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As is known, the regularization method plays an important role in solving constrained convex minimization problems. Based on
the idea of regularization, implicit and explicit iterative algorithms are proposed in this paper and the sequences generated by
the algorithms can converge strongly to a solution of the constrained convex minimization problem, which also solves a certain
variational inequality. As an application, we also apply the algorithm to solve the split feasibility problem.

1. Introduction

Assume that 𝐻 is a Hilbert space with inner product ⟨⋅⟩ and
norm ‖ ⋅ ‖ induced by its inner product. Let 𝐶 be a nonempty,
closed, and convex subset of 𝐻. Recall that the projection
from 𝐻 onto 𝐶, denoted by Proj

𝐶
, assigns, to each 𝑥 ∈ 𝐻,

the unique point Proj
𝐶
𝑥 ∈ 𝐶 with the property

𝑥 − Proj
𝐶
𝑥
 = inf {𝑥 − 𝑦

 : 𝑦 ∈ 𝐶} . (1)

Below we introduce some nonlinear operators. Let 𝑇,𝐴:
𝐻 → 𝐻 be nonlinear operators.

(i) 𝑇 is 𝐿-Lipschitzian if ‖𝑇𝑥 − 𝑇𝑦‖ ≤ 𝐿‖𝑥 − 𝑦‖, for all
𝑥, 𝑦 ∈ 𝐻, where 𝐿 ≥ 0 is a constant.

In particular, if 𝐿 ∈ [0, 1), then 𝑇 is called a contraction
on 𝐻; if 𝐿 = 1, then 𝑇 is called a nonexpansive mapping on
𝐻. We know that the projection is nonexpansive.

(ii) 𝐴 is monotone if, for all 𝑥, 𝑦 ∈ 𝐻,

⟨𝑥 − 𝑦, 𝐴𝑥 − 𝐴𝑦⟩ ≥ 0. (2)

(iii) Given number 𝛽 > 0, 𝐴 is said to be 𝛽-strongly
monotone, if

⟨𝑥 − 𝑦, 𝐴𝑥 − 𝐴𝑦⟩ ≥ 𝛽
𝑥 − 𝑦



2
, 𝑥, 𝑦 ∈ 𝐻. (3)

(iv) Given number V > 0,𝐴 is said to be V-inverse strongly
monotone (V-ism) if

⟨𝑥 − 𝑦, 𝐴𝑥 − 𝐴𝑦⟩ ≥ V𝐴𝑥 − 𝐴𝑦


2
, 𝑥, 𝑦 ∈ 𝐻. (4)

If 𝑇 is nonexpansive, then 𝐼 − 𝑇 is monotone.
We know that the gradient-projection algorithm can be

used to solve the constrained convex minimization problem.
Let us recall the concrete analysis below. Consider the
following constrained convex minimization problem:

min
𝑥∈𝐶

𝑓 (𝑥) , (5)

where 𝑓 : 𝐶 → R is a real-valued function. Assume that 𝑓 is
Fréchet differentiable; define a sequence {𝑥𝑛} by

𝑥
𝑛+1

= Proj
𝐶
(𝐼 − 𝛾∇𝑓) (𝑥

𝑛
) , 𝑛 ≥ 0, (6)

where the initial guess is taken from 𝐶 and the parameter
𝛾 is a real number which satisfies certain conditions. The
convergence of algorithm (6) depends on the property of
∇𝑓. In fact, if ∇𝑓 is only inverse strongly monotone, then
algorithm (6) can converge weakly to a solution of the
minimization problem (5). In 2011, Xu [1] provided an alter-
native averagedmapping approach to the gradient-projection
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algorithm; he also constructed a counterexample to prove
that algorithm (6) has weak convergence only, in infinite-
dimensional space. He also provided two modifications to
ensure that the gradient-projection algorithms can converge
strongly to a solution of (5). More investigations about
the gradient-projection algorithm and its important role in
solving the constrained convexminimization problem can be
seen in [2–11]. Recently, the method has also been applied to
solve the split feasibility problems which find application in
image reconstruction and the intensity modulated radiation
therapy (see [12–17]). However, sometimes the minimization
problem has more than one solution, so regularization is
needed.

Consider the regularized minimization problem

min
𝑥∈𝐶

𝑓
𝛼 (𝑥) := 𝑓 (𝑥) +

𝛼

2
‖𝑥‖
2
; (7)

here 𝛼 > 0 is the regularization parameter, and again 𝑓 is
Fréchet differentiable and the gradient ∇𝑓 is (1/𝐿)-ism.

On the gradient-projectionmethod based on the regular-
ization, we have weak convergence result as follows: define a
sequence by

𝑥
𝑛+1

:= Proj
𝐶
(𝐼 − 𝛾∇𝑓

𝛼
𝑛

) (𝑥
𝑛
) , 𝑛 ≥ 0, (8)

where 𝛼
𝑛

> 0, 0 < 𝜆 < 2/𝐿, and ∑
∞

𝑛=1
𝛼
𝑛

< ∞. Then the
sequence generated by (8) converges weakly to a minimizer
of (5) in the setting of infinite-dimensional space (see [17]).

On the other hand, Tian [18] proposed the following
iterative method:

𝑥
𝑛+1

= 𝑠
𝑛
𝜆ℎ (𝑥𝑛) + (𝐼 − 𝑠

𝑛
𝜇𝐹)𝑇𝑥𝑛, (9)

where𝑇 is a nonexpansivemapping on𝐻with a fixed point, ℎ
is a contraction on𝐻with coefficient 0 < 𝛼 < 1, and𝐹 : 𝐻 →

𝐻 is a 𝑘-Lipschitzian and 𝜂-strongly monotone operator with
𝑘, 𝜂 > 0. Letting 0 < 𝜇 < 2𝜂/𝑘

2, 0 < 𝜆 < 𝜇(𝜂 − 𝜇𝑘
2
/2)/𝜌 =

𝜏/𝜌, he proved that the sequence {𝑥
𝑛
} generated by (9) can

converge strongly to a fixed point 𝑥 ∈ Fix(𝑇), which solves
the variational inequality ⟨(𝜆ℎ−𝜇𝐹)𝑥, 𝑥−𝑥⟩ ≤ 0, 𝑥 ∈ Fix(𝑇).

Combing the idea of regularization with Tian’s iterative
scheme, in this paper, we will construct a new algorithm.The
algorithm can not only find the minimum-solution of the
constrained convex minimization problem by a single step
but also ensure the strong convergence. In fact, the sequence
generated by the constructed algorithmcan converge strongly
to a minimizer of the constrained convex minimization
problem. The obtained point is also a solution of a certain
variational inequality. Then we also apply the constructed
algorithm to solve a split feasibility problem.

2. Preliminaries

Lemma 1 (see [18]). Let𝐶 be a nonempty, closed, convex subset
of a real Hilbert space𝐻. Let ℎ : 𝐶 → 𝐶 be a contraction with

coefficient 0 < 𝜌 < 1 and let 𝐹 : 𝐶 → 𝐶 be 𝑘-Lipschitzian and
𝜂-strongly monotone with 𝑘, 𝜂 > 0. Then, for 0 < 𝜆 < 𝜇𝜂/𝜌,

⟨𝑥 − 𝑦, (𝜇𝐹 − 𝜆ℎ) 𝑥 − (𝜇𝐹 − 𝜆ℎ) 𝑦⟩ ≥ (𝜇𝜂 − 𝜆𝜌)
𝑥 − 𝑦
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,

∀𝑥, 𝑦 ∈ 𝐶.

(10)
Lemma 2 (see [19]). Let 𝐶 be a closed and convex subset of
a Hilbert space 𝐻 and let 𝑇 : 𝐶 → 𝐶 be a nonexpansive
mapping with Fix(𝑇) ̸= 0. If {𝑥

𝑛
}
∞

𝑛=1
is a sequence in 𝐶 weakly

converging to 𝑥 and if {(𝐼 − 𝑇)}
∞

𝑛=1
converges strongly to y, then

(𝐼 − 𝑇)𝑥 = 𝑦.

Lemma 3 (see [20]). Let 𝐶 be a closed and convex subset of a
Hilbert space 𝐻. Given 𝑥 ∈ 𝐻 and 𝑦 ∈ 𝐶, then 𝑦 = Proj

𝐶
𝑥 if

and only if there holds the inequality
⟨𝑥 − 𝑦, 𝑦 − 𝑧⟩ ≥ 0, ∀z ∈ 𝐶. (11)

Lemma 4 (see [1]). Assume that {𝑎
𝑛
}
∞

𝑛=0
is a sequence of

nonnegative real numbers such that
𝑎
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝑎
𝑛
+ 𝛾
𝑛
𝛿
𝑛
+ 𝛽
𝑛
, 𝑛 ≥ 0, (12)

where {𝛾𝑛}
∞

𝑛=0
and {𝛽𝑛}

∞

𝑛=0
are sequences in (0, 1) and {𝛿𝑛}

∞

𝑛=0
is

a sequence in R such that
(i) ∑∞
𝑛=0

𝛾
𝑛
= ∞;

(ii) either lim sup
𝑛→∞

𝛿𝑛 ≤ 0 or ∑∞
𝑛=0

𝛾𝑛|𝛿𝑛| < ∞;
(iii) ∑∞

𝑛=0
𝛽
𝑛
< ∞.

Then lim𝑛→∞𝑎𝑛 = 0.

We will use the following notation:
(i) ⇀ for weak convergence and → for strong conver-

gence.

3. Main Results

Assume that 𝐻 is a Hilbert space with inner product ⟨⋅⟩

and norm ‖ ⋅ ‖ induced by its inner product. Let 𝐶 be a
nonempty, closed, and convex subset of 𝐻. Assume that the
minimization problem (5) is consistent and its solution set is
denoted by 𝑆.

Rewrite the regularized constrained convexminimization
problem:

min
𝑥∈𝐶

𝑓
𝛼 (𝑥) := 𝑓 (𝑥) +

𝛼

2
‖𝑥‖
2
. (13)

Recall that ℎ is a 𝜌-contraction on𝐶with 0 < 𝜌 < 1, and𝐹

is 𝑘-Lipschitzian and 𝜂-stronglymonotone on𝐶with 𝑘, 𝜂 > 0.
Given 𝑡 ∈ (0, 1), assume that 𝛼

𝑡
is continuous with respect to

𝑡 and that 𝛼
𝑡
= 𝑜(𝑡) (𝑡 → 0); then there exists a constant

𝐷 > 0 such that |𝛼
𝑡
/𝑡| < 𝐷 for 𝑡 ≤ 𝑡

0
. Let the gradient ∇𝑓

be (1/𝐿)-ism. For each 𝑡 ∈ (0,min(1, 1/𝜏)), we consider the
mapping𝑋

𝑡
on 𝐶 defined by

𝑌
𝑡 (𝑥) := 𝑡𝜆ℎ (𝑥) + (𝐼 − 𝑡𝜇𝐹)Proj

𝐶
(𝐼 − 𝛾∇𝑓

𝛼
𝑡

) (𝑥) ,

𝑋
𝑡 (𝑥) := Proj

𝐶
𝑌𝑡 (𝑥) ,

(14)

where 0 < 𝜇 < 2𝜂/𝑘
2, 0 < 𝜆 < 𝜇(𝜂 − 𝜇𝑘

2
/2)/𝜌 = 𝜏/𝜌, and

0 < 𝛾 < 2/𝐿.
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We will use the following notation in Lemma 5,
Proposition 6, andTheorem 7:

𝑇
𝛼
𝑡

:= Proj
𝐶
(𝐼 − 𝛾∇𝑓

𝛼
𝑡

) ;

𝑇 := Proj
𝐶
(𝐼 − 𝛾∇𝑓) .

(15)

Lemma 5. There exists an implicit algorithm {𝑥
𝑡}; here 𝑥𝑡 is

the fixed point of 𝑋𝑡; that is,

𝑥
𝑡
= 𝑋
𝑡 (𝑥𝑡) = Proj

𝐶
𝑌
𝑡 (𝑥𝑡) , (16)

where𝑋
𝑡
, 𝑌
𝑡
are defined by (14).

Proof. Below we will show that 𝑋
𝑡
is a contraction. Indeed,

we have


(𝐼 − 𝑡𝜇𝐹) 𝑇

𝛼
𝑡

(𝑥) − (𝐼 − 𝑡𝜇𝐹) 𝑇
𝛼
𝑡

(𝑦)


2

=

𝑇
𝛼
𝑡

(𝑥) − 𝑇𝛼
𝑡

(𝑦)


2

+ 𝑡
2
𝜇
2
𝐹𝑇
𝛼
𝑡

(𝑥) − 𝐹𝑇𝛼
𝑡

(𝑦)


2

− 2𝑡𝜇 ⟨𝑇
𝛼
𝑡

(𝑥) − 𝑇
𝛼
𝑡

(𝑦) , 𝐹𝑇
𝛼
𝑡

(𝑥) − 𝐹𝑇
𝛼
𝑡

(𝑦)⟩

≤

𝑇
𝛼
𝑡

(𝑥) − 𝑇𝛼
𝑡

(𝑦)


2

+ 𝑡
2
𝜇
2
𝑘
2
𝑇
𝛼
𝑡

(𝑥) − 𝑇𝛼
𝑡

(𝑦)


2

− 2𝑡𝜇𝜂

𝑇
𝛼
𝑡

(𝑥) − 𝑇
𝛼
𝑡

(𝑦)


2

≤ (1 −

𝑡𝜇 (2𝜂 − 𝑡𝜇𝑘
2
)

2
)

2


𝑇
𝛼
𝑡

(𝑥) − 𝑇𝛼
𝑡

(𝑦)


2

≤ (1 − 𝑡𝜏)
2𝑥 − 𝑦



2
.

(17)

It follows easily that

𝑋𝑡 (𝑥) − 𝑋
𝑡
(𝑦)



=
Proj𝐶𝑌𝑡 (𝑥) − Proj

𝐶
𝑌
𝑡
(𝑦)



≤
𝑌𝑡 (𝑥) − 𝑌

𝑡
(𝑦)



=

𝑡𝜆ℎ (𝑥) + (𝐼 − 𝑡𝜇𝐹) 𝑇

𝛼
𝑡

(𝑥)−𝑡𝜆ℎ (𝑦)−(𝐼 − 𝑡𝜇𝐹) 𝑇𝛼
𝑡

(𝑦)


≤
𝑡𝜆ℎ (𝑥) − 𝑡𝜆ℎ (𝑦)



+

(𝐼 − 𝑡𝜇𝐹) 𝑇

𝛼
𝑡

(𝑥) − (𝐼 − 𝑡𝜇𝐹) 𝑇
𝛼
𝑡

(𝑦)


≤ (1 − 𝑡 (𝜏 − 𝜆𝜌))
𝑥 − 𝑦

 .

(18)

Hence𝑋
𝑡 has a unique fixed point; we denote it by 𝑥𝑡, which

uniquely solves the fixed point equation

𝑥
𝑡
= Proj

𝐶
𝑌
𝑡 (𝑥𝑡) ; (19)

here 𝑌
𝑡
(𝑥
𝑡
) = 𝑡𝜆ℎ(𝑥

𝑡
) + (𝐼 − 𝑡𝜇𝐹)Proj

𝐶
(𝐼 − 𝛾∇𝑓

𝛼
𝑡

)(𝑥
𝑡
).

Proposition 6. Let 𝑥
𝑡
be defined by (19):

(i) {𝑥
𝑡
} is bounded for 𝑡 ∈ (0, 1).

(ii) lim
𝑡→0‖𝑥𝑡 − Proj

𝐶
(𝐼 − 𝛾∇𝑓𝛼

𝑡

)(𝑥𝑡)‖ = 0.
(iii) 𝑥

𝑡
defines a continuous curve from (0, 1/𝜏) into 𝐶.

Proof. (i) For 𝑥 ∈ 𝑆, we have

𝑥𝑡 − 𝑥


=
Proj𝐶𝑌𝑡 (𝑥𝑡) − Proj

𝐶
(𝑥)



≤
𝑌𝑡 (𝑥𝑡) − 𝑥



=

𝑡𝜆ℎ (𝑥

𝑡
) + (𝐼 − 𝑡𝜇𝐹) 𝑇

𝛼
𝑡

(𝑥
𝑡
) − 𝑥



=

𝑡𝜆ℎ (𝑥

𝑡
) − 𝑡𝜆ℎ (𝑥) + (𝐼 − 𝑡𝜇𝐹) 𝑇

𝛼
𝑡

(𝑥
𝑡
)

− (𝐼 − 𝑡𝜇𝐹) 𝑇
𝛼
𝑡

(𝑥) + (𝐼 − 𝑡𝜇𝐹) 𝑇
𝛼
𝑡

(𝑥)

− (𝐼 − 𝑡𝜇𝐹) 𝑇 (𝑥) + 𝑡𝜆ℎ (𝑥) − 𝑡𝜇𝐹 (𝑥)


≤
𝑡𝜆ℎ (𝑥

𝑡
) − 𝑡𝜆ℎ (𝑥)



+

(𝐼 − 𝑡𝜇𝐹) 𝑇

𝛼
𝑡

(𝑥
𝑡
) − (𝐼 − 𝑡𝜇𝐹) 𝑇

𝛼
𝑡

(𝑥)


+

(𝐼 − 𝑡𝜇𝐹) 𝑇

𝛼
𝑡

(𝑥) − (𝐼 − 𝑡𝜇𝐹) 𝑇 (𝑥)


+ 𝑡
𝜆ℎ (𝑥) − 𝜇𝐹 (𝑥)



≤ 𝑡𝜆𝜌
𝑥𝑡 − 𝑥

 + (1 − 𝑡𝜏)
𝑥𝑡 − 𝑥



+ (1 + 𝑡𝜇𝑘) 𝛾𝛼
𝑡 ‖𝑥‖ + 𝑡

𝜆ℎ (𝑥) − 𝜇𝐹 (𝑥)


≤ (1 − 𝑡 (𝜏 − 𝜆𝜌))
𝑥𝑡 − 𝑥

 + (1 + 𝜇𝑘) 𝛾𝛼
𝑡 ‖𝑥‖

+ 𝑡
𝜆ℎ (𝑥) − 𝜇𝐹 (𝑥)



≤ (1 − 𝑡 (𝜏 − 𝜆𝜌))
𝑥𝑡 − 𝑥

 + (1 + 𝜇𝑘) 𝛾𝑡𝐷 ‖𝑥‖

+ 𝑡
𝜆ℎ (𝑥) − 𝜇𝐹 (𝑥)

 .

(20)

It follows that ‖𝑥
𝑡 −𝑥‖ ≤ (‖𝜆ℎ(𝑥) −𝜇𝐹(𝑥)‖ + (1+𝜇𝑘)𝛾𝐷‖𝑥‖)/

(𝜏 − 𝜆𝜌). Hence, {𝑥𝑡} is bounded.
(ii) We can easily see that


𝑥
𝑡
− Proj

𝐶
(𝐼 − 𝛾∇𝑓

𝛼
𝑡

(𝑥
𝑡
))


=

Proj
𝐶
𝑌𝑡 (𝑥𝑡) − Proj

𝐶
𝑇𝛼
𝑡

(𝑥𝑡)


≤

𝑌
𝑡
(𝑥
𝑡
) − 𝑇
𝛼
𝑡

(𝑥
𝑡
)


=

𝑡𝜆ℎ (𝑥

𝑡
) + (𝐼 − 𝑡𝜇𝐹) 𝑇

𝛼
𝑡

(𝑥
𝑡
) − 𝑇
𝛼
𝑡

(𝑥
𝑡
)


= 𝑡

𝜆ℎ (𝑥
𝑡) − 𝜇𝐹Proj

𝐶
(𝐼 − 𝛾∇𝑓𝛼

𝑡

) (𝑥𝑡)


≤ 𝑡 (𝜆
ℎ (𝑥
𝑡
)
 + 𝜇


𝐹Proj

𝐶
(𝐼 − 𝛾∇𝑓

𝛼
𝑡

) (𝑥
𝑡
)

) .

(21)

The boundedness of {𝑥
𝑡} implies that {ℎ(𝑥𝑡)} and {𝐹Proj

𝐶
(𝐼 −

𝛾∇𝑓
𝛼
𝑡

)(𝑥
𝑡
)} are also bounded. Hence (ii) follows.

(iii) For 𝑡, 𝑡
0
∈ (0, 1/𝜏), we have


𝑥
𝑡 − 𝑥𝑡

0



=

Proj
𝐶
𝑌
𝑡
(𝑥
𝑡
) − Proj

𝐶
𝑌
𝑡
0

(𝑥
𝑡
0

)


≤

𝑌
𝑡
(𝑥
𝑡
) − 𝑌
𝑡
0

(𝑥
𝑡
0

)


=

𝑡𝜆ℎ (𝑥

𝑡) + (𝐼 − 𝑡𝜇𝐹) 𝑇𝛼
𝑡

(𝑥𝑡) − 𝑡0𝜆ℎ (𝑥𝑡
0

)
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− (𝐼 − 𝑡
0
𝜇𝐹)𝑇

𝛼
𝑡
0

(𝑥
𝑡
0

)


≤
𝑡 − 𝑡
0

 𝜆
ℎ (𝑥
𝑡)
 + 𝑡
0𝜆


ℎ (𝑥
𝑡) − ℎ (𝑥𝑡

0

)


+

(𝐼 − 𝑡𝜇𝐹) 𝑇

𝛼
𝑡

(𝑥
𝑡
) − (𝐼 − 𝑡

0
𝜇𝐹)𝑇

𝛼
𝑡
0

(𝑥
𝑡
0

)


≤
𝑡 − 𝑡
0

 𝜆
ℎ (𝑥
𝑡)
 + 𝑡
0𝜆𝜌


𝑥
𝑡 − 𝑥𝑡

0



+

(𝐼 − 𝑡𝜇𝐹) 𝑇

𝛼
𝑡

(𝑥
𝑡
) − (𝐼 − 𝑡

0
𝜇𝐹)𝑇

𝛼
𝑡
0

(𝑥
𝑡
0

)


+

(𝐼 − 𝑡
0𝜇𝐹)𝑇𝛼

𝑡
0

(𝑥𝑡) − (𝐼 − 𝑡0𝜇𝐹)𝑇𝛼
𝑡
0

(𝑥𝑡)


≤
𝑡 − 𝑡
0

 𝜆
ℎ (𝑥
𝑡
)
 + 𝑡
0
𝜆𝜌


𝑥
𝑡
− 𝑥
𝑡
0



+ (1 − 𝑡
0
𝜏)


𝑥
𝑡
− 𝑥
𝑡
0



+

(𝐼 − 𝑡𝜇𝐹) 𝑇

𝛼
𝑡

(𝑥𝑡) − (𝐼 − 𝑡0𝜇𝐹)𝑇𝛼
𝑡
0

(𝑥𝑡)


≤
𝑡 − 𝑡
0

 𝜆
ℎ (𝑥
𝑡
)
 + 𝑡
0
𝜆𝜌


𝑥
𝑡
− 𝑥
𝑡
0



+ (1 − 𝑡
0
𝜏)


𝑥
𝑡
− 𝑥
𝑡
0


+

𝑇
𝛼
𝑡

(𝑥
𝑡
) − 𝑇
𝛼
𝑡
0

(𝑥
𝑡
)


+

𝑡𝜇𝐹𝑇
𝛼
𝑡

(𝑥
𝑡
) − 𝑡
0
𝜇𝐹𝑇
𝛼
𝑡
0

(𝑥
𝑡
)


≤
𝑡 − 𝑡
0

 𝜆
ℎ (𝑥
𝑡
)
 + (1 − 𝑡

0
(𝜏 − 𝜆𝜌))


𝑥
𝑡
− 𝑥
𝑡
0



+

𝛼
𝑡
− 𝛼
𝑡
0


𝛾
𝑥𝑡

 +
𝑡 − 𝑡
0

 𝜇

𝐹𝑇
𝛼
𝑡

(𝑥
𝑡
)


+ 𝑡
0𝜇𝑘𝛾


𝛼
𝑡 − 𝛼𝑡

0



𝑥𝑡
 .

(22)

Hence, ‖𝑥
𝑡
− 𝑥
𝑡
0

‖ ≤ ((𝜆‖ℎ(𝑥
𝑡
)‖ + 𝜇‖𝐹Proj

𝐶
(𝐼 − 𝛾∇𝑓

𝛼
𝑡

)(𝑥
𝑡
)‖)/

𝑡
0
(𝜏−𝜆𝜌))|𝑡−𝑡

0
|+((1+𝑡

0
𝜇𝑘)𝛾‖𝑥

𝑡
‖/𝑡
0
(𝜏−𝜆𝜌))|𝛼

𝑡
−𝛼
𝑡
0

|. Noting
that 𝛼

𝑡
is continuous with respect to 𝑡, we get 𝑥

𝑡
→ 𝑥
𝑡
0

as
𝑡 → 𝑡

0
, and therefore 𝑥

𝑡
is continuous.

Theorem 7. Let 𝑥
𝑡
be defined by (19). Then 𝑥

𝑡
converges in

norm, as 𝑡 → 0, to a minimizer 𝑥∗ of (5), which solves the
following variational inequality:

⟨(𝜇𝐹 − 𝜆ℎ) 𝑥
∗
, 𝑥 − 𝑥

∗
⟩ ≥ 0, ∀𝑥 ∈ 𝑆. (23)

Proof. It follows fromLemma 1 that the variational inequality
(23) has only one solution 𝑥

∗
∈ 𝑆. To prove convergence we

will use Lemma 3 in the following calculations. It holds that

𝑥𝑡 − 𝑥


2

= ⟨𝑥
𝑡
− 𝑥, 𝑥

𝑡
− 𝑥⟩

= ⟨Proj
𝐶
𝑦
𝑡
− 𝑥, 𝑥

𝑡
− 𝑥⟩

= ⟨Proj
𝐶
𝑦
𝑡
− 𝑦
𝑡
+ 𝑦
𝑡
− 𝑥, 𝑥

𝑡
− 𝑥⟩

= ⟨Proj
𝐶
𝑦
𝑡
− 𝑦
𝑡
,Proj
𝐶
𝑦
𝑡
− 𝑥⟩ + ⟨𝑦

𝑡
− 𝑥, 𝑥

𝑡
− 𝑥⟩

≤ ⟨𝑦
𝑡
− 𝑥, 𝑥

𝑡
− 𝑥⟩

= ⟨𝑡𝜆ℎ (𝑥
𝑡
) + (𝐼 − 𝑡𝜇𝐹) 𝑇

𝛼
𝑡

(𝑥
𝑡
) − 𝑥, 𝑥

𝑡
− 𝑥⟩

= ⟨𝑡𝜆ℎ (𝑥
𝑡
) − 𝑡𝜆ℎ (𝑥) , 𝑥𝑡 − 𝑥⟩

+ ⟨(𝐼 − 𝑡𝜇𝐹) 𝑇
𝛼
𝑡

(𝑥
𝑡
) − (𝐼 − 𝑡𝜇𝐹) 𝑇

𝛼
𝑡

(𝑥) , 𝑥𝑡 − 𝑥⟩

+ ⟨(𝐼 − 𝑡𝜇𝐹) 𝑇
𝛼
𝑡

(𝑥) − (𝐼 − 𝑡𝜇𝐹) 𝑇 (𝑥) , 𝑥𝑡 − 𝑥⟩

+ ⟨𝑡𝜆ℎ (𝑥) − 𝑡𝜇𝐹 (𝑥) , 𝑥𝑡 − 𝑥⟩

≤ 𝑡𝜆𝜌
𝑥𝑡 − 𝑥



2
+ (1 − 𝑡𝜏)

𝑥𝑡 − 𝑥


2

+ (1 + 𝑡𝜇𝑘) 𝛾𝛼
𝑡 ‖𝑥‖

𝑥𝑡 − 𝑥
 + 𝑡 ⟨𝜆ℎ (𝑥) − 𝜇𝐹 (𝑥) , 𝑥𝑡 − 𝑥⟩

≤ (1 − 𝑡 (𝜏 − 𝜆𝜌))
𝑥𝑡 − 𝑥



2

+ (1 + 𝜇𝑘) 𝛾𝛼
𝑡 ‖𝑥‖

𝑥𝑡 − 𝑥


+ 𝑡 ⟨𝜆ℎ (𝑥) − 𝜇𝐹 (𝑥) , 𝑥𝑡 − 𝑥⟩ .

(24)

Hence,

𝑥𝑡 − 𝑥


2
≤

1

𝜏 − 𝜆𝜌
⟨𝜆ℎ (𝑥) − 𝜇𝐹 (𝑥) , 𝑥𝑡 − 𝑥⟩

+
𝛼
𝑡

𝑡

(1 + 𝜇𝑘) 𝛾

𝜏 − 𝜆𝜌

𝑥𝑡 − 𝑥
 .

(25)

Since 𝑥
𝑡
is bounded for 𝑡 ∈ (0, 1), and 𝛼

𝑡
= 𝑜(𝑡) (𝑡 → ∞),

we see that if 𝑡
𝑛
is a sequence in (0, 1) such that 𝑡

𝑛
→ 0 and

𝑥
𝑡
𝑛

⇀ 𝑥, then, by (25), 𝑥
𝑡
𝑛

→ 𝑥. Wemay further assume that
𝛼
𝑡
𝑛

→ 0. It turns out that


𝑥
𝑡
𝑛

− Proj
𝐶
(𝐼 − 𝛾∇𝑓) 𝑥𝑡

𝑛



≤

𝑥
𝑡
𝑛

− Proj
𝐶
(𝐼 − 𝛾∇𝑓

𝛼
𝑡𝑛

) 𝑥
𝑡
𝑛


+ 𝛾𝛼
𝑡
𝑛


𝑥
𝑡
𝑛


.

(26)

From the boundedness of {𝑥
𝑡} and lim𝑡→0‖𝑥𝑡 − Proj

𝐶
(𝐼 −

𝛾∇𝑓
𝛼
𝑡

)𝑥
𝑡
− 𝑥
𝑡
‖ = 0, we conclude that

lim
𝑛→∞


𝑥
𝑡
𝑛

− Proj
𝐶
(𝐼 − 𝛾∇𝑓) 𝑥𝑡

𝑛


= 0. (27)

It then follows from Lemma 2 that 𝑥 = Proj
𝐶
(𝐼 − 𝛾∇𝑓)𝑥. This

shows that 𝑥 ∈ 𝑆.
We next prove that 𝑥 is a solution of the variational

inequality (23). Since Proj
𝐶
(𝐼 − 𝛾∇𝑓

𝛼
𝑡

) is nonexpansive, we
see that 𝐼 − Proj

𝐶
(𝐼 − 𝛾∇𝑓

𝛼
𝑡

) is monotone. By (19), we have

𝑥
𝑡
= Proj

𝐶
𝑌
𝑡
(𝑥
𝑡
) − 𝑌
𝑡
(𝑥
𝑡
) + 𝑡𝜆ℎ (𝑥

𝑡
) + (𝐼 − 𝑡𝜇𝐹) 𝑇𝛼

𝑡
(𝑥
𝑡
) ;

(28)
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then it follows that

𝜆ℎ (𝑥
𝑡) = −

1

𝑡
[𝑌𝑡 (𝑥𝑡) − 𝑌𝑡 (𝑥𝑡) + (𝐼 − 𝑡𝜇𝐹) 𝑇𝛼𝑡 (𝑥𝑡) − 𝑥𝑡] ,

(𝜇𝐹 − 𝜆ℎ) (𝑥
𝑡
)

= 𝜇𝐹 (𝑥
𝑡
)

+
1

𝑡
[Proj
𝐶
𝑌
𝑡
(𝑥
𝑡
) − 𝑌
𝑡
(𝑥
𝑡
) + (𝐼 − 𝑡𝜇𝐹) 𝑇𝛼

𝑡
(𝑥
𝑡
) − 𝑥
𝑡
] ,

⟨(𝜇𝐹 − 𝜆ℎ) (𝑥𝑡) , 𝑥𝑡 − 𝑥⟩

= ⟨𝜇𝐹 (𝑥
𝑡
) +

1

𝑡
[Proj
𝐶
𝑌
𝑡
(𝑥
𝑡
) − 𝑌
𝑡
(𝑥
𝑡
)

+ (𝐼 − 𝑡𝜇𝐹) 𝑇𝛼
𝑡
(𝑥
𝑡
) − 𝑥
𝑡
] , 𝑥
𝑡
− 𝑥⟩

=
1

𝑡
⟨Proj
𝐶
𝑌
𝑡
(𝑥
𝑡
) − 𝑌
𝑡
(𝑥
𝑡
) , 𝑥
𝑡
− 𝑥⟩

+ ⟨𝜇𝐹 (𝑥
𝑡
) +

1

𝑡
[(𝐼 − 𝑡𝜇𝐹) 𝑇𝛼

𝑡
(𝑥
𝑡
) − 𝑥
𝑡
] , 𝑥
𝑡
− 𝑥⟩

≤ ⟨𝜇𝐹 (𝑥
𝑡) +

1

𝑡
[(𝐼 − 𝑡𝜇𝐹) 𝑇𝛼𝑡 (𝑥𝑡) − 𝑥𝑡] , 𝑥𝑡 − 𝑥⟩

= 𝜇⟨𝐹 (𝑥
𝑡
) − 𝐹𝑇

𝛼
𝑡

(𝑥
𝑡
) , 𝑥
𝑡
− 𝑥⟩

−
1

𝑡
⟨(𝐼 − 𝑇𝛼

𝑡

) (𝑥
𝑡
) , 𝑥
𝑡
− 𝑥⟩

= 𝜇⟨𝐹 (𝑥
𝑡) − 𝐹𝑇𝛼

𝑡

(𝑥𝑡) , 𝑥𝑡 − 𝑥⟩

−
1

𝑡
⟨(𝐼 − 𝑇

𝛼
𝑡

) (𝑥
𝑡
) − (𝐼 − 𝑇

𝛼
𝑡

) (𝑥)

− 𝑇
𝛼
𝑡

(𝑥) + 𝑇 (𝑥) , 𝑥𝑡 − 𝑥⟩

= 𝜇⟨𝐹 (𝑥
𝑡
) − 𝐹𝑇

𝛼
𝑡

(𝑥
𝑡
) , 𝑥
𝑡
− 𝑥⟩

−
1

𝑡
⟨(𝐼 − 𝑇𝛼

𝑡
) (𝑥
𝑡
) − (𝐼 − 𝑇

𝛼
𝑡

) (𝑥) , 𝑥𝑡 − 𝑥⟩

+
1

𝑡
⟨𝑇
𝛼
𝑡

(𝑥) − 𝑇 (𝑥) , 𝑥𝑡 − 𝑥⟩

≤ 𝜇⟨𝐹 (𝑥
𝑡
) − 𝐹𝑇

𝛼
𝑡

(𝑥
𝑡
) , 𝑥
𝑡
− 𝑥⟩

+
1

𝑡
𝛼𝑡𝛾 ‖𝑥‖

𝑥𝑡 − 𝑥
 .

(29)

Taking the limit through 𝑡 = 𝑡
𝑛

→ 0 ensures that 𝑥 is a
solution of the variational inequality.This implies that ⟨(𝜇𝐹−

𝜆ℎ)(𝑥), 𝑥 − 𝑥⟩ ≥ 0. Therefore 𝑥 = 𝑥
∗.

Finally we consider the explicit version of our algorithm
which is

𝑦
𝑛
= 𝑠
𝑛
𝜆ℎ (𝑥
𝑛
) + (𝐼 − 𝑠

𝑛
𝜇𝐹)Proj

𝐶
(𝐼 − 𝛾∇𝑓

𝛼
𝑛

) (𝑥
𝑛
) ,

𝑥
𝑛+1

= Proj
𝐶
𝑦
𝑛
,

(30)

where the initial guess 𝑥
0
∈ 𝐶 and {𝛼

𝑛
}
∞

𝑛=0
and {𝑠

𝑛
}
∞

𝑛=0
⊂ (0, 1)

are the parameter sequences satisfying certain conditions.

Theorem 8. Assume that the minimization problem (5) is
consistent and let S denote its solution set. Let the gradient ∇𝑓
be (1/𝐿)-ism. Let 𝐹 : 𝐶 → 𝐶 be 𝜂-strongly monotone and
𝑘-Lipschitzian and let ℎ : 𝐶 → 𝐶 be a contraction with
coefficient 0 < 𝜌 < 1. Fix a constant𝜇 satisfying 0 < 𝜇 < 2𝜂/𝑘

2,
a constant 𝜆 with the property 0 < 𝜆 < 𝜇(𝜂 − 𝜇𝑘

2
/2)/𝜌 = 𝜏/𝜌,

and a constant 𝛾 satisfying 0 < 𝛾 < 2/𝐿. Let {𝑥
𝑛
}
∞

𝑛=0
be

generated by the iterative algorithm (30). Assume

(C1) 𝑠
𝑛 → 0;

(C2) 𝛼
𝑛 = 𝑜(𝑠𝑛) (𝑠𝑛 → 0, 𝑛 → ∞);

(C3) ∑∞
𝑛=0

𝑠
𝑛
= ∞;

(C4) ∑∞
𝑛=0

|𝑠𝑛+1 − 𝑠𝑛| < ∞;
(C5) ∑∞

𝑛=0
|𝛼
𝑛+1

− 𝛼
𝑛
| < ∞.

Then the sequence {𝑥
𝑛
} converges in norm to 𝑥

∗ as defined in
Theorem 7.

Proof. We set

𝑇
𝛼
𝑛

:= Proj
𝐶
(𝐼 − 𝛾∇𝑓

𝛼
𝑛

) ;

𝑇 := Proj
𝐶
(𝐼 − 𝛾∇𝑓) .

(31)

Since 𝛼
𝑛
= 𝑜(𝑠
𝑛
) (𝑠
𝑛
→ 0, 𝑛 → ∞), there exists𝑀 > 0 such

that 𝛼
𝑛
/𝑠
𝑛
< 𝑀 for 𝑛 > 𝑛

0
.

We observe that {𝑥
𝑛
} is bounded. Indeed, taking a fixed

point 𝑝 ∈ 𝑆, we get

𝑥𝑛+1 − 𝑝


=
Proj𝐶𝑦𝑛 − Proj

𝐶
𝑝


≤
𝑦𝑛 − 𝑝



=

𝑠
𝑛
𝜆ℎ (𝑥
𝑛
) + (𝐼 − 𝑠

𝑛
𝜇𝐹)𝑇

𝛼
𝑛

(𝑥
𝑛
) − 𝑝



≤
𝑠𝑛𝜆ℎ (𝑥

𝑛
) − 𝑠
𝑛
𝜆ℎ (𝑝)



+

(𝐼 − 𝑠
𝑛𝜇𝐹)𝑇𝛼

𝑛

(𝑥𝑛) − (𝐼 − 𝑠𝑛𝜇𝐹)𝑇𝛼
𝑛

(𝑝)


+

(𝐼 − 𝑠
𝑛𝜇𝐹)𝑇𝛼

𝑛

(𝑝) − (𝐼 − 𝑠𝑛𝜇𝐹)𝑇 (𝑝)


+
𝑠𝑛𝜆ℎ (𝑝) − 𝑠𝑛𝜇𝐹 (𝑝)



≤ 𝑠
𝑛
𝜆𝜌

𝑥𝑛 − 𝑝
 + (1 − 𝑠

𝑛
𝜏)

𝑥𝑛 − 𝑝


+ (1 + 𝑠
𝑛
𝜇𝑘) 𝛾𝛼

𝑛

𝑝
 + 𝑠
𝑛

𝜆ℎ (𝑝) − 𝜇𝐹 (𝑝)


≤ (1 − 𝑠
𝑛 (𝜏 − 𝜆𝜌))

𝑥𝑛 − 𝑝


+ (1 + 𝜇𝑘) 𝛾𝑀𝑠
𝑛

𝑝
 + 𝑠
𝑛

𝜆ℎ (𝑝) − 𝜇𝐹 (𝑝)


≤ max{𝑥𝑛 − 𝑝
 ,

(1 + 𝜇𝑘) 𝛾𝑀
𝑝

 +
𝜆ℎ (𝑝) − 𝜇𝐹 (𝑝)



𝜏 − 𝜆𝜌
} .

(32)
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By induction ‖𝑥
𝑛
− 𝑝‖ ≤ max{‖𝑥

0
− 𝑝‖, ((1 + 𝜇𝑘)𝛾𝑀‖𝑝‖ +

‖𝜆ℎ(𝑝) − 𝜇𝐹(𝑝)‖)/(𝜏 − 𝜆𝜌)}, 𝑛 ≥ 0, then {𝑥
𝑛
} is bounded, so

are {ℎ(𝑥
𝑛
)} and {𝐹Proj

𝐶
(𝐼 − 𝛾∇𝑓

𝛼
𝑛

)(𝑥
𝑛
)}.

We claim that ‖𝑥
𝑛+1

− 𝑥
𝑛
‖ → 0.

Because of the boundedness of {𝑥
𝑛
}, it can be easily

seen that {ℎ(𝑥
𝑛
)} and {𝐹𝑇

𝛼
𝑛

(𝑥
𝑛
)} are also bounded. So we

can take two constants 𝑁, 𝐸 such that 𝑁 ≥ 𝜆‖ℎ(𝑥𝑛−1)‖ +

𝜇‖𝐹𝑇𝛼
𝑛

(𝑥𝑛−1)‖ and 𝐸 ≥ (1 + 𝜇𝑘)𝛾‖𝑥𝑛−1‖. Consider

𝑥𝑛+1 − 𝑥𝑛


=
Proj𝐶𝑦𝑛 − Proj

𝐶
𝑦𝑛−1



≤
𝑦𝑛 − 𝑦𝑛−1



=

𝑠
𝑛
𝜆ℎ (𝑥
𝑛
) + (𝐼 − 𝑠

𝑛
𝜇𝐹)𝑇

𝛼
𝑛

(𝑥
𝑛
) − 𝑠
𝑛−1

𝜆ℎ (𝑥
𝑛−1

)

− (𝐼 − 𝑠
𝑛−1

𝜇𝐹)𝑇
𝛼
𝑛−1

(𝑥
𝑛−1

)


≤
𝑠𝑛𝜆ℎ (𝑥

𝑛
) − 𝑠
𝑛
𝜆ℎ (𝑥
𝑛−1

)


+
𝑠𝑛𝜆ℎ (𝑥

𝑛−1
) − 𝑠
𝑛−1

𝜆ℎ (𝑥
𝑛−1

)


+

(𝐼 − 𝑠
𝑛
𝜇𝐹)𝑇

𝛼
𝑛

(𝑥
𝑛
) − (𝐼 − 𝑠

𝑛−1
𝜇𝐹)𝑇

𝛼
𝑛−1

(𝑥
𝑛−1

)


≤ 𝑠
𝑛
𝜆𝜌

𝑥𝑛 − 𝑥
𝑛−1

 +
𝑠𝑛 − 𝑠

𝑛−1

 𝜆
ℎ (𝑥
𝑛−1

)


+

(𝐼 − 𝑠
𝑛
𝜇𝐹)𝑇

𝛼
𝑛

(𝑥
𝑛
) − (𝐼 − 𝑠

𝑛−1
𝜇𝐹)𝑇

𝛼
𝑛−1

(𝑥
𝑛−1

)


≤ (1 − 𝑠
𝑛 (𝜏 − 𝜆𝜌))

𝑥𝑛 − 𝑥𝑛−1


+
𝑠𝑛 − 𝑠

𝑛−1

 𝜆
ℎ (𝑥
𝑛−1

)


+

𝑇
𝛼
𝑛

(𝑥
𝑛−1

) − 𝑇
𝛼
𝑛−1

(𝑥
𝑛−1

)


+

𝑠
𝑛
𝜇𝐹𝑇
𝛼
𝑛

(𝑥
𝑛−1

) − 𝑠
𝑛−1

𝜇𝐹𝑇
𝛼
𝑛−1

(𝑥
𝑛−1

)


≤ (1 − 𝑠
𝑛 (𝜏 − 𝜆𝜌))

𝑥𝑛 − 𝑥𝑛−1


+
𝑠𝑛 − 𝑠

𝑛−1

 𝜆
ℎ (𝑥
𝑛−1

)


+ 𝛾
𝛼𝑛 − 𝛼𝑛−1



𝑥𝑛−1


+

𝑠
𝑛
𝜇𝐹𝑇
𝛼
𝑛

(𝑥
𝑛−1

) − 𝑠
𝑛−1

𝜇𝐹𝑇
𝛼
𝑛−1

(𝑥
𝑛−1

)


≤ (1 − 𝑠
𝑛
(𝜏 − 𝜆𝜌))

𝑥𝑛 − 𝑥
𝑛−1



+
𝑠𝑛 − 𝑠𝑛−1

 𝜆
ℎ (𝑥
𝑛−1)

 + 𝛾
𝛼𝑛 − 𝛼𝑛−1



𝑥𝑛−1


+
𝑠𝑛 − 𝑠

𝑛−1

 𝜇

𝐹𝑇
𝛼
𝑛

(𝑥
𝑛−1

)


+ 𝑠
𝑛−1

𝜇𝑘𝛾
𝛼𝑛 − 𝛼

𝑛−1



𝑥𝑛−1


≤ (1 − 𝑠
𝑛 (𝜏 − 𝜆𝜌))

𝑥𝑛 − 𝑥𝑛−1


+ (𝜆
ℎ (𝑥
𝑛−1)

 + 𝜇

𝐹𝑇
𝛼
𝑛

(𝑥𝑛−1)

)
𝑠𝑛 − 𝑠𝑛−1



+ (1 + 𝜇𝑘) 𝛾
𝑥𝑛−1



𝛼𝑛 − 𝛼𝑛−1


≤ (1 − 𝑠
𝑛
(𝜏 − 𝜆𝜌))

𝑥𝑛 − 𝑥
𝑛−1

 + 𝑁
𝑠𝑛 − 𝑠

𝑛−1



+ 𝐸
𝛼𝑛 − 𝛼

𝑛−1

 .

(33)

By Lemma 4, we obtain ‖𝑥
𝑛+1

− 𝑥
𝑛
‖ → 0.

Next we show that

𝑥𝑛 − Proj
𝐶
(𝐼 − 𝛾∇𝑓) 𝑥𝑛

 → 0, (34)
𝑥𝑛 − Proj

𝐶
(𝐼 − 𝛾∇𝑓) 𝑥𝑛



≤
𝑥𝑛 − 𝑥

𝑛+1

 +
𝑥𝑛+1 − Proj

𝐶
(𝐼 − 𝛾∇𝑓) 𝑥

𝑛



≤
𝑥𝑛 − 𝑥𝑛+1



+
Proj𝐶𝑦𝑛 − Proj

𝐶
[Proj
𝐶
(𝐼 − 𝛾∇𝑓) 𝑥

𝑛
]


≤
𝑥𝑛 − 𝑥

𝑛+1

 +
𝑦𝑛 − 𝑇 (𝑥

𝑛
)


≤
𝑥𝑛 − 𝑥𝑛+1



+

𝑠
𝑛𝜆ℎ (𝑥𝑛) + (𝐼 − 𝑠𝑛𝜇𝐹)𝑇𝛼

𝑛

(𝑥𝑛) − 𝑇 (𝑥𝑛)


≤
𝑥𝑛 − 𝑥

𝑛+1



+ 𝑠
𝑛


𝜆ℎ (𝑥
𝑛
) − 𝜇𝐹Proj

𝐶
(𝐼 − 𝛾∇𝑓

𝛼
𝑛

) (𝑥
𝑛
)


+ 𝛾𝛼
𝑛

𝑥𝑛
 → 0.

(35)

We next show that

lim
𝑛→∞

sup ⟨𝑥
𝑛
− 𝑥
∗
, (𝛾ℎ − 𝜇𝐹) 𝑥

∗
⟩ ≤ 0, (36)

where 𝑥
∗ is obtained in Theorem 7. Indeed, take a subse-

quence {𝑥𝑛
𝑘

} of {𝑥𝑛} such that

lim
𝑛→∞

sup ⟨𝑥
𝑛
− 𝑥
∗
, (𝛾ℎ − 𝜇𝐹) 𝑥

∗
⟩

= lim
𝑘→∞

⟨𝑥𝑛
𝑘

− 𝑥
∗
, (𝛾ℎ − 𝜇𝐹) 𝑥

∗
⟩ .

(37)

Since the sequence {𝑥
𝑛
} is bounded, we may assume that

𝑥
𝑛
𝑘

⇀ 𝑧; it follows from Lemma 2 and (34) that 𝑧 ∈ 𝑆. Then
we obtain lim

𝑘→∞
⟨𝑥
𝑛
𝑘

− 𝑥
∗
, (𝛾ℎ − 𝜇𝐹)𝑥

∗
⟩ = ⟨𝑧 − 𝑥

∗
, (𝛾ℎ −

𝜇𝐹)𝑥
∗
⟩ ≤ 0. By (37) we know that lim𝑛→∞ sup⟨𝑥𝑛−𝑥

∗
, (𝛾ℎ−

𝜇𝐹)𝑥
∗
⟩ ≤ 0.

We finally show that 𝑥
𝑛
→ 𝑥
∗. We have, using Lemma 3,

𝑥𝑛+1 − 𝑥
∗

2

= ⟨𝑥
𝑛+1

− 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

= ⟨Proj
𝐶
𝑦
𝑛
− 𝑦
𝑛
+ 𝑦
𝑛
− 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

= ⟨Proj
𝐶
𝑦𝑛 − 𝑦𝑛, 𝑥𝑛+1 − 𝑥

∗
⟩ + ⟨𝑦𝑛 − 𝑥

∗
, 𝑥𝑛+1 − 𝑥

∗
⟩

≤ ⟨𝑦
𝑛
− 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

= ⟨𝑠
𝑛
𝜆ℎ (𝑥
𝑛
) + (𝐼 − 𝑠

𝑛
𝜇𝐹)𝑇

𝛼
𝑛

(𝑥
𝑛
) − 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

= ⟨𝑠
𝑛𝜆ℎ (𝑥𝑛) − 𝑠𝑛𝜆ℎ (𝑥

∗
) , 𝑥𝑛+1 − 𝑥

∗
⟩

+ ⟨𝑠
𝑛
𝜆ℎ (𝑥
∗
) − 𝑠
𝑛
𝜇𝐹 (𝑥

∗
) , 𝑥
𝑛+1

− 𝑥
∗
⟩
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+ ⟨(𝐼 − 𝑠
𝑛
𝜇𝐹)𝑇

𝛼
𝑛

(𝑥
𝑛
) − (𝐼 − 𝑠

𝑛
𝜇𝐹)𝑇

𝛼
𝑛

(𝑥
∗
) , 𝑥
𝑛+1

− 𝑥
∗
⟩

+ ⟨(𝐼 − 𝑠
𝑛
𝜇𝐹)𝑇

𝛼
𝑛

(𝑥
∗
) − (𝐼 − 𝑠

𝑛
𝜇𝐹) (𝑥

∗
) , 𝑥
𝑛+1

− 𝑥
∗
⟩

≤ 𝑠
𝑛𝜆𝜌

𝑥𝑛 − 𝑥
∗

𝑥𝑛+1 − 𝑥
∗

+ 𝑠
𝑛 ⟨(𝜆ℎ − 𝜇𝐹) 𝑥

∗
, 𝑥𝑛+1 − 𝑥

∗
⟩

+ (1 − 𝑠
𝑛
𝜏)

𝑥𝑛 − 𝑥
∗

𝑥𝑛+1 − 𝑥
∗

+ (1 + 𝑠
𝑛
𝜇𝑘) 𝛾𝛼

𝑛

𝑥
∗

𝑥𝑛+1 − 𝑥
∗

≤
1

2
(1 − 𝑠

𝑛
(𝜏 − 𝜆𝜌)) (

𝑥𝑛 − 𝑥
∗

2
+
𝑥𝑛+1 − 𝑥

∗

2
)

+ 𝑠
𝑛
⟨(𝜆ℎ − 𝜇𝐹) 𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+ (1 + 𝜇𝑘) 𝛾𝛼𝑛
𝑥
∗

𝑥𝑛+1 − 𝑥
∗ .

(38)

Since {𝑥
𝑛
} is bounded, we can take a constant 𝐿 > 0 such that

𝐿

≥ (1 + 𝜇𝑘) 𝛾

𝑥
∗

𝑥𝑛+1 − 𝑥
∗ ;

(39)

hence,

𝑥𝑛+1 − 𝑥
∗

2

≤
1 − 𝑠
𝑛
(𝜏 − 𝜆𝜌)

1 + 𝑠𝑛 (𝜏 − 𝜆𝜌)

𝑥𝑛 − 𝑥
∗

2

+
2𝑠𝑛

1 + 𝑠𝑛 (𝜏 − 𝜆𝜌)
⟨(𝜆ℎ − 𝜇𝐹) 𝑥

∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩

+
2 (1 + 𝜇𝑘) 𝛾𝛼

𝑛

𝑥
∗

𝑥𝑛+1 − 𝑥
∗

1 + 𝑠
𝑛
(𝜏 − 𝜆𝜌)

≤ (1 − 𝑠
𝑛
(𝜏 − 𝜆𝜌))

𝑥𝑛 − 𝑥
∗

2

+
𝑠𝑛

1 + 𝑠𝑛 (𝜏 − 𝜆𝜌)

× [2 ⟨(𝜆ℎ − 𝜇𝐹) 𝑥
∗
, 𝑥
𝑛+1

− 𝑥
∗
⟩ + 2𝐿

 𝛼𝑛

𝑠𝑛

] ;

(40)

it then follows that

𝑥𝑛+1 − 𝑥
∗ ≤ (1 − 𝑠

𝑛 (𝜏 − 𝜆𝜌))
𝑥𝑛 − 𝑥

∗

2
+ 𝑠
𝑛
𝛿
𝑛
, (41)

where 𝛿
𝑛 = (2⟨(𝜆ℎ − 𝜇𝐹)𝑥

∗
, 𝑥𝑛+1 − 𝑥

∗
⟩ + 2𝐿


(𝛼𝑛/𝑠𝑛))/(1 +

𝑠𝑛(𝜏 − 𝜆𝜌)).
Since 𝑠𝑛 → 0 and 𝛼𝑛 = 𝑜(𝑠𝑛) (𝑠𝑛 → 0, 𝑛 → ∞), by (37),

we get lim𝑛→∞ sup 𝛿𝑛 ≤ 0. Applying Lemma 4 to (41)
concludes that 𝑥𝑛 → 𝑥

∗ as 𝑛 → ∞.

4. An Application

Since the split feasibility problem (say SFP, for short) was
proposed by Censor and Elfving in 1994, it has been widely
used in signal processing and image reconstruction, with
particular progress in intensity-modulated radiation therapy.

We know that the gradient-projection method plays an
important role in solving the SFP. In this section, we provide
an application of Theorem 8 to the SFP (see [21, 22]).

The SFP can mathematically be formulated as the prob-
lem of finding a point 𝑥 with the property

𝑥 ∈ 𝐶, 𝐵𝑥 ∈ 𝑄, (42)

where 𝐶 and 𝑄 are nonempty, closed, and convex subset of
Hilbert spaces 𝐻1 and 𝐻2, respectively. 𝐵 : 𝐻1 → 𝐻2 is a
bounded linear operator.

It is clear that 𝑥
∗ is a solution to the split feasibility

problem if and only if 𝑥∗ ∈ 𝐶 and 𝐵𝑥
∗
− Proj

𝐶
𝐵𝑥
∗
= 0. We

define the proximity function 𝑓 by

𝑓 (𝑥) =
1

2


𝐵𝑥 − Proj

𝑄
𝐵𝑥



2

, (43)

and we consider the constrained convex minimization prob-
lem

min
𝑥∈𝐶

1

2


𝐵𝑥 − Proj

𝑄
𝐵𝑥



2

. (44)

Then 𝑥
∗ solves the split feasibility problem (42) if and

only if 𝑥
∗ solves the minimization problem (44) with the

minimal value equal to 0. Byrne introduced the so-called𝐶𝑄

algorithm to solve the SFP:

𝑥𝑛+1 = Proj
𝐶
(𝐼 − 𝛾𝐵

∗
(𝐼 − Proj

𝑄
) 𝐵) 𝑥𝑛, 𝑛 ≥ 0, (45)

where 0 < 𝛾 < 2/‖𝐵‖
2. He obtained that the sequence 𝑥

𝑛

generated by (45) converges weakly to a solution of the SFP.
Now we consider the regularization technique; let

𝑓
𝛼 (𝑥) =

1

2

𝐵𝑥 − 𝑃
𝑄
𝐵𝑥



2
+

𝛼

2
‖𝑥‖
2
; (46)

then we establish the iterative scheme as follows:

𝑦𝑛 = 𝑠𝑛𝜆ℎ (𝑥𝑛)

+ (𝐼 − 𝑠
𝑛𝜇𝐹)Proj𝐶 (𝐼 − 𝛾 (𝐵

∗
(𝐼 − 𝑃𝑄) 𝐵 + 𝛼𝑛𝐼)) 𝑥𝑛,

𝑥
𝑛+1

= Proj
𝐶
𝑦
𝑛
,

(47)

where ℎ : 𝐶 → 𝐻 is a contraction with the coefficient
𝜌 ∈ (0, 1) . Let 𝐹 : 𝐶 → 𝐻 be 𝜂-strongly monotone and
𝑘-Lipschitzian.

Theorem 9. Assume that the split feasibility problem (42) is
consistent. Let the sequence {𝑥n} be generated by (47). The 𝜇

and 𝜆 are constants with the same property as in Theorem 8.
Fix 0 < 𝛾 < 2/‖𝐵‖

2. The sequences {𝛼𝑛}
∞

𝑛=1
and {𝑠𝑛}

∞

𝑛=1
⊂ (0, 1)

are the parameter sequences satisfying conditions (C1)–(C5) in
Theorem 8.Then the sequence {𝑥𝑛} generated by (47) converges
strongly to the solution of split feasibility problem (42).

Proof. By the definition of the proximity function 𝑓, we have

∇𝑓 = 𝐵
∗
(𝐼 − Proj

𝑄
) 𝐵𝑥, (48)

and we show that ∇𝑓 is 1/‖𝐵‖2-ism.
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Since Proj
𝑄
is (1/2)-averaged mapping, then 𝐼 − Proj

𝑄
is

1-ism:

⟨∇𝑓 (𝑥) − ∇𝑓 (𝑦) , 𝑥 − 𝑦⟩ −
1

‖𝐵‖
2
⋅
∇𝑓 (𝑥) − ∇𝑓 (𝑦)



2

= ⟨𝐵
∗
(𝐼 − Proj

𝑄
) 𝐵𝑥 − 𝐵

∗
(𝐼 − Proj

𝑄
) 𝐵𝑦, 𝑥 − 𝑦⟩

−
1

‖𝐵‖
2
⋅

𝐵
∗
(𝐼 − Proj

𝑄
)𝐵𝑥 − 𝐵

∗
(𝐼 − Proj

𝑄
)𝐵𝑦



2

= ⟨𝐵
∗
[(𝐼 − Proj

𝑄
) 𝐵𝑥 − (𝐼 − Proj

𝑄
) 𝐵𝑦] , 𝑥 − 𝑦⟩

−
1

‖𝐵‖
2
⋅

𝐵
∗
[(𝐼 − Proj

𝑄
) 𝐵𝑥 − (𝐼 − Proj

𝑄
) 𝐵𝑦]



2

= ⟨(𝐼 − Proj
𝑄
) 𝐵𝑥 − (𝐼 − Proj

𝑄
) 𝐵𝑦, 𝐵𝑥 − 𝐵𝑦⟩

−
1

‖𝐵‖
2
⋅ ‖𝐵‖
2
(𝐼 − Proj

𝑄
) 𝐵𝑥 − (𝐼 − Proj

𝑄
) 𝐵𝑦



2

≥

(𝐼 − Proj

𝑄
) 𝐵𝑥 − (𝐼 − Proj

𝑄
) 𝐵𝑦



2

−

(𝐼 − Proj

𝑄
) 𝐵𝑥 − (𝐼 − Proj

𝑄
) 𝐵𝑦



2

= 0.

(49)

Hence, ⟨∇𝑓(𝑥) − ∇𝑓(𝑦), 𝑥 − 𝑦⟩ ≥ 1/‖𝐵‖
2
⋅ ‖∇𝑓(𝑥) − ∇𝑓(𝑦)‖

2.
Let 𝐿 = ‖𝐵‖

2; then the iterative scheme (47) is equivalent to

𝑥𝑛+1

= Proj
𝐶
[𝑠
𝑛
𝜆ℎ (𝑥
𝑛
) + (𝐼 − 𝑠

𝑛
𝜇𝐹)Proj

𝐶
(𝐼 − 𝛾∇𝑓

𝛼
𝑛

) 𝑥
𝑛
] ,

𝑛 ≥ 0,

(50)

where 0 < 𝛾 < 2/𝐿, and then, due to Theorem 8, we have the
conclusion immediately.

5. Numerical Result

In this section, we present the following simple example to
judge the numerical performance of our algorithm. We use
the algorithm in Theorem 9 to illustrate its realization in
solving system of linear equations.

Example 10. In Theorem 9, we assume that 𝐻1 = 𝐻2 = R3.
Take ℎ = (1/2)𝐼, where 𝐼 denotes the 3×3 identitymatrix, and
𝐹 = 𝐼 with Lipschitz constant 𝑘 = 1 and strongly monotone
constant 𝜂 = 1. Given the parameters 𝑠

𝑛
= 1/(𝑛 + 2), 𝛼

𝑛
=

1/(𝑛 + 2)
2 for every 𝑛 ≥ 0. Fix 𝜇 = 1, 𝜆 = 1/2, and 𝛾 = 1/10.

Take

𝐵 = (

1 0 1

−1 1 0

1 2 −3

) , 𝑏 = (

5

−7

−17

) . (51)

Table 1: Numerical results as regards Example 10.

𝑛 𝑥
1

𝑛
𝑥
2

𝑛
𝑥
3

𝑛
𝐸
𝑛

0 0.0000 1.0000 1.0000 6.63𝐸 + 00

50 1.8793 −4.6691 3.1319 3.76𝐸 − 01

500 1.9875 −4.9675 3.0125 3.70𝐸 − 02

2000 1.9969 −4.9919 3.0031 9.21𝐸 − 03

The SFP can be formulated as the problem of finding a point
𝑥
∗ with the property

𝑥 ∈ 𝐶, 𝐵𝑥
∗
∈ 𝑄, (52)

where 𝐶 = 𝐻
1
, 𝑄 = {𝑏} ⊂ 𝐻

2
. That is, 𝑥∗ is the solution of

system of linear equations 𝐵𝑥 = 𝑏, and

𝑥
∗
= (

2

−5

3

) . (53)

Then byTheorem 9, the sequence {𝑥
𝑛
} is generated by

𝑥𝑛+1 =
1

4 (𝑛 + 2)
𝑥
𝑛

+
𝑛 + 1

𝑛 + 2
(𝑥𝑛 −

1

10
𝐵
∗
𝐵𝑥
𝑛
+

1

10
𝐵
∗
𝑏 −

1

10(𝑛 + 2)
2
𝑥
𝑛
) .

(54)

As 𝑛 → ∞, we have {𝑥
𝑛} → 𝑥

∗
= (2, −5, 3)

𝑇 (Table 1).
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