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The family of nth order q-Legendre polynomials are introduced. They are shown to be obtainable from the Jacobi theta function
and to satisfy recursion relations and multiplicatively advanced differential equations (MADEs) that are analogues of the recursion
relations and ODEs satisfied by the nth degree Legendre polynomials. The nth order q-Legendre polynomials are shown to have
vanishing kth moments for 0 ≤ 𝑘 < 𝑛, as does the nth degree truncated Legendre polynomial. Convergence results are obtained,
approximations are given, a reciprocal symmetry is shown, and nearly orthonormal frames are constructed. Conditions are given
under which a MADE remains a MADE under inverse Fourier transform. This is used to construct new wavelets as solutions of
MADEs.

1. Introduction

The Legendre polynomials 𝑃
𝑛
(𝜔) of degree 𝑛 can be obtained

by starting with 𝑃
0
(𝜔) = 1, 𝑃

1
(𝜔) = 𝜔 and then relying on the

recursive relation

(𝑛 + 1) 𝑃
𝑛+1
(𝜔) = (2𝑛 + 1) 𝜔𝑃

𝑛
(𝜔) − 𝑛𝑃

𝑛−1
(𝜔) (1)

for 𝑛 ≥ 1 to obtain Legendre polynomials of higher degree.
For instance, take 𝑛 = 1 in (1) and solve for 𝑃

2
(𝜔) to find

𝑃
2
(𝜔) = (3/2)𝜔𝑃

1
(𝜔) − (1/2)𝑃

0
(𝜔) = (3/2)𝜔

2

− (1/2).
Proceeding with (1), one obtains the remaining 𝑃

𝑛
(𝜔).

The 𝑃
𝑛
(𝜔) have many interesting properties. In addition

to satisfying (1), the 𝑃
𝑛
(𝜔) satisfy Legendre’s ordinary differ-

ential equation

𝐷
2

𝜔
𝑃
𝑛
(𝜔) = 𝜔

2

𝐷
2

𝜔
𝑃
𝑛
(𝜔) + 2𝜔𝐷

𝜔
𝑃
𝑛
(𝜔) − 𝑛 (𝑛 + 1) 𝑃

𝑛
(𝜔) ,

(2)

where 𝐷
𝜔
denotes differentiation in the variable 𝜔; see [1].

Furthermore, the 𝑃
𝑛
(𝜔) restricted to the interval [−1, 1]

form an orthogonal complete set for the square integrable
functions L2

([−1, 1]) in the norm ‖ ⋅ ‖
2,[−1,1]

. The 𝑃
𝑛
(𝜔) can

also be constructed by aGram-Schmidt orthogonalization on
the polynomials {1, 𝜔, 𝜔2

, . . . , 𝜔
𝑘

, . . .} on the interval [−1, 1]

scaling so that 𝑃
𝑛
(1) = 1, as required by (1). This implies the

vanishing of the following moments:

∫

1

−1

𝜔
𝑘

𝑃
𝑛
(𝜔) 𝑑𝜔 = 0 for 0 ≤ 𝑘 < 𝑛 (3)

on [−1, 1] for 𝑛 ≥ 1; see [2]. From [3], we also have that

𝑖
𝑛

√
𝜋

2
𝑃
𝑛
(𝜔) 𝜒

[−1,1]
(𝜔) =

1

√2𝜋

∫

∞

−∞

𝑒
𝑖𝜔𝑡

𝑗
𝑛
(𝑡) 𝑑𝑡

= F
−1

[𝑗
𝑛
(𝑡)] (𝜔) ,

(4)

whereF−1 denotes the inverse Fourier transform

F
−1

[𝑓 (𝑡)] (𝜔) =
1

√2𝜋

∫

∞

−∞

𝑒
𝑖𝜔𝑡

𝑓 (𝑡) 𝑑𝑡, (5)

where 𝑗
𝑛
(𝑡) denotes the 𝑛th spherical Bessel function of the

first kind

𝑗
𝑛
(𝑡) ≡ (−𝑡)

𝑛

(
1

𝑡

𝑑

𝑑𝑡
)

𝑛 sin (𝑡)
𝑡
, (6)
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where, for 𝜒
Ω
(𝜔) denoting the characteristic function of the

set Ω, we have

𝜒
[−1,1]

(𝜔) =
1

2
[𝜒

[−1,1]
(𝜔) + 𝜒

(−1,1)
(𝜔)]

=

{{{

{{{

{

0, 𝜔 ∉ [−1, 1] ,

1, 𝜔 ∈ (−1, 1) ,

1

2
, 𝜔 ∈ 𝜕 [−1, 1] .

(7)

We refer to the 𝑃
𝑛
(𝜔)𝜒

[−1,1]
(𝜔) in (4) as the truncated 𝑛th

degree Legendre polynomials.
In [4], the 𝑛th order 𝑞-advanced spherical Bessel func-

tions of the first kind 𝑗
𝑛
(𝑞; 𝑡) are introduced. Paralleling (6),

one has that, for 𝑞 > 1, 𝑛 ∈ N
0
= N ∪ {0},

𝑗
𝑛
(𝑞; 𝑡) ≡ (−𝑡)

𝑛

(
1

𝑡

𝑑

𝑑𝑡
)

𝑛

𝑞
Sin (𝑡)
𝑡

= (−𝑡)
𝑛

(
1

𝑡

𝑑

𝑑𝑡
)

𝑛

𝑗
0
(𝑞; 𝑡) ,

(8)

where
𝑞
Sin(𝑡) is the 𝑞-advanced sine function

𝑞
Sin (𝑡) ≡

sign (𝑡) ∑∞

𝑀=−∞
(−1)

𝑀

𝑒
−𝑞
𝑀
|𝑡|

𝑞
−𝑀(𝑀−1)

∑
∞

𝑀=−∞
(−1)

𝑀

𝑞−𝑀
2

. (9)

Since
𝑞
Sin(𝑡) is defined to be odd,

𝑞
Sin(𝑡)/𝑡 is then even,

and (8) reveals 𝑗
𝑛
(𝑞; 𝑡) to be even in 𝑡 when the order 𝑛

is even and odd when the order 𝑛 is odd. Many further
interesting properties of 𝑗

𝑛
(𝑞; 𝑡) and

𝑞
Sin(𝑡) and other related

functions are developed in [4–6], which are good background
references. For our purposes here we only note a few facts
about the 𝑗

𝑛
(𝑞; 𝑡). First, the 𝑗

𝑛
(𝑞; 𝑡) belong to the class of

Schwartz functions S(R) and they are solutions to the
multiplicatively advanced differential equation (MADE)

𝑗
󸀠󸀠

𝑛
(𝑞; 𝑡) +

2

𝑡
𝑗
󸀠

𝑛
(𝑞; 𝑡) −

𝑛 (𝑛 + 1)

𝑡2
𝑗
𝑛
(𝑞; 𝑡) = −𝑞

𝑛+3

𝑗
𝑛
(𝑞; 𝑞𝑡) ,

(10)

as is proven in [4]. Note that (10) is aMADE from the fact that
the argument 𝑞𝑡 in the right-hand side of (10) is a multiple of
𝑡 by 𝑞 > 1.The inverse Fourier transforms ofF−1

[𝑗
𝑛
(𝑞; 𝑡)](𝜔)

are developed in [4] and given there as

F
−1

[𝑗
0
(𝑞; 𝑡)] (𝜔) =

−2(𝜇
𝑞
2)

3

𝑓
0,𝑞
(0)√2𝜋

A
𝜔
(

𝜔

𝜃 (𝑞2; 𝜔2)
) , (11)

F
−1

[𝑗
𝑛+1
(𝑞; 𝑡)] (𝜔) = 𝑖

𝑛+1

× 𝐷
𝑛

𝜔
{𝜔(A

𝜔
𝜔)

𝑛

F
−1

[𝑗
0
(𝑞; 𝑡)] (𝜔)} ,

(12)

where the integral operatorA
𝜔
appearing in (11) and (12) acts

on S(R) and is defined by

A
𝜔
𝑓 (𝜔) ≡ ∫

𝜔

−∞

𝑓 (V) 𝑑V. (13)

In (11), one has that 𝜃 is the Jacobi theta function

𝜃 (𝑄;𝑊) ≡ 𝜇
𝑄

∞

∏

𝑛=0

(1 +
𝑊

𝑄𝑛
)(1 +

1

𝑊𝑄𝑛+1
)

=

∞

∑

𝑛=−∞

𝑊
𝑛

𝑄𝑛(𝑛−1)/2

(14)

for 𝑄 > 1, where

𝜇
𝑄
≡

∞

∏

𝑛=0

(1 −
1

𝑄𝑛+1
) > 0, (15)

𝑓
0,𝑞
(0) ≡

∞

∑

𝑀=−∞

(−1)
𝑀

𝑞
−𝑀
2

= 𝜃(𝑞
2

; −
1

𝑞
)

= 𝜇
𝑞
2∏

𝑛≥0

(1 −
1

𝑞2𝑛+1
)

2

> 0

(16)

for 𝑞 > 1. From [4], one has the 𝑞-Wallis limit which relates
𝜇
𝑞
2 from (15) to 𝑓

0,𝑞
(0) from (16) asymptotically as 𝑞 → 1

+:

lim
𝑞→1

+

ln (𝑞) (𝜇
𝑞
2)

3

𝑓
0,𝑞
(0)

=
𝜋

2
. (17)

Since most of the functions studied here will exhibit
wavelet properties, we mention that function 𝜙 is considered
to be a wavelet if

𝜙 ∈L
1

(R) ∩L
2

(R) ∩L
∞

(R) ,

∫

∞

−∞

𝜙 (𝑡) 𝑑𝑡 = 0, (equivalently F [𝜙 (𝑡)] (0) = 0) ,

∫

∞

−∞

󵄨󵄨󵄨󵄨F [𝜙 (𝑡)] (𝜔)
󵄨󵄨󵄨󵄨

2

|𝜔|
𝑑𝜔 < ∞.

(18)

See [7] for further background on wavelets.
Solving (4) for 𝑃

𝑛
(𝜔)𝜒

[−1,1]
(𝜔) yields

𝑃
𝑛
(𝜔) 𝜒

[−1,1]
(𝜔) = (−𝑖)

𝑛
√
2

𝜋
F

−1

[𝑗
𝑛
(𝑡)] (𝜔) . (19)

In analogy to (19), we make the following definition.

Definition 1. For 𝑛 ∈ N
0
and 𝑞 > 1, the 𝑛th order 𝑞-Legendre

polynomials 𝑃̃
𝑛
(𝑞; 𝜔) are given by

𝑃̃
𝑛
(𝑞; 𝜔) ≡ (−𝑖)

𝑛
√
2

𝜋
F

−1

[𝑗
𝑛
(𝑞; 𝑡)] (𝜔) . (20)

See Figure 1 for graphical representations of 𝑃̃
𝑛
(𝑞; 𝜔).

A main purpose of this paper is to study the functions
𝑃̃
𝑛
(𝑞; 𝜔) ∈ S(R).These 𝑞-Legendre polynomials are Schwartz

approximations to the truncated Legendre polynomials
𝑃
𝑛
(𝜔)𝜒

[−1,1]
(𝜔) ∉ S(R), as the next theorem shows.
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Figure 1: (a) 𝑃̃
0
(𝑞; 𝜔) is shown in solid for 𝑞 = 1.20 and is compared with 𝑃

0
(𝜔)𝜒

[−1,1]
(𝜔) which is dashed. (b) 𝑃̃

1
(𝑞; 𝜔) is shown in solid for

𝑞 = 1.20 and is compared with 𝑃
1
(𝜔)𝜒

[−1,1]
(𝜔)which is dashed. (c) 𝑃̃

2
(𝑞; 𝜔) is shown in solid for 𝑞 = 1.20 and is compared with 𝑃

2
(𝜔)𝜒

[−1,1]
(𝜔)

which is dashed.

Theorem 2. The 𝑞-Legendre polynomials are Schwartz func-
tions and are expressible in terms of the Jacobi theta function
as follows:

𝑃̃
0
(𝑞; 𝜔) =

−2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)

A
𝜔
(

𝜔

𝜃 (𝑞2; 𝜔2)
) , (21)

𝑃̃
𝑛+1
(𝑞; 𝜔) =

−2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)

× 𝐷
𝑛

𝜔
{(𝜔A

𝜔
)
𝑛+1

(
𝜔

𝜃 (𝑞2; 𝜔2)
)} for 𝑛 ≥ 0,

(22)
whereA

𝜔
is as in (13). Furthermore, for each 1 ≤ 𝑝 < ∞, one

has convergence inL𝑝

(R) norm

0 = lim
𝑞→1

+

󵄩󵄩󵄩󵄩󵄩
𝑃̃
𝑛
(𝑞; 𝜔) − 𝑃

𝑛
(𝜔) 𝜒

[−1,1]
(𝜔)
󵄩󵄩󵄩󵄩󵄩𝑝
. (23)

In addition, 𝑃̃
𝑛
(𝑞; 𝜔) converges pointwise to 𝑃

𝑛
(𝜔)𝜒

[−1,1]
(𝜔) on

R. For 𝑛 ≥ 1, the 𝑃̃
𝑛
(𝑞; 𝜔) are wavelets. Finally, 𝑃̃

𝑛
(𝑞; 𝜔) is even

in 𝜔 for 𝑛 even and odd for 𝑛 odd.

Proof. To obtain the 0th order case (21), one substitutes
(11) into (20). To obtain the higher order cases (22), one
substitutes (12) into the 𝑛 + 1 case of (20) and then one
substitutes (11) into the result to give

𝑃̃
𝑛+1
(𝑞; 𝜔) = (−𝑖)

𝑛+1
√
2

𝜋
F

−1

[𝑗
𝑛+1
(𝑞; 𝑡)] (𝜔)

= (−𝑖)
𝑛+1
√
2

𝜋
𝑖
𝑛+1

× 𝐷
𝑛

𝜔
{𝜔(A

𝜔
𝜔)

𝑛

F
−1

[𝑗
0
(𝑞; 𝑡)] (𝜔)}

(24)

= √
2

𝜋

−2(𝜇
𝑞
2)

3

𝑓
0,𝑞
(0)√2𝜋

× 𝐷
𝑛

𝜔
{𝜔(A

𝜔
𝜔)

𝑛

A
𝜔
(

𝜔

𝜃 (𝑞2; 𝜔2)
)} .

(25)

Examining (20), one has that for 𝑛 ∈ N
0
the 𝑃̃

𝑛
(𝑞; 𝜔)

are Schwartz from the fact that the F−1

[𝑗
𝑛
(𝑞; 𝑡)](𝜔) are

Schwartz, which in turn follows from the fact that the
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𝑗
𝑛
(𝑞; 𝑡) are Schwartz and that F−1 preserves the Schwartz

property. Similarly, for 𝑛 ∈ N, the fact that the 𝑃̃
𝑛
(𝑞; 𝜔)

are wavelets follows from the fact that the F−1

[𝑗
𝑛
(𝑞; 𝑡)](𝜔)

are wavelets, because the order of vanishing at 𝑡 = 0

of F[F−1

[𝑗
𝑛
(𝑞; 𝑡)]] = 𝑗

𝑛
(𝑞; 𝑡) is 𝑛 − 1 as is observed

from (8) using Taylor’s remainder theorem. See Theorem 8
for further discussion. The L𝑝 convergence in (23) follows
fromTheorem 21 in Section 10 below. Pointwise convergence
follows fromTheorem 18 in Section 9 below. Finally, since the
remarks following (8) give 𝑗

𝑛
(𝑞; 𝑡) as even in 𝑡 when 𝑛 is even

and odd when 𝑛 is odd, and sinceF−1 preserves evenness or
oddness of a function, one sees from (20) that 𝑃̃

𝑛
(𝑞; 𝜔) is even

in 𝜔 when 𝑛 is even and odd when 𝑛 is odd.

Remark 3. Equation (22) in the 𝑛 + 1 = 0 case reduces to (21)
if one interprets 𝐷−1

𝜔
= A

𝜔
. Also, Theorem 2 gives genesis to

the title of this paper.

To conclude this section, we mention some useful results
here. First, from [4, 6], the following bound holds on the
reciprocal of 𝜃(𝑞2; 𝜔2

):

1

𝜃 (𝑞2; 𝜔2)
≤ [𝑞

1/4

|𝜔| 𝑒
(ln(|𝜔|))2/ ln(𝑞)

{√
𝜋

ln (𝑞)
− 1}]

−1

(26)

= ln (𝑞) [[

[

1

√ln (𝑞)

𝑞
−1/4

|𝜔|
−1

𝑒
−(ln(|𝜔|))2/ ln(𝑞)

{√𝜋 − √ln (𝑞)}

]
]

]

(27)

for 1 < 𝑞 < 𝑒
𝜋. This bound will be especially useful in

analyzing the decay rate of the functions of interest for 𝜔 in
the tails |𝜔| ≥ 1 + 𝜀.

Second, there is also a 𝑞-advanced cosine function

𝑞
Cos (𝑡) ≡

∑
∞

𝑀=−∞
(−1)

𝑀

𝑒
−𝑞
𝑀
|𝑡|

𝑞
−𝑀
2

∑
∞

𝑀=−∞
(−1)

𝑀

𝑞−𝑀
2

. (28)

From [4, 5], we have the Fourier transforms

F [
𝑞
Cos (𝑡)] (𝜔) = √ 2

𝜋

(𝜇
𝑞
2)

3

𝑓
0,𝑞
(0)

1

𝜃 (𝑞2; 𝜔2)
,

F [
𝑞
Sin (𝑡)] (𝜔) = −𝑖√ 2

𝜋

(𝜇
𝑞
2)

3

𝑓
0,𝑞
(0)

𝜔

𝜃 (𝑞2; 𝜔2)
.

(29)

F[
𝑞
Cos(𝑡)](𝜔) will be utilized to obtain Proposition 20,

which in turn helps in yielding the uniform convergence
results.

2. Main Results

Specific properties of the 𝑞-Legendre polynomials 𝑃̃
𝑛
(𝑞; 𝜔)

are established. First, we show that the 𝑃̃
𝑛
(𝑞; 𝜔) satisfy an

analogue of the recursion relation (1), namely, (34) below.

Next, 𝑃̃
𝑛
(𝑞; 𝜔) also satisfy a multiplicatively advanced ana-

logue of the Legendre ordinary differential equation (2),
namely, the 𝑞-Legendremultiplicatively advanced differential
equation (MADE) given by (56) below. Moment vanishing
properties of the 𝑃̃

𝑛
(𝑞; 𝜔) exactly analogous to those of the

truncated 𝑃
𝑛
(𝜔) in (3) are shown in (68). We obtain a

reciprocal symmetry for 𝑃̃
0
(𝑞; 𝜔) in (71). The 𝑃̃

𝑛
(𝑞; 𝜔) are

used to generate a nearly orthonormal frame for L2

(R)

in Section 7. Alternative expressions for the 𝑃̃
𝑛
(𝑞; 𝜔) are

obtained in Section 8. In Section 9, we obtain uniform con-
vergence of the 𝑃̃

𝑛
(𝑞; 𝜔) to 𝑃

𝑛
(𝜔)𝜒

[−1,1]
(𝜔) as 𝑞 → 1

+ on
all closed sets of R not containing ±1. This result combined
with the reciprocal symmetry property then gives pointwise
convergence of 𝑃̃

𝑛
(𝑞; 𝜔) to𝑃

𝑛
(𝜔)𝜒

[−1,1]
(𝜔) onR. In Section 10,

L𝑝 convergence of these functions is demonstrated. Approx-
imations to the 𝑃̃

𝑛
(𝑞; 𝜔) are provided in Section 11. Finally,

as encountered in the process of showing the 𝑞-Legendre
MADE, we give a more general condition under which a
MADE remains a MADE under inverse Fourier transform.
This is used to provide new wavelet solutions of MADEs.

It is worth mentioning that the study of MADEs and
related topics has seen recent growth. See, for instance,
contributions from [4–6, 8–12].

3. Recursive Relations for the 𝑃̃
𝑛
(𝑞; 𝜔)

In this section, we obtain a 𝑞-version of the recursion formula
(1) for 𝑞-Legendre polynomials, namely, (34) below. This
follows from a recursion relation on the 𝑗

𝑛
(𝑞; 𝑡) given by (33).

We begin with a lemma describing the derivative of 𝑗
𝑛
(𝑞; 𝑡).

Lemma 4. For 𝑛 ∈ N
0
and 𝑞 ≥ 1, one has

𝐷
𝑡
𝑗
𝑛
(𝑞; 𝑡) =

𝑛

𝑡
𝑗
𝑛
(𝑞; 𝑡) − 𝑗

𝑛+1
(𝑞; 𝑡) . (30)

Proof. First, recall that 𝑗
0
(𝑞; 𝑡) =

𝑞
Sin(𝑡)/𝑡 and take 𝑗

0
(1; 𝑡) =

𝑗
0
(𝑡) = sin(𝑡)/𝑡. Then,

𝑗
𝑛
(𝑞; 𝑡) = (−𝑡)

𝑛

(
1

𝑡
𝐷

𝑡
)

𝑛

𝑗
0
(𝑞; 𝑡) (31)

is well defined. Differentiation now yields

𝐷
𝑡
𝑗
𝑛
(𝑞; 𝑡) = −𝑛(−𝑡)

𝑛−1

(
1

𝑡
𝐷

𝑡
)

𝑛

𝑗
0
(𝑞; 𝑡)

+ (−𝑡)
𝑛

𝐷
𝑡
(
1

𝑡
𝐷

𝑡
)

𝑛

𝑗
0
(𝑞; 𝑡)

=
𝑛

𝑡
(−𝑡)

𝑛

(
1

𝑡
𝐷

𝑡
)

𝑛

𝑗
0
(𝑞; 𝑡)

− (−𝑡)
𝑛+1

(
1

𝑡
𝐷

𝑡
)

𝑛+1

𝑗
0
(𝑞; 𝑡)

=
𝑛

𝑡
𝑗
𝑛
(𝑞; 𝑡) − 𝑗

𝑛+1
(𝑞; 𝑡) ,

(32)

giving the lemma.

Lemma 4 is the starting point in proving the following
recursion relations.
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Theorem 5. For 𝑛 ∈ N
0
,

(2𝑛 + 1)𝐷
𝑡
𝑗
𝑛
(𝑞; 𝑡) = 𝑛𝑞

𝑛+2

𝑗
𝑛−1
(𝑞; 𝑞𝑡)

− (𝑛 + 1) 𝑗
𝑛+1
(𝑞; 𝑡) .

(33)

Or, equivalently,

(𝑛 + 1) 𝑃̃
𝑛+1
(𝑞; 𝜔) = (2𝑛 + 1) 𝜔𝑃̃

𝑛
(𝑞; 𝜔)

− 𝑛𝑞
𝑛+1

𝑃̃
𝑛−1
(𝑞;
𝜔

𝑞
) .

(34)

Proof. The 𝑛 = 0 case is handled directly. Namely, from (8),
one has

𝐷
𝑡
𝑗
0
(𝑞; 𝑡) = − (−𝑡) (

1

𝑡
𝐷

𝑡
) 𝑗

0
(𝑞; 𝑡) = −𝑗

1
(𝑞; 𝑡) , (35)

giving (33) for 𝑛 = 0. Taking inverse Fourier transforms of
both sides of (35) and multiplying the resulting equation by
𝑖√2/𝜋 yield

𝜔𝑃̃
0
(𝑞; 𝜔) = 𝑃̃

1
(𝑞; 𝜔) , (36)

which is (34) for 𝑛 = 0.Thus, we assume 𝑛 ≥ 1 from this point
on and begin first by showing (33). Setting the index 𝑛 equal
to 𝑛 − 1 in (30) and solving the result for 𝑗

𝑛
(𝑞; 𝑡) yield

𝑗
𝑛
(𝑞; 𝑡) =

𝑛 − 1

𝑡
𝑗
𝑛−1
(𝑞; 𝑡) − 𝐷

𝑡
𝑗
𝑛−1
(𝑞; 𝑡) . (37)

From (10), with the index set to be 𝑛 − 1, one obtains

𝐷
2

𝑡
𝑗
𝑛−1
(𝑞; 𝑡) =

𝑛 (𝑛 − 1)

𝑡2
𝑗
𝑛−1
(𝑞; 𝑡) −

2

𝑡
𝐷

𝑡
𝑗
𝑛−1
(𝑞; 𝑡)

− 𝑞
𝑛+2

𝑗
𝑛−1
(𝑞; 𝑞𝑡) .

(38)

Differentiating (37) yields

𝐷
𝑡
𝑗
𝑛
(𝑞; 𝑡) = −

(𝑛 − 1)

𝑡2
𝑗
𝑛−1
(𝑞; 𝑡) +

(𝑛 − 1)

𝑡
𝐷

𝑡
𝑗
𝑛−1
(𝑞; 𝑡)

− 𝐷
2

𝑡
𝑗
𝑛−1
(𝑞; 𝑡) .

(39)

Replacing the second derivative term in (39) with that in (38)
yields

𝐷
𝑡
𝑗
𝑛
(𝑞; 𝑡) = −

(𝑛 − 1)

𝑡2
𝑗
𝑛−1
(𝑞; 𝑡) +

(𝑛 − 1)

𝑡
𝐷

𝑡
𝑗
𝑛−1
(𝑞; 𝑡)

−
𝑛 (𝑛 − 1)

𝑡2
𝑗
𝑛−1
(𝑞; 𝑡) +

2

𝑡
𝐷

𝑡
𝑗
𝑛−1
(𝑞; 𝑡)

+ 𝑞
𝑛+2

𝑗
𝑛−1
(𝑞; 𝑞𝑡)

(40)

=
(𝑛 + 1)

𝑡
[𝐷

𝑡
𝑗
𝑛−1
(𝑞; 𝑡) −

(𝑛 − 1)

𝑡
𝑗
𝑛−1
(𝑞; 𝑡)]

+ 𝑞
𝑛+2

𝑗
𝑛−1
(𝑞; 𝑞𝑡)

(41)

=
(𝑛 + 1)

𝑡
[−𝑗

𝑛
(𝑞; 𝑡)] + 𝑞

𝑛+2

𝑗
𝑛−1
(𝑞; 𝑞𝑡) , (42)

where (37) was used to replace the bracketed expression in
(41) and obtain (42). Continuing yields

𝐷
𝑡
𝑗
𝑛
(𝑞; 𝑡) = −

(𝑛 + 1)

𝑛
[
𝑛

𝑡
𝑗
𝑛
(𝑞; 𝑡)] + 𝑞

𝑛+2

𝑗
𝑛−1
(𝑞; 𝑞𝑡) (43)

= −
(𝑛 + 1)

𝑛
[𝐷

𝑡
𝑗
𝑛
(𝑞; 𝑡) + 𝑗

𝑛+1
(𝑞; 𝑡)]

+ 𝑞
𝑛+2

𝑗
𝑛−1
(𝑞; 𝑞𝑡) ,

(44)

where (30) was used to replace the bracketed expression in
(43) and obtain (44). Multiplying (43) and (44) through by
𝑛 and combining terms gives (33). Note the multiplicative
advance 𝑞𝑡 in the argument of the 𝑗

𝑛−1
term in (33) and (44).

To obtain (34), one takes the inverse Fourier trans-
form of (33), relying on the fact that F−1

[𝐷
𝑡
𝑓(𝑡)](𝜔) =

(−𝑖𝜔)F−1

[𝑓(𝑡)](𝜔) to obtain

(2𝑛 + 1) (−𝑖𝜔)F
−1

[𝑗
𝑛
(𝑞; 𝑡)] (𝜔)

= 𝑛𝑞
𝑛+2

F
−1

[𝑗
𝑛−1
(𝑞; 𝑞𝑡)] (𝜔)

− (𝑛 + 1)F
−1

[𝑗
𝑛+1
(𝑞; 𝑡)] (𝜔) .

(45)

One next utilizes the fact that

F
−1

[𝑓 (𝑞𝑡)] (𝜔) =
1

√2𝜋

∫

∞

−∞

𝑒
𝑖𝜔𝑡

𝑓 (𝑞𝑡) 𝑑𝑡

=
1

√2𝜋

∫

∞

−∞

𝑒
𝑖(𝜔/𝑞)𝑞𝑡

𝑓 (𝑞𝑡)
𝑑 (𝑞𝑡)

𝑞

=
1

𝑞
F

−1

[𝑓 (𝑡)] (
𝜔

𝑞
)

(46)

to reexpressF−1

[𝑗
𝑛−1
(𝑞; 𝑞𝑡)](𝜔) in (45), obtaining

(2𝑛 + 1) (−𝑖𝜔)F
−1

[𝑗
𝑛
(𝑞; 𝑡)] (𝜔)

= 𝑛𝑞
𝑛+2

𝑞
−1

F
−1

[𝑗
𝑛−1
(𝑞; 𝑡)] (

𝜔

𝑞
)

− (𝑛 + 1)F
−1

[𝑗
𝑛+1
(𝑞; 𝑡)] (𝜔) .

(47)

Multiplying (47) through by (−𝑖)𝑛−1√2/𝜋 gives

(2𝑛 + 1) 𝜔(−𝑖)
𝑛
√
2

𝜋
F

−1

[𝑗
𝑛
(𝑞; 𝑡)] (𝜔)

= 𝑛𝑞
𝑛+1

(−𝑖)
𝑛−1
√
2

𝜋
F

−1

[𝑗
𝑛−1
(𝑞; 𝑡)] (

𝜔

𝑞
)

+ (𝑛 + 1) (−𝑖)
𝑛+1
√
2

𝜋
F

−1

[𝑗
𝑛+1
(𝑞; 𝑡)] (𝜔) .

(48)

Relying on (20) from Definition 1 gives

(2𝑛 + 1) 𝜔𝑃̃
𝑛
(𝑞; 𝜔) = 𝑛𝑞

𝑛+1

𝑃̃
𝑛−1
(𝑞;
𝜔

𝑞
)

+ (𝑛 + 1) 𝑃̃
𝑛+1
(𝑞; 𝜔) .

(49)
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Solving for (𝑛 + 1)𝑃̃
𝑛+1
(𝑞; 𝜔) gives (34) and finishes the proof.

Note the multiplicative delay 𝜔/𝑞 in the argument of the 𝑃̃
𝑛−1

term in (34).

As is done at the beginning of the paper for the Legendre
polynomials, we utilize the new recursion relation (34) to
generate the first few 𝑞-Legendre polynomials. Observe that
𝑃̃
0
(𝑞; 𝜔) is given directly by (21). Next, from (22), with 𝑛 set

to 0, we obtain

𝑃̃
1
(𝑞; 𝜔) = 𝜔𝑃̃

0
(𝑞; 𝜔) . (50)

From (34), with 𝑛 = 1, one obtains

𝑃̃
2
(𝑞; 𝜔) =

3

2
𝜔𝑃̃

1
(𝑞; 𝜔) −

1

2
𝑞
2

𝑃̃
0
(𝑞;
𝜔

𝑞
)

=
3

2
𝜔
2

𝑃̃
0
(𝑞; 𝜔) −

1

2
𝑞
2

𝑃̃
0
(𝑞;
𝜔

𝑞
) .

(51)

From (34), with 𝑛 = 2, one obtains

𝑃̃
3
(𝑞; 𝜔) =

5

3
𝜔𝑃̃

2
(𝑞; 𝜔) −

2

3
𝑞
3

𝑃̃
1
(𝑞;
𝜔

𝑞
)

=
5

3
𝜔{
3

2
𝜔
2

𝑃̃
0
(𝑞; 𝜔) −

1

2
𝑞
2

𝑃̃
0
(𝑞;
𝜔

𝑞
)}

−
2

3
𝑞
3

{
𝜔

𝑞𝑃̃
0
(𝑞; 𝜔/𝑞)

}

(52)

=
5

2
𝜔
3

𝑃̃
0
(𝑞; 𝜔) −

3

2
𝑞
2

𝜔𝑃̃
0
(𝑞;
𝜔

𝑞
) . (53)

From (34), with 𝑛 = 3, one obtains

𝑃̃
4
(𝑞; 𝜔) =

7

4
𝜔𝑃̃

3
(𝑞; 𝜔) −

3

4
𝑞
4

𝑃̃
2
(𝑞;
𝜔

𝑞
)

=
7

4
𝜔{
5

2
𝜔
3

𝑃̃
0
(𝑞; 𝜔) −

3

2
𝑞
2

𝜔𝑃̃
0
(𝑞;
𝜔

𝑞
)}

−
3

4
𝑞
4

{
3

2
(
𝜔

𝑞
)

2

𝑃̃
0
(𝑞;
𝜔

𝑞
) −

1

2
𝑞
2

𝑃̃
0
(𝑞;

𝜔

𝑞2
)}

=
35

8
𝜔
4

𝑃̃
0
(𝑞; 𝜔) −

21

8
𝑞
2

𝜔
2

𝑃̃
0
(𝑞;
𝜔

𝑞
)

−
9

8
𝑞
2

𝜔
2

𝑃̃
0
(𝑞;
𝜔

𝑞
) +

3

8
𝑞
6

𝑃̃
0
(𝑞;

𝜔

𝑞2
)

(54)

=
35

8
𝜔
4

𝑃̃
0
(𝑞; 𝜔) −

30

8
𝑞
2

𝜔
2

𝑃̃
0
(𝑞;
𝜔

𝑞
)

+
3

8
𝑞
6

𝑃̃
0
(𝑞;

𝜔

𝑞2
) .

(55)

Proceeding on, one obtains the general 𝑛th order 𝑞-Legendre
polynomial by multiplying each term of the 𝑛th degree
Legendre polynomial by a power of 𝑞 and by a multiplicative
delay of 𝑃̃

0
(𝑞; 𝜔) by a power of 𝑞 and then summing. The

expression extending (50)–(55) to general 𝑛 will be given in
Theorem 11 and Corollary 13 in Section 8 below.

4. MADEs for the 𝑃̃
𝑛
(𝑞; 𝜔)

In this section the 𝑞-Legendre polynomials are shown to
satisfy a 𝑞-version of Legendre’s ODE (2), namely, the mul-
tiplicatively advanced differential equation (MADE) given by
(56) below.

Theorem 6. The 𝑞-Legendre polynomial 𝑃̃
𝑛
(𝑞; 𝜔) =

(−𝑖)
𝑛
√2/𝜋F−1

[𝑗
𝑛
(𝑞; 𝑡)](𝜔) satisfies the multiplicatively

advanced differential equation

[𝐷
2

𝜔
𝑃̃
𝑛
] (𝑞; 𝜔) = 𝑞

−𝑛

(𝑞𝜔)
2

[𝐷
2

𝜔
𝑃̃
𝑛
] (𝑞; 𝑞𝜔)

+ 2𝑞
−𝑛

(𝑞𝜔) [𝐷
𝜔
𝑃̃
𝑛
] (𝑞; 𝑞𝜔)

− 𝑞
−𝑛

𝑛 (𝑛 + 1) 𝑃̃
𝑛
(𝑞; 𝑞𝜔) .

(56)

This reduces to the Legendre differential equation (2) as 𝑞 →
1
+ with 𝑃̃

𝑛
(1; 𝜔) ≡ 𝑃

𝑛
(𝜔)𝜒

[−1,1]
(𝜔) for |𝜔| < 1.

Proof. Multiplying (10) by 𝑡2 yields

𝑡
2

𝑗
󸀠󸀠

𝑛
(𝑞; 𝑡) + 2𝑡𝑗

󸀠

𝑛
(𝑞; 𝑡) − 𝑛 (𝑛 + 1) 𝑗

𝑛
(𝑞; 𝑡)

= −𝑞
𝑛+3

𝑡
2

𝑗
𝑛
(𝑞; 𝑞𝑡) .

(57)

Relying on the facts that

F
−1

[𝑡𝑓 (𝑡)] (𝜔) = (−𝑖𝐷
𝜔
)F

−1

[𝑓 (𝑡)] (𝜔) ,

F
−1

[𝐷
𝑡
𝑓 (𝑡)] (𝜔) = (−𝑖𝜔)F

−1

[𝑓 (𝑡)] (𝜔) ,

(58)

one applies the inverse Fourier transform F−1 to (57) to
obtain

(−𝑖𝐷
𝜔
)
2

(−𝑖𝜔)
2

F
−1

[𝑗
𝑛
(𝑞; 𝑡)] (𝜔)

+ 2 (−𝑖𝐷
𝜔
) (−𝑖𝜔)F

−1

[𝑗
𝑛
(𝑞; 𝑡)] (𝜔)

− 𝑛 (𝑛 + 1)F
−1

[𝑗
𝑛
(𝑞; 𝑡)] (𝜔)

= −𝑞
𝑛+3

(−𝑖𝐷
𝜔
)
2

F
−1

[𝑗
𝑛
(𝑞; 𝑞𝑡)] (𝜔) .

(59)

Simplifying the left-hand side of (59) and relying on (46) to
simplify the right-hand side of (59) yields

𝐷
2

𝜔
𝜔
2

F
−1

[𝑗
𝑛
(𝑞; 𝑡)] (𝜔) − 2𝐷

𝜔
𝜔F

−1

[𝑗
𝑛
(𝑞; 𝑡)] (𝜔)

− 𝑛 (𝑛 + 1)F
−1

[𝑗
𝑛
(𝑞; 𝑡)] (𝜔)

(60)

= 𝑞
𝑛+3

𝐷
2

𝜔
{
1

𝑞
F

−1

[𝑗
𝑛
(𝑞; 𝑡)] (

𝜔

𝑞
)} . (61)
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Using the derivation property of 𝐷
𝜔
on the left-hand side of

(61) gives

2F
−1

[𝑗
𝑛
(𝑞; 𝑡)] (𝜔) + 4𝜔𝐷

𝜔
F

−1

[𝑗
𝑛
(𝑞; 𝑡)] (𝜔)

+ 𝜔
2

𝐷
2

𝜔
F

−1

[𝑗
𝑛
(𝑞; 𝑡)] (𝜔)

− 2F
−1

[𝑗
𝑛
(𝑞; 𝑡)] (𝜔)

− 2𝜔𝐷
𝜔
F

−1

[𝑗
𝑛
(𝑞; 𝑡)] (𝜔)

− 𝑛 (𝑛 + 1)F
−1

[𝑗
𝑛
(𝑞; 𝑡)] (𝜔)

(62)

= 𝑞
𝑛+2

𝐷
2

𝜔
{F

−1

[𝑗
𝑛
(𝑞; 𝑡)] (

𝜔

𝑞
)} . (63)

Simplifying (62)-(63) and multiplying through by (−𝑖)𝑛√2/𝜋
yield

𝜔
2

𝐷
2

𝜔
𝑃̃
𝑛
(𝑞; 𝜔) + 2𝜔𝐷

𝜔
𝑃̃
𝑛
(𝑞; 𝜔) − 𝑛 (𝑛 + 1) 𝑃̃

𝑛
(𝑞; 𝜔)

= 𝑞
𝑛+2

𝐷
2

𝜔
{𝑃̃

𝑛
(𝑞;
𝜔

𝑞
)} .

(64)

Letting 𝑢 = 𝜔/𝑞 with𝐷
𝜔
= (1/𝑞)𝐷

𝑢
yields

(𝑞𝑢)
2

{
1

𝑞
𝐷

𝑢
}

2

{𝑃̃
𝑛
(𝑞; 𝑞𝑢)}

+ 2 (𝑞𝑢) {
1

𝑞
𝐷

𝑢
} {𝑃̃

𝑛
(𝑞; 𝑞𝑢)} − 𝑛 (𝑛 + 1) 𝑃̃

𝑛
(𝑞; 𝑞𝑢)

= 𝑞
𝑛+2

{
1

𝑞
𝐷

𝑢
}

2

𝑃̃
𝑛
(𝑞; 𝑢) .

(65)

Thus, we solve for the right-hand side of (65) scaled by 𝑞−𝑛 to
obtain

𝐷
2

𝑢
𝑃̃
𝑛
(𝑞; 𝑢) = 𝑞

−𝑛

(𝑞𝑢)
2

{
1

𝑞
𝐷

𝑢
}

2

{𝑃̃
𝑛
(𝑞; 𝑞𝑢)}

+ 2𝑞
−𝑛

(𝑞𝑢) {
1

𝑞
𝐷

𝑢
} {𝑃̃

𝑛
(𝑞; 𝑞𝑢)}

− 𝑞
−𝑛

𝑛 (𝑛 + 1) 𝑃̃
𝑛
(𝑞; 𝑞𝑢) ,

(66)

which simplifies to (56) after a final substitution 𝑢 = 𝜔. The
theorem is now proven.

Remark 7. Equation (56) is appropriately considered to be a
MADEover the apparent delayed differential equation (64) in
that the term with the highest order derivative with constant
coefficient should be the dominant term for small |𝜔| and
thus expressed in terms of the unscaled variable. This will be
further addressed in Section 12.

5. Vanishing of Moments for the 𝑃̃
𝑛
(𝑞; 𝜔)

Let 𝑛 ≥ 1. In light of (19), (3) can be rewritten as

0 = ∫

∞

−∞

𝜔
𝑘

𝜒
[−1,1]

(𝜔) 𝑃
𝑛
(𝜔) 𝑑𝜔

= ∫

∞

−∞

𝜔
𝑘

(−𝑖)
𝑛
√
2

𝜋
F

−1

[𝑗
𝑛
(𝑡)] (𝜔) 𝑑𝜔 for 0 ≤ 𝑘 < 𝑛,

(67)

which tells us that the 0th through (𝑛 − 1)th moments of the
truncated 𝑛th degree Legendre polynomial vanish. In light of
(20) in Definition 1, the statement analogous to (67) is given
by (68) in the next theorem.

Theorem 8. Let 𝑛 ≥ 1. The 0th through (𝑛 − 1)th moments of
the 𝑛th order 𝑞-Legendre polynomial vanish. Consider

0 = ∫

∞

−∞

𝜔
𝑘

𝑃̃
𝑛
(𝑞; 𝜔) 𝑑𝜔

= ∫

∞

−∞

𝜔
𝑘

(−𝑖)
𝑛
√
2

𝜋
F

−1

[𝑗
𝑛
(𝑞; 𝑡)] (𝜔) 𝑑𝜔 for 0 ≤ 𝑘 < 𝑛.

(68)

The proof is outlined here. Recall that the 𝑘th moment
of 𝑓 vanishing is equivalent to the 𝑘th derivative of F[𝑓]
vanishing at 0. From (20), one has immediately that, for all
𝑛 ∈ N,

F [𝑃̃
𝑛
(𝑞; 𝜔)] (𝑡) = (−𝑖)

𝑛
√
2

𝜋
F [F

−1

[𝑗
𝑛
(𝑞; 𝑡)] (𝜔)] (𝑡)

= (−𝑖)
𝑛
√
2

𝜋
𝑗
𝑛
(𝑞; 𝑡)

= (−𝑖)
𝑛
√
2

𝜋
(−𝑡)

𝑛

(
1

𝑡

𝑑

𝑑𝑡
)

𝑛

𝑗
0
(𝑞; 𝑡) ,

(69)

where the last equality follows from (8). Now, the (−𝑡)𝑛 factor
and the outer 1/𝑡 factor in (69) guarantee that the first 𝑛 − 1
derivatives ofF[𝑃̃

𝑛
(𝑞; 𝜔)](𝑡) vanish at 𝑡 = 0, after noting that

the derivatives of ((1/𝑡)(𝑑/𝑑𝑡))𝑛𝑗
0
(𝑞; 𝑡) are bounded for all 𝑛 ∈

N
0
. This gives (68). In contrast, it is shown in [4] that the 𝑛th

derivative ofF[𝑃̃
𝑛
(𝑞; 𝜔)](𝑡) does not vanish at 𝑡 = 0.

6. A Reciprocal Symmetry for 𝑃̃
0
(𝑞; 𝜔)

There is an interesting reciprocal symmetry satisfied by
𝑃̃
0
(𝑞; 𝜔), and this will help produce a pointwise convergence

result in Section 9.

Theorem 9. For all 𝜔 ∈ R. one has

𝑃̃
0
(𝑞; 0) − 𝑃̃

0
(𝑞; 𝜔) = 𝑃̃

0
(𝑞;
𝑞

𝜔
) , (70)

or equivalently

𝑃̃
0
(𝑞; 0) − 𝑃̃

0
(𝑞; √𝑞𝜔) = 𝑃̃

0
(𝑞;
√𝑞

𝜔
) . (71)



8 Abstract and Applied Analysis

Proof. From (21), we have, for 𝜔 < 0,

𝑃̃
0
(𝑞; 0) − 𝑃̃

0
(𝑞; 𝜔) =

−2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)
∫

0

−∞

V
𝜃 (𝑞2; V2)

𝑑V

−

−2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)
∫

𝜔

−∞

V
𝜃 (𝑞2; V2)

𝑑V

(72)

=

−2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)
∫

0

𝜔

V
𝜃 (𝑞2; V2)

𝑑V (73)

=

−2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)
∫

−∞

1/𝜔

𝑢
−1

𝜃 (𝑞2; 𝑢−2)

−𝑑𝑢

𝑢2
(74)

=

−2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)
∫

1/𝜔

−∞

𝑢
−1

𝜃 (𝑞2; 𝑢−2)

𝑑𝑢

𝑢2
(75)

=

−2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)
∫

1/𝜔

−∞

𝑢
−1

𝜃 (𝑞2; 𝑢2)
𝑑𝑢 (76)

=

−2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)
∫

1/𝜔

−∞

𝑞
2

𝑢

𝑞2𝑢2𝜃 (𝑞2; 𝑢2)
𝑑𝑢

(77)

=

−2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)
∫

1/𝜔

−∞

𝑞𝑢

𝜃 (𝑞2; (𝑞𝑢)
2

)

𝑑 (𝑞𝑢)

(78)

=

−2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)
∫

𝑞/𝜔

−∞

V
𝜃 (𝑞2; V2)

𝑑V (79)

= 𝑃̃
0
(𝑞;
𝑞

𝜔
) . (80)

Here, the change of variables 𝑢 = 1/V was used to obtain
(74), the identity 𝑢2𝜃(𝑞2; 𝑢−2) = 𝜃(𝑞2; 𝑢2) was used to obtain
(76), the integrand in (76) was multiplied by 𝑞2𝑢2/(𝑞2𝑢2) to
obtain (77), the identity 𝑞2𝑢2𝜃(𝑞2; 𝑢2) = 𝜃(𝑞2; 𝑞2𝑢2) was used
to obtain (78), the change of variables V = 𝑞𝑢 was used to
obtain (79), and (21) was used to obtain (80) above.Thus, (70)
holds for 𝜔 < 0. By replacing 𝜔 by √𝑞𝜔 in the expression
(70), one obtains (71) for 𝜔 < 0. Note that, by evenness of
𝑃̃
0
(𝑞; 𝜔), one has that both the identities (70) and (71) hold

for all 𝜔 ∈ R.

7. Nearly Orthonormal Frames from
the 𝑃̃

𝑛
(𝑞; 𝜔)

As in [13], a countable set of functions {𝑔
𝑘
(𝑡) | 𝑘 ∈ N} ⊂

L2

(R) is a frame for L2

(R) if there are constants 0 < 𝐴 ≤
𝐵 < ∞ with

𝐴
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

2
≤ ∑

𝑘∈N

󵄨󵄨󵄨󵄨⟨𝑓 (𝑡) , 𝑔𝑘 (𝑡)⟩
󵄨󵄨󵄨󵄨

2

≤ 𝐵
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

2
∀𝑓 ∈L

2

(R) .

(81)

The frame condition (81) is equivalent to

𝐴 ≤ ∑

𝑘∈N

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨
𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

, 𝑔
𝑘
(𝑡)⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 𝐵 ∀𝑓 ∈L
2

(R) \ 0. (82)

We construct a frame from the 𝑃̃
𝑛
(𝑞; 𝜔) in the following

manner. For each 𝑛 ∈ N
0
= N ∪ {0} and 𝑘 ∈ Z, let

𝑤
𝑛,𝑘
(𝜔) ≡ 𝐶

𝑛
𝑃
𝑛
(𝜔 − 2𝑘) 𝜒

[−1,1]
(𝜔 − 2𝑘) , (83)

𝑤
𝑛,𝑘,𝑞
(𝜔) ≡ 𝐶

𝑛
𝑃̃
𝑛
(𝑞; 𝜔 − 2𝑘) , (84)

where𝐶
𝑛
= √1/(𝑛 + 1/2) normalizes𝑤

𝑛,𝑘
to give ‖𝑤

𝑛,𝑘
‖
2
= 1,

see [1].
From (23), it follows that

lim
𝑞→1

+

󵄩󵄩󵄩󵄩󵄩
𝑤

𝑛,𝑘,𝑞
(𝜔) − 𝑤

𝑛,𝑘
(𝜔)
󵄩󵄩󵄩󵄩󵄩2
= 0. (85)

Thus, for each 1 > 𝜀 > 0, there is a 𝑞
(𝑛,𝑘,𝜀)

> 1 such that for all
𝑞 with 1 < 𝑞 ≤ 𝑞

(𝑛,𝑘,𝜀)

󵄩󵄩󵄩󵄩󵄩
𝑤

𝑛,𝑘,𝑞
(𝜔) − 𝑤

𝑛,𝑘
(𝜔)
󵄩󵄩󵄩󵄩󵄩2
<

𝜀

18 ⋅ 2𝑛 ⋅ 2|𝑘|
. (86)

For conciseness, by suppressing 𝜀 and 𝑞
(𝑛,𝑘,𝜀)

, set

𝑤
𝑛,𝑘
(𝜔) ≡ 𝑤

𝑛,𝑘,𝑞(𝑛,𝑘,𝜀)
(𝜔) . (87)

Theorem 10. Given 𝜀 ∈ (0, 1), the associated set of functions
{𝑤

𝑛,𝑘
(𝜔) | 𝑛 ∈ N

0
, 𝑘 ∈ Z}, with 𝑤

𝑛,𝑘
(𝜔), as in (87), is a nearly

orthonormal frame forL2

(R) in the sense that

󵄨󵄨󵄨󵄨󵄨
⟨𝑤

𝑁,𝐾
, 𝑤

𝑛,𝑘
⟩ − 𝛿

𝑛

𝑁
⋅ 𝛿

𝑘

𝐾

󵄨󵄨󵄨󵄨󵄨
< 𝜀, (88)

where the Kronecker delta function 𝛿𝑗
𝑘
satisfies 𝛿𝑗

𝑘
= 0 for 𝑘 ̸= 𝑗

and 𝛿𝑗
𝑗
= 1.

Proof. We start by noting that

∑

𝑛∈N0

∑

𝑘∈Z

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨
𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

, 𝑤
𝑛,𝑘
(𝑡)⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

= 1 ∀𝑓 ∈L
2

(R) \ 0. (89)

This follows since the 𝑤
𝑛,0

are orthonormal and complete on
[−1, 1], as in [2]. Thus the translates of 𝑤

𝑛,0
by multiples 2,

namely the 𝑤
𝑛,𝑘
, are orthonormal and complete in L2

(R).
Let 1 > 𝜀 > 0 be given. We bootstrap on the fact that {𝑤

𝑛,𝑘
} is

an orthonormal frame to show that smooth approximations
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{𝑤
𝑛,𝑘
} given by (87) are also a frame for L2

(R). For all
functions 𝑓 ∈L2

(R) \ {0}, one computes that

∑

𝑛∈N0

∑

𝑘∈Z

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨
𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

, 𝑤
𝑛,𝑘
(𝑡)⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

= ∑

𝑛∈N0

∑

𝑘∈Z

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨
𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

, 𝑤
𝑛,𝑘
(𝑡)⟩

+⟨
𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

, 𝑤
𝑛,𝑘
(𝑡) − 𝑤

𝑛,𝑘
(𝑡)⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

(90)

= ∑

𝑛∈N0

∑

𝑘∈Z

{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨
𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

, 𝑤
𝑛,𝑘
(𝑡)⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

+ 2R{⟨
𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

, 𝑤
𝑛,𝑘
(𝑡)⟩

× ⟨
𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

, 𝑤
𝑛,𝑘
(𝑡) − 𝑤

𝑛,𝑘
(𝑡)⟩}

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨
𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

, 𝑤
𝑛,𝑘
(𝑡) − 𝑤

𝑛,𝑘
(𝑡)⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

}

(91)

= 1 + ∑

𝑛∈N0

∑

𝑘∈Z

2R{⟨
𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

, 𝑤
𝑛,𝑘
(𝑡)⟩

× ⟨
𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

, 𝑤
𝑛,𝑘
(𝑡) − 𝑤

𝑛,𝑘
(𝑡)⟩}

+ ∑

𝑛∈N0

∑

𝑘∈Z

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨
𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

, 𝑤
𝑛,𝑘
(𝑡) − 𝑤

𝑛,𝑘
(𝑡)⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

.

(92)

Now, one uses Cauchy-Schwarz and (86) to obtain the
bound
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2R{⟨
𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

, 𝑤
𝑛,𝑘
(𝑡)⟩⟨

𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

, 𝑤
𝑛,𝑘
(𝑡) − 𝑤

𝑛,𝑘
(𝑡)⟩}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨
𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

, 𝑤
𝑛,𝑘
(𝑡)⟩⟨

𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

, 𝑤
𝑛,𝑘
(𝑡) − 𝑤

𝑛,𝑘
(𝑡)⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(93)

≤ 2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩𝑤𝑛,𝑘
(𝑡)
󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩𝑤𝑛,𝑘
(𝑡) − 𝑤

𝑛,𝑘
(𝑡)
󵄩󵄩󵄩󵄩2

= 2 ⋅ 1 ⋅ 1 ⋅ 1
󵄩󵄩󵄩󵄩𝑤𝑛,𝑘

(𝑡) − 𝑤
𝑛,𝑘
(𝑡)
󵄩󵄩󵄩󵄩2
≤ 2

𝜀

18 ⋅ 2𝑛 ⋅ 2|𝑘|
.

(94)

Thus, one can bound (90) from below by discarding the last
term of (92) and relying on (94) to obtain (96) as follows:

∑

𝑛∈N0

∑

𝑘∈Z

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨
𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

, 𝑤
𝑛,𝑘
(𝑡)⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≥ 1 + ∑

𝑛∈N0

∑

𝑘∈Z

2R{⟨
𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

, 𝑤
𝑛,𝑘
(𝑡)⟩

× ⟨
𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

, 𝑤
𝑛,𝑘
(𝑡) − 𝑤

𝑛,𝑘
(𝑡)⟩}

(95)

≥ 1 − ∑

𝑛∈N0

∑

𝑘∈Z

2
𝜀

18 ⋅ 2𝑛 ⋅ 2|𝑘|
(96)

= 1 −
2𝜀

18

∞

∑

𝑛=0

1

2𝑛
{

∞

∑

𝑘=0

1

2|𝑘|
+

−1

∑

𝑘=−∞

1

2|𝑘|
}

= 1 −
2𝜀

18
2 {2 + 1} = 1 −

12𝜀

18

(97)

≥ 1 − 𝜀. (98)

Similarly, one bounds (92) from the above by bounding the
last two terms in (92) via (94) as follows:

∑

𝑛∈N0

∑

𝑘∈Z

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨
𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

, 𝑤
𝑛,𝑘
(𝑡)⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 1 + ∑

𝑛∈N0

∑

𝑘∈Z

2
𝜀

18 ⋅ 2𝑛 ⋅ 2|𝑘|

+ ∑

𝑛∈N0

∑

𝑘∈Z

(
𝜀

18 ⋅ 2𝑛 ⋅ 2|𝑘|
)

2

≤ 1 + ∑

𝑛∈N0

∑

𝑘∈Z

2
𝜀

18 ⋅ 2𝑛 ⋅ 2|𝑘|

+ ∑

𝑛∈N0

∑

𝑘∈Z

1 ⋅ (
𝜀

18 ⋅ 2𝑛 ⋅ 2|𝑘|
)

= 1 +
3𝜀

18

∞

∑

𝑛=0

1

2𝑛
{

∞

∑

𝑘=0

1

2|𝑘|
+

−1

∑

𝑘=−∞

1

2|𝑘|
}

= 1 +
3𝜀

18
2 {2 + 1} = 1 +

18𝜀

18

(99)

≤ 1 + 𝜀. (100)

Thus, combining (98) with (100) yields that, for all functions
𝑓 ∈L2

(R) \ {0},

1 − 𝜀 ≤ ∑

𝑛∈N0

∑

𝑘∈Z

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨
𝑓 (𝑡)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2

, 𝑤
𝑛,𝑘
(𝑡)⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≤ 1 + 𝜀. (101)

Hence, given 𝜀 < 1, the associated set {𝑤
𝑛,𝑘
} is a frame for

L2

(R).
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Next, we show near orthonormality of the frame {𝑤
𝑛,𝑘
}.

Observe that, given 𝜀 < 1, one has
󵄨󵄨󵄨󵄨⟨𝑤𝑁,𝐾

, 𝑤
𝑛,𝑘
⟩ − ⟨𝑤

𝑁,𝐾
, 𝑤

𝑛,𝑘
⟩
󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨⟨𝑤𝑁,𝐾

− 𝑤
𝑁,𝐾
, 𝑤

𝑛,𝑘
⟩ + ⟨𝑤

𝑁,𝐾
, 𝑤

𝑛,𝑘
− 𝑤

𝑛,𝑘
⟩
󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨⟨𝑤𝑁,𝐾

− 𝑤
𝑁,𝐾
, 𝑤

𝑛,𝑘
⟩
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨⟨𝑤𝑁,𝐾

, 𝑤
𝑛,𝑘
− 𝑤

𝑛,𝑘
⟩
󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝑤𝑁,𝐾

− 𝑤
𝑁,𝐾

󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩𝑤𝑛,𝑘

󵄩󵄩󵄩󵄩2
+
󵄩󵄩󵄩󵄩𝑤𝑁,𝐾

󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩𝑤𝑛,𝑘
− 𝑤

𝑛,𝑘

󵄩󵄩󵄩󵄩2

=
󵄩󵄩󵄩󵄩𝑤𝑁,𝐾

− 𝑤
𝑁,𝐾

󵄩󵄩󵄩󵄩2

󵄩󵄩󵄩󵄩𝑤𝑛,𝑘
+ 𝑤

𝑛,𝑘
− 𝑤

𝑛,𝑘

󵄩󵄩󵄩󵄩2

+ 1 ⋅
󵄩󵄩󵄩󵄩𝑤𝑛,𝑘

− 𝑤
𝑛,𝑘

󵄩󵄩󵄩󵄩2

≤
󵄩󵄩󵄩󵄩𝑤𝑁,𝐾

− 𝑤
𝑁,𝐾

󵄩󵄩󵄩󵄩2
{
󵄩󵄩󵄩󵄩𝑤𝑛,𝑘

󵄩󵄩󵄩󵄩2
+
󵄩󵄩󵄩󵄩𝑤𝑛,𝑘

− 𝑤
𝑛,𝑘

󵄩󵄩󵄩󵄩2
}

+
󵄩󵄩󵄩󵄩𝑤𝑛,𝑘

− 𝑤
𝑛,𝑘

󵄩󵄩󵄩󵄩2

≤
𝜀

18 ⋅ 2𝑁 ⋅ 2|𝐾|

{1 +
𝜀

18 ⋅ 2𝑛 ⋅ 2|𝑘|
} +

𝜀

18 ⋅ 2𝑛 ⋅ 2|𝑘|

≤
𝜀

18
{1 +

1

18
} +

𝜀

18
< 𝜀.

(102)

Thus,
󵄨󵄨󵄨󵄨⟨𝑤𝑁,𝐾

, 𝑤
𝑛,𝑘
⟩ − ⟨𝑤

𝑁,𝐾
, 𝑤

𝑛,𝑘
⟩
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨
⟨𝑤

𝑁,𝐾
, 𝑤

𝑛,𝑘
⟩ − 𝛿

𝑛

𝑁
⋅ 𝛿

𝑘

𝐾

󵄨󵄨󵄨󵄨󵄨

< 𝜀,

(103)

where 𝛿𝑛
𝑁
is the Kronecker delta function. We conclude that

{𝑤
𝑛,𝑘
} is a nearly orthonormal frame.

8. Alternative Expressions for 𝑃̃
𝑛
(𝑞; 𝜔)

The goal of this section is to provide alternative expressions
for 𝑃̃

𝑛
(𝑞; 𝜔) that extend equations (50)–(55). This will be

done in Theorem 11 and Corollary 13 below. We obtain this
extension by consulting [2] and expressing the 𝑛th degree
Legendre polynomial as

𝑃
𝑛
(𝜔) =

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

, (104)

where

𝐶
𝑛,𝑛−2𝑘

= (−1)
𝑘 (2𝑛 − 2𝑘)!

2𝑛𝑘! (𝑛 − 𝑘)! (𝑛 − 2𝑘)!
(105)

and ⌊𝑥⌋ denotes the greatest integer function. For 𝑛 ≥ 1, the
recursion relation (1) in this notation takes the form

⌊(𝑛+1)/2⌋

∑

𝑘=0

𝐶
𝑛+1,𝑛+1−2𝑘

𝜔
𝑛+1−2𝑘 (106)

=

⌊𝑛/2⌋

∑

𝑘=0

(2𝑛 + 1)

(𝑛 + 1)
𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛+1−2𝑘

−

⌊(𝑛−1)/2⌋

∑

𝑘=0

𝑛

(𝑛 + 1)
𝐶
𝑛−1,𝑛−1−2𝑘

𝜔
𝑛−1−2𝑘

(107)

=

⌊𝑛/2⌋

∑

𝑘=0

(2𝑛 + 1)

(𝑛 + 1)
𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛+1−2𝑘

−

⌊(𝑛−1)/2⌋+1

∑

𝑘=1

𝑛

(𝑛 + 1)
𝐶
𝑛−1,𝑛+1−2𝑘

𝜔
𝑛+1−2𝑘

(108)

after reindexing 𝑘 in the rightmost summation in (107)
to obtain (108). This implies a recursion relation on the
coefficients of like powers of𝜔 obtained in setting (106) equal
to (108).

We are now prepared to state the next theorem generaliz-
ing (50)–(55).

Theorem 11. For 𝑛 ≥ 0, the 𝑛th order 𝑞-Legendre polynomial
is given by

𝑃̃
𝑛
(𝑞; 𝜔) =

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

𝑞
𝑘(𝑘+1)

𝑃̃
0
(𝑞;

𝜔

𝑞𝑘
) , (109)

where 𝐶
𝑛,𝑛−2𝑘

is the coefficient of 𝜔𝑛−2𝑘 in the 𝑛th degree
Legendre polynomial 𝑃

𝑛
(𝜔), as given by (104) and (105).

Proof. Note that (109) is true in the 𝑛 = 0 case as it is a
tautology, and it has been shown to hold for 1 ≤ 𝑛 ≤ 4 via
(50)–(55). Assume that (109) has been established up through
order 𝑛. Then, the recursion relation (34) expressed in terms
of (109) gives that

𝑃̃
𝑛+1
(𝑞; 𝜔)

=
2𝑛 + 1

𝑛 + 1
𝜔𝑃̃

𝑛
(𝑞; 𝜔) −

𝑛

𝑛 + 1
𝑞
𝑛+1

𝑃̃
𝑛−1
(𝑞;
𝜔

𝑞
)

=

⌊𝑛/2⌋

∑

𝑘=0

2𝑛 + 1

𝑛 + 1
𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛+1−2𝑘

𝑞
𝑘(𝑘+1)

𝑃̃
0
(𝑞;

𝜔

𝑞𝑘
)

−

⌊(𝑛−1)/2⌋

∑

𝑘=0

{
𝑛

𝑛 + 1
𝐶
𝑛−1,𝑛−1−2𝑘

(
𝜔

𝑞
)

𝑛−1−2𝑘

×𝑞
𝑛+1+𝑘(𝑘+1)

𝑃̃
0
(𝑞;

𝜔

𝑞𝑘+1
)}

=

⌊𝑛/2⌋

∑

𝑘=0

2𝑛 + 1

𝑛 + 1
𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛+1−2𝑘

𝑞
𝑘(𝑘+1)

𝑃̃
0
(𝑞;

𝜔

𝑞𝑘
)

(110)

−

⌊(𝑛−1)/2⌋

∑

𝑘=0

{
𝑛

𝑛 + 1
𝐶
𝑛−1,𝑛−1−2𝑘

𝜔
𝑛−1−2𝑘

×𝑞
(𝑘+2)(𝑘+1)

𝑃̃
0
(𝑞;

𝜔

𝑞𝑘+1
)}

(111)

=

⌊𝑛/2⌋

∑

𝑘=0

2𝑛 + 1

𝑛 + 1
𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛+1−2𝑘

𝑞
𝑘(𝑘+1)

𝑃̃
0
(𝑞;

𝜔

𝑞𝑘
) (112)
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−

⌊(𝑛−1)/2⌋+1

∑

𝑘=1

{
𝑛

𝑛 + 1
𝐶
𝑛−1,𝑛+1−2𝑘

𝜔
𝑛+1−2𝑘

×𝑞
𝑘(𝑘+1)

𝑃̃
0
(𝑞;

𝜔

𝑞𝑘
)}

(113)

=

⌊(𝑛+1)/2⌋

∑

𝑘=0

𝐶
𝑛+1,𝑛+1−2𝑘

𝜔
𝑛+1−2𝑘

𝑞
𝑘(𝑘+1)

𝑃̃
0
(𝑞;

𝜔

𝑞𝑘
) , (114)

where consolidating powers of 𝑞 gives (111), a reindexing
on the subtracted summation in (111) gives (113), and the
recursion relation obtained from setting (106) equal to (108)
gives (114). Thus, (109) holds by induction.

Remark 12. Theutility of representing 𝑃̃
𝑛
(𝑞; 𝜔) by (109) is that

there are no nested integrals in (109), whereas the previous
expressions (22) for higher order 𝑃̃

𝑛
(𝑞; 𝜔) involve nested

integrals. Thus, we have gained computational efficiency.

Replacing each 𝑃̃
0
(𝑞; 𝜔/𝑞

𝑘

) in (109) by the corresponding
integral expression in (21) yields the following.

Corollary 13. For 𝑛 ≥ 0, the nth order 𝑞-Legendre polynomial
is given by

𝑃̃
𝑛
(𝑞; 𝜔) =

−2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)

⌊𝑛/2⌋

∑

𝑘=0

{𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

𝑞
𝑘(𝑘+1)

×∫

𝜔/𝑞
𝑘

−∞

V
𝜃 (𝑞2; V2)

𝑑V} .

(115)

9. Convergence Results for 𝑃̃
𝑛
(𝑞; 𝜔)

On closed sets not containing ±1, one has uniform con-
vergence of 𝑃̃

𝑛
(𝑞; 𝜔) to 𝑃

𝑛
(𝜔)𝜒

[−1,1]
(𝜔) as 𝑞 → 1

+. We
will see that, via expression (109), one can obtain this result
by relying on the fact that 𝑃̃

0
(𝑞; 𝜔) converges uniformly to

𝑃
0
(𝜔)𝜒

[−1,1]
(𝜔) away from ±1. These results, coupled with an

application of the reciprocal symmetry (71), will let us obtain
pointwise convergence on all of R.

9.1. Uniform Convergence Away from ±1. First, we obtain a
uniform convergence for 𝑃̃

0
(𝑞; 𝜔) on subsets of the form [−1+

𝜀, 1 − 𝜀].

Proposition 14. Given 0 < 𝜀 < 1, one has that 𝑃̃
0
(𝑞; 𝜔)

converges uniformly to 𝑃
0
(𝜔)𝜒

[−1,1]
(𝜔) = 1 on the interval

[−1 + 𝜀, 1 − 𝜀] as 𝑞 → 1
+.

Proof. From (21), it follows that

𝑑

𝑑𝜔
𝑃̃
0
(𝑞; 𝜔) =

−2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)

𝜔

𝜃 (𝑞2; 𝜔2)
, (116)

from which we see that 𝑃̃
0
(𝑞; 𝜔) is increasing on (−∞, 0) and

decreasing on (0,∞) with a maximum at 𝜔 = 0 of

𝑃̃
0
(𝑞; 0) =

−2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)
∫

0

−∞

𝜔

𝜃 (𝑞2; 𝜔2)
𝑑𝜔

=

2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)
∫

∞

0

𝜔

𝜃 (𝑞2; 𝜔2)
𝑑𝜔.

(117)

From (21), alongwith the oddness of𝜔/𝜃(𝑞2; 𝜔2

), we have that
𝑃̃
0
(𝑞; 𝜔) is even and lim

𝜔→±∞
𝑃̃
0
(𝑞; 𝜔) = 0. Thus,

0 < 𝑃̃
0
(𝑞; 𝜔) ≤ 𝑃̃

0
(𝑞; 0) (118)

for all 𝜔 ∈ R. Furthermore, on the interval [−1 + 𝜀, 0], the
function |𝑃̃

0
(𝑞; 𝜔) − 𝑃

0
(𝜔)𝜒

[−1,1]
(𝜔)| = |𝑃̃

0
(𝑞; 𝜔) − 1| assumes

its maximum value at an endpoint 𝜔 = −1 + 𝜀 or 𝜔 = 0.
From Proposition 19, we have that, given 𝜀

1
> 0, there is

a 𝑄
2
> 1 such that for all 1 < 𝑞 < 𝑄

2

󵄨󵄨󵄨󵄨󵄨
𝑃̃
0
(𝑞; −1 + 𝜀) − 1

󵄨󵄨󵄨󵄨󵄨
< 𝜀

1
. (119)

From Proposition 20, we have that, given 𝜀
1
> 0, there is a

𝑄
1
> 1 with

󵄨󵄨󵄨󵄨󵄨
𝑃̃
0
(𝑞; 0) − 1

󵄨󵄨󵄨󵄨󵄨
= 𝑃̃

0
(𝑞; 0) − 1 < 𝜀

1
(120)

for all 1 < 𝑞 < 𝑄
1
. From the increasing property of 𝑃̃

0
(𝑞; 𝜔)

on [−1 + 𝜀, 0], we have

󵄨󵄨󵄨󵄨󵄨
𝑃̃
0
(𝑞; 𝜔) − 𝑃

0
(𝜔) 𝜒

[−1,1]
(𝜔)
󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
𝑃̃
0
(𝑞; 𝜔) − 1

󵄨󵄨󵄨󵄨󵄨

≤ max {󵄨󵄨󵄨󵄨󵄨𝑃̃0 (𝑞; −1 + 𝜀) − 1
󵄨󵄨󵄨󵄨󵄨
,

󵄨󵄨󵄨󵄨󵄨
𝑃̃
0
(𝑞; 0) − 1

󵄨󵄨󵄨󵄨󵄨
} < 𝜀

1
,

(121)

for all 𝑞 with 1 < 𝑞 < min{𝑄
1
, 𝑄

2
}. By evenness, (121) also

gives uniform convergence on the interval [−1 + 𝜀, 1 − 𝜀],
and the proposition is proven.

Next, we obtain uniform convergence on closed sets not
containing ±1.

Theorem 15. Given 𝜀 with 1 > 𝜀 > 0, let 𝑆
𝜀
≡ (−∞, −1 − 𝜀] ∪

[−1 + 𝜀, 1 − 𝜀]∪[1 + 𝜀,∞).Then 𝑃̃
𝑛
(𝑞; 𝜔) converges uniformly

to 𝑃
𝑛
(𝜔)𝜒

[−1,1]
(𝜔) on 𝑆

𝜀
as 𝑞 → 1

+.

Proof. The proof breaks into two parts: (1) uniform conver-
gence on the middle, that is on [−1+𝜀, 1−𝜀], and (2) uniform
convergence on the tails, that is on (−∞, −1 − 𝜀] ∪ [1 + 𝜀,∞).

We first handle the middle case. From Proposition 14,
𝑃̃
0
(𝑞; 𝜔) converges uniformly to 1 = 𝑃

0
(𝜔)𝜒

[−1,1]
(𝜔) on the
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interval [−1 + 𝜀, 1 − 𝜀] as 𝑞 → 1
+. From (104) and (105), one

has that on [−1 + 𝜀, 1 − 𝜀]

󵄨󵄨󵄨󵄨𝑃𝑛 (𝜔)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

⌊𝑛/2⌋

∑

𝑘=0

󵄨󵄨󵄨󵄨𝐶𝑛,𝑛−2𝑘

󵄨󵄨󵄨󵄨 |𝜔|
𝑛−2𝑘

<

⌊𝑛/2⌋

∑

𝑘=0

󵄨󵄨󵄨󵄨𝐶𝑛,𝑛−2𝑘

󵄨󵄨󵄨󵄨 (1)
𝑛−2𝑘

≡ 𝐴
𝑛
.

(122)

Thus, given 𝜀
1
with 1 > 𝜀

1
> 0, there is 𝑞

1
> 1 such that

󵄨󵄨󵄨󵄨󵄨
𝑃̃
0
(𝑞; 𝜔) − 1

󵄨󵄨󵄨󵄨󵄨
<
𝜀
1

2𝐴
𝑛

(123)

for all 𝑞with 1 < 𝑞 < 𝑞
1
and for all𝜔with |𝜔| ≤ 1−𝜀.Then, for

each𝜔 ∈ [−1+𝜀, 1−𝜀] and 𝑘 ≥ 0, one has𝜔/𝑞𝑘 ∈ [−1+𝜀, 1−𝜀],
given that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃̃
0
(𝑞;

𝜔

𝑞𝑘
) − 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

<
𝜀
1

2𝐴
𝑛

(124)

for all 1 < 𝑞 < 𝑞
1
. Thus, for 𝜔 ∈ [−1+ 𝜀, 1 − 𝜀] and 1 < 𝑞 < 𝑞

1
,

by relying on (109) and (104), we have
󵄨󵄨󵄨󵄨󵄨
𝑃̃
𝑛
(𝑞; 𝜔) − 𝑃

𝑛
(𝜔) 𝜒

[−1,1]
(𝜔)
󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

𝑞
𝑘(𝑘+1)

𝑃̃
0
(𝑞;

𝜔

𝑞𝑘
)

−

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

𝜒
[−1,1]

(𝜔)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

𝑞
𝑘(𝑘+1)

𝑃̃
0
(𝑞;

𝜔

𝑞𝑘
)

−

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

𝑃̃
0
(𝑞;

𝜔

𝑞𝑘
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

𝑃̃
0
(𝑞;

𝜔

𝑞𝑘
)

−

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

𝜒
[−1,1]

(𝜔)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

⌊𝑛/2⌋

∑

𝑘=0

󵄨󵄨󵄨󵄨𝐶𝑛,𝑛−2𝑘

󵄨󵄨󵄨󵄨 |𝜔|
𝑛−2𝑘

(𝑞
𝑘(𝑘+1)

− 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃̃
0
(𝑞;

𝜔

𝑞𝑘
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

⌊𝑛/2⌋

∑

𝑘=0

󵄨󵄨󵄨󵄨𝐶𝑛,𝑛−2𝑘

󵄨󵄨󵄨󵄨 |𝜔|
𝑛−2𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃̃
0
(𝑞;

𝜔

𝑞𝑘
) − 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

<

⌊𝑛/2⌋

∑

𝑘=0

󵄨󵄨󵄨󵄨𝐶𝑛,𝑛−2𝑘

󵄨󵄨󵄨󵄨 (1)
𝑛−2𝑘

(𝑞
(⌊𝑛/2⌋)(⌊𝑛/2⌋+1)

− 1) (1 +
𝜀
1

2𝐴
𝑛

)

+

⌊𝑛/2⌋

∑

𝑘=0

󵄨󵄨󵄨󵄨𝐶𝑛,𝑛−2𝑘

󵄨󵄨󵄨󵄨 (1)
𝑛−2𝑘

𝜀
1

2𝐴
𝑛

= 𝐴
𝑛
(𝑞

(⌊𝑛/2⌋)(⌊𝑛/2⌋+1)

− 1) (1 +
𝜀
1

2𝐴
𝑛

) + 𝐴
𝑛

𝜀
1

2𝐴
𝑛

(125)

= (𝑞
(⌊𝑛/2⌋)(⌊𝑛/2⌋+1)

− 1) (𝐴
𝑛
+
𝜀
1

2
) +

𝜀
1

2
. (126)

When

(𝑞
(⌊𝑛/2⌋)(⌊𝑛/2⌋+1)

− 1) (𝐴
𝑛
+
𝜀
1

2
) <

𝜀
1

2
, (127)

we see that (126) is less than 𝜀
1
. However, (127) holds when

(𝑞
(⌊𝑛/2⌋)(⌊𝑛/2⌋+1)

− 1) <
𝜀
1

2 (𝐴
𝑛
+ 𝜀

1
/2)
, (128)

which is true for all 𝑞 < 𝑞
2
with

𝑞
2
= (1 +

𝜀
1

2𝐴
𝑛
+ 1
)

1/[(⌊𝑛/2⌋)(⌊𝑛/2⌋+1)]

. (129)

Thus, given 1 > 𝜀
1
> 0, for all 𝑞 with 1 < 𝑞 < min{𝑞

1
, 𝑞

2
}

from (126) and (127), one has
󵄨󵄨󵄨󵄨󵄨
𝑃̃
𝑛
(𝑞; 𝜔) − 𝑃

𝑛
(𝜔) 𝜒

[−1,1]
(𝜔)
󵄨󵄨󵄨󵄨󵄨
< 𝜀

1
(130)

for all 𝜔 ∈ [−1 + 𝜀, 1 − 𝜀]. Thus, uniform convergence is
obtained on [−1 + 𝜀, 1 − 𝜀], and part 1 of the proof is shown.

We proceed to part 2 of the proof, uniform convergence
in the tails |𝜔| ≥ 1 + 𝜀. Let 𝜀

1
> 0 be given. Then, for 𝜔 ∈

(−∞, −1 − 𝜀] ∪ [1 + 𝜀,∞), one has

󵄨󵄨󵄨󵄨󵄨
𝑃̃
𝑛
(𝑞; 𝜔) − 𝑃

𝑛
(𝜔) 𝜒

[−1,1]
(𝜔)
󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝑞
𝑘(𝑘+1)

𝜔
𝑛−2𝑘

𝑃̃
0
(𝑞;

𝜔

𝑞𝑘
) − 0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

⌊𝑛/2⌋

∑

𝑘=0

󵄨󵄨󵄨󵄨𝐶𝑛,𝑛−2𝑘

󵄨󵄨󵄨󵄨 𝑞
𝑘(𝑘+1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜔
𝑛−2𝑘

𝑃̃
0
(𝑞;

𝜔

𝑞𝑘
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ [

[

2(𝜇
𝑞
2)

3

ln (𝑞)
𝜋𝑓

0,𝑞
(0)

]

]

{√𝜋 − √ln (𝑞)}
−1

√
𝜋

2

(131)

⋅

⌊𝑛/2⌋

∑

𝑘=0

{
󵄨󵄨󵄨󵄨𝐶𝑛,𝑛−2𝑘

󵄨󵄨󵄨󵄨 𝑞
𝑘(𝑘+1)

𝑞
[(𝑛−2𝑘)

2
+2(𝑛−2𝑘)(2𝑘+1)]/4

×𝑒
−[ln(|𝜔|)−(𝑛−2𝑘+2𝑘+1) ln(𝑞)/2]2/ ln(𝑞)

}

(132)

= [

[

2(𝜇
𝑞
2)

3

ln (𝑞)
𝜋𝑓

0,𝑞
(0)

]

]

{√𝜋 − √ln (𝑞)}
−1

√
𝜋

2
(133)

⋅ 𝑞
𝑛(𝑛+2)/4

(

⌊𝑛/2⌋

∑

𝑘=0

󵄨󵄨󵄨󵄨𝐶𝑛,𝑛−2𝑘

󵄨󵄨󵄨󵄨)

× 𝑒
−[ln(|𝜔|)−(𝑛+1) ln(𝑞)/2]2/ ln(𝑞)

(134)
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≤ [

[

2(𝜇
𝑞
2)

3

ln (𝑞)
𝜋𝑓

0,𝑞
(0)

]

]

{√𝜋 − √ln (𝑞)}
−1

√
𝜋

2
(135)

⋅ 𝑞
𝑛(𝑛+2)/4

(

⌊𝑛/2⌋

∑

𝑘=0

󵄨󵄨󵄨󵄨𝐶𝑛,𝑛−2𝑘

󵄨󵄨󵄨󵄨)

× 𝑒
−[ln(|𝜔0|)−(𝑛+1) ln(𝑞)/2]2/ ln(𝑞),

(136)

where (132) follows from (143) of Proposition 17, with 𝑝 =
𝑛 − 2𝑘, and holds for 1 < 𝑞 < 𝑞

3
and |𝜔| ≥ |𝜔

0
| with

1 < 𝑞
(𝑛−2𝑘+2𝑘+1)/2

3
= 𝑞

(𝑛+1)/2

3
<
󵄨󵄨󵄨󵄨𝜔0
󵄨󵄨󵄨󵄨 < 1 + 𝜀

(137)

as obtained in (154).
From (17), one has

lim
𝑞→1

+

[

[

2(𝜇
𝑞
2)

3

ln (𝑞)
𝜋𝑓

0,𝑞
(0)

]

]

= 1,

lim
𝑞→1

+

{√𝜋 − √ln (𝑞)}
−1

√
𝜋

2
𝑞
𝑛(𝑛+2)/4

=
1

√2

,

(138)

from which it follows via (136) that there is a 𝑞
4
with 1 < 𝑞

4
<

𝑞
3
such that for all 1 < 𝑞 < 𝑞

4

󵄨󵄨󵄨󵄨󵄨
𝑃̃
𝑛
(𝑞; 𝜔) − 𝑃

𝑛
(𝜔) 𝜒

[−1,1]
(𝜔)
󵄨󵄨󵄨󵄨󵄨
≤ 1 ⋅ (

⌊𝑛/2⌋

∑

𝑘=0

󵄨󵄨󵄨󵄨𝐶𝑛,𝑛−2𝑘

󵄨󵄨󵄨󵄨)

× 𝑒
−[ln(|𝜔0|)−(𝑛+1) ln(𝑞)/2]2/ ln(𝑞)

(139)

for all |𝜔| ≥ |𝜔
0
|. Since

lim
𝑞→1

+

𝑒
−[ln(|𝜔0|)−(𝑛+1) ln(𝑞)/2]2/ ln(𝑞) = 0, (140)

there is a 𝑞
5
with 1 < 𝑞

5
< 𝑞

4
such that

󵄨󵄨󵄨󵄨󵄨
𝑃̃
𝑛
(𝑞; 𝜔) − 𝑃

𝑛
(𝜔) 𝜒

[−1,1]
(𝜔)
󵄨󵄨󵄨󵄨󵄨
< 𝜀

1
(141)

for all 1 < 𝑞 < 𝑞
5
and all |𝜔| ≥ |𝜔

0
|. Thus, since 1 + 𝜀 >

|𝜔
0
|, from (137), we have uniform convergence in the tails,

finishing the proof of part 2 and concluding the proof of the
theorem.

Remark 16. The decay expressed in (134) gives a stronger
result than uniform convergence, as is shown in Section 10.

The following proposition was utilized in showing part 2
of Theorem 15.

Proposition 17. Given 𝑝, 𝑘 ∈ N
0
and given 𝜀 > 0, then for

each 𝜔
0
with 1 < 𝜔

0
< 1 + 𝜀 there exists 𝑞

3
> 1 such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜔
𝑝

𝑃̃
0
(𝑞;

𝜔

𝑞𝑘
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(142)

≤ [

[

2(𝜇
𝑞
2)

3

ln (𝑞)
𝜋𝑓

0,𝑞
(0)

]

]

{√𝜋 − √ln (𝑞)}
−1

× √
𝜋

2
𝑞
[𝑝
2
+2𝑝(2𝑘+1)]/4

𝑒
−[ln(|𝜔|)−(𝑝+2𝑘+1) ln(𝑞)/2]2/ ln(𝑞)

(143)

≤ [

[

2(𝜇
𝑞
2)

3

ln (𝑞)
𝜋𝑓

0,𝑞
(0)

]

]

{√𝜋 − √ln(𝑞)}
−1

× √
𝜋

2
𝑞
[𝑝
2
+2𝑝(2𝑘+1)]/4

𝑒
−[ln(|𝜔0|)−(𝑝+2𝑘+1) ln(𝑞)/2]2/ ln(𝑞)

(144)

for all 1 < 𝑞 < 𝑞
3
and all |𝜔| ≥ 𝜔

0
.

Proof. From (21), one has

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜔
𝑝

𝑃̃
0
(𝑞;

𝜔

𝑞𝑘
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜔
𝑝
2(𝜇

𝑞
2)

3

𝜋𝑓
0,𝑞
(0)
∫

𝜔/𝑞
𝑘

−∞

V
𝜃 (𝑞2; V2)

𝑑V

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(145)

= |𝜔|
𝑝
2(𝜇

𝑞
2)

3

𝜋𝑓
0,𝑞
(0)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

−|𝜔|/𝑞
𝑘

−∞

V
𝜃 (𝑞2; V2)

𝑑V
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= |𝜔|
𝑝
2(𝜇

𝑞
2)

3

𝜋𝑓
0,𝑞
(0)
∫

∞

|𝜔|/𝑞
𝑘

V
𝜃 (𝑞2; V2)

𝑑V

(146)

≤ |𝜔|
𝑝
2(𝜇

𝑞
2)

3

𝜋𝑓
0,𝑞
(0)
𝑞
−1/4

{√
𝜋

ln (𝑞)
− 1}

−1

× ∫

∞

|𝜔|/𝑞
𝑘

𝑒
−[ln(V)]2/ ln(𝑞)

𝑑V

(147)

≤ |𝜔|
𝑝
2(𝜇

𝑞
2)

3

𝜋𝑓
0,𝑞
(0)
𝑞
−1/4

{√
𝜋

ln (𝑞)
− 1}

−1

× √
𝜋

2

√ln (𝑞)𝑒[ln(𝑞)]/4𝑒−[ln(|𝜔|/𝑞
𝑘
)−ln(𝑞)/2]

2

/ ln(𝑞)

(148)

= 𝑒
𝑝 ln(|𝜔|) [

[

2(𝜇
𝑞
2)

3

ln (𝑞)
𝜋𝑓

0,𝑞
(0)

]

]

{√ln (𝑞)}
−1

× {√
𝜋

ln (𝑞)
− 1}

−1

√
𝜋

2
𝑒
−[ln(|𝜔|)−(𝑘+1/2) ln(𝑞)]2/ ln(𝑞)
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= [

[

2(𝜇
𝑞
2)

3

ln (𝑞)
𝜋𝑓

0,𝑞
(0)

]

]

{√𝜋 − √ln (𝑞)}
−1

× √
𝜋

2
𝑒
−[ln2(|𝜔|)−(𝑝+2𝑘+1) ln(|𝜔|) ln(𝑞)+(𝑘+1/2)2ln2(𝑞)]/ ln(𝑞)

(149)

= [

[

2(𝜇
𝑞
2)

3

ln (𝑞)
𝜋𝑓

0,𝑞
(0)

]

]

{√𝜋 − √ln (𝑞)}
−1

× √
𝜋

2
𝑞
[𝑝
2
+2𝑝(2𝑘+1)]/4

𝑒
−[ln(|𝜔|)−(𝑝+2𝑘+1) ln(𝑞)/2]2/ ln(𝑞)

.

(150)

Here, (146) follows from oddness of the integrand V/𝜃(𝑞2; V2).
Then, (147) follows from the bound (27). Also, (148) follows
from the bound

∫

∞

𝐶

𝑒
−𝐴[ln(𝑥)+𝐵]2

𝑑𝑥 ≤
√𝜋

2

𝑒
1/(4𝐴)−𝐵

√𝐴

𝑒
−𝐴[ln(𝐶)+𝐵−1/(2𝐴)]2 (151)

for 𝐶 > 𝑒−𝐵+1/(2𝐴), from [4, 14], with 𝐴 = 1/ ln(𝑞), 𝐵 = 0,
and 𝐶 = |𝜔|/𝑞

𝑘. Finally, (150) follows by a completion of
squares. Note that the requirement that𝐶 > 𝑒−𝐵+1/(2𝐴) in (151)
becomes |𝜔|/𝑞𝑘 > 𝑒ln(𝑞)/2 or |𝜔| > 𝑞𝑘+1/2 in (148). However, in
order for (150) to be decreasing in |𝜔|, we require the slightly
stronger condition that

ln (|𝜔|) −
(𝑝 + 2𝑘 + 1) ln (𝑞)

2
> 0, (152)

or equivalently

|𝜔| > 𝑞
(𝑝+2𝑘+1)/2

. (153)

Now, given 𝜀 > 0, and 𝑝, 𝑘 ∈ N
0
as in the hypotheses of the

proposition, first choose 𝜔
0
with 1 < 𝜔

0
< 1 + 𝜀 and then

choose 𝑞
3
with 1 < 𝑞

3
< |𝜔

0
|
2/[𝑝+2𝑘+1] so that

1 < 𝑞
(𝑝+2𝑘+1)/2

3
<
󵄨󵄨󵄨󵄨𝜔0
󵄨󵄨󵄨󵄨 < 1 + 𝜀.

(154)

Then, for 1 < 𝑞 < 𝑞
3
and |𝜔| ≥ |𝜔

0
|, one has that (153) holds,

from which (150) is decreasing in |𝜔|. This then gives (143)
and (144) and completes the proof of the proposition.

9.2. Pointwise Convergence on R. It is now possible to give a
pointwise convergence result.

Theorem 18. 𝑃̃
𝑛
(𝑞; 𝜔) converges pointwise to 𝑃

𝑛
(𝜔)𝜒

[−1,1]
(𝜔)

as 𝑞 → 1
+.

Proof. By virtue of Theorem 15, one automatically has point-
wise convergence for𝜔 ̸= ±1.Thus, we concentrate on𝜔 = ±1
to obtain the result. Observe first that for any 𝑝 ∈ R one has

lim
𝑞→1

+

[𝑃̃
0
(𝑞; 𝑞

𝑝

) − 𝑃̃
0
(𝑞; 1)] = 0. (155)

This follows from the estimate
󵄨󵄨󵄨󵄨󵄨
𝑃̃
0
(𝑞; 𝑞

𝑝

) − 𝑃̃
0
(𝑞; 1)

󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−2

𝜋

(𝜇
𝑞
2)

3

𝑓
0,𝑞
(0)
∫

𝑞
𝑝

−∞

𝜔

𝜃 (𝑞2; 𝜔2)
𝑑𝜔

−
−2

𝜋

(𝜇
𝑞
2)

3

𝑓
0,𝑞
(0)
∫

1

−∞

𝜔

𝜃 (𝑞2; 𝜔2)
𝑑𝜔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
2

𝜋

(𝜇
𝑞
2)

3

𝑓
0,𝑞
(0)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑞
𝑝

1

𝜔

𝜃 (𝑞2; 𝜔2)
𝑑𝜔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(156)

≤
2

𝜋

ln (𝑞) (𝜇
𝑞
2)

3

𝑓
0,𝑞
(0)

𝑞
−1/4

{√𝜋 − √ln (𝑞)}

×
[
[

[

1

√ln (𝑞)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑞
𝑝

1

1

𝑒(ln(|𝜔|))
2
/ ln(𝑞)

𝑑𝜔

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

]
]

]

(157)

≤
2

𝜋

ln (𝑞) (𝜇
𝑞
2)

3

𝑓
0,𝑞
(0)

𝑞
−1/4

{√𝜋 − √ln (𝑞)}

×
[
[

[

1

√ln (𝑞)
󵄨󵄨󵄨󵄨𝑞

𝑝

− 1
󵄨󵄨󵄨󵄨

]
]

]

,

(158)

where (27) was used to obtain (157) and where the integrand
in (157) being at most 1 was used to obtain (158). Now, by
L’Hopital’s rule, one has, for each 𝑝 ∈ R, that

lim
𝑞→1

+

𝑞
𝑝

− 1

√ln (𝑞)
= lim

𝑞→1
+

𝑝𝑞
𝑝−1

(1/2) (ln (𝑞))−1/2 (1/𝑞)

= lim
𝑞→1

+

2𝑝𝑞
𝑝
√ln (𝑞) = 0.

(159)

By the 𝑞-Wallis limit (17), one also has

lim
𝑞→1

+

2

𝜋

ln (𝑞) (𝜇
𝑞
2)

3

𝑓
0,𝑞
(0)

𝑞
−1/4

{√𝜋 − √ln (𝑞)}
=
1

√𝜋
. (160)

Applying (159) and (160) to (158) gives (155).
Next, observe from the reciprocal identity (71) with 𝜔 set

equal to 1, that

𝑃̃
0
(𝑞; 0) − 𝑃̃

0
(𝑞; √𝑞) = 𝑃̃

0
(𝑞; √𝑞) , (161)

from which one obtains

1

2
𝑃̃
0
(𝑞; 0) = 𝑃̃

0
(𝑞; √𝑞) . (162)
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Proposition 20 gives that lim
𝑞→1

+ 𝑃̃
0
(𝑞; 0) = 1. Applying this

to (162) gives

lim
𝑞→1

+

𝑃̃
0
(𝑞; √𝑞) =

1

2
lim
𝑞→1

+

𝑃̃
0
(𝑞; 0) =

1

2
. (163)

Setting 𝑝 = 1/2 in (155) gives

lim
𝑞→1

+

𝑃̃
0
(𝑞; 1) = lim

𝑞→1
+

𝑃̃
0
(𝑞; √𝑞) =

1

2
. (164)

Letting 𝑝 be arbitrary in (155) gives

lim
𝑞→1

+

𝑃̃
0
(𝑞; 𝑞

𝑝

) = lim
𝑞→1

+

𝑃̃
0
(𝑞; 1) =

1

2
(165)

for all 𝑝 ∈ R.
Next, from (109), we have

𝑃̃
𝑛
(𝑞; 1) =

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

1
𝑛−2𝑘

𝑞
𝑘(𝑘+1)

𝑃̃
0
(𝑞;

1

𝑞𝑘
) . (166)

From (165), one has that lim
𝑞→1

+ 𝑃̃
0
(𝑞; 1/𝑞

𝑘

) = 1/2. Taking
limits of (166) with this in mind yields

lim
𝑞→1

+

𝑃̃
𝑛
(𝑞; 1) =

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

1
𝑛−2𝑘 lim

𝑞→1
+

[𝑞
𝑘(𝑘+1)

𝑃̃
0
(𝑞;

1

𝑞𝑘
)]

(167)

=

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

1
𝑛−2𝑘

1

2
(168)

= 𝑃
𝑛
(1)
1

2
= 𝑃

𝑛
(1) 𝜒

[−1,1]
(1) =

1

2
, (169)

where (168) follows from (165) and (169) follows from (104).
By evenness/oddness, respectively, one has

lim
𝑞→1

+

𝑃̃
𝑛
(𝑞; −1) = lim

𝑞→1
+

[(−1)
𝑛

𝑃̃
𝑛
(𝑞; 1)]

= (−1)
𝑛

𝑃
𝑛
(1) 𝜒

[−1,1]
(1)

= 𝑃
𝑛
(−1) 𝜒

[−1,1]
(−1) = (−1)

𝑛
1

2
.

(170)

Equations (169) and (170) give pointwise convergence at ±1
and the theorem is proven.

9.3. Estimates Giving Proposition 14. The propositions in this
subsection provide the estimates on which Proposition 14 is
based.

Proposition 19. For 0 < 𝜀 < 1, given 𝜀
1
> 0, there is a 𝑄

2
> 1

such that
󵄨󵄨󵄨󵄨󵄨
𝑃̃
0
(𝑞; −1 + 𝜀) − 1

󵄨󵄨󵄨󵄨󵄨
< 𝜀

1
(171)

for all 1 < 𝑞 < 𝑄
2
.

Proof.

󵄨󵄨󵄨󵄨󵄨
𝑃̃
0
(𝑞; −1 + 𝜀) − 1

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
𝑃̃
0
(𝑞; −1 + 𝜀) − 𝑃̃

0
(𝑞; 0)

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝑃̃
0
(𝑞; 0) − 1

󵄨󵄨󵄨󵄨󵄨
.

(172)

By virtue of Proposition 20 below, which bounds |𝑃̃
0
(𝑞; 0)−1|,

we only need bound the first term, |𝑃̃
0
(𝑞; −1 + 𝜀) − 𝑃̃

0
(𝑞; 0)|,

in the right-hand side of inequality (172).
Evenness of 𝑃̃

0
(𝑞; 𝜔) and the setting of 𝜔 = −1 + 𝜀 in the

reciprocal identity (70) together give

0 < 𝑃̃
0
(𝑞; 0) − 𝑃̃

0
(𝑞; −1 + 𝜀)

= 𝑃̃
0
(𝑞;

𝑞

(−1 + 𝜀)
) = 𝑃̃

0
(𝑞;

𝑞

(1 − 𝜀)
) ,

(173)

for all 𝑞 > 1. Now, since 1 + 𝜀 < 1/(1 − 𝜀) < 𝑞/(1 − 𝜀) and
𝑃̃
0
(𝑞; 𝜔) is decreasing for 𝜔 > 0, we have that 𝑃̃

0
(𝑞; 1 + 𝜀) >

𝑃̃
0
(𝑞; 1/(1 − 𝜀)) > 𝑃̃

0
(𝑞; 𝑞/(1 − 𝜀)), and this applied to (173)

yields

0 < 𝑃̃
0
(𝑞; 0) − 𝑃̃

0
(𝑞; −1 + 𝜀)

= 𝑃̃
0
(𝑞;

𝑞

(1 − 𝜀)
) < 𝑃̃

0
(𝑞; 1 + 𝜀) .

(174)

Next, pick 𝜔
0
with 1 < 𝜔

0
< 1 + 𝜀, and apply Proposition 17

with 𝑝 = 𝑘 = 0 and 𝜔 = 1 + 𝜀 to obtain

𝑃̃
0
(𝑞; 1 + 𝜀) ≤ [

[

2(𝜇
𝑞
2)

3

ln (𝑞)
𝜋𝑓

0,𝑞
(0)

]

]

{√𝜋 − √ln (𝑞)}
−1

× √
𝜋

2
𝑒
−[ln(|𝜔0|)−ln(𝑞)/2]2/ ln(𝑞).

(175)

By (17), one has

lim
𝑞→1+

[

[

2(𝜇
𝑞
2)

3

ln (𝑞)
𝜋𝑓

0,𝑞
(0)

]

]

{√𝜋 − √ln (𝑞)}
−1

√
𝜋

2
=
1

√2

,

(176)

and one sees directly that

lim
𝑞→1+

𝑒
−[ln(|𝜔0|)−ln(𝑞)/2]2/ ln(𝑞) = 0. (177)

Thus, the right-hand side of (175) approaches 0 as 𝑞 → 1
+.

So, from (175) and (174), given 𝜀
1
> 0, there is a 𝑄

2
> 1 such

that, for all 1 < 𝑞 < 𝑄
2
,

0 < 𝑃̃
0
(𝑞; 0) − 𝑃̃

0
(𝑞; −1 + 𝜀) < 𝑃̃

0
(𝑞; 1 + 𝜀) <

𝜀
1

2
. (178)

This gives the proposition.
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Next, by (29), we have

𝑞
Cos (𝑡) = F

−1

(F (
𝑞
Cos (𝑡)))

=
1

√2𝜋

∫

∞

−∞

𝑒
𝑖𝜔𝑡
√
2

𝜋

(𝜇
𝑞
2)

3

𝑓
0,𝑞
(0)

1

𝜃 (𝑞2; 𝜔2)
𝑑𝜔

=
1

𝜋

(𝜇
𝑞
2)

3

𝑓
0,𝑞
(0)
∫

∞

−∞

𝑒
𝑖𝜔𝑡

1

𝜃 (𝑞2; 𝜔2)
𝑑𝜔,

(179)

from which one obtains that

1 =
𝑞
Cos (0) = 1

𝜋

(𝜇
𝑞
2)

3

𝑓
0,𝑞
(0)
∫

∞

−∞

1

𝜃 (𝑞2; 𝜔2)
𝑑𝜔

=
2

𝜋

(𝜇
𝑞
2)

3

𝑓
0,𝑞
(0)
∫

∞

0

1

𝜃 (𝑞2; 𝜔2)
𝑑𝜔.

(180)

Proposition 20. For each 𝜀 > 0, there exists a𝑄 > 1 such that
for all 1 < 𝑞 < 𝑄

0 < 𝑃̃
0
(𝑞; 0) − 1 < 𝜀. (181)

Proof. Subtracting (180) from (117), one has

𝑃̃
0
(𝑞; 0) − 1 =

2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)
∫

∞

0

𝜔 − 1

𝜃 (𝑞2; 𝜔2)
𝑑𝜔

=

2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)

× [∫

1

0

𝜔 − 1

𝜃 (𝑞2; 𝜔2)
𝑑𝜔 + ∫

∞

1

𝜔 − 1

𝜃 (𝑞2; 𝜔2)
𝑑𝜔] .

(182)
The change of variables 𝜔 = 1/𝑢 is made on the first integral
in (182), and the algebraic identity 𝑢2𝜃(𝑞2; 𝑢−2) = 𝜃(𝑞2; 𝑢2) is
used to obtain

∫

1

0

𝜔 − 1

𝜃 (𝑞2; 𝜔2)
𝑑𝜔 = ∫

1

∞

𝑢
−1

− 1

𝜃 (𝑞2; 𝑢−2)

(−𝑑𝑢)

𝑢2

= ∫

∞

1

𝑢
−1

− 1

𝜃 (𝑞2; 𝑢2)
𝑑𝑢.

(183)

Now (183) is used to reexpress (182) as

𝑃̃
0
(𝑞; 0) − 1

=

2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)
[∫

∞

1

𝜔
−1

− 1

𝜃 (𝑞2; 𝜔2)
𝑑𝜔 + ∫

∞

1

𝜔 − 1

𝜃 (𝑞2; 𝜔2)
𝑑𝜔]

(184)

=

2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)
∫

∞

1

𝜔
−1

− 2 + 𝜔

𝜃 (𝑞2; 𝜔2)
𝑑𝜔

=

2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)
∫

∞

1

(𝜔 − 1)
2

𝜔𝜃 (𝑞2; 𝜔2)
𝑑𝜔 > 0,

(185)

from which one sees that 𝑃̃
0
(𝑞; 0) > 1 for all 𝑞 > 1. Deploying

the bound (27) within the integral in (185) gives

0 < 𝑃̃
0
(𝑞; 0) − 1 ≤ 𝐹 (𝑞)

[
[

[

1

√ln (𝑞)
∫

∞

1

(𝜔 − 1)
2

𝜔
−2

𝑒(ln𝜔)
2
/ ln(𝑞)

𝑑𝜔
]
]

]

= 𝐹 (𝑞)
[
[

[

1

√ln (𝑞)
∫

∞

1

(1 − 𝜔
−1

)
2

𝑒(ln𝜔)
2
/ ln(𝑞)

𝑑𝜔
]
]

]

,

(186)

where

𝐹 (𝑞) =
1

𝑞1/4

2

𝜋

[

[

ln (𝑞) (𝜇
𝑞
2)

3

𝑓
0,𝑞
(0)

]

]

1

√𝜋 − √ln (𝑞)
. (187)

It follows from the 𝑞-Wallis formula (17) that

lim
𝑞→1

+

𝐹 (𝑞) =
1

√𝜋
. (188)

We now show that 𝑃̃
0
(𝑞; 0) − 1 can be made arbitrarily

small for all 𝑞 > 1 sufficiently close to 1+. In the light of (188),
this is accomplished by first showing that the corresponding
statement holds for the bracketed expression in (186).

Let 𝛼 > 0 be arbitrary, with 𝛼 being specified later.
The integral in 𝜔 over the interval [1,∞) in (186) is now
subdivided into two integrals, the first over [1, 𝑒𝛼√ln(𝑞)

] and
the second over [𝑒𝛼√ln(𝑞)

,∞). First, on [1, 𝑒𝛼√ln(𝑞)
], one

computes

1

√ln (𝑞)
∫

𝑒
𝛼√ln(𝑞)

1

(1 − 𝜔
−1

)
2

𝑒(ln𝜔)
2
/ ln(𝑞)

𝑑𝜔. (189)

Now, the function (1 − 𝜔−1

)
2 is increasing on [1, 𝑒𝛼√ln(𝑞)

], and
it assumes its maximum value of (1 − 𝑒−𝛼√ln(𝑞)

)

2

at the right
endpoint 𝑒𝛼√ln(𝑞). Thus, we bound the integral in (189) by the
length of the interval times the bound (1 − 𝑒−𝛼√ln(𝑞)

)

2

on the
numerator. This gives

1

√ln (𝑞)
∫

𝑒
𝛼√ln(𝑞)

1

(1 − 𝜔
−1

)
2

𝑒(ln𝜔)
2
/ ln(𝑞)

𝑑𝜔

≤
1

√ln (𝑞)
∫

𝑒
𝛼√ln(𝑞)

1

(1 − 𝑒
−𝛼√ln(𝑞)

)

2

𝑑𝜔

(190)

≤
1

√ln (𝑞)
(𝑒

𝛼√ln(𝑞)
− 1) (1 − 𝑒

−𝛼√ln(𝑞)
)

2

. (191)

An application of L’Hopital’s rule gives that

lim
𝑞→1

+

(𝑒
𝛼√ln(𝑞)

− 1)

√ln (𝑞)
= 𝛼, (192)



Abstract and Applied Analysis 17

which implies that in (191) we have

lim
𝑞→1

+

[
[

[

(𝑒
𝛼√ln(𝑞)

− 1)

√ln (𝑞)
(1 − 𝑒

−𝛼√ln(𝑞)
)

2
]
]

]

= 𝛼 ⋅ 0
2

= 0. (193)

Combining (193) with (191) gives that

lim
𝑞→1

+

[
[

[

1

√ln (𝑞)
∫

𝑒
𝛼√ln(𝑞)

1

(1 − 𝜔
−1

)
2

𝑒(ln𝜔)
2
/ ln(𝑞)

𝑑𝜔
]
]

]

= 0. (194)

We next estimate the portion of the integral in (186) over
the interval [𝑒𝛼√ln(𝑞)

,∞). First, since 1 − 𝜔−1

≤ 1 on this
interval, one has

1

√ln (𝑞)
∫

∞

𝑒
𝛼√ln(𝑞)

(1 − 𝜔
−1

)
2

𝑒(ln𝜔)
2
/ ln(𝑞)

𝑑𝜔

≤
1

√ln (𝑞)
∫

∞

𝑒
𝛼√ln(𝑞)

1

𝑒(ln𝜔)
2
/ ln(𝑞)

𝑑𝜔.

(195)

We next bound the right-hand side of (195), using the
following estimate from [4, 14]:

∫

∞

𝐶

𝑒
−𝐴[ln𝜔+𝐵]2

𝑑𝜔 ≤
√𝜋

2

𝑒
1/(4𝐴)−𝐵

√𝐴

𝑒
−𝐴[ln(𝐶)+𝐵−1/(2𝐴)]2

, (196)

which holds for 𝐶 > 𝑒−𝐵+1/(2𝐴). Setting 𝐴 = 1/ ln(𝑞), 𝐵 = 0,
and 𝐶 = 𝑒𝛼√ln(𝑞) as in (195) yields that

1

√ln (𝑞)
∫

∞

𝑒
𝛼√ln(𝑞)

1

𝑒(ln𝜔)
2
/ ln(𝑞)

𝑑𝜔

≤
1

√ln (𝑞)

√𝜋

2

𝑒
ln(𝑞)/4

1/√ln (𝑞)
𝑒
−[𝛼√ln(𝑞)−ln(𝑞)/2]2/ ln(𝑞)

=
√𝜋

2
𝑒
−𝛼
2

[𝑒
𝛼√ln(𝑞)

]

(197)

for 𝑒𝛼√ln(𝑞)
> 𝑒

ln(𝑞)/2, or equivalently for 1 < 𝑞 < 𝑒4𝛼
2

. Since
the final expression in (197) approaches√𝜋𝑒−𝛼

2

/2 as 𝑞 → 1
+,

by choosing 𝛼 sufficiently large one canmake (197) and hence
(195), arbitrarily small for 𝑞 and sufficiently close to 1.

Now, let 𝜀 > 0 be given. By (186), we have for all 𝛼 > 0

0 < 𝑃̃
0
(𝑞; 0) − 1 ≤ 𝐹 (𝑞)

[
[

[

1

√ln (𝑞)
∫

𝑒
𝛼√ln(𝑞)

1

(1 − 𝜔
−1

)
2

𝑒(ln𝜔)
2
/ ln(𝑞)

𝑑𝜔
]
]

]

(198)

+ 𝐹 (𝑞)
[
[

[

1

√ln (𝑞)
∫

∞

𝑒
𝛼√ln(𝑞)

(1 − 𝜔
−1

)
2

𝑒(ln𝜔)
2
/ ln(𝑞)

𝑑𝜔
]
]

]

. (199)

One has from (188) and (197) that

lim
𝑞→1+

{𝐹 (𝑞)
√𝜋

2
𝑒
−𝛼
2

[𝑒
𝛼√ln(𝑞)

]} =
1

2
𝑒
−𝛼
2

< 𝑒
−𝛼
2

. (200)

Fix 𝛼 > 0 such that 𝑒−𝛼
2

< 𝜀/2. By (197) and (200), there exists
𝑞
1
= 𝑞

1
(𝛼, 𝜀) such that for all 1 < 𝑞 < 𝑞

1
one has

0 < 𝐹 (𝑞)
[
[

[

1

√ln (𝑞)
∫

∞

𝑒
𝛼√ln(𝑞)

(1 − 𝜔
−1

)
2

𝑒(ln𝜔)
2
/ ln(𝑞)

𝑑𝜔
]
]

]

(201)

≤ 𝐹 (𝑞)
√𝜋

2
𝑒
−𝛼
2

[𝑒
𝛼√ln(𝑞)

] < 𝑒
−𝛼
2

<
𝜀

2
. (202)

For this value of 𝛼, by virtue of (194), one has

lim
𝑞→1

+

𝐹 (𝑞)
[
[

[

1

√ln (𝑞)
∫

𝑒
𝛼√ln(𝑞)

1

(1 − 𝜔
−1

)
2

𝑒(ln𝜔)
2
/ ln(𝑞)

𝑑𝜔
]
]

]

= 0, (203)

which in turn says that there is a 𝑞
2
= 𝑞

2
(𝛼, 𝜀) such that for

all 1 < 𝑞 < 𝑞
2
one has

0 < 𝐹 (𝑞)
[
[

[

1

√ln (𝑞)
∫

𝑒
𝛼√ln(𝑞)

1

(1 − 𝜔
−1

)
2

𝑒(ln𝜔)
2
/ ln(𝑞)

𝑑𝜔
]
]

]

<
𝜀

2
. (204)

Thus, for 𝑄(𝛼, 𝜀) ≡ min{𝑞
1
, 𝑞

2
} and for all 1 < 𝑞 < 𝑄(𝛼, 𝜀),

applying (204) and (202) to (198) and (199) yields

0 < 𝑃̃
0
(𝑞; 0) − 1 <

𝜀

2
+
𝜀

2
< 𝜀. (205)

This gives the proposition.

10. Convergence in L𝑝

(R)

We turn next to convergence inL𝑝

(R).

Theorem 21. 𝑃̃
𝑛
(𝑞; 𝜔) converges to 𝑃

𝑛
(𝜔)𝜒

[−1,1]
(𝜔) in L𝑝

(R)

as 𝑞 → 1
+ for each 1 ≤ 𝑝 < ∞. That is,

lim
𝑞→1

+

󵄩󵄩󵄩󵄩󵄩
𝑃̃
𝑛
(𝑞; 𝜔) − 𝑃

𝑛
(𝜔) 𝜒

[−1,1]
(𝜔)
󵄩󵄩󵄩󵄩󵄩𝑝
= 0. (206)

Proof. We first handle the case 𝑝 = 1, which, by boundedness
of the functions under study, turns out to be sufficient to
handle the remaining cases 1 < 𝑝 < ∞.

Let 𝜀
1
> 0 be given. First note that, by (118) and (120),

there is a 𝑄
1
> 0 such that

0 < 𝑃̃
0
(𝑞; 𝜔) ≤ 𝑃̃

0
(𝑞; 0) < 1 + 𝜀

1
(207)
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for all 1 < 𝑞 < 𝑄
1
. Thus, 𝑃̃

0
(𝑞; 𝜔) is uniformly bounded for 𝑞.

Next, note that, for 𝜔 with |𝜔| ≤ 2 and 1 < 𝑞 < 𝑄
1
, one has

from (109) that
󵄨󵄨󵄨󵄨󵄨
𝑃̃
𝑛
(𝑞; 𝜔)

󵄨󵄨󵄨󵄨󵄨

≤

⌊𝑛/2⌋

∑

𝑘=0

󵄨󵄨󵄨󵄨𝐶𝑛,𝑛−2𝑘

󵄨󵄨󵄨󵄨 |𝜔|
𝑛−2𝑘

𝑞
𝑘(𝑘+1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃̃
0
(𝑞;

𝜔

𝑞𝑘
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

⌊𝑛/2⌋

∑

𝑘=0

󵄨󵄨󵄨󵄨𝐶𝑛,𝑛−2𝑘

󵄨󵄨󵄨󵄨 2
𝑛

𝑞
⌊𝑛/2⌋(⌊𝑛/2⌋+1)

(1 + 𝜀
1
)

(208)

= 𝐴
𝑛
2
𝑛

𝑄
⌊𝑛/2⌋(⌊𝑛/2⌋+1)

1
(1 + 𝜀

1
) ≡ 𝐵

𝑛
, (209)

where𝐴
𝑛
= ∑

⌊𝑛/2⌋

𝑘=0
|𝐶

𝑛,𝑛−2𝑘
|. Observe that, since𝐴

𝑛
, 2, and𝑄

1

are all greater than 1 in (209), one has 𝐵
𝑛
> 𝜀

1
. Note also that,

from (141), one has the existence of a 𝑞
5
> 1 such that for all

1 < 𝑞 < 𝑞
5

󵄨󵄨󵄨󵄨󵄨
𝑃̃
𝑛
(𝑞; 𝜔)

󵄨󵄨󵄨󵄨󵄨
< 𝜀

1
(210)

for all 𝜔 such that |𝜔| ≥ 3/2. From (209) and (210) and the
fact that 𝐵

𝑛
> 𝜀

1
, one has that, for 1 < 𝑞 < 𝑞

6
≡ min{𝑄

1
, 𝑞

5
},

we have
󵄨󵄨󵄨󵄨󵄨
𝑃̃
𝑛
(𝑞; 𝜔)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐵

𝑛
(211)

for all 𝜔 ∈ R. Thus, 𝑃̃
𝑛
(𝑞; 𝜔) is uniformly bounded in 1 <

𝑞 < 𝑞
6
. Letting𝐷

𝑛
= sup{|𝑃

𝑛
(𝜔)| : |𝜔| ≤ 1}, we also have that

|𝑃
𝑛
(𝜔)𝜒

[−1,1]
(𝜔)| ≤ 𝐷

𝑛
.Thus, our two functions of interest are

bounded on R for 1 < 𝑞 < 𝑞
6
.

Next, choose 0 < 𝜀 < 1 with 𝜀 < 𝜀
1
/[12(𝐵

𝑛
+ 𝐷

𝑛
)]. Then,

by oddness/evenness, respectively, one has

∫

∞

−∞

󵄨󵄨󵄨󵄨󵄨
𝑃̃
𝑛
(𝑞; 𝜔) − 𝑃

𝑛
(𝜔) 𝜒

[−1,1]
(𝜔)
󵄨󵄨󵄨󵄨󵄨
𝑑𝜔

= 2∫

∞

0

󵄨󵄨󵄨󵄨󵄨
𝑃̃
𝑛
(𝑞; 𝜔) − 𝑃

𝑛
(𝜔) 𝜒

[−1,1]
(𝜔)
󵄨󵄨󵄨󵄨󵄨
𝑑𝜔

(212)

= 2{∫

1−𝜀

0

󵄨󵄨󵄨󵄨󵄨
𝑃̃
𝑛
(𝑞; 𝜔) − 𝑃

𝑛
(𝜔) 𝜒

[−1,1]
(𝜔)
󵄨󵄨󵄨󵄨󵄨
𝑑𝜔

+∫

1+𝜀

1−𝜀

󵄨󵄨󵄨󵄨󵄨
𝑃̃
𝑛
(𝑞; 𝜔) − 𝑃

𝑛
(𝜔) 𝜒

[−1,1]
(𝜔)
󵄨󵄨󵄨󵄨󵄨
𝑑𝜔}

(213)

+ 2{∫

∞

1+𝜀

󵄨󵄨󵄨󵄨󵄨
𝑃̃
𝑛
(𝑞; 𝜔) − 0

󵄨󵄨󵄨󵄨󵄨
𝑑𝜔} , (214)

and we proceed to bound the three resulting integrals in (213)
and (214).

From (130), there is a 𝑄
4
> 1 such that one obtains

|𝑃̃
𝑛
(𝑞; 𝜔) − 𝑃

𝑛
(𝜔)𝜒

[−1,1]
(𝜔)| < 𝜀

1
/6 for all 𝜔 ∈ [0, 1 − 𝜀] and

1 < 𝑞 < 𝑄
4
. This gives

2∫

1−𝜀

0

󵄨󵄨󵄨󵄨󵄨
𝑃̃
𝑛
(𝑞; 𝜔) − 𝑃

𝑛
(𝜔) 𝜒

[−1,1]
(𝜔)
󵄨󵄨󵄨󵄨󵄨
𝑑𝜔

≤ 2∫

1−𝜀

0

𝜀
1

6
𝑑𝜔 = 2 (1 − 𝜀)

𝜀
1

6
<
𝜀
1

3

(215)

for all 1 < 𝑞 < 𝑄
4
.

Next, by choice of 𝜀, one has

2∫

1+𝜀

1−𝜀

󵄨󵄨󵄨󵄨󵄨
𝑃̃
𝑛
(𝑞; 𝜔) − 𝑃

𝑛
(𝜔) 𝜒

[−1,1]
(𝜔)
󵄨󵄨󵄨󵄨󵄨
𝑑𝜔

≤ 2∫

1+𝜀

1−𝜀

󵄨󵄨󵄨󵄨󵄨
𝑃̃
𝑛
(𝑞; 𝜔)

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝑃𝑛 (𝜔) 𝜒[−1,1] (𝜔)

󵄨󵄨󵄨󵄨 𝑑𝜔

≤ 2∫

1+𝜀

1−𝜀

𝐵
𝑛
+ 𝐷

𝑛
𝑑𝜔 = 2 (2𝜀) (𝐵

𝑛
+ 𝐷

𝑛
)

(216)

< 2(2
𝜀
1

12 (𝐵
𝑛
+ 𝐷

𝑛
)
) (𝐵

𝑛
+ 𝐷

𝑛
) =

𝜀
1

3
(217)

for all 1 < 𝑞 < 𝑄
1
.

Finally, from (134), one has the existence of a 𝑞
3
> 1 such

that

2∫

∞

1+𝜀

󵄨󵄨󵄨󵄨󵄨
𝑃̃
𝑛
(𝑞; 𝜔) − 0

󵄨󵄨󵄨󵄨󵄨
𝑑𝜔 (218)

≤ 2[

[

2(𝜇
𝑞
2)

3

ln (𝑞)
𝜋𝑓

0,𝑞
(0)

]

]

{√𝜋 − √ln (𝑞)}
−1

× √
𝜋

2
𝑞
𝑛(𝑛+2)/4

𝐴
𝑛
∫

∞

1+𝜀

𝑒
−[ln(|𝜔|)−(𝑛+1) ln(𝑞)/2]2/ ln(𝑞)

𝑑𝜔

(219)

for all 1 < 𝑞 < 𝑞
3
. Now, from (151), one has

∫

∞

1+𝜀

𝑒
−[ln(|𝜔|)−(𝑛+1) ln(𝑞)/2]2/ ln(𝑞)

𝑑𝜔

≤
√𝜋

2

√ln (𝑞)𝑒ln(𝑞)/4+(𝑛+1) ln(𝑞)/2

× 𝑒
−[ln(1+𝜀)−(𝑛+1) ln(𝑞)/2−ln(𝑞)/2]2/ ln(𝑞)

(220)

=
√𝜋

2

√ln (𝑞)𝑞1/4𝑞(𝑛+1)/2

× 𝑒
−[ln(1+𝜀)−(𝑛+2) ln(𝑞)/2]2/ ln(𝑞)

(221)

for 1+𝜀 > 𝑒(𝑛+2) ln(𝑞)/2 = 𝑞(𝑛+2)/2.Thus, one uses (221) to bound
(219) for 1 < 𝑞 < (1 + 𝜀)2/(𝑛+2), obtaining

2∫

∞

1+𝜀

󵄨󵄨󵄨󵄨󵄨
𝑃̃
𝑛
(𝑞; 𝜔) − 0

󵄨󵄨󵄨󵄨󵄨
𝑑𝜔 (222)

≤ 2[

[

2(𝜇
𝑞
2)

3

ln (𝑞)
𝜋𝑓

0,𝑞
(0)

]

]

{√𝜋 − √ln (𝑞)}
−1

×
𝜋𝐴

𝑛

2√2

√ln (𝑞)𝑞(𝑛+1)(𝑛+3)/4

× 𝑒
−[ln(1+𝜀)−(𝑛+2) ln(𝑞)/2]2/ ln(𝑞)

.

(223)

Now, from (17), we have that (223) approaches 0 as 𝑞 → 1
+.

Thus, there is a 𝑄
5
> 1 such that, for 1 < 𝑞 < 𝑄

5
,

2∫

∞

1+𝜀

󵄨󵄨󵄨󵄨󵄨
𝑃̃
𝑛
(𝑞; 𝜔) − 0

󵄨󵄨󵄨󵄨󵄨
𝑑𝜔 ≤

𝜀
1

3
. (224)
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Finally, using (215), (217), and (224) to bound (213) and (214)
gives that

󵄩󵄩󵄩󵄩󵄩
𝑃̃
𝑛
(𝑞; 𝜔) − 𝑃

𝑛
(𝜔) 𝜒

[−1,1]
(𝜔)
󵄩󵄩󵄩󵄩󵄩1

= ∫

∞

−∞

󵄨󵄨󵄨󵄨󵄨
𝑃̃
𝑛
(𝑞; 𝜔) − 𝑃

𝑛
(𝜔) 𝜒

[−1,1]
(𝜔)
󵄨󵄨󵄨󵄨󵄨
𝑑𝜔

≤
𝜀
1

3
+
𝜀
1

3
+
𝜀
1

3
= 𝜀

1

(225)

for all 1 < 𝑞 < min{1+𝜀, 𝑞
3
, 𝑞

6
, 𝑄

1
, 𝑄

4
, 𝑄

5
}.Thus, (206) holds

in the case 𝑝 = 1.
Next, observe that if 𝑓 and 𝑔 are both bounded on R,

then, for 1 ≤ 𝑝 < ∞, one has

∫

∞

−∞

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑔 (𝑥)
󵄨󵄨󵄨󵄨

𝑝

𝑑𝑥

= ∫

∞

−∞

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑔 (𝑥)
󵄨󵄨󵄨󵄨

𝑝−1 󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑔 (𝑥)
󵄨󵄨󵄨󵄨 𝑑𝑥

(226)

≤
󵄩󵄩󵄩󵄩𝑓 − 𝑔

󵄩󵄩󵄩󵄩

𝑝−1

∞
∫

∞

−∞

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑔 (𝑥)
󵄨󵄨󵄨󵄨 𝑑𝑥

=
󵄩󵄩󵄩󵄩𝑓 − 𝑔

󵄩󵄩󵄩󵄩

𝑝−1

∞

󵄩󵄩󵄩󵄩𝑓 − 𝑔
󵄩󵄩󵄩󵄩1
.

(227)

Thus, in this bounded setting, L1 convergence is sufficient
forL𝑝 convergence.

We have observed that |𝑃̃
𝑛
(𝑞; 𝜔)| is bounded by 𝐵

𝑛
for 1 <

𝑞 < 𝑞
6
. Also |𝑃

𝑛
(𝜔)𝜒

[−1,1]
(𝜔)| ≤ 𝐷

𝑛
. By the above remarks, it

follows that (206) now also holds in the cases 1 < 𝑝 < ∞, and
the theorem is proven.

11. Approximating 𝑃̃
𝑛
(𝑞; 𝜔)

The goal of this section is to provide and analyze the two
approximations for 𝑃̃

𝑛
(𝑞; 𝜔) given by (228) and (229) below.

These two expressions are related to the exact expression
(109) for 𝑃̃

𝑛
(𝑞; 𝜔), but they are computationally simpler

approximations of 𝑃̃
𝑛
(𝑞; 𝜔).Wewill also show that as 𝑞 → 1

+

the difference of 𝑃̃
𝑛
(𝑞; 𝜔) with each of the approximations

(228) and (229) is converging uniformly to 0 on compact sets
of R.

The first expression, (228), is obtained by removing all
delays in (109):

𝑃̃
𝑛
(𝑞; 𝜔) ≈ 𝑃̃

0
(𝑞; 𝜔)

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

𝑞
𝑘(𝑘+1)

. (228)

The second expression, (229), is obtained by setting 𝑞 = 1 in
the summation for (228):

𝑃̃
𝑛
(𝑞; 𝜔) ≈ 𝑃̃

0
(𝑞; 𝜔) 𝑃

𝑛
(𝜔) = 𝑃̃

0
(𝑞; 𝜔)

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

.

(229)

The convergence is as follows. Given any compact set 𝐶 ⊂ R,
there is an 𝜔

0
with 𝐶 ⊂ [−𝜔

0
, 𝜔

0
] ⊂ R. Given such 𝐶 and

corresponding 𝜔
0
and given 𝜀 > 0, there is a 𝑞 > 1 such that

for all 1 < 𝑞 < 𝑞 one has

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃̃
𝑛
(𝑞; 𝜔) − 𝑃̃

0
(𝑞; 𝜔)

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

𝑞
𝑘(𝑘+1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝜀,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃̃
𝑛
(𝑞; 𝜔) − 𝑃̃

0
(𝑞; 𝜔)

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝜀,

(230)

for all 𝜔 ∈ [−𝜔
0
, 𝜔

0
] and therefore for all 𝜔 ∈ 𝐶. Note first

that, for 𝑛 = 0, 1 there is equality in (228) and (229) for all
𝑞 > 1 and all 𝜔 ∈ R. So, we assume that 𝑛 ≥ 2 and proceed as
follows.

To obtain convergence for (228), note first that, for each
𝑝 ≥ 0, one has

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃̃
0
(𝑞; 𝜔) − 𝑃̃

0
(𝑞;

𝜔

𝑞𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜔

−∞

V
𝜃 (𝑞2; V2)

𝑑V − ∫
𝜔/𝑞
𝑝

−∞

V
𝜃 (𝑞2; V2)

𝑑V
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜔

𝜔/𝑞
𝑝

V
𝜃 (𝑞2; V2)

𝑑V
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)
∫

|𝜔|

|𝜔|/𝑞
𝑝

V
𝜃 (𝑞2; V2)

𝑑V

(231)

≤

2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)
{|𝜔| −

|𝜔|

𝑞𝑝
}max( V

𝜃 (𝑞2; V2)
)

=

2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)
|𝜔| {1 −

1

𝑞𝑝
}

1

𝜃 (𝑞2; 12)
,

(232)

where the maximum of V/𝜃(𝑞2; V2) occurring at 1 is shown in
[4]. From (26), we bound 1/𝜃(𝑞2; 12) in (232) from the above
to give

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃̃
0
(𝑞; 𝜔) − 𝑃̃

0
(𝑞;

𝜔

𝑞𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

2(𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)
|𝜔| {1 −

1

𝑞𝑝
}

𝑞
−1/4

√𝜋/ ln (𝑞) − 1

=

2 ln (𝑞) (𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)

1

√ln (𝑞)
|𝜔| {1 −

1

𝑞𝑝
}

𝑞
−1/4

√𝜋 − √ln (𝑞)

=

2 ln (𝑞) (𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)

|𝜔|
(𝑞 − 1)

√ln (𝑞)
[
∑

𝑝−1

𝑘=0
𝑞
𝑘

𝑞𝑝
]
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×
𝑞
−1/4

√𝜋 − √ln (𝑞)

(233)

≤

2 ln (𝑞) (𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)

󵄨󵄨󵄨󵄨𝜔0
󵄨󵄨󵄨󵄨

(𝑞 − 1)

ln (𝑞)
√ln (𝑞) [𝑝]

𝑞
−1/4

√𝜋

(234)

for all 𝜔 with |𝜔| ≤ |𝜔
0
|.

From L’Hopital’s rule, one has that

lim
𝑞→1

+

𝑞 − 1

ln (𝑞)
= 1, (235)

which combines with (138) to imply that the coefficients in
(234) have the following limit:

lim
𝑞→1

+

2 ln (𝑞) (𝜇
𝑞
2)

3

𝜋𝑓
0,𝑞
(0)

𝑞 − 1

ln (𝑞)
𝑞
−1/4

√𝜋
=
2

𝜋
⋅
𝜋

2
⋅ 1 ⋅

1

√𝜋

=
1

√𝜋
< 1.

(236)

Thus, from (234) and (236), one has that there is a 𝑞
7
such

that, for all 1 < 𝑞 < 𝑞
7
and all |𝜔| ≤ |𝜔

0
|,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃̃
0
(𝑞; 𝜔) − 𝑃̃

0
(𝑞;

𝜔

𝑞𝑝
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 1 ⋅
󵄨󵄨󵄨󵄨𝜔0
󵄨󵄨󵄨󵄨 𝑝
√ln (𝑞). (237)

Thus, for 0 ≤ 𝑘 ≤ 𝑝, one has
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃̃
0
(𝑞; 𝜔) − 𝑃̃

0
(𝑞;

𝜔

𝑞𝑘
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝜔0
󵄨󵄨󵄨󵄨 𝑘
√ln (𝑞) ≤ 󵄨󵄨󵄨󵄨𝜔0

󵄨󵄨󵄨󵄨 𝑝
√ln (𝑞)

(238)
for all |𝜔| ≤ |𝜔

0
| and all 1 < 𝑞 < 𝑞

7
.

Now, from (109) coupled with (238), one has that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃̃
𝑛
(𝑞; 𝜔) − 𝑃̃

0
(𝑞; 𝜔)

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

𝑞
𝑘(𝑘+1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

𝑞
𝑘(𝑘+1)

(𝑃̃
0
(𝑞;

𝜔

𝑞𝑘
) − 𝑃̃

0
(𝑞; 𝜔))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(239)

≤ (

⌊𝑛/2⌋

∑

𝑘=0

󵄨󵄨󵄨󵄨𝐶𝑛,𝑛−2𝑘

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝜔0
󵄨󵄨󵄨󵄨

𝑛−2𝑘

𝑞
𝑘(𝑘+1)

7
)
󵄨󵄨󵄨󵄨𝜔0
󵄨󵄨󵄨󵄨 ⌊
𝑛

2
⌋√ln (𝑞)

(240)
for all |𝜔| ≤ |𝜔

0
| and all 1 < 𝑞 < 𝑞

7
. Placing (240) below 𝜀 and

solving the resulting inequality for 𝑞 gives that, given 𝜀 > 0,
there is a 𝑞

𝜀
> 1 given by

𝑞
𝜀

= min
{

{

{

𝑞
7
, exp(𝜀2 [

[

(

⌊𝑛/2⌋

∑

𝑘=0

󵄨󵄨󵄨󵄨𝐶𝑛,𝑛−2𝑘

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝜔0
󵄨󵄨󵄨󵄨

𝑛−2𝑘

𝑞
𝑘(𝑘+1)

7
)

2

×
󵄨󵄨󵄨󵄨𝜔0
󵄨󵄨󵄨󵄨

2

⌊
𝑛

2
⌋

2

]

]

−1

)

}}

}}

}

(241)

such that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃̃
𝑛
(𝑞; 𝜔) − 𝑃̃

0
(𝑞; 𝜔)

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

𝑞
𝑘(𝑘+1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝜀 (242)

for all 1 < 𝑞 < 𝑞
𝜀
and 𝜔 ∈ [−𝜔

0
, 𝜔

0
]. This gives convergence

for (228).
We turn next to (229). Observe that, for |𝜔| ≤ |𝜔

0
|, one

has
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃̃
0
(𝑞; 𝜔)

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

− 𝑃̃
0
(𝑞; 𝜔)

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

𝑞
𝑘(𝑘+1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃̃
0
(𝑞; 𝜔)

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

(1 − 𝑞
𝑘(𝑘+1)

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ max {󵄨󵄨󵄨󵄨󵄨𝑃̃0 (𝑞; 𝜔)
󵄨󵄨󵄨󵄨󵄨
}

⌊𝑛/2⌋

∑

𝑘=0

󵄨󵄨󵄨󵄨𝐶𝑛,𝑛−2𝑘

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝜔0
󵄨󵄨󵄨󵄨

𝑛−2𝑘

(𝑞
𝑘(𝑘+1)

− 1)

(243)

≤ 𝑃̃
0
(𝑞; 0) ⋅

⌊𝑛/2⌋

∑

𝑘=0

󵄨󵄨󵄨󵄨𝐶𝑛,𝑛−2𝑘

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝜔0
󵄨󵄨󵄨󵄨

𝑛−2𝑘

(𝑞
⌊𝑛/2⌋(⌊𝑛/2⌋+1)

− 1)

(244)

≤ 2 ⋅

⌊𝑛/2⌋

∑

𝑘=0

󵄨󵄨󵄨󵄨𝐶𝑛,𝑛−2𝑘

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝜔0
󵄨󵄨󵄨󵄨

𝑛−2𝑘

(𝑞
⌊𝑛/2⌋(⌊𝑛/2⌋+1)

− 1) , (245)

where (244) follows from (118) and (245) holds for 1 < 𝑞 <
𝑄 with 𝑄 chosen as in Proposition 20 (for 𝜀 set equal to 1).
Placing (245) below 𝜀 and solving the resulting inequality for
𝑞 gives that, given 𝜀 > 0, there is a 𝑞

𝜀
> 1, given by

𝑞
𝜀

=min
{

{

{

𝑄,(1 +
𝜀

2∑
⌊𝑛/2⌋

𝑘=0

󵄨󵄨󵄨󵄨𝐶𝑛,𝑛−2𝑘

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝜔0
󵄨󵄨󵄨󵄨

𝑛−2𝑘

)

1/{⌊𝑛/2⌋(⌊𝑛/2⌋+1)}

}

}

}

(246)

such that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃̃
0
(𝑞; 𝜔)

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

− 𝑃̃
0
(𝑞; 𝜔)

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

𝑞
𝑘(𝑘+1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝜀

(247)

for |𝜔| ≤ |𝜔
0
| and 1 < 𝑞 < 𝑞

𝜀
.Thus, by setting 𝜀 = 𝜀/2 in (242)

and (247) and relying on the triangle inequality, one has
󵄨󵄨󵄨󵄨󵄨
𝑃̃
𝑛
(𝑞; 𝜔) − 𝑃̃

0
(𝑞; 𝜔) 𝑃

𝑛
(𝜔)
󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃̃
𝑛
(𝑞; 𝜔) − 𝑃̃

0
(𝑞; 𝜔)

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

𝑞
𝑘(𝑘+1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑃̃
0
(𝑞; 𝜔)

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

𝑞
𝑘(𝑘+1)

− 𝑃̃
0
(𝑞; 𝜔)

⌊𝑛/2⌋

∑

𝑘=0

𝐶
𝑛,𝑛−2𝑘

𝜔
𝑛−2𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝜀

2
+
𝜀

2
= 𝜀

(248)

for |𝜔| ≤ |𝜔
0
| and 1 < 𝑞 < min{𝑞

𝜀/2
, 𝑞

𝜀/2
}. This gives conver-

gence for (229). Now let 𝑞 = min{𝑞
𝜀
, 𝑞

𝜀/2
, 𝑞

𝜀/2
} and the result

holds.
We remark here that 𝑃̃

0
(𝑞; 𝜔) in (229) is a smooth

Schwartz analogue of the truncation function 𝜒
[−1,1]

(𝜔) in
(19). Note also that the approximations (228) and (229) need
not be wavelets, while each 𝑃̃

𝑛
(𝑞; 𝜔) for 𝑛 ≥ 1 is a wavelet.

Furthermore, neither approximation (228) nor (229) satisfies
any naturally apparent differential equation. Thus, one may
be giving up useful properties if one relies on the somewhat
simpler approximations (228) or (229) in place of (109).

12. Remaining a MADE under Inverse
Fourier Transform

In this section, the goal is to give a generalization of the
techniques used in Section 4. This generalization gives a
condition on an original MADE sufficient to conclude that
its resulting inverse Fourier transform remains aMADE.This
motivates the search for a global solution for a MADE with 0
value at 𝜔 = 0, because its inverse Fourier transform will be a
wavelet solution to a corresponding MADE.

Consider a differential equation of the form

𝑎 (𝑡, 𝐷
𝑡
) 𝑓 (𝑡) = [𝑏 (

𝑡

𝑞
,𝐷

𝑡
)𝑓] (𝑞𝑡) . (249)

Here 𝑎(𝑡, 𝜏) and 𝑏(𝑡/𝑞, 𝜏) are polynomials in the two variables
𝑡/𝑞 and 𝜏 as in (250). More explicitly, (249) is given in
expanded form by

∑𝑎
𝑖𝑗
𝑡
𝑖

𝐷
𝑗

𝑡
𝑓 (𝑡) = ∑𝑏

𝑚𝑘
𝑡
𝑚

⋅ [𝐷
𝑘

𝑡
𝑓] (𝑞𝑡) . (250)

Now, suppose that there are nonnegative integers𝑁
𝑎
and𝑀

𝑏

so that as 𝑡 → 0

𝑎 (𝑡, 𝜏) = ∑𝑎
𝑖𝑗
𝑡
𝑖

𝜏
𝑗

󳨀→

𝑁𝑎

∑

𝑗=0

𝑎
0𝑗
𝜏
𝑗

≡ 𝐴 (𝜏) ,

𝑏 (
𝑡

𝑞
, 𝜏) = ∑𝑏

𝑚𝑘
(
𝑡

𝑞
)

𝑚

𝜏
𝑘

󳨀→

𝑀𝑏

∑

𝑘=0

𝑏
0𝑘
𝜏
𝑘

≡ 𝐵 (𝜏) ,

(251)

where the degrees deg𝐴(𝜏) and deg𝐵(𝜏) are not both −∞
(i.e., 𝑎

0𝑁𝑎
̸= 0 or 𝑏

0𝑀𝑏
̸= 0). Then, letting 𝑡 → 0 in the

operators in (249) (but not in the arguments for the function
𝑓), one obtains 𝐴(𝜏)𝑓(𝑡) = [𝐵(𝜏)𝑓](𝑞𝑡) or equivalently

𝐴(𝐷
𝑡
)𝑓(𝑡) = [𝐵(𝐷

𝑡
)𝑓](𝑞𝑡).That is, as 𝑡 → 0 in the operators,

(249) and (250) formally converge to the equation

𝑎
0𝑁𝑎
[𝜏

𝑁𝑎𝑓] (𝑡) +

𝑁𝑎−1

∑

𝑗=0

𝑎
0𝑗
[𝜏

𝑗

𝑓] (𝑡)

= 𝑏
0𝑀𝑏
[𝜏

𝑀𝑏𝑓] (𝑞𝑡) +

𝑀𝑏−1

∑

𝑘=0

𝑏
0𝑘
[𝜏

𝑘

𝑓] (𝑞𝑡) ,

(252)

which is equivalent to

𝑎
0𝑁𝑎
[𝐷

𝑁𝑎

𝑡
𝑓] (𝑡) +

𝑁𝑎−1

∑

𝑗=0

𝑎
0𝑗
[𝐷

𝑗

𝑡
𝑓] (𝑡)

= 𝑏
0𝑀𝑏
[𝐷

𝑀𝑏

𝑡
𝑓] (𝑞𝑡) +

𝑀𝑏−1

∑

𝑘=0

𝑏
0𝑘
[𝐷

𝑘

𝑡
𝑓] (𝑞𝑡) .

(253)

We refer to (249) as a MADE if it formally converges to (253)
where deg𝐵(𝜏) ≤ deg𝐴(𝜏) as 𝑡 → 0 (i.e., 𝑀

𝑏
≤ 𝑁

𝑎
). In

other words, (249) is said to be aMADEwhen the terms with
the highest order derivative having constant coefficients in
(249) have one termwith argument 𝑡 of𝑓 notmultiplicatively
advanced or delayed by 𝑞 and some lower or equal order term
with constant coefficient does contain an argument of form
𝑞𝑡.

Next, take the inverse Fourier transform of (250) and
denoteF−1

[𝑓] = 𝑓. Then, from (46) and (58), one obtains

𝑎 (−𝑖𝐷
𝜔
, −𝑖𝜔) 𝑓 (𝜔) = (

1

𝑞
) 𝑏(−𝑖𝐷

𝜔
, −
𝑖𝜔

𝑞
)𝑓(

𝜔

𝑞
) , (254)

where the polynomials 𝑎 and 𝑏 are identical to those in (249).
Now, using the derivation property of 𝐷

𝜔
to reorder the 𝜔

terms to precede the 𝐷
𝜔
terms in (254), collecting powers

of 𝑖, and absorbing powers of 𝑞 into coefficients, one obtains
two resulting polynomials 𝑎(𝜔, 𝑤) and 𝑏̂(𝑞𝜔, 𝑤) in the two
variables 𝜔 and 𝑤 with

𝑎 (𝜔,𝐷
𝜔
) 𝑓 (𝜔) = [𝑏̂ (𝑞𝜔,𝐷

𝜔
) 𝑓] (

𝜔

𝑞
) . (255)

Now, suppose that as 𝜔 → 0 in the operators of (255) one
obtains

𝑎 (𝜔, 𝑤) 󳨀→

𝑁̂𝑎

∑

𝑗=0

𝑎
𝑗
𝑤

𝑗

≡ 𝐴 (𝑤) ,

𝑏̂ (𝜔, 𝑤) 󳨀→

𝑀̂𝑏

∑

𝑘=0

𝑏̂
𝑘
𝑤

𝑘

≡ 𝐵 (𝑤) ,

(256)

where deg𝐴 and deg𝐵 are not both −∞. (i.e., 𝑎
𝑁̂𝑎

̸= 0 or
𝑏̂
𝑁̂𝑏

̸= 0). Then, similar to the process for (253), one has (255)
that formally converges to the equation

𝑎
𝑁̂𝑎

[𝐷
𝑁̂𝑎

𝜔
𝑓] (𝜔) +

𝑁̂𝑎−1

∑

𝑗=0

𝑎
𝑗
[𝐷

𝑗

𝜔
𝑓] (𝜔)

= 𝑏̂
𝑀̂
𝑏̂

[𝐷
𝑀̂
𝑏̂

𝜔
𝑓](

𝜔

𝑞
) +

𝑀̂
𝑏̂
−1

∑

𝑘=0

𝑏̂
𝑘
[𝐷

𝑘

𝜔
𝑓](

𝜔

𝑞
) .

(257)
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Now, when deg𝐵 ≥ deg𝐴 (i.e., 𝑀̂̂
𝑏
≥ 𝑁̂

𝑎
), (257) will not have

its highest order term with constant coefficients satisfying
that its argument is neither advanced nor delayed by 𝑞 > 1.
Thus, when deg𝐵 ≥ deg𝐴 (i.e., 𝑀̂̂

𝑏
≥ 𝑁̂

𝑎
), we change

variables so that 𝑢 = 𝜔/𝑞 to give

𝑏̂
𝑀̂
𝑏̂

[𝐷
𝑀̂
𝑏̂

𝑢
𝑓] (𝑢) +

𝑀̂
𝑏̂
−1

∑

𝑘=0

𝑏̂
𝑘
[𝐷

𝑘

𝑢
𝑓] (𝑢)

= 𝑞𝑎
𝑁̂𝑎

[𝐷
𝑁̂𝑎

𝑢
𝑓] (𝑞𝑢) + 𝑞

𝑁̂𝑎−1

∑

𝑗=0

𝑎
𝑗
[𝐷

𝑗

𝑢
𝑓] (𝑞𝑢) ,

(258)

yielding a MADE. Similarly, one now relies on the change of
variable 𝑢 = 𝜔/𝑞 to convert (255) into a MADE. Thus, (249)
starts as a MADE when deg𝐵(𝜏) ≤ deg𝐴(𝜏) (i.e.,𝑀

𝑏
≤ 𝑁

𝑎
)

and converts to a MADE under inverse Fourier transform
when deg𝐵 ≥ deg𝐴 (i.e., 𝑀̂̂

𝑏
≥ 𝑁̂

𝑎
).

Example 22. Equation (57) in the proof of Theorem 6 is

𝑡
2

𝑗
󸀠󸀠

𝑛
(𝑞; 𝑡) + 2𝑡𝑗

󸀠

𝑛
(𝑞; 𝑡) − 𝑛 (𝑛 + 1) 𝑗

𝑛
(𝑞; 𝑡)

= −𝑞
𝑛+3

𝑡
2

𝑗
𝑛
(𝑞; 𝑞𝑡) ,

(259)

which can be rewritten as

𝑎 (𝑡, 𝐷
𝑡
) 𝑗

𝑛
(𝑞; 𝑡) = [𝑏 (

𝑡

𝑞
,𝐷

𝑡
) 𝑗

𝑛
] (𝑞; 𝑞𝑡) , (260)

where

𝑎 (𝑡, 𝜏) = 𝑡
2

𝜏
2

+ 2𝑡𝜏 − 𝑛 (𝑛 + 1) ,

𝑏 (
𝑡

𝑞
, 𝜏) = −𝑞

𝑛+3

(
𝑡

𝑞
)

2

.

(261)

Note that substituting 𝑞𝑡 into (𝑡/𝑞)2 in (260) gives 𝑡2 in (259).
For the case 𝑛 ≥ 1, taking limits as 𝑡 → 0 gives

lim
𝑡→0

𝑎 (𝑡, 𝜏) = −𝑛 (𝑛 + 1) ≡ 𝐴 (𝜏) ,

lim
𝑡→0

𝑏 (
𝑡

𝑞
, 𝜏) = 0 ≡ 𝐵 (𝜏) .

(262)

Thus, (259) is appropriately considered a MADE as deg𝐴 =
0 ≥ deg𝐵 = −∞. That is the highest order term in (259) with
constant coefficients, namely, −𝑛(𝑛 + 1)𝑗

𝑛
(𝑞; 𝑡), does not have

its argument 𝑡 advanced or delayed by 𝑞 > 1.
Taking inverse Fourier transforms of both sides of

(259), relying on (46) and (58), and multiplying through by
(−𝑖)

𝑛
√2/𝜋 yields (64); namely,

𝜔
2

𝐷
2

𝜔
𝑃̃
𝑛
(𝑞; 𝜔) + 2𝜔𝐷

𝜔
𝑃̃
𝑛
(𝑞; 𝜔) − 𝑛 (𝑛 + 1) 𝑃̃

𝑛
(𝑞; 𝜔)

= 𝑞
𝑛+2

𝐷
2

𝜔
{𝑃̃

𝑛
(𝑞;
𝜔

𝑞
)} .

(263)

This is equivalent to

𝑎 (𝜔,𝐷
𝜔
) 𝑃̃

𝑛
(𝑞; 𝜔) = [𝑏̂ (𝑞𝜔,𝐷

𝜔
) 𝑃̃

𝑛
] (𝑞;

𝜔

𝑞
) , (264)

where

𝑎 (𝜔, 𝑤) = 𝜔
2

𝑤
2

+ 2𝜔𝑤 − 𝑛 (𝑛 + 1) ,

𝑏̂ (𝑞𝜔, 𝑤) = 𝑞
𝑛

𝑤
2

.

(265)

Taking limits as 𝜔 → 0 gives

lim
𝜔→0

𝑎 (𝜔, 𝑤) = −𝑛 (𝑛 + 1) ≡ 𝐴 (𝑤) ,

lim
𝜔→0

𝑏̂ (𝜔, 𝑤) = 𝑞
𝑛

𝑤
2

≡ 𝐵 (𝑤)

(266)

with deg𝐴 = 0 ≤ deg𝐵 = 2. Since 𝐵 acts on a term with a
delayed argument in (264), one makes the substitution 𝑢 =
𝜔/𝑞 in (263) to obtain the MADE equivalent to (56)

(𝑞𝑢)
2

{
1

𝑞
𝐷

𝑢
}

2

{𝑃̃
𝑛
(𝑞; 𝑞𝑢)} + 2 (𝑞𝑢) {

1

𝑞
𝐷

𝑢
} {𝑃̃

𝑛
(𝑞; 𝑞𝑢)}

− 𝑛 (𝑛 + 1) 𝑃̃
𝑛
(𝑞; 𝑞𝑢) = 𝑞

𝑛+2

{
1

𝑞
𝐷

𝑢
}

2

𝑃̃
𝑛
(𝑞; 𝑢) .

(267)

Example 23. For 𝑞 > 1, consider the MADE

𝐷
𝑡
𝑡𝐷

2

𝑡
𝑡𝐷

𝑡
𝑓 (𝑡) = 𝑓 (𝑞𝑡) . (268)

Equation (268) is appropriately considered a MADE as fol-
lows. After using derivation properties to have the 𝑡 variables
precede the𝐷

𝑡
operators, (268) becomes

2𝐷
2

𝑡
𝑓 (𝑡) + 4𝑡𝐷

3

𝑡
𝑓 (𝑡) + 𝑡

2

𝐷
4

𝑡
𝑓 (𝑡) = 𝑓 (𝑞𝑡) . (269)

With the corresponding polynomials

𝑎 (𝑡, 𝜏) = 2𝜏
2

+ 4𝑡𝜏
3

+ 𝑡
2

𝜏
4

, 𝑏 (
𝑡

𝑞
, 𝜏) = 1. (270)

Letting 𝑡 → 0 yields 𝑎(0, 𝜏) = 2𝜏2 = 𝐴(𝜏) and 𝑏(0, 𝜏) = 1.
Since deg𝐴 = 2 > deg𝐵 = 0, (269) and (268) are MADEs.

Taking inverse Fourier transform of (268) and relying on
(46) and (58), one obtains

(−𝑖𝜔) (−𝑖𝐷
𝜔
) (−𝑖𝜔)

2

(−𝑖𝐷
𝜔
) (−𝑖𝜔)F

−1

[𝑓 (𝑡)] (𝜔)

=
1

𝑞
F

−1

[𝑓 (𝑡)] (
𝜔

𝑞
) ,

(271)

which simplifies to

𝜔𝐷
𝜔
𝜔
2

𝐷
𝜔
𝜔𝑓 (𝜔) = −𝑞

−1

𝑓(
𝜔

𝑞
) . (272)

After using derivation properties to have the 𝜔 variables
precede the𝐷

𝜔
operators, (272) becomes

2𝜔
2

𝑓 (𝜔) + 4𝜔
3

𝐷
𝜔
𝑓 (𝜔) + 𝜔

4

𝐷
𝜔
𝑓 (𝜔) = −𝑞

−1

𝑓(
𝜔

𝑞
)

(273)

with the corresponding polynomials

𝑎 (𝜔, 𝑤) = 2𝜔
2

+ 4𝜔
3

𝑤 + 𝜔
4

𝑤
2

, 𝑏̂ (𝑞𝜔, 𝑤) = −𝑞
−1

.

(274)
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Letting𝜔 → 0 yields 𝑎(0, 𝑤) = 0 = 𝐴(𝑤) and 𝑏(0, 𝑤) = −𝑞−1.
Since deg𝐵 = 0 > deg𝐴 = −∞, we convert (273) by letting
𝑢 = 𝜔/𝑞, which results in placing our equation in MADE
form. For our purposes here, it will be more convenient
to make this substitution in (272) rather than (273). Thus,
since the highest order term with constant coefficients is
−𝑞

−1

𝑓(𝜔/𝑞), we make the substitution 𝑢 = 𝜔/𝑞 with 𝐷
𝜔
=

𝑞
−1

𝐷
𝑢
to reexpress (272) as the MADE

𝑞𝑢𝑞
−1

𝐷
𝑢
(𝑞𝑢)

2

𝑞
−1

𝐷
𝑢
(𝑞𝑢) {𝑓 (𝑞𝑢)} = −𝑞

−1

𝑓 (𝑢) , (275)

which simplifies to the following equation:

𝑓 (𝑢) = −𝑞
3

𝑢𝐷
𝑢
𝑢
2

𝐷
𝑢
𝑢 {𝑓 (𝑞𝑢)} . (276)

We exhibit a function𝑓with𝑓(𝜔) a solution of (272) (and
with 𝑓(𝑢) a solution of (276) as well) satisfying the condition
that 𝑓(0) = 0. Set

𝑓 (𝜔) =
𝑞
Sin (1/ [𝑞𝜔])

𝜔
. (277)

To verify (272), one proceeds as follows:

𝜔𝐷
𝜔
𝜔
2

𝐷
𝜔
𝜔𝑓 (𝜔) = 𝜔𝐷

𝜔
𝜔
2

𝐷
𝜔 𝑞

Sin( 1
𝑞𝜔
)

= 𝜔𝐷
𝜔
𝜔
2

(
−𝑞

𝑞𝜔2 𝑞
Cos( 1

𝜔
))

= −𝜔𝐷
𝜔 𝑞

Cos( 1
𝜔
)

= 𝜔(
1

𝜔2
(−1)

𝑞
Sin( 1

𝜔
))

= −𝑞
−1 𝑞

Sin (1/ [𝑞 (𝜔/𝑞)])
𝜔/𝑞

= −𝑞
−1

𝑓(
𝜔

𝑞
) .

(278)

We have relied on the facts that

𝑞
Sin󸀠 (𝑡) = 𝑞

𝑞
Cos (𝑞𝑡) ,

𝑞
Cos󸀠 (𝑡) = −

𝑞
Sin (𝑡) , (279)

where
𝑞
Sin(𝑡) is given by (9) and

𝑞
Cos(𝑡) is given by (28).

These facts are proven in [5].
Note that since

𝑞
Sin(𝜔) is Schwartz, one has 𝑓(0) =

lim
𝜔→0 𝑞

Sin(1/[𝑞𝜔])/𝜔 = 0. And thus the solution to the
MADE (268) given by

𝑓 (𝑡) = F [𝑓 (𝜔)] (𝑡)

=
1

√2𝜋

∫

∞

−∞

𝑒
−𝑖𝑡𝜔 𝑞

Sin (1/ [𝑞𝜔])
𝜔

𝑑𝜔

=
1

√2𝜋

∫

∞

−∞

cos (𝜔𝑡) 𝑞
Sin (1/ [𝑞𝜔])

𝜔
𝑑𝜔

=
−1

√2𝜋

∫

∞

−∞

cos( 𝑡
𝑞V
)

𝑞
Sin (V)
V

𝑑V

=
−1

√2𝜋

∫

∞

−∞

cos( 𝑡
𝑞V
) 𝑗

0
(𝑞; V) 𝑑V

(280)

exhibits wavelet properties, since its 0th moment vanishes. A
change of variables V = 1/[𝑞𝜔] was made to obtain the last
two equalities and express the solution in terms of the 0th
order 𝑞-advanced spherical Bessel function.
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