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Nonsingular𝐻-matrices and positive stable matrices play an important role in the stability of neural network system. In this paper,
some criteria for nonsingular 𝐻-matrices are obtained by the theory of diagonally dominant matrices and the obtained result is
introduced into identifying the stability of neural networks. So the criteria for nonsingular 𝐻-matrices are expanded and their
application on neural network system is given. Finally, the effectiveness of the results is illustrated by numerical examples.

1. Introduction

The research on data mining based on neural networks
has a great significance. Recently, as one kind of artificial
neural networks, Hopfield neural network is used for asso-
ciation rules mining and remarkable results are obtained.
Nonsingular 𝐻-matrices and positive stable matrices play
an important role in the stability of neural network system.
However, it is rather difficult in practice to determinewhether
a matrix is a nonsingular𝐻-matrix or not. Therefore, it is of
a great theoretical and practical value to study the numerical
methods for judging the nonsingular𝐻-matrices, to provide
the concise and practical criteria. Up to now, within the
scope of the field, many researchers have done a lot of in-
depth studies and acquired some very valuable results in
many respects, such as nonsingular𝐻-matrix properties and
criteria (see [1–9]). In this paper, some criteria for nonsin-
gular 𝐻-matrices are obtained by the theory of diagonally
dominant matrices and the obtained result is introduced into
identifying the stability of neural networks. So the criteria for
nonsingular 𝐻-matrices are expanded and their application
on neural network system is given. Effectiveness of the results
is illustrated by numerical examples. For convenience, we are
dealing with nonsingular 𝐻-matrices, calling them shortly
𝐻-matrices.

Next, we will introduce some notations.
Let𝑁 = {1, 2, . . . , 𝑛}, and let𝑀 = {(𝑖, 𝑗) | 𝑖 ̸= 𝑗; 𝑖, 𝑗 ∈ 𝑁}.

𝐶
𝑛,𝑛 denotes the set of all 𝑛 by 𝑛 complex matrices: 𝑅

𝑖
(𝐴) =

∑
𝑗 ̸= 𝑖

|𝑎
𝑖𝑗
| and 𝐶

𝑖
(𝐴) = ∑

𝑗 ̸= 𝑖
|𝑎
𝑗𝑖
| (for all 𝑖 ∈ 𝑁).

If |𝑎
𝑖𝑖
| ≥ (>)𝑅

𝑖
(𝐴) (for all 𝑖 ∈ 𝑁), then 𝐴 is said to be a

(strictly) diagonally dominant matrix and is denoted by 𝐴 ∈

𝐷
0
(𝐴 ∈ 𝐷); if |𝑎

𝑖𝑖
𝑎
𝑗𝑗
| ≥ (>)𝑅

𝑖
(𝐴)𝑅
𝑗
(𝐴) (for all (𝑖, 𝑗) ∈ 𝑀),

then 𝐴 is said to be a (strictly) double diagonally dominant
matrix and is denoted by 𝐴 ∈ 𝐷𝐷

0
(𝐴 ∈ 𝐷𝐷). It is well

known that an equivalent definition of 𝐻-matrices is given
by demanding that there exist positive numbers 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛

such that 𝑥
𝑖
|𝑎
𝑖𝑖
| > ∑

𝑗 ̸= 𝑖
𝑥
𝑗
|𝑎
𝑖𝑗
| (for all 𝑖 ∈ 𝑁); that is, there

exists a positive diagonal matrix 𝑋 = diag(𝑥
1
, . . . , 𝑥

𝑛
) such

that 𝐴𝑋 ∈ 𝐷 (see [1]). So, we always assume that |𝑎
𝑖𝑖
| ̸= 0 (for

all 𝑖 ∈ 𝑁).

2. Definitions and Lemmas

It is learned that the class of 𝛼-double diagonally dominant
matrices play a central role in identifying𝐻-matrices. So, we
will start with its definition and some background results.

Definition 1 (see [2]). Let𝐴 = (𝑎
𝑖𝑗
) ∈ 𝐶
𝑛,𝑛; if there exists some

𝛼 ∈ [0, 1], satisfying
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑖
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
≥ (>) [𝑅

𝑖
(𝐴) 𝑅
𝑗
(𝐴)]
𝛼

[𝐶
𝑖
(𝐴) 𝐶
𝑗
(𝐴)]
1−𝛼

(∀ (𝑖, 𝑗) ∈ 𝑀) ,

(1)

then 𝐴 is called a (strictly) 𝛼-double diagonally dominant
matrix and is denoted by 𝐴 ∈ 𝐷𝐷(𝛼

0
) (𝐴 ∈ 𝐷𝐷(𝛼)).

Lemma 2 (see [2]). Let 𝐴 = (𝑎
𝑖𝑗
) ∈ 𝐶
𝑛,𝑛; if 𝐴 ∈ 𝐷𝐷(𝛼), then

𝐴 is an𝐻-matrix.
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Lemma 3 (see [3]). Let 𝐴 = (𝑎
𝑖𝑗
) ∈ 𝐶

𝑛,𝑛, if there exists some
𝛼 ∈ [0, 1], satisfying

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑖
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
≥ [𝑅
𝑖
(𝐴) 𝑅
𝑗
(𝐴)]
𝛼

[𝐶
𝑖
(𝐴) 𝐶
𝑗
(𝐴)]
1−𝛼

(∀ (𝑖, 𝑗) ∈ 𝑀) ,

(2)

and, for every (𝑖, 𝑗) ∈ 𝑀 with |𝑎
𝑖𝑖
𝑎
𝑗𝑗
| = [𝑅

𝑖
(𝐴)𝑅
𝑗
(𝐴)]
𝛼

×[𝐶
𝑖
(𝐴)𝐶
𝑗
(𝐴)]
1−𝛼, there exists a nonzero elements chain

𝑎
𝑖0𝑖1

, 𝑎
𝑖1𝑖2

, . . . , 𝑎
𝑖𝑟𝑗0

or 𝑎
𝑗0𝑗1

, 𝑎
𝑗1𝑗2

, . . . , 𝑎
𝑗𝑡𝑖0

such that 𝑖
0

= 𝑖 or
𝑖
0
= 𝑗, 𝑗
0
∈ 𝐽(𝐴), where

𝐽 (𝐴) = {𝑖
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑖
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
> [𝑅
𝑖
(𝐴) 𝑅
𝑗
(𝐴)]
𝛼

[𝐶
𝑖
(𝐴) 𝐶
𝑗
(𝐴)]
1−𝛼

,

(𝑖, 𝑗) ∈ 𝑀} ̸= 0,

(3)

then 𝐴 is an𝐻-matrix.
Let 𝑆(𝐴) denote the set of all circuits of length𝑝 ≥ 2 in Γ(𝐴)

(directed graph of the matrix𝐴). Recall that a circuit in Γ(𝐴) is
an ordered sequence 𝛾 of vertices 𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑝
, 𝑖
𝑝+1

= 𝑖
1
(𝑝 ≥ 1),

where 𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑝
are all distinct and 𝑒

𝑖𝑗𝑖𝑗+1
(𝑗 = 1, 2, . . . , 𝑝) are

arcs of Γ(𝐴). Let 𝐸(𝐴) denote the set of all arcs.

Lemma 4 (see [4]). Let 𝐴 be an irreducible complex matrix.
Suppose there exists some 𝛼 ∈ [0, 1], satisfying

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑖
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
≥ [𝑅
𝑖
(𝐴) 𝑅
𝑗
(𝐴)]
𝛼

[𝐶
𝑖
(𝐴) 𝐶
𝑗
(𝐴)]
1−𝛼

(∀ (𝑖, 𝑗) ∈ 𝑀) .

(4)

If there exists some arc 𝑒
𝑖∗𝑗∗

∈ 𝐸(𝐴) and (𝑖
∗
, 𝑗
∗
) ∈ 𝑀 such

that
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖∗𝑖∗

𝑎
𝑗∗𝑗∗

󵄨󵄨󵄨󵄨󵄨
> [𝑅
𝑖∗
(𝐴) 𝑅
𝑗∗
(𝐴)]
𝛼

[𝐶
𝑖∗
(𝐴) 𝐶
𝑗∗
(𝐴)]
1−𝛼

, (5)

then 𝐴 is an𝐻-matrix.

3. Criteria for 𝐻-Matrices

In the rest of the paper, we will use the notations:

𝑀
1
= {(𝑖, 𝑗) | 𝑅

𝑖
(𝐴) 𝑅
𝑗
(𝐴) <

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑖
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
< 𝐶
𝑖
(𝐴) 𝐶
𝑗
(𝐴)} ;

𝑀
2
= {(𝑖, 𝑗) | 𝐶

𝑖
(𝐴) 𝐶
𝑗
(𝐴) <

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑖
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
< 𝑅
𝑖
(𝐴) 𝑅
𝑗
(𝐴)} ;

𝑀
3
= {(𝑖, 𝑗) |

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑖
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
≥ 𝐶
𝑖
(𝐴) 𝐶
𝑗
(𝐴) > 𝑅

𝑖
(𝐴) 𝑅
𝑗
(𝐴)} ;

𝑀
4
= {(𝑖, 𝑗) |

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑖
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
≥ 𝑅
𝑖
(𝐴) 𝑅
𝑗
(𝐴) > 𝐶

𝑖
(𝐴) 𝐶
𝑗
(𝐴)} ;

𝑀
5
= {(𝑖, 𝑗) |

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑖
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
> 𝑅
𝑖
(𝐴) 𝑅
𝑗
(𝐴) = 𝐶

𝑖
(𝐴) 𝐶
𝑗
(𝐴)} ;

𝑀
0
= {(𝑖, 𝑗) |

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑖
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
≤ 𝑅
𝑖
(𝐴) 𝑅
𝑗
(𝐴) ,

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑖
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶
𝑖
(𝐴) 𝐶
𝑗
(𝐴)} .

(6)

It is obvious to deduce that𝑀 = 𝑀
1
∪ 𝑀
2
∪ 𝑀
3
∪ 𝑀
4
∪

𝑀
5
∪𝑀
0
.

Let

𝛼
𝑠𝑡
=

󵄨󵄨󵄨󵄨𝑎𝑠𝑠𝑎𝑡𝑡
󵄨󵄨󵄨󵄨

𝑅
𝑠
(𝐴) 𝑅
𝑡
(𝐴)

, 𝛽
𝑠𝑡
=
𝐶
𝑠
(𝐴) 𝐶
𝑡
(𝐴)

󵄨󵄨󵄨󵄨𝑎𝑠𝑠𝑎𝑡𝑡
󵄨󵄨󵄨󵄨

,

𝛾
𝑠𝑡
=
𝐶
𝑠
(𝐴) 𝐶
𝑡
(𝐴)

𝑅
𝑠
(𝐴) 𝑅
𝑡
(𝐴)

, 𝛾
𝑠𝑡
= 𝛼
𝑠𝑡
𝛽
𝑠𝑡
,

∀ (𝑠, 𝑡) ∈ 𝑀
1
;

𝑥
𝑖𝑗
=

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑖
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨

𝐶
𝑖
(𝐴) 𝐶
𝑗
(𝐴)

, 𝑦
𝑖𝑗
=

𝑅
𝑖
(𝐴) 𝑅
𝑗
(𝐴)

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑖
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨

,

𝑧
𝑖𝑗
=

𝑅
𝑖
(𝐴) 𝑅
𝑗
(𝐴)

𝐶
𝑖
(𝐴) 𝐶
𝑗
(𝐴)

, 𝑧
𝑖𝑗
= 𝑥
𝑖𝑗
𝑦
𝑖𝑗
,

∀ (𝑖, 𝑗) ∈ 𝑀
2
.

(7)

It is obvious to observe

𝛾
𝑠𝑡
> 𝛼
𝑠𝑡
> 1, 𝛾

𝑠𝑡
> 𝛽
𝑠𝑡
> 1;

𝑧
𝑖𝑗
> 𝑥
𝑖𝑗
> 1, 𝑧

𝑖𝑗
> 𝑦
𝑖𝑗
> 1.

(8)

The following are our main results. First, we give an
equivalent representation for strictly 𝛼-double diagonally
dominant matrices.

Lemma 5. Let 𝐴 = (𝑎
𝑖𝑗
) ∈ 𝐶
𝑛,𝑛; then 𝐴 ∈ 𝐷𝐷(𝛼) if and only

if𝑀
0
= 0 and for any (𝑠, 𝑡) ∈ 𝑀

1
, (𝑖, 𝑗) ∈ 𝑀

2
, satisfying

log
𝛾𝑠𝑡

𝛽
𝑠𝑡
+ log
𝑧𝑖𝑗

𝑦
𝑖𝑗
< 1. (9)

Proof. Sufficiency. From inequality (9), for any (𝑠, 𝑡) ∈ 𝑀
1
,

(𝑖, 𝑗) ∈ 𝑀
2
, it follows that

log
𝑧𝑖𝑗

𝑦
𝑖𝑗
< 1 − log

𝛾𝑠𝑡

𝛽
𝑠𝑡
. (10)

Recalling that 𝛾
𝑠𝑡
> 𝛽
𝑠𝑡
> 1, for any (𝑠, 𝑡) ∈ 𝑀

1
, we have

0 < log
𝛾𝑠𝑡

𝛽
𝑠𝑡
< 1. So there exists some positive number 𝜀 such

that

0 < log
𝛾𝑠𝑡

𝛽
𝑠𝑡
+ 𝜀 < 1, (11)

log
𝑧𝑖𝑗

𝑦
𝑖𝑗
< 1 − (log

𝛾𝑠𝑡

𝛽
𝑠𝑡
+ 𝜀) . (12)

Let 𝛼 = log
𝛾𝑠𝑡

𝛽
𝑠𝑡
+ 𝜀; it is easy to see 0 < 𝛼 < 1 and

log
𝛾𝑠𝑡

𝛽
𝑠𝑡
< 𝛼; that is,

𝛽
𝑠𝑡
< (𝛼
𝑠𝑡
𝛽
𝑠𝑡
)
𝛼

. (13)

By both ends of inequality (13) multiplied by 𝛽−𝛼
𝑠𝑡
, we have

𝛼
𝛼

𝑠𝑡
> 𝛽
1−𝛼

𝑠𝑡
; that is,

[

󵄨󵄨󵄨󵄨𝑎𝑠𝑠𝑎𝑡𝑡
󵄨󵄨󵄨󵄨

𝑅
𝑠
(𝐴) 𝑅
𝑡
(𝐴)

]

𝛼

> [
𝐶
𝑠
(𝐴) 𝐶
𝑡
(𝐴)

󵄨󵄨󵄨󵄨𝑎𝑠𝑠𝑎𝑡𝑡
󵄨󵄨󵄨󵄨

]

1−𝛼

. (14)

The inequality above implies that

󵄨󵄨󵄨󵄨𝑎𝑠𝑠𝑎𝑡𝑡
󵄨󵄨󵄨󵄨 > [𝑅

𝑠
(𝐴) 𝑅
𝑡
(𝐴)]
𝛼

[𝐶
𝑠
(𝐴) 𝐶
𝑡
(𝐴)]
1−𝛼

. (15)
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By inequality (12) again, for any (𝑖, 𝑗) ∈ 𝑀
2
, it is obvious

that log
𝑧𝑖𝑗

𝑦
𝑖𝑗
< 1 − 𝛼; that is,

𝑦
𝑖𝑗
< (𝑥
𝑖𝑗
𝑦
𝑖𝑗
)
1−𝛼

. (16)

By both ends of inequality (16) multiplied by 𝑦
𝛼−1

𝑖𝑗
, we

have 𝑥1−𝛼
𝑖𝑗

> 𝑦
𝛼

𝑖𝑗
; that is,

[

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑖
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨

𝐶
𝑖
(𝐴)𝐶
𝑗
(𝐴)

]

1−𝛼

> [

𝑅
𝑖
(𝐴)𝑅
𝑗
(𝐴)

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑖
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨

]

𝛼

. (17)

The inequality above implies that

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑖
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
> [𝑅
𝑖
(𝐴) 𝑅
𝑗
(𝐴)]
𝛼

[𝐶
𝑖
(𝐴) 𝐶
𝑗
(𝐴)]
1−𝛼

. (18)

Moreover, for any (𝑙, 𝑚) ∈ 𝑀
3
∪ 𝑀
4
∪ 𝑀
5
, and any 𝛼 ∈

(0, 1), it is obvious that
󵄨󵄨󵄨󵄨𝑎𝑙𝑙𝑎𝑚𝑚

󵄨󵄨󵄨󵄨 > [𝑅
𝑙
(𝐴) 𝑅
𝑚
(𝐴)]
𝛼

[𝐶
𝑙
(𝐴) 𝐶
𝑚
(𝐴)]
1−𝛼

. (19)

Recalling that 𝑀
0
= 0, for any (𝑖, 𝑗) ∈ 𝑀

1
∪ 𝑀
2
∪ 𝑀
3
∪

𝑀
4
∪𝑀
5
= 𝑀, there exists some 𝛼 ∈ [0, 1] such that

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑖
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
> [𝑅
𝑖
(𝐴) 𝑅
𝑗
(𝐴)]
𝛼

[𝐶
𝑖
(𝐴) 𝐶
𝑗
(𝐴)]
1−𝛼

. (20)

Therefore, we have 𝐴 ∈ 𝐷𝐷(𝛼) by Definition 1.

Necessity. Suppose 𝐴 ∈ 𝐷𝐷(𝛼); then 𝑀
0
= 0, and, for any

(𝑠, 𝑡) ∈ 𝑀
1
, there exists some 𝛼 ∈ [0, 1] such that

󵄨󵄨󵄨󵄨𝑎𝑠𝑠𝑎𝑡𝑡
󵄨󵄨󵄨󵄨 > [𝑅

𝑠
(𝐴) 𝑅
𝑡
(𝐴)]
𝛼

[𝐶
𝑠
(𝐴) 𝐶
𝑡
(𝐴)]
1−𝛼

; (21)

that is,

[

󵄨󵄨󵄨󵄨𝑎𝑠𝑠𝑎𝑡𝑡
󵄨󵄨󵄨󵄨

𝑅
𝑠
(𝐴) 𝑅
𝑡
(𝐴)

]

𝛼

> [
𝐶
𝑠
(𝐴) 𝐶
𝑡
(𝐴)

󵄨󵄨󵄨󵄨𝑎𝑠𝑠𝑎𝑡𝑡
󵄨󵄨󵄨󵄨

]

1−𝛼

. (22)

Then by the notations of 𝛼
𝑠𝑡
and 𝛽

𝑠𝑡
, we have 𝛽1−𝛼

𝑠𝑡
< 𝛼
𝛼

𝑠𝑡
.

Furthermore, by both ends of the inequalitymultiplied by𝛽𝛼
𝑠𝑡
,

we get 𝛽
𝑠𝑡
< (𝛼
𝑠𝑡
𝛽
𝑠𝑡
)
𝛼

= 𝛾
𝛼

𝑠𝑡
. Therefore, it can be seen that

log
𝛾𝑠𝑡

𝛽
𝑠𝑡
< log
𝛾𝑠𝑡

𝛾
𝛼

𝑠𝑡
= 𝛼. (23)

Following a similar argument for any (𝑖, 𝑗) ∈ 𝑀
2
, we have

log
𝑧𝑖𝑗

𝑦
𝑖𝑗
< log
𝑧𝑖𝑗

𝑧
1−𝛼

𝑖𝑗
= 1 − 𝛼. (24)

Combining inequalities (23) and (24), we obtain inequal-
ity (9). The proof is completed.

As its application, some new practical criteria for 𝐻-
matrices are obtained.

Theorem 6. Let𝐴 = (𝑎
𝑖𝑗
) ∈ 𝐶
𝑛,𝑛,𝑀

0
= 0, and, for any (𝑠, 𝑡) ∈

𝑀
1
, (𝑖, 𝑗) ∈ 𝑀

2
, satisfying

log
𝛾𝑠𝑡

𝛽
𝑠𝑡
+ log
𝑧𝑖𝑗

𝑦
𝑖𝑗
< 1; (25)

then 𝐴 is an𝐻-matrix.

Proof. By Lemma 5, we obtain𝐴 ∈ 𝐷𝐷(𝛼), and further using
Lemma 2, we conclude that 𝐴 is an𝐻-matrix.

Theorem 7. 𝐴 = (𝑎
𝑖𝑗
) ∈ 𝐶

𝑛,𝑛 is an H-matrix if 𝐴 satisfies
either of the conditions:

(1) 𝑀
0
∪𝑀
1
= 0;

(2) 𝑀
0
∪𝑀
2
= 0.

Proof. (1) Suppose𝑀
0
∪𝑀
1
= 0; then, for any (𝑖, 𝑗) ∈ 𝑀

2
, by

0 < log
𝑧𝑖𝑗

𝑦
𝑖𝑗
< 1, there exists some positive number 𝜀, such

that

0 < log
𝑧𝑖𝑗

𝑦
𝑖𝑗
+ 𝜀 < 1. (26)

Let 𝛼 = 1 − (log
𝑧𝑖𝑗

𝑦
𝑖𝑗
+ 𝜀) ⊂ (0, 1); then we have log

𝑧𝑖𝑗

𝑦
𝑖𝑗
<

1 − 𝛼, which implies that

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑖
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
> [𝑅
𝑖
(𝐴) 𝑅
𝑗
(𝐴)]
𝛼

[𝐶
𝑖
(𝐴) 𝐶
𝑗
(𝐴)]
1−𝛼

. (27)

For any (𝑙, 𝑚) ∈ 𝑀
3
∪ 𝑀
4
∪ 𝑀
5
, and any 𝛼 ∈ (0, 1), it is

obvious that

󵄨󵄨󵄨󵄨𝑎𝑙𝑙𝑎𝑚𝑚
󵄨󵄨󵄨󵄨 > [𝑅

𝑙
(𝐴) 𝑅
𝑚
(𝐴)]
𝛼

[𝐶
𝑙
(𝐴) 𝐶
𝑚
(𝐴)]
1−𝛼

. (28)

Next, similarly as in the proof of Sufficiency of Lemma 5,
we conclude that 𝐴 is an𝐻-matrix.

(2) Suppose 𝑀
0
∪ 𝑀
2
= 0; then for any (𝑠, 𝑡) ∈ 𝑀

1
, by

0 < log
𝛾𝑠𝑡

𝛽
𝑠𝑡
< 1, there exists some positive number 𝜀 such

that

0 < log
𝛾𝑠𝑡

𝛽
𝑠𝑡
+ 𝜀 < 1. (29)

Let 𝛼 = log
𝛾𝑠𝑡

𝛽
𝑠𝑡
+ 𝜀 ⊂ (0, 1); then we have log

𝛾𝑠𝑡

𝛽
𝑠𝑡
< 𝛼,

which implies that

󵄨󵄨󵄨󵄨𝑎𝑠𝑠𝑎𝑡𝑡
󵄨󵄨󵄨󵄨 ≥ [𝑅

𝑠
(𝐴) 𝑅
𝑡
(𝐴)]
𝛼

[𝐶
𝑠
(𝐴) 𝐶
𝑡
(𝐴)]
1−𝛼

. (30)

Similarly, we conclude that 𝐴 is an𝐻-matrix.

Theorem 8. Let𝐴 = (𝑎
𝑖𝑗
) ∈ 𝐶
𝑛,𝑛,𝑀

0
= 0, and, for any (𝑠, 𝑡) ∈

𝑀
1
, (𝑖, 𝑗) ∈ 𝑀

2
, satisfying

log
𝛾𝑠𝑡

𝛽
𝑠𝑡
+ log
𝑧𝑖𝑗

𝑦
𝑖𝑗
≤ 1. (31)

If, for every pair of indices (𝑠, 𝑡) ∈ 𝑀
1
, (𝑖, 𝑗) ∈ 𝑀

2
with

log
𝛾𝑠𝑡

𝛽
𝑠𝑡
+ log
𝑧𝑖𝑗

𝑦
𝑖𝑗
= 1, (32)

there exists two nonzero elements chains 𝑎
𝑠0𝑠1

, 𝑎
𝑠1𝑠2

, . . . , 𝑎
𝑠ℎ𝑡0

or 𝑎
𝑡0𝑡1

, 𝑎
𝑡1𝑡2

, . . . , 𝑎
𝑡𝑘𝑠0

and 𝑎
𝑖0𝑖1

, 𝑎
𝑖1𝑖2

, . . . , 𝑎
𝑖𝑝𝑗0

or 𝑎
𝑗0𝑗1

, 𝑎
𝑗1𝑗2

,

. . . , 𝑎
𝑗𝑞𝑖0

with 𝑠
0
= 𝑠 or 𝑠

0
= 𝑡, 𝑡
0
∈ 𝐺(𝐴) and 𝑖

0
= 𝑖 or 𝑖

0
= 𝑗,

𝑗
0
∈ 𝐺(𝐴), where

𝐺 (𝐴) = {𝑖 | log
𝛾𝑠𝑡

𝛽
𝑠𝑡
+ log
𝑧𝑖𝑗

𝑦
𝑖𝑗
< 1, (𝑖, 𝑗) ∈ 𝑀

2
} ̸= 0,

(33)

then 𝐴 is an𝐻-matrix.
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Proof. Similarly as in the proof of Sufficiency of Lemma 5
combined with inequality (31), we can prove that for any
(𝑠, 𝑡) ∈ 𝑀

1
, and (𝑖, 𝑗) ∈ 𝑀

2
, there exists some 𝛼 ∈ [0, 1] such

that
󵄨󵄨󵄨󵄨𝑎𝑠𝑠𝑎𝑡𝑡

󵄨󵄨󵄨󵄨 ≥ [𝑅
𝑠
(𝐴) 𝑅
𝑡
(𝐴)]
𝛼

[𝐶
𝑠
(𝐴) 𝐶
𝑡
(𝐴)]
1−𝛼

;

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑖
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
≥ [𝑅
𝑖
(𝐴)𝑅
𝑗
(𝐴)]
𝛼

[𝐶
𝑖
(𝐴) 𝐶
𝑗
(𝐴)]
1−𝛼

.

(34)

Moreover, for any (𝑙, 𝑚) ∈ 𝑀
3
∪ 𝑀
4
∪ 𝑀
5
, and any 𝛼 ∈

(0, 1), it is obvious that
󵄨󵄨󵄨󵄨𝑎𝑙𝑙𝑎𝑚𝑚

󵄨󵄨󵄨󵄨 > [𝑅
𝑙
(𝐴) 𝑅
𝑚
(𝐴)]
𝛼

[𝐶
𝑙
(𝐴) 𝐶
𝑚
(𝐴)]
1−𝛼

. (35)

Recalling that 𝐺(𝐴) ̸= 0, we conclude that there exists
some (𝑠, 𝑡) ∈ 𝑀

1
, (𝑖, 𝑗) ∈ 𝑀

2
such that

󵄨󵄨󵄨󵄨𝑎𝑠𝑠𝑎𝑡𝑡
󵄨󵄨󵄨󵄨 > [𝑅

𝑠
(𝐴) 𝑅
𝑡
(𝐴)]
𝛼

[𝐶
𝑠
(𝐴) 𝐶
𝑡
(𝐴)]
1−𝛼

;

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑖
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
> [𝑅
𝑖
(𝐴) 𝑅
𝑗
(𝐴)]
𝛼

[𝐶
𝑖
(𝐴) 𝐶
𝑗
(𝐴)]
1−𝛼

.

(36)

By equality (32), we know that, for every pair of indices
(𝑠, 𝑡) ∈ 𝑀

1
, (𝑖, 𝑗) ∈ 𝑀

2
with

󵄨󵄨󵄨󵄨𝑎𝑠𝑠𝑎𝑡𝑡
󵄨󵄨󵄨󵄨 = [𝑅

𝑠
(𝐴) 𝑅
𝑡
(𝐴)]
𝛼

[𝐶
𝑠
(𝐴) 𝐶
𝑡
(𝐴)]
1−𝛼

;

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑖
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
= [𝑅
𝑖
(𝐴)𝑅
𝑗
(𝐴)]
𝛼

[𝐶
𝑖
(𝐴) 𝐶
𝑗
(𝐴)]
1−𝛼

,

(37)

there exists two nonzero elements chains 𝑎
𝑠0𝑠1

, 𝑎
𝑠1𝑠2

, . . . , 𝑎
𝑠ℎ𝑡0

or 𝑎
𝑡0𝑡1

, 𝑎
𝑡1𝑡2

, . . . , 𝑎
𝑡𝑘𝑠0

and 𝑎
𝑖0𝑖1

, 𝑎
𝑖1𝑖2

, . . . , 𝑎
𝑖𝑝𝑗0

or 𝑎
𝑗0𝑗1

, 𝑎
𝑗1𝑗2

,

. . . , 𝑎
𝑗𝑞𝑖0

with 𝑠
0
= 𝑠 or 𝑠

0
= 𝑡, 𝑡
0
∈ 𝐽
󸀠

(𝐴) and 𝑖
0
= 𝑖 or 𝑖

0
= 𝑗,

𝑗
0
∈ 𝐽
󸀠

(𝐴), where

𝐽
󸀠

(𝐴) = {𝑖
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑖
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
> [𝑅
𝑖
(𝐴) 𝑅
𝑗
(𝐴)]
𝛼

[𝐶
𝑖
(𝐴) 𝐶
𝑗
(𝐴)]
1−𝛼

,

(𝑖, 𝑗) ∈ 𝑀
2
} ̸= 0.

(38)

By Lemma 3, it follows that 𝐴 is an𝐻-matrix.

Similarly as in the proof of Theorem 8, we can obtain the
following result.

Theorem 9. Let𝐴 = (𝑎
𝑖𝑗
) ∈ 𝐶
𝑛,𝑛,𝑀

0
= 0, and, for any (𝑠, 𝑡) ∈

𝑀
1
, (𝑖, 𝑗) ∈ 𝑀

2
, satisfying

log
𝛾𝑠𝑡

𝛽
𝑠𝑡
+ log
𝑧𝑖𝑗

𝑦
𝑖𝑗
≤ 1. (39)

If, for every pair of indices 𝑠 ∈ 𝐿
1
, 𝑖 ∈ 𝐿

2
, there exists

two nonzero elements chains 𝑎
𝑠0𝑠1

, 𝑎
𝑠1𝑠2

, . . . , 𝑎
𝑠ℎ𝑡0

or 𝑎
𝑡0𝑡1

, 𝑎
𝑡1𝑡2

,

. . . , 𝑎
𝑡𝑘𝑠0

and 𝑎
𝑖0𝑖1

, 𝑎
𝑖1𝑖2

, . . . , 𝑎
𝑖𝑝𝑗0

or 𝑎
𝑗0𝑗1

, 𝑎
𝑗1𝑗2

, . . . , 𝑎
𝑗𝑞𝑖0

with
𝑠
0
= 𝑠 or 𝑠

0
= 𝑡 and 𝑖

0
= 𝑖 or 𝑖

0
= 𝑗 such that 𝑡

0
, 𝑗
0
∈

𝑁 \ (𝐿
1
∪ 𝐿
2
) ̸= 0, where

𝐿
1
= {𝑠 | log

𝛾𝑠𝑡

𝛽
𝑠𝑡
+ log
𝑧𝑖𝑗

𝑦
𝑖𝑗
= 1, (𝑠, 𝑡) ∈ 𝑀

1
} ;

𝐿
2
= {𝑖 | log

𝛾𝑠𝑡

𝛽
𝑠𝑡
+ log
𝑧𝑖𝑗

𝑦
𝑖𝑗
= 1, (𝑖, 𝑗) ∈ 𝑀

2
} ,

(40)

then 𝐴 is an𝐻-matrix.

Theorem 10. Let𝐴 be an irreducible complex matrix,𝑀
0
= 0,

and, for any (𝑠, 𝑡) ∈ 𝑀
1
, (𝑖, 𝑗) ∈ 𝑀

2
, satisfying

log
𝛾𝑠𝑡

𝛽
𝑠𝑡
+ log
𝑧𝑖𝑗

𝑦
𝑖𝑗
≤ 1. (41)

If there exists some arc 𝑒
𝑖∗𝑗∗

∈ 𝐸(𝐴) and (𝑖
∗
, 𝑗
∗
) ∈ 𝑀

2
such

that

log
𝛾𝑠𝑡

𝛽
𝑠𝑡
+ log
𝑧𝑖∗𝑗∗

𝑦
𝑖𝑖∗𝑗∗

< 1, (42)

then 𝐴 is an𝐻-matrix.

Proof. With the same argument as in the proof ofTheorem 8,
we can obtain that, for any (𝑖, 𝑗) ∈ 𝑀

1
∪𝑀
2
∪𝑀
3
∪𝑀
4
∪𝑀
5
=

𝑀, there exists some 𝛼 ∈ [0, 1] such that

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑖
𝑎
𝑗𝑗

󵄨󵄨󵄨󵄨󵄨
≥ [𝑅
𝑖
(𝐴) 𝑅
𝑗
(𝐴)]
𝛼

[𝐶
𝑖
(𝐴) 𝐶
𝑗
(𝐴)]
1−𝛼

. (43)

By inequality (42), we know that there exists some arc
𝑒
𝑖∗𝑗∗

∈ 𝐸(𝐴) and (𝑖
∗
, 𝑗
∗
) ∈ 𝑀

2
such that

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖∗𝑖∗

𝑎
𝑗∗𝑗∗

󵄨󵄨󵄨󵄨󵄨
> [𝑅
𝑖∗
(𝐴) 𝑅
𝑗∗
(𝐴)]
𝛼

[𝐶
𝑖∗
(𝐴) 𝐶
𝑗∗
(𝐴)]
1−𝛼

.

(44)

Recalling that 𝐴 is irreducible, it follows that 𝐴 is an 𝐻-
matrix by Lemma 4.

4. Algorithm and Program

Algorithm for Theorem 6.

(1) Input matrix 𝐴;

(2) calculate 𝑅
𝑖
(𝐴) and 𝐶

𝑖
(𝐴) (for all 𝑖 ∈ 𝑁) (denoted in

the Introduction of the paper);

(3) define indices𝑀
1
,𝑀
2
, and𝑀

0
;

(4) if𝑀
0

̸= 0, then the criterion is invalid;

(5) if𝑀
0
= 0, then calculate 𝛼

𝑖𝑗
, 𝛽
𝑖𝑗
, 𝛾
𝑖𝑗
(for all (𝑖, 𝑗) ∈ 𝑀

1
)

and 𝑥
𝑖𝑗
, 𝑦
𝑖𝑗
, 𝑧
𝑖𝑗
(for all (𝑖, 𝑗) ∈ 𝑀

2
);

(6) calculate and verify the condition ofTheorem 6. If the
condition is satisfied, then output “𝐴 is an𝐻-matrix.”

We write the related program by the above algorithm
using MATLAB Software. All the results are calculated by
MATLAB 7.0. The procedures are shown in Procedure 1.

5. Numerical Examples

Example 1. Let

𝐴 =

[
[
[
[
[

[

3.3 −0.5 −0.5 −0.4 −0.1

−0.5 2.5 −1 −1 −0.5

−2.2 −0.5 3 −0.5 0

−1 −0.3 −0.5 10 −1

−0.5 −1.2 0 −1 10

]
]
]
]
]

]

. (45)
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A=input(“please input a matrix”)
M1=[];M2=[];M6=[];F=[];B=[];

n=size(A,1);RA=zeros(n,1);CA=zeros(n,1);

for k=1:n

A=abs(A);

RA(k)=[sum(A(k,:))-A(k,k)];

CA(k)=[sum(A(:,k))-A(k,k)];

end

for i=1:n-1

for j=i+1:n

RR=RA(i)∗RA(j);

aa=abs(A(i,i)∗A(j,j));

CC=CA(i)∗CA(j);

if RR<aa&aa<CC

M1=[M1;i,j];

alpha=aa/RR;beta=CC/aa;gamma=alpha∗beta;

F=[F,alpha,beta,gamma];

elseif CC<aa&aa<RR

M2=[M2;i,j];

x=aa/CC;y=RR/aa;z=x∗y;

B=[B,x,y,z];

elseif RR>=aa&CC>=aa

M6=1;break;

Show=“the criterion is invalid”;
end

end

end

if M6==1

“the criterion is invalid”;
elseif size(M1,1)==0|size(M2,1)==0

“A is an H-matrix”
else

k1=size(F,1);k2=size(B,1);

for i=1:k1

F2(i)=log(F(i,2))/log(F(i,3));

end

for i=1:k2

B2(i)=log(B(i,2))/log(B(i,3));

end

if max(B2)+max(F2)<1

show=“A is an H-matrix”
end

end

Procedure 1

Then we have

𝑅
1
(𝐴) = 1.5, 𝑅

2
(𝐴) = 3, 𝑅

3
(𝐴) = 3.2,

𝑅
4
(𝐴) = 2.8, 𝑅

5
(𝐴) = 2.7;

𝐶
1
(𝐴) = 4.2, 𝐶

2
(𝐴) = 2.5, 𝐶

3
(𝐴) = 2,

𝐶
4
(𝐴) = 2.9, 𝐶

5
(𝐴) = 1.6;

󵄨󵄨󵄨󵄨𝑎11
󵄨󵄨󵄨󵄨 = 3.3,

󵄨󵄨󵄨󵄨𝑎22
󵄨󵄨󵄨󵄨 = 2.5,

󵄨󵄨󵄨󵄨𝑎33
󵄨󵄨󵄨󵄨 = 3,

󵄨󵄨󵄨󵄨𝑎44
󵄨󵄨󵄨󵄨 = 10,

󵄨󵄨󵄨󵄨𝑎55
󵄨󵄨󵄨󵄨 = 10.

(46)

But, we notice |𝑎
22
| = 2.5 = 𝐶

2
(𝐴) < 𝑅

2
(𝐴) = 3. The

condition does not satisfy either Theorem 2 or Theorem 3 in
[5], so we cannot obtain that 𝐴 is an𝐻-matrix.

According to the notations of this paper, we have

𝑀
1
= {(1, 2)} , 𝑀

2
= {(2, 3)} , 𝑀

0
= 0. (47)

By calculating, we obtain

log
𝛾12

𝛽
12
= 0.2846; log

𝑧23

𝑦
23
= 0.3784, (48)

and then

log
𝛾12

𝛽
12
+ log
𝑧23

𝑦
23
= 0.2846 + 0.3784 = 0.6630 < 1. (49)
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It satisfies the condition of Theorem 6, and then 𝐴 is an
𝐻-matrix.

We consider the following Hopfield type continuous
neural networks:

𝐶
𝑖

𝑑𝑢
𝑖

𝑑𝑡
= −

𝑢
𝑖

𝑅
𝑖

+

5

∑

𝑗=1

𝑇
𝑖𝑗
𝑔
𝑗
(𝑢
𝑗
(𝑡 − 𝜏)) + 𝐼

𝑖
(𝑖 = 1, 2, 3, 4, 5) ,

(50)

where,

𝑔
𝑖
(𝑢
𝑖
) > 0, 𝑢

𝑖
̸= 0, 0 < 𝑔

𝑖
≤ 1,

𝑔
𝑖
(±∞) = ±1, 𝐶

𝑖
= 1 (𝑖 = 1, 2, 3, 4, 5) ;

𝑅
1
=

1

4.3
, 𝑅

2
=

1

3.5
, 𝑅

3
=
1

4
, 𝑅

4
= 𝑅
5
=

1

11
;

(𝑇
𝑖𝑗
)
5×5

=

[
[
[
[
[

[

−1 0.5 0.5 −0.4 0.1

0.5 1 1 −1 0.5

2.2 −0.5 1 0.5 0

−1 0.3 −0.5 1 −1

0.5 −1.2 0 1 −1

]
]
]
]
]

]

.

(51)

Notice that diag(1/𝑅
1
, 1/𝑅
2
, 1/𝑅
3
, 1/𝑅
4
, 1/𝑅
5
) −

(|𝑇
𝑖𝑗
|)
5×5

= 𝐴 is an 𝐻-matrix, and then 𝐴 is a nonsingular
𝑀-matrix, which ensures existence, uniqueness, and global
exponential stability of the equilibrium point of the above
neural networks by [10].

Example 2. Let

𝐴 = [

[

4 1 0.5

2 2 1

0.5 2 3

]

]

. (52)

By calculating, we have

𝑀
2
= {(2, 3)} , 𝑀

1
= 𝑀
0
= 0. (53)

It satisfies the condition (1) of Theorem 7, and then 𝐴 is
an𝐻-matrix.
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