝑅
2 (𝑠) , (15)

where 𝑅
2
(𝑠) is the proper fraction, which can be expanded as

the second part on the right-side of (2). Comparing (14) and
(15), we have

𝑒
ℎ
=

𝑅̃
(𝐸−ℎ)

(0)

(𝐸 − ℎ)!
. (16)

This is Linnér’s main result. In the method, the derivatives of
𝑅̃(𝑡) are calculated using equations like (5) and (6) and it also
requires 𝑠

𝑐
̸= 𝑧
𝑗
and 𝑠
𝑐

̸= 𝑠
𝑗
, which can cause inconvenience

in practice. In the following part, we first show how to extend
𝑠
𝑐
to zeros and poles of 𝑅(𝑠). We then obtain much simpler

recursive formula for the calculation of 𝑒
ℎ
.

Suppose 𝑠
𝑐
is the 𝑘th root of 𝑅(𝑠), 𝑠

𝑘
. We can rewrite

𝑅 (𝑠) = (𝑠 − 𝑠
𝑘
)
−𝑚𝑘

𝑅
𝑘 (𝑠) , (17)

where 𝑅
𝑘
(𝑠) is as defined in (4). With the substitution 𝑠− 𝑠

𝑘
=

1/𝑡 in 𝑅
𝑘
(𝑠), we have

𝑅
𝑘 (𝑡) = 𝑡

−𝑚𝑘−𝐸𝑅̃
𝑘 (𝑡) , (18)

where

𝑅̃
𝑘 (𝑡) = 𝑊

𝑘

∏
𝑁

𝑗=1
(𝑡 − 𝑧̃

𝑗
)
𝑛𝑖

∏
𝑀

𝑗=1, 𝑗 ̸=𝑘
(𝑡 − 𝑠
𝑗
)
𝑚𝑗

. (19)

Here 𝑧̃
𝑗
= 1/(𝑧

𝑗
− 𝑠
𝑘
), 𝑠
𝑗
= 1/(𝑠

𝑗
− 𝑠
𝑘
), and

𝑊
𝑘
=

∏
𝑁

𝑗=1
(𝑠
𝑘
− 𝑧
𝑗
)
𝑛𝑗

∏
𝑀

𝑗=1,𝑗 ̸=𝑘
(𝑠
𝑘
− 𝑠
𝑗
)
𝑚𝑗

. (20)

By Taylor expanding 𝑅̃
𝑘
(𝑡) at 𝑡 = 0 in (18), we can obtain

𝑅
𝑘 (𝑠) =

𝐻

∑

ℎ=0

𝑅̃
(ℎ)

𝑘
(0)

ℎ!
(𝑠 − 𝑠
𝑘
)
𝐸−ℎ+𝑚𝑘

+ 𝑜 [(𝑠 − 𝑠
𝑘
)
𝐸−𝐻+𝑚𝑘

] .

(21)

From (17) and (21), we have

𝑅 (𝑠) =

𝐻

∑

ℎ=0

𝑅̃
(ℎ)

𝑘
(0)

ℎ!
(𝑠 − 𝑠
𝑘
)
𝐸−ℎ

+ 𝑜 [(𝑠 − 𝑠
𝑘
)
𝐸−𝐻

] . (22)

Comparing (15) and (22), we can observe that

𝑒
ℎ
=

𝑅̃
(𝐸−ℎ)

𝑘
(0)

(𝐸 − ℎ)!
. (23)

Thus 𝑠
𝑐
is extended to the 𝑘th root of 𝑅(𝑠), 𝑠

𝑘
. The same

procedure can be used to extend 𝑠
𝑐
to the 𝑘th zero of 𝑅(𝑠),

𝑧
𝑘
.
We can easily obtain 𝑒

𝐸
by setting ℎ = 𝐸 in (23) or by

inspection:

𝑒
𝐸
= 1. (24)

In Section 2.1, we have simplified Brugia’s method and
derived simple recursive formula for the calculation of the
residues. Notice that, similar to 𝑅

𝑘
(𝑠), 𝑅̃
𝑘
(𝑡) and 𝑅̃(𝑡) are both

of factorized form and that (3) and (23), which calculate 𝑐
𝑖𝑗

and 𝑒
ℎ
, respectively, are of the similar form. Therefore, the

aforeproposed procedure in Section 2.1 for the calculation of
𝑐
𝑖𝑗
is also suitable for the calculation of 𝑒

ℎ
here. Take 𝑠

𝑐
= 𝑠
𝑘
,

for an instance. It can be proven that

𝑅̃
(𝐾)

𝑘
= (𝑅̃
𝑘
𝐷
𝑘
)
(𝐾−1)

=

𝐾−1

∑

𝑖=0

𝐶
𝑖

𝐾−1
𝑅̃
(𝐾−𝑖−1)

𝑘
𝐷
(𝑖)

𝑘
, (25)

where

𝐷
(𝑖)

𝑘
= 𝑖!(

𝑀

∑

𝑗=1

𝑗 ̸=𝑘

𝑚
𝑗

(𝑠
𝑗
− 𝑡)
𝑖+1

−

𝑁

∑

𝑗=1

𝑛
𝑗

(𝑧̃
𝑗
− 𝑡)
𝑖+1

). (26)

From (23), we have

𝑅̃
(𝑖)

𝑘
(0) = 𝑖!𝑒

𝐸−𝑖
. (27)

According to (23) and (25), we have

𝑒
ℎ
=

1

(𝐸 − ℎ)!

𝐸−ℎ−1

∑

𝑖=0

𝐶
𝑖

𝐸−ℎ−1
𝑅̃
(𝐸−ℎ−𝑖−1)

𝑘
𝐷
(𝑖)

𝑘

󵄨󵄨󵄨󵄨󵄨𝑡=0
. (28)

Using (26) and (27) to substitute the derivatives of𝐷
𝑘
and 𝑅̃

𝑘

in (28) and then evaluating (28) at 𝑡 = 0, we can obtain

𝑒
ℎ

=
1

(𝐸 − ℎ)

𝐸−ℎ

∑

𝑖=1

𝑒
(ℎ+𝑖)

(

𝑀

∑

𝑗=1

𝑗 ̸=𝑘

𝑚
𝑗
(𝑠
𝑗
− 𝑠
𝑘
)
𝑖

−

𝑁

∑

𝑗=1

𝑛
𝑗
(𝑧
𝑗
− 𝑠
𝑘
)
𝑖

),

(ℎ = 𝐸 − 1 : −1 : 0) .

(29)

The same procedure can be used to compute 𝑒
ℎ
when 𝑠

𝑐
̸= 𝑠
𝑘
.

In summary, 𝑒
ℎ
can be calculated according to

𝑒
ℎ
=

{{

{{

{

1 (ℎ = 𝐸) ,

1

(𝐸 − ℎ)

𝐸−ℎ

∑

𝑖=1

𝑒
(ℎ+𝑖)

𝜂
𝑖 (ℎ = 𝐸 − 1 : −1 : 0) ,

(30a)
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where

𝜂
𝑖
=

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

𝑀

∑

𝑗=1

𝑗 ̸=𝑘

𝑚
𝑗
(𝑠
𝑗
− 𝑠
𝑐
)
𝑖

−

𝑁

∑

𝑗=1

𝑛
𝑗
(𝑧
𝑗
− 𝑠
𝑐
)
𝑖

(𝑠
𝑐
= 𝑠
𝑘
) ,

𝑀

∑

𝑗=1

𝑚
𝑗
(𝑠
𝑗
− 𝑠
𝑐
)
𝑖

−

𝑁

∑

𝑗=1

𝑗 ̸=𝑘

𝑛
𝑗
(𝑧
𝑗
− 𝑠
𝑐
)
𝑖

(𝑠
𝑐
= 𝑧
𝑘
) ,

𝑀

∑

𝑗=1

𝑚
𝑗
(𝑠
𝑗
− 𝑠
𝑐
)
𝑖

−

𝑁

∑

𝑗=1

𝑛
𝑗
(𝑧
𝑗
− 𝑠
𝑐
)
𝑖

(otherwise) .

(30b)

Equations (30a) and (30b) are such a simple and compact
formula that its implementation is even very easy for hand
calculation. It is also much more convenient for computer
program and requires less computation costs than the orig-
inal method in [3]. We just need first calculate 𝜂

𝑖
using (30b).

Then 𝑒
ℎ
can be immediately obtained using (30a).

2.2.2. Computing 𝑒
ℎ
through Derivatives. We provide another

simple way to compute 𝑒
ℎ
which also avoids the unfa-

vorable polynomial division. That 𝑒
𝐸

= 1 is obvi-
ous. Therefore, we just need to obtain the remaining
coefficients 𝑒

0
, 𝑒
1
, 𝑒
2
, . . . , 𝑒

𝐸−1
. Notice that as the residues 𝑐

𝑘𝐿

can be firstly obtained in Section 2.1, they can be seen as
known quantities here. Three conditions are considered as
below regarding the different values of 𝑠

𝑐
.

(1) 𝑠
𝑐

̸= 𝑧
𝑘
and 𝑠
𝑐

̸= 𝑠
𝑘
. We first discuss the calculation of 𝑒

ℎ

when 𝑠
𝑐

̸= 𝑧
𝑘
and 𝑠
𝑐

̸= 𝑠
𝑘
. Here 𝑧

𝑘
and 𝑠
𝑘
are the 𝑘th zero and

the 𝑘th pole, respectively. From (1) and (2), we observe that
the coefficients 𝑒

0
, 𝑒
1
, 𝑒
2
, . . . , 𝑒

𝐸−1
can be obtained according

to

𝑒
ℎ
=

1

ℎ!
(𝑅
(ℎ)

+ 𝑇
(ℎ)
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑠=𝑠𝑐

, (31)

where

𝑇 (𝑠) = −

𝑀

∑

𝑘=1

𝑚𝑘

∑

𝐿=1

𝑐
𝑘𝐿

(𝑠 − 𝑠
𝑘
)
𝐿
. (32)

Here 𝑅 = 𝑅(𝑠) as defined in (1) and 𝑇 = 𝑇(𝑠). The ℎth
derivative of 𝑇(𝑠) can be easily obtained as

𝑇
(ℎ)

= (−1)
ℎ−1

𝑀

∑

𝑘=1

𝑚𝑘

∑

𝑗=1

𝑃
ℎ

ℎ+𝑗−1
𝑐
𝑘𝑗

(𝑠 − 𝑠
𝑘
)
𝑗+ℎ

, (33)

where 𝑃
𝑛

𝑚
= 𝑚!/(𝑚 − 𝑛)!. As 𝑅(𝑠) is of factorized form,

its derivatives can be derived using functions like (4) and
(5). Thus the problem is solved. To further simplify the
implementation, we introduce an auxiliary variable

𝑒
ℎ
=

1

ℎ!
𝑅
(ℎ)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑠=𝑠𝑐

. (34)

From (31) and (34), we can easily observe that

𝑒
ℎ
= 𝑒
ℎ
+

1

ℎ!
𝑇
(ℎ)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑠=𝑠𝑐

. (35)

Equation (34) has a similar formulation as (3); thus, 𝑒
ℎ
can

be calculated and using the procedure we compute 𝑐
𝑖𝑗
in

Section 2.1. Accordingly, we can finally obtain

𝑒
ℎ
=

{{

{{

{

𝑅 (𝑠
𝑐
) (ℎ = 0) ,

1

ℎ

ℎ

∑

𝑖=1

𝑒
ℎ−𝑖

𝜆
𝑖

(ℎ = 1 : 𝐸) ,

(36a)

where

𝜆
𝑖
=

𝑀

∑

𝑗=1

𝑚
𝑗

(𝑠
𝑗
− 𝑠
𝑐
)
𝑖
−

𝑁

∑

𝑗=1

𝑛
𝑗

(𝑧
𝑗
− 𝑠
𝑐
)
𝑖
. (36b)

Here we mention that in (36a) ℎ = 1 : 𝐸 means ℎ =

1, 2, 3, . . . , 𝐸. This is a Matlab denotation which will also be
used in the remaining part for simplicity of expression. We
can first obtain 𝑒

ℎ
using (36a) and (36b); then, 𝑒

ℎ
can be easily

obtained using (35). Notice the evaluation of (36b) requires
𝑠
𝑐

̸= 𝑧
𝑘
and 𝑠
𝑐

̸= 𝑠
𝑘
. Thus other two conditions remain to be

discussed.

(2) 𝑠
𝑐
= 𝑧
𝑘
. Here we discuss the condition when 𝑠

𝑐
is one of

the zeros of 𝑅(𝑠) (Let us say 𝑧
𝑘
). Actually it will be seen that it

is more preferable to let 𝑠
𝑐
= 𝑧
𝑘
. First we rewrite 𝑅(𝑠) as

𝑅 (𝑠) = (𝑠 − 𝑧
𝑘
)
𝑛𝑘
𝐺
𝑘 (𝑠) , (37)

where 𝑛
𝑘
is the multiplicity of 𝑧

𝑘
and

𝐺
𝑘 (𝑠) =

∏
𝑁

𝑗=1,𝑗 ̸=𝑘
(𝑠 − 𝑧

𝑗
)
𝑛𝑗

∏
𝑀

𝑗=1
(𝑠 − 𝑠
𝑗
)
𝑚𝑗

. (38)

Computing the ℎth derivative of both sides of (37) using
Leibniz’s formula and then setting 𝑠 as 𝑧

𝑘
yield

𝑅
(ℎ)

(𝑧
𝑘
) = {

0 (ℎ < 𝑛
𝑘
)

𝑃
𝑛𝑘

ℎ
𝐺
(ℎ−𝑛𝑘)

𝑘
(𝑧
𝑘
) (ℎ ≥ 𝑛

𝑘
) .

(39)

As𝐺
𝑘
(𝑠) is of factorized form, its derivatives can be computed

recursively

𝐺
(ℎ−𝑛𝑘)

𝑘
=

{{

{{

{

𝐺
𝑘

(ℎ = 𝑛
𝑘
) ,

ℎ−𝑛𝑘

∑

𝑖=1

𝑃
𝑖−1

ℎ−𝑛𝑘−1
𝐷
(ℎ−𝑛𝑘−𝑖)

𝑘
𝜆̃
𝑖

(ℎ > 𝑛
𝑘
) ,

(40a)

where

𝜆̃
𝑖
=

𝑀

∑

𝑗=1

𝑚
𝑗

(𝑠
𝑗
− 𝑠)
𝑖
−

𝑁

∑

𝑗=1

𝑗 ̸=𝑘

𝑛
𝑗

(𝑧
𝑗
− 𝑠)
𝑖
, (40b)

𝐷
(𝑖)

𝑘
= 𝑖!(

𝑀

∑

𝑗=1

𝑚
𝑗

(𝑠
𝑗
− 𝑠)
𝑖+1

−

𝑁

∑

𝑗=1

𝑗 ̸=𝑘

𝑛
𝑗

(𝑧
𝑗
− 𝑠)
𝑖+1

). (40c)
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Combining (31) and (39), we have

𝑒
ℎ
=

{{{{

{{{{

{

𝑇
(ℎ)

(𝑧
𝑘
)

ℎ!
(ℎ = 0 : 𝑛

𝑘
− 1) ,

𝐺
(ℎ−𝑛𝑘)

𝑘
(𝑧
𝑘
)

(ℎ − 𝑛
𝑘
)!

+
𝑇
(ℎ)

(𝑧
𝑘
)

ℎ!
(ℎ = 𝑛

𝑘
: 𝐸) .

(41)

Aswe did in Section 2.2.2(1), to further simply the implemen-
tation, we can also introduce an auxiliary variable 𝑒

ℎ
which

satisfies

𝑒
ℎ
= 𝑒
ℎ
−
𝑇
(ℎ)

(𝑧
𝑘
)

ℎ!
. (42)

And then using the procedure that we proposed in Section 2.1
leads to

𝑒
ℎ
=

{{{{

{{{{

{

0 (ℎ = 0 : 𝑛
𝑘
− 1) ,

𝐺
𝑘
(𝑧
𝑘
) (ℎ = 𝑛

𝑘
) ,

1

ℎ − 𝑛
𝑘

ℎ

∑

𝑖=1

𝑒
ℎ−𝑖

𝜆̃
𝑖

󵄨󵄨󵄨󵄨󵄨𝑠𝑐=𝑧𝑘
(ℎ = 𝑛

𝑘
+ 1 : 𝐸 − 1) ,

(43)

where 𝜆̃
𝑖
is as defined in (40b). It can be easily observed that

the larger 𝑛
𝑘
is, the less computation load the method will

involve. Thus 𝑠
𝑐
can be chosen as 𝑧

𝑘
= max{𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑁
}.

Particularly, if 𝑛
𝑘
≥ 𝐸, we have

𝑒
ℎ
=

𝑇
(ℎ)

(𝑧
𝑘
)

ℎ!
. (44)

(3) 𝑠
𝑐
= 𝑠
𝑘
. Last, let us discuss the condition when 𝑠

𝑐
= 𝑠
𝑘
.

Here 𝑠
𝑘
is the 𝑘th pole of 𝑅(𝑠). Multiplying both sides of (2)

with (𝑠 − 𝑠
𝑘
)
𝑚𝑘 gives

𝑅
𝑘 (𝑠) =

𝐸

∑

ℎ=0

𝑒
ℎ
(𝑠 − 𝑠
𝑘
)
ℎ+𝑚𝑘

− (𝑠 − 𝑠
𝑘
)
𝑚𝑘
𝑇 (𝑠) , (45)

where 𝑅
𝑘
(𝑠) and 𝑇(𝑠) are as defined in (4) and (32), respec-

tively. According to (45), we have

𝑒
ℎ
=

𝑅
(ℎ+𝑚𝑘)

𝑘
(𝑠) + [(𝑠 − 𝑠

𝑘
)
𝑚𝑘
𝑇(𝑠)]
(ℎ+𝑚𝑘)

(ℎ + 𝑚
𝑘
)!

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑠=𝑠𝑘

. (46)

Based on Leibniz’s formula, we can obtain

[(𝑠 − 𝑠
𝑘
)
𝑚𝑘
𝑇(𝑠)]
(ℎ+𝑚𝑘)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑠=𝑠𝑘

= 𝑃
𝑚𝑘

ℎ+𝑚𝑘
𝑇
(ℎ)

𝑘

󵄨󵄨󵄨󵄨󵄨𝑠=𝑠𝑘
, (47)

where

𝑇
(ℎ)

𝑘
= (−1)

ℎ−1

𝑀

∑

𝑖=1

𝑖 ̸=𝑘

𝑚𝑖

∑

𝑗=1

𝑃
ℎ

ℎ+𝑗−1
𝑐
𝑖𝑗

(𝑠 − 𝑠
𝑖
)
𝑗+ℎ

. (48)

Let

𝑒
ℎ
=

𝑅
(ℎ+𝑚𝑘)

𝑘
(𝑠)

󵄨󵄨󵄨󵄨󵄨𝑠=𝑠𝑘

(ℎ + 𝑚
𝑘
)!

. (49)

Then according to (46), (47), and (49), we have

𝑒
ℎ
= 𝑒
ℎ
+
𝑇
(ℎ)

𝑘

ℎ!

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑠=𝑠𝑘

. (50)

Notice that (49) has the similar formulation as (3) so that
it can also be tackled using the procedure we proposed in
Section 2.1. We can finally obtain

𝑒
ℎ
=

1

(ℎ + 𝑚
𝑘
)
(

ℎ

∑

𝑖=1

𝑒
(ℎ−𝑖)

𝜆̂
𝑖
+

𝑚𝑘+ℎ

∑

𝑖=ℎ+1

𝑐
𝑘(𝑖−ℎ)

𝜆̂
𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑠=𝑠𝑘

(ℎ = 0 : 𝐸 − 1) ,

(51)

where 𝜆̂
𝑖
are as defined in (11b) and 𝑐

𝑘(𝑖−ℎ)
are residues related

to the 𝑘th pole. It is worthy to mention that we do not have
to calculate all the 𝜆̂

𝑖
here if we stored them when calculating

the residues in Section 2.1.
Till this point, the method for the computation of 𝑒

ℎ
is

discussed for any 𝑠
𝑐
. Generally, it is more preferable to let 𝑠

𝑐
=

𝑧
𝑘
in practice as this condition requires the least computation

costs.

3. Partial Fraction Expansion of Rational
Functions in Expanded Form

Let the rational function in expanded form be

𝑅 (𝑠) =
𝑄 (𝑠)

𝑃 (𝑠)

=
∑
𝑁

𝑘=0
𝑎
𝑘
(𝑠 − 𝑠
0
)
𝑘

∏
𝑀

𝑖=1
(𝑠 − 𝑠
𝑖
)
𝑚𝑖

=

𝐸

∑

ℎ=0

𝑒
ℎ
(𝑠 − 𝑠
𝑐
)
ℎ
+

𝑀

∑

𝑖=1

𝑚𝑖

∑

𝑗=1

𝑐
𝑖𝑗

(𝑠 − 𝑠
𝑖
)
𝑗
,

(52)

where 𝑐
𝑖𝑗
, 𝑒
ℎ
are the residues and coefficients of residual poly-

nomial, respectively;𝑀 is the number of poles; 𝑠
𝑖
are the poles

of 𝑅(𝑠); 𝑚
𝑖
are the multiplicities of 𝑠

𝑖
; 𝑎
𝑘
are the polynomial

coefficients of the numerator; 𝑠
0
and 𝑠
𝑐
are constants which

are often zeros in practice and they are introduced to make
the polynomials more general. Obviously, the degree of the
numerator is 𝑁, and the degree of the denominator is 𝐾 =

∑𝑚
𝑗
, 𝐸 = 𝑁 − 𝐾. For a proper function, 𝑒

ℎ
are zeros. It can

be observed that 𝑅(𝑠) can also be expressed as

𝑅 (𝑠) =

𝑁

∑

𝑘=0

𝑎
𝑘
𝑟
𝑘 (𝑠) , (53)

where

𝑟
𝑘 (𝑠) =

(𝑠 − 𝑠
0
)
𝑘

∏
𝑀

𝑖=1
(𝑠 − 𝑠
𝑖
)
𝑚𝑖
. (54)

Suppose 𝑟
𝑘
(𝑠) can be expanded in pfe as

𝑟
𝑘 (𝑠) =

𝑘−𝐾

∑

ℎ=0

𝑒
𝑘ℎ
(𝑠 − 𝑠
𝑐
)
ℎ
+

𝑀

∑

𝑖=1

𝑚𝑖

∑

𝑗=1

𝑐
𝑘𝑖𝑗

(𝑠 − 𝑠
𝑖
)
𝑗
. (55)
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Inserting (55) into (53) and then compare (53) with (52), we
can observe that the residues of 𝑅(𝑠) can be obtained as

𝑐
𝑖𝑗
=

𝑁

∑

𝑘=0

𝑎
𝑘
𝑐
𝑘𝑖𝑗
, (56)

and the residual polynomial coefficients can be calculated
according to

𝑒
ℎ
=

𝐸−ℎ

∑

𝑖=0

𝑎
𝐾+ℎ+𝑖

𝑒
(𝐾+ℎ+𝑖)ℎ

, (ℎ = 0 : 𝐸) . (57)

In the following part, we will first show how to compute 𝑐
𝑖𝑗

and then to calculate 𝑒
ℎ
.

3.1. Computing Residues of Functions in Expanded Form. The
method for computation of residues can be divided into two
steps: first, calculate the residues of 𝑟

0
(𝑠); second, calculate the

residues of 𝑅(𝑠). First, let us suppose 𝑟
0
(𝑠) can be expanded in

pfe as

𝑟
0 (𝑠) =

𝑀

∑

𝑖=1

𝑚𝑖

∑

𝑗=1

𝑐
0𝑖𝑗

(𝑠 − 𝑠
𝑖
)
𝑗
. (58)

Notice that 𝑟
0
(𝑠) is a function of factorized form. Thus it can

be expanded using the method we proposed in Section 2.1.
We just need to set the numerator as 1 in (1); namely, all the
𝑛
𝑖
= 0 in (11b). Referring to (11a) and (11b), the following

formula is immediately obtained

𝑐
0𝑖𝑗

=
1

𝑚
𝑖
− 𝑗

𝑚𝑖−𝑗

∑

𝑘=1

𝑐
0𝑖(𝑗+𝑘)

𝜆
𝑘

󵄨󵄨󵄨󵄨󵄨𝑠=𝑠𝑖
, (𝑗 = 𝑚

𝑖
− 1 : −1 : 1) ,

(59a)

where

𝜆
𝑘
=

𝑀

∑

𝐿=1

𝐿 ̸=𝑖

𝑚
𝐿

(𝑠
𝐿
− 𝑠)
𝑘
. (59b)

It has been proved in [17] that the residues of 𝑟
𝑘
(𝑠) and

those of 𝑟
𝑘−1

(𝑠) satisfy

𝑐
𝑘𝑖𝑗

= 𝑐
(𝑘−1)𝑖(𝑗+1)

+ (𝑠
𝑖
− 𝑠
0
) × 𝑐
(𝑘−1)𝑖𝑗

. (60)

Based on the above formula, all the residues of 𝑟
𝑘
(𝑠) can

be obtained. Then using (56), the residues of 𝑅(𝑠) can be
obtained. Here we develop novel simpler formulas to derive
the residues of 𝑅(𝑠) based on the residues of 𝑟

0
(𝑠). It can be

observed that the numerator of 𝑅(𝑠) can be rewritten as

𝑄 (𝑠) = 𝑎
0
+ (𝑠 − 𝑠

0
) (𝑎
1
+ (𝑠 − 𝑠

0
)

× (𝑎
2
+ (𝑠 − 𝑠

0
)

× (⋅ ⋅ ⋅ 𝑎
𝑁−2

+ (𝑠 − 𝑠
0
)

× (𝑎
𝑁−1

+ 𝑎
𝑁
(𝑠 − 𝑠
0
)) ⋅ ⋅ ⋅ ))) .

(61)

According to (52) and (61), we can denote

𝑓
0
=

𝑎
𝑁

𝑃 (𝑠)
, (62a)

𝑓
𝐿
=

𝑎
𝑁−𝐿

𝑃 (𝑠)
+ (𝑠 − 𝑠

0
) 𝑓
𝐿−1

, (𝐿 = 1 : 𝑁) . (62b)

By the above denotation, we have 𝑓
𝑁
= 𝑅(𝑠). Suppose 𝑓

𝐿
can

be expanded in pfe as

𝑓
𝐿
=

𝐿−Κ

∑

𝑘=0

𝑒
𝐿𝑘
(𝑠 − 𝑠
𝑐
)
𝑘
+

𝑀

∑

𝑖=1

𝑚𝑖

∑

𝑗=1

𝑑
𝐿𝑖𝑗

(𝑠 − 𝑠
𝑖
)
𝑗
. (63)

Notice that 𝑟
0
(𝑠) = 1/𝑃(𝑠). Thus according to (58), we easily

obtain the residues of 𝑓
0

𝑑
0𝑖𝑗

= 𝑎
𝑁
× 𝑐
0𝑖𝑗
. (64a)

If we have already obtained the residues of 𝑓
𝐿−1

, 𝑑
(𝐿−1)𝑖𝑗

,
referring to [17], the residues of (𝑠 − 𝑠

0
)𝑓
𝐿−1

can be obtained
as 𝑑
(𝐿−1)𝑖(𝑗+1)

+(𝑠
𝑖
−𝑠
0
)×𝑑
(𝐿−1)𝑖𝑗

.Therefore, according to (62b)
we have
𝑑
𝐿𝑖𝑗

= 𝑎
𝑁−𝐿

× 𝑐
0𝑖𝑗

+ 𝑑
(𝐿−1)𝑖(𝑗+1)

+ (𝑠
𝑖
− 𝑠
0
) × 𝑑
(𝐿−1)𝑖𝑗

,

(𝐿 = 1 : 𝑁) .

(64b)

Notice that 𝑐
𝑖𝑗
= 𝑑
𝑁𝑖𝑗

. As 𝑐
0𝑖𝑗

can already be calculated using
(59a) and (59b), we can finally obtain the residues of 𝑅(𝑠)
using formulas (64a) and (64b) successively by increasing the
value of 𝐿 from 1 to 𝑁. Equations (64a) and (64b) can be
further developed and yield another beautiful formula:

𝑑
𝐿𝑖𝑗

=

𝐿

∑

𝑚=0

𝑎
𝑁−(𝐿−𝑚)

𝑚

∑

𝑘=0

𝐶
𝑘

𝑚
(𝑠
𝑖
− 𝑠
0
)
𝑘
𝑐
0𝑖(𝑗+𝑚−𝑘)

. (65)

In (64a), (64b), and (65), if𝑗 + 1 > 𝑚
𝑖
or 𝑗 + 𝑚 − 𝑘 > 𝑚

𝑖
, the

residues 𝑐
0𝑖(𝑗+1)

and 𝑐
0𝑖(𝑗+𝑚−𝑘)

do not exist and we can simply
set them as zero. Formula (65) can be proved by induction as
below.

Proof of Formula (65). When 𝐿 = 0, (65) is reduced to (64a).
Thus it is true. Suppose (65) is true when 𝐿 = 𝑛; namely,

𝑑
𝑛𝑖𝑗

=

𝑛

∑

𝑚=0

𝑎
𝑁−(𝑛−𝑚)

𝑚

∑

𝑘=0

𝐶
𝑘

𝑚
(𝑠
𝑖
− 𝑠
0
)
𝑘
𝑐
0𝑖(𝑗+𝑚−𝑘)

. (66)

Then according to (64b), when 𝐿 = 𝑛 + 1, we have

𝑑
(𝑛+1)𝑖𝑗

= 𝑎
𝑁−(𝑛+1)

× 𝑐
0𝑖𝑗

+ 𝑑
𝑛𝑖(𝑗+1)

+ (𝑠
𝑖
− 𝑠
0
) × 𝑑
𝑛𝑖𝑗
. (67)

Applying (66) to (67) yields

𝑑
(𝑛+1)𝑖𝑗

= 𝑎
𝑁−(𝑛+1)

× 𝑐
0𝑖𝑗

+

𝑛

∑

𝑚=0

𝑎
𝑁−(𝑛−𝑚)

𝑚

∑

𝑘=0

𝐶
𝑘

𝑚
(𝑠
𝑖
− 𝑠
0
)
𝑘
𝑐
0𝑖(𝑗+1+𝑚−𝑘)

+ (𝑠
𝑖
− 𝑠
0
) ×

𝑛

∑

𝑚=0

𝑎
𝑁−(𝑛−𝑚)

×

𝑚

∑

𝑘=0

𝐶
𝑘

𝑚
(𝑠
𝑖
− 𝑠
0
)
𝑘
𝑐
0𝑖(𝑗+𝑚−𝑘)

.

(68)
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From (68), we have

𝑑
(𝑛+1)𝑖𝑗

= 𝑎
𝑁−(𝑛+1)

× 𝑐
0𝑖𝑗

+ Λ, (69)

where

Λ =

𝑛

∑

𝑚=0

𝑎
𝑁−(𝑛−𝑚)

× {

𝑚

∑

𝑘=0

𝐶
𝑘

𝑚
(𝑠
𝑖
− 𝑠
0
)
𝑘
𝑐
0𝑖(𝑗+1+𝑚−𝑘)

+

𝑚

∑

𝑘=0

𝐶
𝑘

𝑚
(𝑠
𝑖
− 𝑠
0
)
𝑘+1

𝑐
0𝑖(𝑗+𝑚−𝑘)

} .

(70a)

Equation (70a) can further lead to

Λ =

𝑛+1

∑

𝑚=1

𝑎
𝑁−(𝑛+1−𝑚)

𝑚

∑

𝑘=0

𝐶
𝑘

𝑚
(𝑠
𝑖
− 𝑠
0
)
𝑘
𝑐
0𝑖(𝑗+𝑚−𝑘)

. (70b)

From (69) and (70b), we can finally obtain

𝑑
(𝑛+1)𝑖𝑗

=

𝑛+1

∑

𝑚=0

𝑎
𝑁−(𝑛+1−𝑚)

𝑚

∑

𝑘=0

𝐶
𝑘

𝑚
(𝑠
𝑖
− 𝑠
0
)
𝑘
𝑐
0𝑖(𝑗+𝑚−𝑘)

. (71)

Equation (71) is (65) with 𝐿 replaced by 𝑛 + 1; thus, by
induction, it follows that (61) is true.

Setting 𝐿 = 𝑁 in (65) yields

𝑐
𝑖𝑗
=

𝑁

∑

𝑚=0

𝑎
𝑚

𝑚

∑

𝑘=0

𝐶
𝑘

𝑚
(𝑠
𝑖
− 𝑠
0
)
𝑘
𝑐
0𝑖[𝑗+𝑚−𝑘]

. (72)

Equation (72) presents a direct relation between the residues
of 𝑟
0
(𝑠) and the residues of 𝑅(𝑠). It can be useful when

calculating a particular residue of 𝑅(𝑠).

3.2. Computing Residual Polynomial Coefficients of Functions
in Expanded Form. We will propose novel methods to
calculate the residual polynomial coefficients, namely, 𝑒

ℎ
in

(52). Most existing methods calculate such coefficients using
polynomial division.An algebraic procedure to calculate such
coefficients that avoids polynomial division can be found
in [17]. Here we propose two novel simpler methods which
also avoid polynomial division. We first propose a method
through Laurent expansion and then propose a method
through derivatives.

3.2.1. Computation of 𝑒
ℎ
through Laurent Expansion. As

shown in (53), 𝑅(𝑠) is a sum of 𝑟
𝑘
(𝑠), if we can obtain the

residual polynomial coefficients of 𝑟
𝑘
(𝑠), 𝑒
𝑘ℎ
, 𝑒
ℎ
can be then

obtained using (57). Obviously, 𝑟
𝑘
(𝑠) will contribute to the 𝑒

ℎ

of 𝑅(𝑠) only when 𝑘 ≥ 𝐾 = ∑𝑚
𝑗
. Thus 𝑘 is assumed to be no

less than𝐾 in this part.Theproblem is then reduced to how to
calculate the 𝑒

𝑘ℎ
of 𝑟
𝑘
(𝑠) (𝑘 = 𝐾 : 𝑁). Notice all the 𝑟

𝑘
(𝑠) are in

factorized form; thus, they can be expanded using themethod
we proposed in Section 2. However, it is not advisable to do
so, for this can lead to cumbersome implementation.Actually,

Table 1: The relationship between the 𝑒
𝑘ℎ
(𝑘 < 𝑁) and 𝑒

𝑁ℎ
.

𝑒
𝑘ℎ

ℎ

0 1 2 ⋅ ⋅ ⋅ 𝐸 − 2 𝐸 − 1 𝐸

𝑘

𝑁 𝑒
𝑁0

𝑒
𝑁1

𝑒
𝑁2

⋅ ⋅ ⋅ 𝑒
𝑁(𝐸−2)

𝑒
𝑁(𝐸−1)

𝑒
𝑁𝐸

𝑁 − 1 𝑒
𝑁1

𝑒
𝑁2

𝑒
𝑁3

⋅ ⋅ ⋅ 𝑒
𝑁(𝐸−1)

𝑒
𝑁𝐸

𝑁 − 2 𝑒
𝑁2

𝑒
𝑁2

𝑒
𝑁4

⋅ ⋅ ⋅ 𝑒
𝑁𝐸

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

𝐾 + 2 𝑒
𝑁(𝐸−2)

𝑒
𝑁(𝐸−1)

𝑒
𝑁𝐸

𝐾 + 1 𝑒
𝑁(𝐸−1)

𝑒
𝑁𝐸

𝐾 𝑒
𝑁𝐸

simpler methods can be obtained. Referring to Section 2.2.1,
we can prove that

𝑒
𝑘ℎ

=
𝑟
(𝑘−𝐾−ℎ)

(0)

ℎ!
, (ℎ = 0 : 𝑘 − 𝐾) , (73)

where

𝑟 (𝑡) =
𝑊

∏
𝑀

𝑗=1
(𝑡 − 𝑠
𝑗
)
𝑚𝑗

. (74)

Here 𝑠
𝑗
= 1/(𝑠

𝑗
−𝑠
𝑐
) and𝑊 is a constant. Let 𝑘 = 𝑘+1 in (73),

we have

𝑒
(𝑘+1)ℎ

=
𝑟
(𝑘+1−𝐾−ℎ)

(0)

ℎ!
, (ℎ = 0 : 𝑘 + 1 − 𝐾) . (75)

From (73) and (75), we can observe that

𝑒
𝑘ℎ

= 𝑒
(𝑘+1)(ℎ+1)

, (ℎ = 0 : 𝑘 − 𝐾) . (76)

Notice that 𝑒
(𝑘+1)(ℎ+1)

are the residual polynomial coefficients
of 𝑟
𝑘+1

(𝑠). It is clear that if we have already obtained the coeffi-
cients of 𝑟

𝑘+1
(𝑠), we can immediately obtain the coefficients of

𝑟
𝑘
(𝑠) by (76). It hereby follows that if we have already obtained

the coefficients of 𝑟
𝑁
(𝑠), 𝑒
𝑁ℎ

, we can successively obtain
𝑒
(𝑁−1)ℎ

, 𝑒
(𝑁−2)ℎ

, . . . , 𝑒
𝐾ℎ
. From (76), the following formula can

be obtained:

𝑒
(𝐾+𝑖)ℎ

= 𝑒
𝑁(𝐸−𝑖+ℎ)

, (𝑖 = 0 : 𝐸, ℎ = 0 : 𝑖) . (77)

Equation (77) presents the relationship between the 𝑒
𝑘ℎ
(𝑘 <

𝑁) and 𝑒
𝑁ℎ

, which can be seen more clearly in Table 1.
Here we mention that we calculate the 𝑒

𝑘ℎ
with 𝑘 decreasing

from 𝑁 to 𝐾, while the method in [17] calculates 𝑒
𝑘ℎ

with
𝑘 increasing from 𝐾 to 𝑁. It will be seen that the method
proposed here is simpler and more convenient.

According to (57) and (77), we have

𝑒
ℎ
=

𝐸−ℎ

∑

𝑖=0

𝑎
𝐾+ℎ+𝑖

𝑒
𝑁(𝐸−𝑖)

, (ℎ = 0 : 𝐸) . (78)

From the above analysis, the whole problem is reduced to
how to obtain 𝑒

𝑁ℎ
. As 𝑟

𝑁
(𝑠) is of factorized form, 𝑒

𝑁ℎ
can

be calculated using the methods we proposed in Section 2.2.1
through Laurent expansion. Thus, we have

𝑒
𝑁ℎ

=

{{

{{

{

1, (ℎ = 𝐸) ,

1

(𝐸 − ℎ)

𝐸−ℎ

∑

𝑖=1

𝑒
𝑁(ℎ+𝑖)

𝜂
𝑖
, (ℎ = 𝐸 − 1 : −1 : 0) ,

(79a)
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where

𝜂
𝑖
=

{{{{{{{{{{{{

{{{{{{{{{{{{

{

𝑀

∑

𝑗=1

𝑗 ̸=𝑘

𝑚
𝑗
(𝑠
𝑗
− 𝑠
𝑐
)
𝑖

− 𝑁(𝑧
𝑗
− 𝑠
𝑐
)
𝑁

, (𝑠
𝑐
= 𝑠
𝑘
) ,

𝑀

∑

𝑗=1

𝑚
𝑗
(𝑠
𝑗
− 𝑠
𝑐
)
𝑖

, (𝑠
𝑐
= 𝑠
0
) ,

𝑀

∑

𝑗=1

𝑚
𝑗
(𝑠
𝑗
− 𝑠
𝑐
)
𝑖

− 𝑁(𝑧
𝑗
− 𝑠
𝑐
)
𝑁

, (otherwise) .

(79b)

In summary, the residual polynomial coefficients can be
obtained by first using (79a) and (79b) and then using (78).

3.2.2. Computation of 𝑒
ℎ
throughDerivatives. Aswe discussed

in Section 3.2.1, we just have to calculate the residual polyno-
mial coefficients of 𝑟

𝑁
(𝑠), 𝑒
𝑁ℎ

and then we can obtain 𝑒
ℎ
. As

𝑟
𝑁
(𝑠) is of factorized form, it is also possible to use themethod

we proposed in Section 2.2.2 to calculate 𝑒
𝑁ℎ

. In Section 2.2.2,
three conditions are considered. Here we only discuss the
most favorable condition, 𝑠

𝑐
= 𝑠
0
(namely, 𝑠

𝑐
is a zero of 𝑟

𝑁
(𝑠))

because firstly, this condition is most suitable as it requires
the least computation and secondly, 𝑠

𝑐
= 𝑠
0

= 0 in most
practical cases. Notice that𝑁 > 𝐾.Thus we can use a formula
like (44) to calculate 𝑒

𝑁ℎ
when 𝑠

0
is not equal to any pole of

𝑟
𝑁
(𝑠). When 𝑠

0
is equal to a pole of 𝑟

𝑁
(𝑠), we just need to

make a simple modification. 𝑒
𝑁𝐸

= 1 is obvious. Using the
procedures in Section 2.2.2(2), we can finally have

𝑒
𝑁ℎ

=
𝑇
(ℎ)

𝑁
(𝑠)

ℎ!

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑠=𝑠𝑐

, (ℎ = 1 : 𝐸 − 1) , (80)

where

𝑇
(ℎ)

𝑁
(𝑠) =

{{{{{{{

{{{{{{{

{

(−1)
ℎ−1

𝑀

∑

𝑖=1

𝑖 ̸=𝑘

𝑚𝑖

∑

𝑗=1

𝑃
ℎ

ℎ+𝑗−1
𝑐
𝑁𝑖𝑗

(𝑠 − 𝑠
𝑖
)
𝑗+ℎ

, (𝑠 = 𝑠
𝑘
) ,

(−1)
ℎ−1

𝑀

∑

𝑖=1

𝑚𝑖

∑

𝑗=1

𝑃
ℎ

ℎ+𝑗−1
𝑐
𝑁𝑖𝑗

(𝑠 − 𝑠
𝑖
)
𝑗+ℎ

, (otherwise) .

(81)

3.3. Recommendations on the Choices of Procedures. In Sec-
tions 3.1 and 3.2, several procedures are proposed for the
computation of both 𝑒

ℎ
and 𝑐
𝑖𝑗
. As the calculation of 𝑒

ℎ
can

have a relation with that of 𝑐
𝑖𝑗
, we recommend two methods

comprised of several aforeproposed procedures for improper
rational functions. We only suggest two typical methods
which we consider to be preferable and suitable as below.

Method 1 uses (80) and (81) to calculate 𝑒
ℎ
. As we can see

from (80) and (81), the method in Section 3.2.2 requires that
we first obtain the residues of 𝑟

𝑁
(𝑠). Therefore, we use (60)

(rather than (64a) and (64b)) to obtain the residues because
the residues of 𝑟

𝑁
(𝑠) are obtained in the calculation process.

Method 2 uses (59a), (59b), (64a), and (64b) to obtain the
residues, (79a) and (79b), and (78) to calculate 𝑒

ℎ
. It is more

preferable to use (79a) and (79b) to calculate 𝑒
𝑁ℎ

as it is not
based on the residues of 𝑟

𝑁
(𝑠).

Method 1. The following procedures comprise Method 1.
(a) Calculate the residues of 𝑟

0
(𝑠):

𝑐
0𝑖𝑗

=

{{{{{{{{{

{{{{{{{{{

{

1

∏
𝑀

𝑘=1,𝑘 ̸=𝑖
(𝑠
𝑖
− 𝑠
𝑘
)
𝑚𝑘

,

(𝑖 = 1 : 𝑀; 𝑗 = 𝑚
𝑖
)

1

𝑚
𝑖
− 𝑗

𝑚𝑖−𝑗

∑

𝑘=1

𝑐
0𝑖(𝑗+𝑘)

𝜆
𝑘

󵄨󵄨󵄨󵄨󵄨𝑠=𝑠𝑖
,

(𝑖 = 1 : 𝑀; 𝑗 = 𝑚
𝑖
− 1 : −1 : 1) ,

(82)

where 𝜆
𝑘
= ∑
𝑀

𝐿=1,𝐿 ̸=𝑖
(𝑚
𝐿
/(𝑠
𝐿
− 𝑠)
𝑘
).

(b) Calculate the residues of 𝑟
𝑘
(𝑠) using

𝑐
𝑘𝑖𝑗

= 𝑐
(𝑘−1)𝑖(𝑗+1)

+ (𝑠
𝑖
− 𝑠
0
) × 𝑐
(𝑘−1)𝑖𝑗

,

(𝑘 = 1 : 𝑁; 𝑖 = 1 : 𝑀; 𝑗 = 1 : 𝑚
𝑖
) ,

(83)

and then obtain the residues of 𝑅(𝑠) using 𝑐
𝑖𝑗

=

∑
𝑁

𝑘=0
𝑎
𝑘
𝑐
𝑘𝑖𝑗
.

(c) Calculate the residues of 𝑟
𝑁
(𝑠) using (80) and (81).

(d) Calculate the residual polynomial coefficients using
(78).

Method 2. The following procedures comprise Method 2.
(a) Calculate the residues of 𝑟

0
(𝑠) the sameway as the first

step of Method 1.
(b) Calculate the residues of 𝑅(𝑠). Here notice that 𝑐

𝑖𝑗
=

𝑑
𝑁𝑖𝑗

. Consider

𝑑
𝐿𝑖𝑗

=

{{

{{

{

𝑎
𝑁
× 𝑐
0𝑖𝑗
, (𝐿 = 0)

𝑎
𝑁−𝐿

× 𝑐
0𝑖𝑗

+ 𝑑
(𝐿−1)𝑖(𝑗+1)

+ (𝑠
𝑖
− 𝑠
0
) × 𝑑
(𝐿−1)𝑖𝑗

, (𝐿 = 1 : 𝑁) .

(84)

(c) Calculate the residual polynomial coefficients of 𝑟
𝑁
(𝑠)

using (79a) and (79b).
(d) Calculate the residual polynomial coefficients using

(78).

4. Examples and Discussions

We provide six examples to illustrate the usage and validity
of the proposed methods. We use similar practices as used
in [17] to validate the efficiency of the proposed methods
for large-scale problems. Matlab codes that perform the
proposed methods can be easily obtained. The calculation
of the numerical examples is performed by Matlab (2010b)
on a PC of 32-bit word length. In those examples, 𝑠

𝑐
and 𝑠
0

are set as zeros, if not mentioned particularly. For simplicity
of expression, for large-scale functions of 𝑅(𝑠), we denote
the coefficients of 𝑅(𝑠) as follows: array of poles, 𝑆 =

[𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑀
]; array of the multiplicities of poles, 𝑚 =

[𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑀
]; array of zeros, 𝑍 = [𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑀
]; array

of the multiplicities of zeros, 𝑛 = [𝑛
1
, 𝑛
2
, . . . , 𝑛

𝑀
]; polynomial

coefficients of the numerator of 𝑅(𝑠) in expanded form, 𝐴 =

[𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑁
]. The reader can refer to (1) and (52) to see

clearly the meaning of those coefficients.
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4.1. Usage and Validation of Methods for Factorized Functions

Example 1. The following simple rational function is pro-
vided as an instance to illustrate the usage of the method
proposed in Section 2. The example is also used by Linnér in
[3]. One may refer to [3] to see the differences between the
proposed method and Linnér’ method:

𝑅 (𝑠) =
(𝑠 + 3) (𝑠 − 1)

3
(𝑠 − 2)

3
(𝑠 − 3)

𝑠(𝑠 + 1)
4
(𝑠 + 2)

. (85)

Obviously, the desired expansion is given by

𝑅 (𝑠) = 𝑦 (𝑠) − 𝑇 (𝑠) , (86)

where

𝑦 (𝑠) = 𝑒
0
+ 𝑒
1
(𝑠 − 𝑠
𝑐
) + 𝑒
2
(𝑠 − 𝑠
𝑐
)
2
,

𝑇 (𝑠) = − [
𝑐
1

𝑠
+

𝑐
21

(𝑠 + 1)
+

𝑐
22

(𝑠 + 1)
2

+
𝑐
23

(𝑠 + 1)
3
+

𝑐
24

(𝑠 + 1)
4
+

𝑐
3

𝑠 + 2
] .

(87)

4.1.1. Calculation of Residues. The following residues can be
calculated in a direct way:

𝑐
1
= 𝑠𝑅(𝑠)|𝑠=0 = −36,

𝑐
24

= (𝑠 + 1)
4
𝑅(𝑠)

󵄨󵄨󵄨󵄨󵄨𝑠=−1
= 1728,

𝑐
3
= (𝑠 + 2)𝑅(𝑠)|𝑠=−2 = 4320.

(88)

Using (11a) and (11b), we can calculate the remaining residues
recursively at 𝑠 = −1. Notice that −1 is the second pole of𝑅(𝑠).
First, calculate 𝜆̂

𝑖
using (11b)

𝜆̂
1
= (

1

−2 + 1
+

1

0 + 1
) − (

1

−3 + 1
+

3

1 + 1
+

3

2 + 1
+

1

3 + 1
)

=
−9

4
,

𝜆̂
2
= (

1

(−1)
2
+

1

12
) − (

1

(−2)
2
+

3

22
+

3

32
+

1

42
)

=
29

48
,

𝜆̂
3
= (

1

(−1)
3
+

1

13
) − (

1

(−2)
3
+

3

23
+

3

33
+

1

43
)

=
−217

576
.

(89)

Then using (11a),

𝑐
23

= 𝑐
24
𝜆̂
1
= −3888;

𝑐
22

=
1

2
(𝑐
23
𝜆̂
1
+ 𝑐
24
𝜆̂
2
) = 4896;

𝑐
21

=
1

3
(𝑐
22
𝜆̂
1
+ 𝑐
23
𝜆̂
2
+ 𝑐
24
𝜆̂
3
) = −4672.

(90)

Thus we have

𝑇 (𝑠) = − [
−36

𝑠
+

−4672

(𝑠 + 1)
+

4896

(𝑠 + 1)
2
+

−3888

(𝑠 + 1)
3

+
1728

(𝑠 + 1)
4
+
4320

𝑠 + 2
] .

(91)

4.1.2. Computing Coefficients of the Residual Polynomial

(a) Method Based on Laurent Expansion. Here we use the
method proposed in Section 2.2.1. Let 𝑠

𝑐
be −1, the second

pole of 𝑅(𝑠). Referring to (30a) and (30b), we have

𝜂
1
= (1 ⋅ (−2 + 1) + 1 ⋅ (1 + 0))

− (1 ⋅ (−3 + 1) + 3 ⋅ (1 + 1)

+ 3 ⋅ (2 + 1) + 1 ⋅ (3 + 1)) = −17,

𝜂
2
= (1 + 1)

− ((−2)
2
+ 3 ⋅ 2

2
+ 3 ⋅ 3

2
+ 4
2
) = −57,

𝑒
2
= 1, 𝑒

1
= 𝑒
2
𝜂
1
= −17,

𝑒
0
=

1

2
(𝑒
1
𝜂
1
+ 𝑒
2
𝜂
2
) = 116.

(92)

Thus, we have

𝑦 (𝑠) = 116 − 17 (𝑠 + 1) + (𝑠 + 1)
2
. (93)

(b) Method through Derivatives. Here we use the method
proposed in Section 2.2.2 to compute 𝑒

ℎ
. Obviously, the

second zero of 𝑅(𝑠), 1, has the largest multiplicity of 3.Thus it
is chosen as 𝑠

𝑐
here. As 2 = 𝐸 < 3 = 𝑛

2
, we can use (44) to

derive the residual polynomial coefficients

𝑒
0
= 𝑇 (1) = 86,

𝑒
1
= 𝑇
(1)

(1) = −13.

(94)

Thus we have

𝑦 (𝑠) = 86 − 13 (𝑠 − 1) + (𝑠 − 1)
2
. (95)

The complete expansion is now given by

𝑅 (𝑠) = 86 − 13 (𝑠 − 1) + (𝑠 − 1)
2

+
−36

𝑠
+

−4672

(𝑠 + 1)
+

4896

(𝑠 + 1)
2

+
−3888

(𝑠 + 1)
3
+

1728

(𝑠 + 1)
4
+
4320

𝑠 + 2
.

(96)

Example 2. We consider here a large-scale factorized
improper 𝑅(𝑠) with 𝑆 = [1, 2, . . . , 9, 10]; 𝑚 = [10, 10, . . . ,

10, 10]; 𝑍 = [0.5, 1.5, . . . , 8.5, 9.5]; 𝑛 = [11, 11, . . . , 11, 11].
In this case, the degree of the numerator is 100. The degree
of the denominator reaches 110. It is quite a large-scale
problem. Here, one may see the significance of developing
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Figure 1: Comparison of pfe with reference solution (a) and relative error of pfe (b) in Example 2. Residual polynomial coefficients are
calculated using the method proposed in Section 2.2.1.

a method which can deal with factorized 𝑅(𝑠) directly. If we
use a method designed for rational functions in expanded
form, the reformulation of the 𝑅(𝑠) into expanded form
can lead to huge computation costs. It can also introduce
considerable additional error. As done in [17], in the large-
scale experiments, we also do not display the expansion
coefficients because they are too many and too tedious to
display and references of the coefficients are very difficult to
find. Instead, we plot the figure of 𝑅(𝑠) and that of its pfe,
pfe(𝑠), together to validate the accuracy of the expansion
results. And we also calculate the relative errors of pfe(𝑠)
at different values of 𝑠 as |(𝑅(𝑠) − pfe(𝑠))/𝑅(𝑠)| (𝑅(𝑠) ̸= 0).
The results are shown in Figures 1 and 2. The figures of
the functions are plotted within the interval [25, 100]. The
residues are calculated using the methods proposed in
Section 2.1. In Figure 1, the residual polynomial coefficients
are calculated by the method we proposed in Section 2.2.1.
Notice that, in this figure, the curve of pfe, pfe is in perfect
agreement with that of 𝑅(𝑠) (the reference solution),
demonstrating the high accuracy of the expansion results.
And the relative error is nearly negligible. Figure 2 presents
the relative errors when residual polynomial coefficients
are calculated using the method proposed in Section 2.2.2.
Three experiments regarding the values of 𝑠

𝑐
are considered:

(a) 𝑠
𝑐
= 8 (pole of 𝑅(𝑠), method in Section 2.2.2(3) used);

(b) 𝑠
𝑐

= 3.5 (zero of 𝑅(𝑠), method in Section 2.2.2(2)
used); (c) 𝑠

𝑐
= 0 (neither pole nor zero of 𝑅(𝑠), method in

Section 2.2.2(1) used). As we can see, the relative errors are

also quite small, demonstrating the good performance of
those proposed methods. From Figures 1 and 2, one may
notice that the method through Laurent expansion seems to
perform better than the method through derivatives to some
extent. This is because the former calculates the residues
without the usage of the residues.

Example 3. In this example, we consider a large-scale
factorized improper rational function with ill-conditioned
poles. 𝑆 = [1000, 0, 0.1, 8, 9]; 𝑚 = [8, 7, 7, 6, 6]; 𝑍 =

[−1, −2, 7, 11, 12, 990]; 𝑛 = [8, 8, 8, 8, 8, 8]. The degree of the
numerator is 34. The degree of the denominator is 48. 𝑅(𝑠)
contains three ill-conditioned high-order poles: two high-
order poles (0 and 0.1), very close to each other, and an 8th
pole (1000) much larger than the other poles. This problem
can be rather tricky and the ill-conditioned poles may often
lead to intolerable large errors. In this example, the residual
polynomial coefficients are calculated using the method
proposed in Section 2.2.1. We find the method proposed in
Section 2.2.2 is not quite suitable here as some of the residues
are extremely large (nearly, 1050), the manipulation of which
will inevitably introduce large errors. As can be seen in
Figure 3, our method can provide quite satisfactory results.
The figure of pfe function is in perfect agreement with the
reference solution. And the nearly negligible relative error
well demonstrates themethod’s good performance in tackling
functions with ill-conditioned poles.
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Figure 2: Relative errors of pfe with residual polynomial coefficients calculated using the methods in Sections 2.2.2(3) (a), 2.2.2(2) (b), and
2.2.2(1) (c) in Example 2.
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Figure 3: Comparison of pfe with reference solution (a) and relative error of pfe (b) in Example 3.
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Table 2: The residues of 𝑟
𝑘
(𝑠), 𝑐𝑘

𝑖𝑗
in Example 4.

𝑘 𝑐
𝑘11

𝑐
𝑘21

𝑐
𝑘22

𝑐
𝑘31

𝑐
𝑘32

1 0 −2 1 2 1

2 0 3 −1 −3 −2

3 0 −4 1 4 4

4 0 5 −1 −4 −8

5 0 −6 1 0 16

6 0 7 −1 16 −32

7 0 −8 1 −64 64

8 0 9 −1 192 −128

4.2. Usage and Validation of Methods for
Functions in Expanded Form

Example 4. The following simple rational function is pro-
vided to illustrate the usage of the method we proposed for
the pfe of functions in expanded form proposed in Section 3:

𝑅 (𝑠) =
8 + 3𝑠 + 𝑠

2
+ 4𝑠
3
+ 5𝑠
4
+ 𝑠
6
+ 2𝑠
7
+ 𝑠
8

𝑠(𝑠 + 1)
2
(𝑠 + 2)

2
. (97)

It can be estimated that

𝑅 (𝑠) = 𝑒
0
+ 𝑒
1
𝑠 + 𝑒
2
𝑠
2
+ 𝑒
2
𝑠
3

+
𝑐
11

𝑠
+

𝑐
21

(𝑠 + 1)
+

𝑐
22

(𝑠 + 1)
2
+

𝑐
31

(𝑠 + 2)
+

𝑐
32

(𝑠 + 2)
2
.

(98)

Notice the polynomial coefficients of the numerator are 𝐴 =

[8, 3, 1, 4, 5, 0, 1, 2, 1]. We will use the two methods to solve
this problem. The procedures of the methods are described
in Section 3.3.

Method 1. (a) Use (59a) and (59b) to expand 𝑟
0
(𝑠)

𝑟
0 (𝑠) =

1

𝑠(𝑠 + 1)
2
(𝑠 + 2)

2

=
0.25

𝑠
+

1

(𝑠 + 1)
+

−1

(𝑠 + 1)
2
+

−1.25

(𝑠 + 2)
+

−0.5

(𝑠 + 2)
2
.

(99)

(b) Use (60) to calculate the residues of 𝑟
𝑘
(𝑠), 𝑐
𝑘𝑖𝑗
based on

the residues of 𝑟
0
(𝑠). The results are shown in Table 2.

Then use (56) to obtain the residues of 𝑅(𝑠).

𝑐
11

= 2, 𝑐
21

= 14,

𝑐
22

= −7, 𝑐
31

= 69,

𝑐
32

= −59.

(100)

(c) From Table 2, we can find the residues of 𝑟
8
(𝑠), 𝑐
8𝑖𝑗
.

𝑟
8 (𝑠) =

𝑠
8

𝑠(𝑠 + 1)
2
(𝑠 + 2)

2

= 𝑒
80

+ 𝑒
81
𝑠 − 𝑒
82
𝑠
2
+ 𝑠
3
− 𝑇
8 (𝑠) ,

(101)

Table 3: The residual polynomial coefficients of 𝑟
𝑘
(𝑠), 𝑒

𝑘ℎ
in

Example 4.

𝑒
𝑘ℎ

ℎ

0 1 2 3

𝑘

8 −72 23 −6 1

7 −23 −6 1

6 −6 1

5 1

where

𝑇
8 (𝑠) = − [

9

(𝑠 + 1)
+

−1

(𝑠 + 1)
2
+

192

(𝑠 + 2)
+

−128

(𝑠 + 1)
2
] .

(102)

Using (80) and (81), we have

𝑒
80

= 𝑇
8 (0) = −72,

𝑒
81

= 𝑇
(1)

8
(0) = 23,

𝑒
82

= 𝑇
(2)

8
(0) = −4,

𝑒
83

= 1.

(103)

Then referring to (78) or Table 1, we can obtain all the 𝑒
𝑘ℎ

as
shown in Table 3.

(d) Using (78), we have 𝑒
0
= −32, 𝑒

1
= 12, 𝑒

2
= −4, 𝑒

3
= 1.

Method 2. (a) Use (59a) and (59b) to expand 𝑟
0
(𝑠).

(b) Using (64a) and (64b) by increasing the value of 𝐿
from 0 to𝑁, we can then obtain the residues of 𝑅(𝑠) as

𝑐
11

= 2, 𝑐
21

= 14, 𝑐
22

= −7,

𝑐
31

= 69, 𝑐
32

= −59.

(104)

(c) Obtain the residual polynomial coefficients of 𝑟
𝑁
(𝑠)

(here, 𝑘 = 𝑁 = 8), 𝑒
𝑁ℎ

using (79a) an (79b)

𝑟
8 (𝑠) =

𝑠
8

𝑠(𝑠 + 1)
2
(𝑠 + 2)

2
=

𝑠
7

(𝑠 + 1)
2
(𝑠 + 2)

2

= −72 + 23𝑠 − 6𝑠
2
+ 𝑠
3
+ 𝑇
8 (𝑠) ,

(105)

where 𝑇
8
(𝑠) is proper residual fraction. Then using (78) or

Table 1, we can obtain all the 𝑒
𝑘ℎ

as shown in Table 3.
(d) Finally, using (78), we have 𝑒

0
= −32, 𝑒

1
= 12, 𝑒

2
= −4,

𝑒
3
= 1.
Thus the desired expansion is

𝑅 (𝑠) = −32 + 12𝑠 − 4𝑠
2
+ 𝑠
3

+
2

𝑠
+

14

(𝑠 + 1)
+

−7

(𝑠 + 1)
2
+

69

(𝑠 + 2)
+

−59

(𝑠 + 2)
2
.

(106)

Example 5. In this example, we consider a large-scale rational
function in expanded form. The example has also been
used in [17]. Thus one can make a comparison between
the performance of the proposed methods and the method
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Figure 4: Comparison of expansion results of the proposed methods with reference (a) and relative errors of Method 1 (b) and Method 2 (c)
in Example 5.

in [17]. 𝑆 = [8, 7, 6, 5, 4, 3, 2, 1]; 𝑚 = [1, 2, 3, 4, 5, 6, 7, 8];
𝐴 = [0.1, 0.2, . . . , 5.9, 6]. In this case, the degree of the
denominator is 36, and the degree of the numerator is 59.The
two methods proposed in Section 3 are validated. The results
are shown in Figure 4. As shown in the figure, themethodswe
proposed can provide quite good results for such a large-scale
problem.The relative error is desirable for both the methods,
demonstrating its good performance. From Figures 4(b) and
4(c), we can see thatMethod 2performs better thanMethod 1.

Example 6. In this example, we consider a proper rational
function in expanded form with ill-conditioned poles. This
example is also used in [17]. 𝑆 = [1000, 3, 2, 1, 1.1]; 𝑚 =

[7, 3, 3, 6, 7]; 𝐴 = [0.1, 0.2, . . . , 2.2]. Thus 𝑅(𝑠) is a function
containing three ill-conditioned high-order poles: two close
high-order poles (1 and 1.1) and a 7th pole (1000) much larger
than the other poles. Again we validate the two methods
proposed in Section 3.As shown in Figure 5, ourmethods can
provide quite satisfactory results and the relative errors are
small enough. While the relative error is comparable to the
method in [17], we find that the proposed methods are more
robust. As mentioned or shown in [8, 9, 17], the input order
of poles can have significant influence on the accuracy of
the expansion results especially when the rational functions
to be expanded contain ill-conditioned poles. However, the
accuracy of our method tends to be less affected by the
order of the poles. In this Example, we can rearrange the
sequence of poles 𝑆 as [1, 1.1, 2, 3, 1000] or other sequences
and achieve comparable accuracy as the sequence used this

Table 4: Counts of long operations above one-degree complexity for
a proper function.

Counts of long operations above one-degree
complexity

Method for
factorized
functions
(Section 2.2.1)

1/2(𝐻𝑀 −𝑀𝐾) +𝑀𝑁 +𝑀
2

Method for
expanded
functions

Method 1: 1/2(𝐻𝑀 −𝑀𝐾) +𝑀
2
+ 2𝑉𝐾

Method 2: 1/2(𝐻𝑀 −𝑀𝐾) +𝑀
2
+ 𝑉𝐾

example, while themethod in [17] does not performquitewell
under all these conditions.

4.3. Computational Efficiency. To provide an insight into the
calculation efficiency of the foregoing methods, we count the
number of long operations (multiplication and division) of
the proposed methods. Suppose that the zeroes and poles are
known and the functions to be expanded are proper. We only
calculate the main part of operations. Operations of constant
and𝑂(𝑛) complexity are not included. Let 𝑉 be the degree of
numerator of 𝑅(𝑠), 𝐾 = ∑

𝑀

𝑖=1
𝑚
𝑖
the degree of denominator,

𝑀 as number of poles,𝐻 = ∑
𝑀

𝑖=1
𝑚
2

𝑖
, and𝑁 as the number of

zeroes. Table 4 presents counts of long operations above one-
degree complexity for a proper function.
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Figure 5: Comparison of expansion results of the proposed methods with reference (a) and relative errors of Method 1 (b) and Method 2 (c)
in Example 6.

Table 5: Calculation time of large-scale examples.

Example 2 Example 3 Example 5 Example 6

Calculation time (s) 0.0446 0.0384 0.0752 (Method 1)
0.0172 (Method 2)

0.0160 (Method 1)
0.0155 (Method 2)

The calculation time of the examples can also provide an
insight into the efficiency of the methods. The calculation
time of the examples is displayed in Table 5. Overall, we can
easily notice that the computing time for each method is
very small, which demonstrates their good computational
efficiency. For factorized Examples (Examples 2 and 3),
we only provide the results when the residual polynomial
coefficients are calculated by the method we proposed in
Section 2.2.1 in Table 5. If the residual polynomial coefficients
are calculated using the methods in Section 2.2.2, the cal-
culation time is between 0.06 s and 0.07 s for Example 2. In
Example 3, methods in Section 2.2.2 perform poorly and are
not applicable. Obviously method in Section 2.2.1 is more
computational efficient and accurate than the methods in
Section 2.2.2. Thus for factorized function, we recommend
pfe algorithm (see Algorithm 1) using (11a) and (11b) to
calculate residues and (30a) and (30b) to calculate residues
to achieve the best performance.

For functions in expanded form, both methods perform
well for the proper function (Example 6). The calculation
time is less than 0.02 s for such a large-scale tricky problem,
which proves their good calculation efficiency. In Example 5
which involves an improper function, though both perform

well, Method 2 is obviously more efficient as it uses less than
1/4 of the time of Method 1. Meanwhile, from the expansion
results, we can also findMethod 2 can producemore accurate
results thanMethod 1 for improper functions.Thus it is more
preferable in practical use. The algorithm for Method 2 is
provided in Algorithm 2.

4.4. Discussions. We would like to discuss some other issues
about the usage and numerical validation of the proposed
methods. Firstly, in the experiments, we define relative error
as |(𝑅(𝑠)−pfe(𝑠))/𝑅(𝑠)| to estimate quantitatively the accuracy
of the expansion results. This criterion is valid because the
original function and its pfe are supposed to be theoretically
equivalent.There is no doubt that themore coherent their fig-
ures are themore accurate the expansion results are.However,
incoherence between the figures does not always indicate
low-accuracy results. The errors calculated by this definition
are not the exact errors of the expansion methods. The
actual errors can be much smaller than those shown in the
figures, especially when ill-conditioned poles are involved.
This is because that in floating point arithmetic, evaluation
of partial fraction functions itself (even when the expansion
result is 100% correct) can lead to considerably large, even
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Step 1. calculate ckmk
directly

For 𝑘 = 1 : 𝑀

𝑐
𝑘𝑚𝑘

=

∏
𝑁

𝑗=1
(𝑠
𝑘
− 𝑧
𝑗
)
𝑛𝑗

∏
𝑀

𝑗=1

𝑗 ̸=𝑘

(𝑠
𝑘
− 𝑠
𝑗
)
𝑚𝑗

.

End
Step 2. calculate ckL (L = mk − 1 : −1 : 1) using (11a) and (11b)
For 𝑘 = 1 : 𝑀

For 𝑖 = 1 : 𝑚
𝑘
− 1

𝜆̂
𝑖
= (

𝑀

∑

𝑗=1

𝑗 ̸=𝑘

𝑚
𝑗

(𝑠
𝑗
− 𝑠
𝑘
)
𝑖
−

𝑁

∑

𝑗=1

𝑛
𝑗

(𝑧
𝑗
− 𝑠
𝑘
)
𝑖
)

End
For 𝐿 = 𝑚

𝑘
− 1 : −1 : 1

𝑐
𝑘𝐿

= 0

For 𝑖 = 1 : 𝑚
𝑘
− 𝐿

𝑐
𝑘𝐿

= 𝑐
𝑘𝐿

+ 𝑐
𝑘(𝐿+𝑖)

𝜆̂
𝑖

End
𝑐
𝑘𝐿

=
𝑐
𝑘𝐿

(𝑚
𝑘
− 𝐿)

End
End
Step 3. Calculate eh using (30a) and (30b)

Step 3.1. 𝑒
𝐸
= 1

Step 3.2. calculate 𝜂
𝑖
using (30b)

For 𝑖 = 1 : 𝐸 − 1

𝜂
𝑖
=

{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{

{

𝑀

∑

𝑗 = 1

𝑗 ̸= 𝑘

𝑚
𝑗
(𝑠
𝑗
− 𝑠
𝑐
)
𝑖
−

𝑁

∑

𝑗=1

𝑛
𝑗
(𝑧
𝑗
− 𝑠
𝑐
)
𝑖

(𝑠
𝑐
= 𝑠
𝑘
) ,

𝑀

∑

𝑗 = 1

𝑚
𝑗
(𝑠
𝑗
− 𝑠
𝑐
)
𝑖
−

𝑁

∑

𝑗 = 1

𝑗 ̸= 𝑘

𝑛
𝑗
(𝑧
𝑗
− 𝑠
𝑐
)
𝑖

(𝑠
𝑐
= 𝑧
𝑘
) ,

𝑀

∑

𝑗 = 1

𝑚
𝑗
(𝑠
𝑗
− 𝑠
𝑐
)
𝑖
−

𝑁

∑

𝑗=1

𝑛
𝑗
(𝑧
𝑗
− 𝑠
𝑐
)
𝑖

(otherwise) .

End
Step 3.3. Calculate 𝑒

ℎ
(ℎ = 𝐸 − 1 : −1 : 1) using (30a)

For ℎ = 𝐸 − 1 : −1 : 1

𝑒
ℎ
=

1

(𝐸 − ℎ)

𝐸−ℎ

∑

𝑖=1

𝑒
(ℎ+𝑖)

𝜂
𝑖

End

Algorithm 1: Algorithm for factorized functions.

intolerable errors when functions with ill-conditioned high-
order poles [20]. Hence, it does not necessarily indicate
inaccurate expansion results even when the relative errors
are comparatively large at some values of 𝑠. On the other
hand, small relative errors can guarantee good expansion
results. When using the defined relative error to validate a
pfe method, we suggest that 𝑠 should not have the values
that make 𝑅(𝑠) have an extreme small (or extreme large)
absolute value. Otherwise the relative errors will inevitably
grow large due to the properties of floating point arithmetic
of the computer.

Secondly, we provide several methods to calculate
the residual polynomial coefficients of improper 𝑅(𝑠) in
Section 2.2. In terms of accuracy, those methods perform
almost equally for small- ormedian-scale problems and some
large-scale problems. But when 𝑅(𝑠) contains ill-conditioned
poles andwhen the numerator of𝑅(𝑠) hasmuch larger degree
than its denominator, the method proposed in Section 2.2.1
performs better than the methods proposed Section 2.2.2, as
it does not use the residues as a basis.

Thirdly, though we proposed methods for 𝑅(𝑠) in both
factorized and expanded form, for a given factorized or
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Step 1. calculate residues of r0 (s) using (59a) (59b).
Step 1.1. calculate 𝑐

0𝑖𝑚𝑖
directly

For 𝑖 = 1 : 𝑀

𝑐
0𝑖𝑚𝑖

=
1

∏
𝑀

𝑗=1

𝑗 ̸=𝑖

(𝑠
𝑖
− 𝑠
𝑗
)
𝑚𝑗

.

End
Step 1.2. calculate 𝑐

0𝑖𝑗
(𝑗 = 𝑚

𝑖
− 1 : −1 : 1) using

For 𝑖 = 1 : 𝑀

For 𝑘 = 1 : 𝑚
𝑖
− 1

𝜆̂
𝑖
=

𝑀

∑

𝐿=1

𝐿 ̸=𝑖

𝑚
𝐿

(𝑠
𝐿
− 𝑠
𝑖
)
𝑘

End
For 𝑗 = 𝑚

𝑖
− 1 : −1 : 1

𝑐
0𝑖𝑗

= 0

For 𝑘 = 1 : 𝑚
𝑖
− 𝑗

𝑐
0𝑖𝑗

= 𝑐
0𝑖𝑗

+ 𝑐
0𝑖(𝑗+𝑘)

𝜆̂
𝑘

End
𝑐
0𝑖𝑗

=

𝑐
0𝑖𝑗

(𝑚
𝑖
− 𝑗)

End
End

Step 2. calculate the residues of R(s) using (64a) and (64b)
𝑑
0𝑖𝑗

= 𝑎
𝑁
× 𝑐
0𝑖𝑗
. (𝑖 = 1 : 𝑀, 𝑗 = 1 : 𝑚

𝑖
)

For 𝐿 = 1 : 𝑁

For 𝑖 = 1 : 𝑀

For 𝑗 = 1 : 𝑚
𝑖

𝑑
𝐿𝑖𝑗

= 𝑎
𝑁−𝐿

× 𝑐
0𝑖𝑗

+ 𝑑
(𝐿−1)𝑖(𝑗+1)

+ (𝑠
𝑖
− 𝑠
0
) × 𝑑
(𝐿−1)𝑖𝑗

End
End

End
Step 3. calculate the residual polynomial coefficients of rN (s), eNh using (79a) (79b).

Step 3.1. 𝑒
𝑁𝐸

= 1
Step 3.2. calculate 𝜂

𝑖
using (79b)

For 𝑖 = 1 : 𝐸 − 1

𝜂
𝑖
=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

𝑀

∑

𝑗 = 1

𝑗 ̸= 𝑘

𝑚
𝑗
(𝑠
𝑗
− 𝑠
𝑐
)
𝑖
− 𝑁(𝑧

𝑗
− 𝑠
𝑐
)
𝑁

(𝑠
𝑐
= 𝑠
𝑘
) ,

𝑀

∑

𝑗=1

𝑚
𝑗
(𝑠
𝑗
− 𝑠
𝑐
)
𝑖

(𝑠
𝑐
= 𝑠
0
) ,

𝑀

∑

𝑗=1

𝑚
𝑗
(𝑠
𝑗
− 𝑠
𝑐
)
𝑖
− 𝑁(𝑧

𝑗
− 𝑠
𝑐
)
𝑁

(otherwise) .

End
Step 3.3. Calculate 𝑒

𝑁ℎ
(ℎ = 𝐸 − 1 : −1 : 1) using (79a)

For ℎ = 𝐸 − 1 : −1 : 1

𝑒
𝑁ℎ

=
1

(𝐸 − ℎ)

𝐸−ℎ

∑

𝑖=1

𝑒
𝑁(ℎ+𝑖)

𝜂
𝑖

End
Step 4. calculate the residual polynomial coefficients of R(s) using 𝑒

ℎ
= ∑
𝐸−ℎ

𝑖=0
𝑎
𝐾+ℎ+𝑖

𝑒
𝑁(𝐸−𝑖)

(ℎ = 0 : 𝐸).

Algorithm 2: Algorithm for functions in expanded form.

polynomial function, it is not necessary to transform the
function into another form and then performpfe.Whether in
factorized or expanded form, the expansion results using the
proposed methods are comparable. Meanwhile, we mention

that the methods for factorized 𝑅(𝑠) can be more easily
performed by manual calculation.

Finally, 𝑠
0
and 𝑠
𝑐
in (2) and (52) are set as zeros in almost

all the existing articles. In our paper, they are introduced to
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generalize a polynomial. They can facilitate implementation
and reduce calculation in many practical situations when 𝑠

0

and 𝑠
𝑐
of𝑅(𝑠) are not zeros.Moreover, though a careful choice

of 𝑠
0
and 𝑠

𝑐
may improve the accuracy to some extent in

certain cases, it will not lead to a significant improvement of
accuracy inmost cases.Thus, 𝑠

0
and 𝑠
𝑐
can generally be simply

set as zeros or other values at your convenience in practice.

5. Conclusions

In this paper, we developed efficient recursive methods for
the pfe of general rational functions in both factorized and
expanded form. Simple, elegant, recursive formulas that
describe the relation of the residues and the coefficients of the
residual polynomial are obtained. These methods tend to be
simpler and more applicable than many existing methods for
pfe of rational functions withmultiple high-order poles.They
can be easily programmed for computer use with desirable
efficiency and accuracy. They are also very stable whose
accuracy is less affected by the input-order of poles. The
methods are also very suitable for manual calculation.

Appendix

See Algorithms 1 and 2.
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