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This paper aims to study the dynamics of newHIV (the human immunodeficiency virus)modelswith switching nonlinear incidence
functions and pulse control. Nonlinear incidence functions are first assumed to be time-varying functions and switching functional
forms in time, which have more realistic significance to model infectious disease models. New threshold conditions with the
periodic switching term are obtained to guarantee eradication of the disease, by using the novel type of commonLyapunov function.
Furthermore, pulse vaccination is applied to the above model, and new sufficient conditions for the eradication of the disease are
presented in terms of the pulse effect and the switching effect. Finally, several numerical examples are given to show the effectiveness
of the proposed results, and future directions are put forward.

1. Introduction

Dynamical behavior of HIV infection models has been
investigated to explain different phenomena with the help
of the persistence of the disease and the global stability
of the disease-free equilibrium. D’Onofrio [1] studied the
global asymptotic stability of the disease-free equilibrium
of the HIV infection model. It has been shown that the
drug efficacy functions are bang-bang type, and the stability
of the infection free steady state was studied by the basic
reproduction number 𝑅 = (1−𝑒

1
)(1−𝑒

2
)𝑁𝛽𝑆/𝑎𝑏with 𝛾 = 𝑒

1

and 𝜂 = 𝑒
2
[2].

Assume that the parameter 𝑆 is the total rate of pro-
duction of healthy cells per unit time; 𝑏, 𝑎, and 𝑐 are the
per capita death rate of healthy cells, infected cells, and
infective virus particles, respectively. Then, a basic math-
ematical model of HIV dynamics [1, 3–6], consisting of
three state variables at time 𝑡 corresponding to concen-
tration of uninfected target cells 𝑇(𝑡), infected cells 𝐼(𝑡),

and free virus particles 𝑉(𝑡), may be described by the
following:

𝑇̇ = 𝑆 − 𝑏𝑇 − 𝑓 (𝑇, 𝑉) ,

̇𝐼 = 𝑓 (𝑇, 𝑉) − 𝑎𝐼,

𝑉̇ = 𝑔 (𝐼) − c𝑉,

(1)

where 𝑓(𝑇, 𝑉) and 𝑔(𝐼) denote incidence rate functions
which are the average number of new infected cells and
new virus particles per unite time, respectively. In infectious
disease modeling, the incidence functions have become a
crucial factor to ensure that the models have some realistic
significance and may give some reasonable description. For
example, in [7–9], authors assumed that 𝑓(𝑇, 𝑉) = 𝛽𝑇𝑉

and 𝑔(𝐼) = 𝐾𝐼, where 𝛽 is the transmission coefficient
between uninfected cells and infective virus particles, and
𝐾 is the average number of infective virus particles pro-
duced by an infected cell. Under the influence of HAART
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(highly active antiviral therapy), which is generally a com-
bination of RTI (reverse transcriptase inhibitors) drugs and
PI (protease inhibitors) drugs, it is assumed that 𝑓(𝑇, 𝑉) =
(1−𝛾)𝛽𝑇𝑉 and𝑔(𝐼) = (1−𝜂)𝑁𝑎𝐼 [1, 2], where𝑁 is the average
number of infective virus particles produced by an infected
cell in the absence of HAART; 1− 𝛾 (0 < 𝛾 < 1) is the reverse
transcriptase inhibitor drug effect; and 1−𝜂 (0 < 𝜂 < 1) is the
protease inhibitor drug effect. Here, 𝑓(𝑇, 𝑉) is bilinear with
respect to the number of uninfected cells and virus particles,
and 𝑔(𝐼) is linear with respect to the number of infected cells.
In fact, both bilinear incidence rate and linear incidence rate
may be modified.

Recently, most of epidemic infection models with non-
linear incidence functions have been investigated by many
authors. Korobeinikov [10] established global properties of
two-dimension SIR and SIRS compartmental epidemic mod-
els with nonlinear transmission rate based on the method
of Lyapunov functions. Liu and Stechlinski [11] analyzed
infectious disease models with time-varying parameters
and general nonlinear incidence rates and obtained some
sufficient conditions to ensure the stability of the disease-
free equilibrium. If the population is saturated with the
infected individuals, the incidence rate may have nonlinear
dependence on infective individuals [12]. In general, the
HIV models’ parameters (e.g., the contact rate, the effect of
RTI drugs, and PI drugs) were assumed to be constant in
time. However, these parameters may be time-varying, due
to changes in host behavior. Take the effect of RTI drugs and
PI drugs; for example, the effect of RTI drugs and PI drugs
is usually characterized by a quick rise to a maximum soon
after drug intake, followed by a slower decay within a cycle.
A more realistic approach is to assume that these parameters
are time-varying, which implies that two nonlinear incidence
functions are time-varying functions.

A switched epidemic model is modeled by introducing
switching functions into the HIV model. Moreover, accord-
ing to the method of [3, 13], two switching nonlinear inci-
dence functions are introduced into system (1) by replacing
general nonlinear incidence functions.

Switched systems, consisting of continuous, discrete
dynamics and logic based switching rule, have gained con-
siderable attention by authors [14–18]. One main feature
of the switched system is that the included switching law
may induce stability of the switched system composed
of two unstable subsystems. Switched systems have been
applied in various areas, such as engine control systems,
neural networks, ecosystems, mechanical systems, and even
biological systems. Stability results have been derived by
many researchers, via the methods of Lyapunov exponents,
switched Lyapunov functions, and common Lyapunov func-
tions (see [19–23]). Until now, there are few works about
the switched HIV models. This paper mainly analyzes the
HIV models subjected to switching nonlinear incidence
functions. Using common Lyapunov functions method, the
global stability of the disease-free equilibrium is discussed
and new stability criteria are established to ensure eradication
of the disease.

Moreover, pulse control is applied into the HIV mod-
els with switching nonlinear incidence functions. Due to

switches of states and abrupt changes at the switching
instants, switched systems exhibit impulsive effects, and they
cannot be well described by using pure continuous or discrete
switched systems [24]. Some results on the impulsive systems
have been obtained [25, 26]. In this paper, new HIV models
with switching nonlinear incidence functions and pulse
control are developed, and the global asymptotic stability by
the technique of common Lyapunov functions is analyzed.

The paper is organized as follows. The HIV model with
switching nonlinear incidence functions is introduced, and
global asymptotic stability of the disease-free equilibrium
is presented in Section 2. In Section 3, pulse control is
considered in the aboveHIVmodel, and sufficient conditions
for the global asymptotic stability are obtained by themethod
of common Lyapunov functions. Numerical simulations are
given in Section 4 to illustrate the threshold conditions estab-
lished in the paper. Some conclusions and future directions
are given in Section 5.

2. The HIV Model with Switching Nonlinear
Incidence Functions

In general nonlinear incidence functions [3], theHIVmodels’
parameters (e.g., the contact rate, the effect of RTI drugs,
and PI drugs) are constants in time. In fact, the HIV models’
parameters may be time-varying, due to changes in host
behavior [11, 19]. Taking the contact rate, for example, it may
be time-varying and switch in time under the influence of
environmental factors or changes in host behavior. According
to the above approach, assume that incidence functions are
time-varying functions and may change functional forms in
time. Consider families of 𝑚 different incidence functions
𝑓
𝑖
(𝑇, 𝑉) and 𝑔

𝑖
(𝐼), for 𝑖 = 1, 2, . . . , 𝑚. Assume that the average

number of new infected cells and new virus per unit time
are modeled by the switching functions 𝑓

𝑖𝑘
(𝑇, 𝑉) and 𝑔

𝑖𝑘
(𝐼)

on the interval (𝑡
𝑘−1
, 𝑡
𝑘
], 𝑘 = 1, 2, . . .. Suppose that these

switching functions are governed by a switching rule 𝜎(𝑡):
(𝑡
𝑘−1
, 𝑡
𝑘
] → 𝑖

𝑘
∈ {1, 2, . . . , 𝑚}, 𝑘 = 1, 2, . . ., which is a

piecewise constant function of time, continuous from the
left. Assume that the switch time {𝑡

𝑘
} satisfies 𝑡

𝑘
> 𝑡
𝑘−1

and
𝑡
𝑘
→ ∞ as 𝑘 → ∞. Denote set of all switching rules by

I. This leads to a new HIV model with switching nonlinear
incidence functions:

𝑇̇ = 𝑆 − 𝑏𝑇 − 𝑓
𝑖𝑘
(𝑇, 𝑉) , 𝑡 ∈ (𝑡

𝑘−1
, 𝑡
𝑘
] ,

̇𝐼 = 𝑓
𝑖𝑘
(𝑇, 𝑉) − 𝑎𝐼,

𝑉̇ = 𝑔
𝑖𝑘
(𝐼) − 𝑐𝑉.

(2)

The initial conditions are 𝑇(0) = 𝑇
0
, 𝐼(0) = 𝐼

0
, and 𝑉(0) =

𝑉
0
. Here 𝑇, 𝐼, and 𝑉 ∈ R+, where R+ denotes the set of

nonnegative real numbers, and 𝑆, 𝑏, 𝑎, and 𝑐 are inR+. From
physical considerations, assume that 𝑓

𝑖
(𝑇, 𝑉) and 𝑔

𝑖
(𝐼) are

continuous functions, which satisfy 𝑓
𝑖
(𝑇, 𝑉) > 0 and 𝑔

𝑖
(𝐼) >

0, for all 𝑡 ≥ 𝑡
0
, 𝑖 = 1, 2, . . . , 𝑚, except along the boundaries

𝑓
𝑖
(𝑇, 0) = 𝑓

𝑖
(0, 𝑉) = 0 and 𝑔

𝑖
(0) = 0. Then, (2) has a disease-

free equilibrium 𝐸
0
= (𝑆/𝑏, 0, 0) and 𝑚 endemic solutions
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𝐸
∗

𝑖
(𝑇
∗

𝑖
, 𝐼
∗

𝑖
, 𝑉
∗

𝑖
) for 𝑖 = 1, 2, . . . , 𝑚, where 𝑇∗

𝑖
, 𝐼
∗

𝑖
, 𝑉
∗

𝑖
satisfy

the following:

𝑆 = 𝑏𝑇
∗

𝑖
+ 𝑎𝐼
∗

𝑖
, 𝑎𝐼

∗

𝑖
= 𝑓
𝑖
(𝑉
∗

𝑖
) 𝑇
∗

𝑖
, 𝑐𝑉

∗

𝑖
= 𝑔
𝑖
(𝐼
∗

𝑖
) .

(3)

HIV drugs are most commonly prescribed to be taken on
a fixed dose, fixed time interval basis. In fact, the fixed
time interval between two dose can be seen as periodic and
denoted by 𝜔. Suppose that the switching rule 𝜎 satisfies
𝑡
𝑘
− 𝑡
𝑘−1

= 𝜏
𝑘
with 𝜏

𝑘+𝑚
= 𝜏
𝑘
, for 𝑡 ∈ (𝑡

𝑘−1
, 𝑡
𝑘
]. Suppose

that 𝑓
𝑖𝑘
(𝑡) = 𝑓

𝑘
(𝑡) and 𝑔

𝑖𝑘
(𝑡) = 𝑔

𝑘
(𝑡). Suppose that 𝑓

𝑘
(𝑡) =

𝑓
𝑘
(𝑡 + 𝜔) and 𝑔

𝑘
(𝑡) = 𝑔

𝑘
(𝑡 + 𝜔) and 𝛽

𝑘
(𝑡) = 𝛽

𝑘
(𝑡 + 𝜔), where

𝜔 = 𝜏
1
+ 𝜏
2
+ ⋅ ⋅ ⋅ + 𝜏

𝑚
. Let IPeriodic be the set of periodic

switching rule withIPeriodic ⊂ I.
Introducing some variables, 𝑋

1
= 𝑇 − 𝑆/𝑏, 𝑋

2
= 𝐼, and

𝑋
3
= 𝑉, and substituting the corresponding variables into

system (2), we get

𝑋̇
1
= −𝑏𝑋

1
− 𝑓
𝑖𝑘
(𝑋
1
+
𝑆

𝑏
,𝑋
3
) , 𝑡 ∈ (𝑡

𝑘−1
, 𝑡
𝑘
] ,

𝑋̇
2
= 𝑓
𝑖𝑘
(𝑋
1
+
𝑆

𝑏
,𝑋
3
) − 𝑎𝑋

2
,

𝑋̇
3
= 𝑔
𝑖𝑘
(𝑋
2
) − 𝑐𝑋

3
.

(4)

For convenience of analysis, rewrite (4) in the following form:

𝑋̇ = 𝐴𝑋 + 𝐹
𝑖𝑘
(𝑋) , 𝑡 ∈ (𝑡

𝑘−1
, 𝑡
𝑘
] , (5)

where𝑋 = (𝑋
1
, 𝑋
2
, 𝑋
3
)
󸀠, 󸀠 denotes transposition,𝐴 is a 3 × 3

square matrix, and 𝐹
𝑖𝑘
is a column vector given by

𝐴 = (

−𝑏 0 0

0 −𝑎 0

0 0 −𝑐

) ,

𝐹
𝑖𝑘
=(

−𝑓
𝑖𝑘
(𝑋
1
+
𝑆

𝑏
,𝑋
3
)

𝑓
𝑖𝑘
(𝑋
1
+
𝑆

𝑏
,𝑋
3
)

𝑔
𝑖𝑘
(𝑋
2
) .

) .

(6)

Assume that switching nonlinear functions 𝑓
𝑖
(𝑋) and 𝑔

𝑖
(𝑋)

for 𝑖 = 1, 2, . . . , 𝑚 satisfy locally Lipschitz conditions; that is,
for each 𝑋 ∈ R+

3
, there exist functions 𝐿

𝑖
≥ 0, 𝑅

𝑖
≥ 0, and

𝛿 = 𝛿(𝑋) > 0, such that ‖𝑋 − 𝑌‖ < 𝛿 implies that
󵄩󵄩󵄩󵄩𝑓𝑖 (𝑋) − 𝑓𝑖 (𝑌)

󵄩󵄩󵄩󵄩 ≤ 𝐿 𝑖 ‖𝑋 − 𝑌‖ ,

󵄩󵄩󵄩󵄩𝑔𝑖 (𝑋) − 𝑔𝑖 (𝑌)
󵄩󵄩󵄩󵄩 ≤ 𝑅𝑖 ‖𝑋 − 𝑌‖ ,

(7)

in which ‖𝑋‖ = (𝑋2
1
+ 𝑋
2

2
+ 𝑋
2

3
)
1/2.

Obviously, due to switches, the characters of system (2)
are different from most existing models (see [1, 8] and the
reference therein). It is necessary to investigate the aboveHIV
model. By transformation, the dynamics of disease-free equi-
librium of system (2) are the same as the trivial solution of
system (5). Via commonLyapunov functions, we consider the
global asymptotic stability of the trivial solution of system (5).

The idea is that we first find a common Lyapunov function for
each subsystem and then impose restrictions on switching to
guarantee the stability of system (5). We have the following
result regarding the global asymptotic stability of the trivial
solution of system (5).

Theorem 1. Assume that the switching rule 𝜎 is periodic and
that 𝑓

𝑖
(𝑡, 𝑋) = 𝑓

𝑖
(𝑡 + 𝜔,𝑋) and 𝑔

𝑖
(𝑡, 𝑋) = 𝑔

𝑖
(𝑡 + 𝜔,𝑋), for

𝑖 = 1, 2, . . . , 𝑚, where𝑓
𝑖
(𝑋) and 𝑔

𝑖
(𝑋) satisfy (7). If there exists

a constant 𝐶 > 0, such that

𝜏
1
𝜆
1
+ 𝜏
2
𝜆
2
+ ⋅ ⋅ ⋅ + 𝜏

𝑚
𝜆
𝑚
< −𝐶, (8)

where 𝜆
𝑖
= 𝜆 + 2𝐿

2

𝑖
+ 𝑅
2

𝑖
+ 1 with 𝜆 = max{−2𝑎, −2𝑏, −2𝑐},

then, the trivial solution of system (5) is globally asymptotically
stable, which implies that the disease-free equilibrium 𝐸

0
of

system (2) is globally asymptotically stable.

Proof. Assume that 𝑖 = 𝑖
𝑘
, for 𝑡 ∈ (𝑡

𝑘−1
, 𝑡
𝑘
], where 𝑖

𝑘

follows the switching rule 𝜎(𝑡) ∈ IPeriodic. Define a common
Lyapunov function 𝑈 as 𝑈 = 𝑋

󸀠
𝑋. Then, we have

𝑑𝑈 (𝑡)

𝑑𝑡
= 𝑋̇
󸀠
𝑋 + 𝑋

󸀠
𝑋̇ = 𝑋

󸀠
(𝐴
󸀠
+ 𝐴)𝑋 + 2𝐹

󸀠

𝑖𝑘
𝑋. (9)

Note that

𝑋
󸀠
(𝐴
󸀠
+ 𝐴)𝑋 ≤ 𝜆𝑋

󸀠
𝑋,

2𝐹
󸀠

𝑖𝑘
𝑋 ≤ 2

󵄩󵄩󵄩󵄩󵄩
𝑓
𝑖𝑘
(𝑡, 𝑋)

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑔
𝑖𝑘
(𝑡, 𝑋)

󵄩󵄩󵄩󵄩󵄩

2

+ 𝑋
󸀠
𝑋 ≤ (2𝐿

2

𝑖𝑘
+ 𝑅
2

𝑖𝑘
+ 1)𝑋

󸀠
𝑋.

(10)

Substituting (10) into (9) yields

𝑈̇ ≤ (𝜆 + 2𝐿
2

𝑖𝑘
+ 𝑅
2

𝑖𝑘
+ 1)𝑋

󸀠
𝑋 = 𝜆

𝑖𝑘
𝑈. (11)

For 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
], it follows that

𝑈 (𝑡) ≤ 𝑈 (𝑡
𝑘−1
) exp [∫

𝑡

𝑡𝑘−1

𝜆
𝑖𝑘
(𝑠) 𝑑𝑠] . (12)

Apply (12) on each subinterval. For 𝑡 ∈ (𝑡
0
, 𝑡
1
],

𝑈(𝑡) ≤ 𝑈(𝑡
0
) exp[∫𝑡

𝑡0

𝜆
𝑖1
(𝑠)𝑑𝑠]. For 𝑡 ∈ (𝑡

1
, 𝑡
2
],

𝑈(𝑡) ≤ 𝑈(𝑡
1
) exp[∫𝑡

𝑡1

𝜆
𝑖2
(𝑠)𝑑𝑠] ≤ 𝑈(𝑡

0
) exp[∫𝑡1

𝑡0

𝜆
𝑖1
(𝑠)𝑑𝑠 +

∫
𝑡

𝑡1

𝜆
𝑖2
(𝑠)𝑑𝑠]. In general, for 𝑡 ∈ (𝑡

𝑘−1
, 𝑡
𝑘
], 𝑈(𝑡) ≤

𝑈(𝑡
𝑘−1
) exp[∫𝑡

𝑡𝑘−1

𝜆
𝑖𝑘
(𝑠)𝑑𝑠] ≤ 𝑈(𝑡

0
) exp[∫𝑡1

𝑡0

𝜆
𝑖1
(𝑠)𝑑𝑠 +

∫
𝑡2

𝑡1

𝜆
𝑖2
(𝑠)𝑑𝑠 + ⋅ ⋅ ⋅ + ∫

𝑡

𝑡𝑘−1

𝜆
𝑖𝑘
(𝑠)𝑑𝑠]. For 𝑡 ∈ (𝜔 − 𝑡

𝑚
, 𝜔], 𝑈(𝑡) ≤

𝑈(𝑡
0
) exp[∫𝑡1

𝑡0

𝜆
𝑖1
(𝑠)𝑑𝑠 + ∫

𝑡2

𝑡1

𝜆
𝑖2
(𝑠)𝑑𝑠 + ⋅ ⋅ ⋅ + ∫

𝑡

𝜔−𝑡𝑚

𝜆
𝑖𝑚
(𝑠)𝑑𝑠].

Then, 𝑈(𝜔) ≤ 𝑈(𝑡
0
) exp[𝜏

1
𝜆
1
+ 𝜏
2
𝜆
2
+ ⋅ ⋅ ⋅ + 𝜏

𝑚
𝜆
𝑚
]. Define

𝜁 = exp[𝜏
1
𝜆
1
+ 𝜏
2
𝜆
2
+ ⋅ ⋅ ⋅ + 𝜏

𝑚
𝜆
𝑚
]. By condition (8), we

have 𝜁 < 1; furthermore, 𝑈(𝜔) ≤ 𝜁𝑈(𝑡
0
) < 𝑈(𝑡

0
). Similarly,

it can be shown that 𝑈(ℎ𝜔) ≤ 𝜁𝑈((ℎ − 1)𝜔) for any integer
ℎ = 1, 2, . . . and hence

𝑈 (ℎ𝜔) ≤ 𝜁𝑈 ((ℎ − 1) 𝜔) ≤ 𝜁 (𝜁𝑈 ((ℎ − 2) 𝜔))

≤ ⋅ ⋅ ⋅ ≤ 𝜁
ℎ
𝑈 (𝑡
0
) ;

(13)
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it follows that lim
ℎ→∞

𝑈(ℎ𝜔) = lim
ℎ→∞

𝜁
ℎ
𝑈(𝑡
0
) = 0. In

general, for 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
] and ℎ𝜔 < 𝑡

𝑘
≤ (ℎ + 1)𝜔, we have

𝑈 (𝑡) ≤ 𝑈 (ℎ𝜔) exp [∫
𝑡1

𝑡0

𝜆
𝑖1
(𝑠) 𝑑𝑠 + ∫

𝑡2

𝑡1

𝜆
𝑖2
(𝑠) 𝑑𝑠

+ ⋅ ⋅ ⋅ + ∫

𝑡

𝑡𝑘−1

𝜆
𝑖𝑘
(𝑠) 𝑑𝑠]

≤ 𝑀𝑈 (ℎ𝜔) ≤ 𝑀𝑈(𝑡
0
) 𝜁
ℎ
= 𝑀𝑈(𝑡

0
) exp [ℎ ln 𝜁] ,

(14)

where𝑀 = max
𝑡𝑘−1<𝑡≤𝑡𝑘

exp[∫𝑡1
𝑡0

𝜆
𝑖1
(𝑠)𝑑𝑠 + ∫

𝑡2

𝑡1

𝜆
𝑖2
(𝑠)𝑑𝑠 + ⋅ ⋅ ⋅ +

∫
𝑡

𝑡𝑘−1

𝜆
𝑖𝑘
(𝑠)𝑑𝑠]. Note that ln 𝜁 < 0; then,𝑈(𝑡) converges to zero

as 𝑡 → ∞ and ℎ → ∞. Therefore, the trivial solution
of system (5) is globally asymptotically stable, which implies
that the disease-free equilibrium 𝐸

0
of system (2) is globally

asymptotically stable.

Remark 2. A general Lyapunov function is not used to deal
with switched differential equations. In order to display the
effect of switching, we consider the dynamics of the switched
HIV models via the method of the common Lyapunov
function.

Remark 3. In Theorem 1, general criteria are established to
ensure that the disease will die out, no matter whether
the subsystems are stable or unstable. Compared with [13],
the stability of the disease-free equilibrium of system (2) is
investigated by the common Lyapunov functions method.

Remark 4. Assume that 𝑓
𝑖
(𝑇, 𝑉) ≡ (1 − 𝛾)𝛽𝑇𝑉 and 𝑔

𝑖
(𝐼) ≡

𝑁𝑎𝐼; system (2) reduces to the system (1.1) in [5]. Compared
with the results without the switching effect of [5], the results
here are closer to the reality with practical significance,
characterizing the switching effect 𝜏

𝑖
𝜆
𝑖
in Theorem 1.

3. The Switched HIV Model with Pulse
Vaccination

In this section, we investigate the dynamics of HIV model
with switching nonlinear incidence functions and pulse
control by common Lyapunov functions. Pulse control is
strategy of periodically vaccinating the infectious disease in
a relatively short time [11, 26]. Assume that a fraction 𝑝 (0 <
𝑝 < 1) of infected cells is impulsively treated every 𝜔 > 0

time unit, moving infected cells 𝑞𝐼(𝑡) (0 ≤ 𝑞 < 𝑝 < 1)

to the various classes. This is reasonable from a physical
perspective, since some of infected cells are affected badly by
pulse vaccination, and they are becoming various particles. If
𝑞 = 0 and 𝑝 > 0, then the vaccine has efficacy. If 𝑝 = 𝑞 = 1,
then vaccine is failing completely. Applying pulse vaccination
to system (2), this gives a new switched HIV model

𝑇̇ = 𝑆 − 𝑏𝑇 − 𝑓
𝑖𝑘
(𝑇, 𝑉) , 𝑡 ∈ (𝑡

𝑘−1
, 𝑡
𝑘
] ,

̇𝐼 = 𝑓
𝑖𝑘
(𝑇, 𝑉) − 𝑎𝐼,

𝑉̇ = 𝑔
𝑖𝑘
(𝐼) − 𝑐𝑉,

𝑇 (𝑡
+
) = 𝑇 (𝑡) , 𝑡 = 𝑡

𝑘
,

𝐼 (𝑡
+
) = (1 − 𝑝) 𝐼 (𝑡) ,

𝑉 (𝑡
+
) = 𝑉 (𝑡) + 𝑞𝐼 (𝑡) .

(15)

The initial conditions are 𝑇(𝑡+
0
) = 𝑇

0
> 0, 𝐼(𝑡+

0
) = 𝐼
0
≥ 0,

and 𝑉(𝑡+
0
) = 𝑉

0
≥ 0. Note that system (15) has the same

disease-free equilibrium 𝐸
0
as that of system (2). Under the

transformation 𝑋
1
= 𝑇 − 𝑆/𝑏, 𝑋

2
= 𝐼, 𝑋

3
= 𝑉, system (15)

has the following form:

𝑋̇
1
= −𝑏𝑋

1
− 𝑓
𝑖𝑘
(𝑋
1
+
𝑆

𝑏
,𝑋
3
) , 𝑡 ∈ (𝑡

𝑘−1
, 𝑡
𝑘
] ,

𝑋̇
2
= 𝑓
𝑖𝑘
(𝑋
1
+
𝑆

𝑏
,𝑋
3
) − 𝑎𝑋

2
,

𝑋̇
3
= 𝑔
𝑖𝑘
(𝑋
2
) − 𝑐𝑋

3
,

𝑋
1
(𝑡
+
) = 𝑋

1
(𝑡) , 𝑡 = 𝑡

𝑘
,

𝑋
2
(𝑡
+
) = (1 − 𝑝)𝑋

2
(𝑡) ,

𝑋
3
(𝑡
+
) = 𝑋

3
(𝑡) + 𝑞𝑋

1
(𝑡) .

(16)

The vector system

𝑋̇ = 𝐴𝑋 + 𝐹
𝑖𝑘
(𝑋) , 𝑡 ∈ (𝑡

𝑘−1
, 𝑡
𝑘
] ,

𝑋 (𝑡
+
) = 𝐵𝑋, 𝑡 = 𝑡

𝑘
,

(17)

where 𝑋 = (𝑋
1
, 𝑋
2
, 𝑋
3
), 𝐴 and 𝐵 are 3 × 3 matrices, and 𝐹

𝑖𝑘

is a column vector given by

𝐴 = (

−𝑏 0 0

0 −𝑎 0

0 0 −𝑐

) , 𝐵 = (

1 0 0

0 1 − 𝑝 0

0 𝑞 1

) ,

𝐹
𝑖𝑘
=(

−𝑓
𝑖𝑘
(𝑋
1
+
𝑆

𝑏
,𝑋
3
)

𝑓
𝑖𝑘
(𝑋
1
+
𝑆

𝑏
,𝑋
3
)

𝑔
𝑖𝑘
(𝑋
2
) .

) .

(18)

Assume that switching nonlinear functions 𝑓
𝑖
(𝑋) and 𝑔

𝑖
(𝑋)

(for 𝑖 = 1, 2, . . . , 𝑚) also satisfy (7). The following theorems
give conditions for global asymptotic stability of the trivial
solution of system (17) or the disease-free equilibrium of
system (15).

Theorem 5. Assume that the switching rule 𝜎 is periodic and
that 𝑓

𝑖
(𝑡, 𝑋) = 𝑓

𝑖
(𝑡 + 𝜔,𝑋) and 𝑔

𝑖
(𝑡, 𝑋) = 𝑔

𝑖
(𝑡 + 𝜔,𝑋), for

𝑖 = 1, 2, . . . , 𝑚, where𝑓
𝑖
(𝑋) and 𝑔

𝑖
(𝑋) satisfy (7). If there exists

a constant 𝐶 > 0, such that

𝑚 ln 𝜌 + 𝜏
1
𝜆
1
+ 𝜏
2
𝜆
2
+ ⋅ ⋅ ⋅ + 𝜏

𝑚
𝜆
𝑚
< −𝐶, (19)

where 𝜌 = max{1, ((1 − 𝑝)
2

+ 𝑞
2

+ 1 +

√((1 − 𝑝)
2
+ 𝑞2 + 1)

2
− 4(1 − 𝑝)

2
)/2} and 𝜆

𝑖
= 𝜆+2𝐿

2

𝑖
+𝑅
2

𝑖
+1
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with 𝜆 = max{−2𝑎, −2𝑏, −2𝑐}, then the trivial solution of
system (17) is globally asymptotically stable, which implies
that the disease-free equilibrium 𝐸

0
of system (15) is globally

asymptotically stable.

Proof. Assume that 𝑖 = 𝑖
𝑘
, for 𝑡 ∈ (𝑡

𝑘−1
, 𝑡
𝑘
], where 𝑖

𝑘
follows

the switching rule 𝜎(𝑡) ∈ IPeriodic. Define the common
Lyapunov function 𝑈 as follows: 𝑈 = 𝑋

󸀠
𝑋. According to the

proof of Theorem 1, we have 𝑈̇ ≤ 𝜆
𝑘
𝑈. For 𝑡 ∈ (𝑡

𝑘−1
, 𝑡
𝑘
], it

follows that

𝑈 (𝑡) ≤ 𝑈 (𝑡
+

𝑘−1
) exp [∫

𝑡

𝑡𝑘−1

𝜆
𝑘
(𝑠) 𝑑𝑠] , (20)

and immediately after the impulsive switch time 𝑡 = 𝑡
𝑘
,

𝑈 (𝑡
+

𝑘
) = 𝑋(𝑡

+

𝑘
)
󸀠

𝑋(𝑡
+

𝑘
) = (𝐵𝑋 (𝑡

𝑘
))
󸀠

(𝐵𝑋 (𝑡
𝑘
))

= 𝑋(𝑡
𝑘
)
󸀠

(𝐵
󸀠
𝐵)𝑋 (𝑡

𝑘
) ≤ 𝜌𝑋(𝑡

𝑘
)
󸀠

𝑋(𝑡
𝑘
) = 𝜌𝑈 (𝑡

𝑘
) .

(21)

Apply (20) and (21) on each subinterval. For 𝑡 ∈ (𝑡
0
, 𝑡
1
],

𝑈(𝑡) ≤ 𝑈(𝑡
0
) exp[∫𝑡

𝑡0

𝜆
1
(𝑠)𝑑𝑠]. Further, 𝑈(𝑡+

1
) ≤ 𝜌𝑈(𝑡

1
) and

hence𝑈(𝑡+
1
) ≤ 𝜌𝑈(𝑡

0
) exp[∫𝑡1

𝑡0

𝜆
1
(𝑠)𝑑𝑠]. For 𝑡 ∈ (𝑡

1
, 𝑡
2
],𝑈(𝑡) ≤

𝑈(𝑡
+

1
) exp[∫𝑡

𝑡1

𝜆
2
(𝑠)𝑑𝑠] ≤ 𝜌𝑈(𝑡

0
) exp[∫𝑡1

𝑡0

𝜆
1
(𝑠)𝑑𝑠+∫

𝑡

𝑡1

𝜆
2
(𝑠)𝑑𝑠].

Then 𝑈(𝑡
+

2
) ≤ 𝜌𝑈(𝑡

2
) ≤ 𝜌

2
𝑈(𝑡
0
) exp[∫𝑡1

𝑡0

𝜆
1
(𝑠)𝑑𝑠 +

∫
𝑡2

𝑡1

𝜆
2
(𝑠)𝑑𝑠]. In general, for 𝑡 ∈ (𝑡

𝑘−1
, 𝑡
𝑘
], 𝑈(𝑡) ≤

𝑈(𝑡
+

𝑘−1
) exp[∫𝑡

𝑡𝑘−1

𝜆
𝑘
(𝑠)𝑑𝑠] ≤ 𝜌

𝑘−1
𝑈(𝑡
0
) exp[∫𝑡1

𝑡0

𝜆
1
(𝑠)𝑑𝑠 +

∫
𝑡2

𝑡1

𝜆
2
(𝑠)𝑑𝑠 + ⋅ ⋅ ⋅ + ∫

𝑡

𝑡𝑘−1

𝜆
𝑘
(𝑠)𝑑𝑠]. Then, for 𝑡 ∈ (𝜔 − 𝑡

𝑚
, 𝜔],

𝑈(𝑡) ≤ 𝜌
𝑚−1

𝑈(𝑡
0
) exp[∫𝑡1

𝑡0

𝜆
𝑖1
(𝑠)𝑑𝑠 + ⋅ ⋅ ⋅ + ∫

𝑡

𝜔−𝑡𝑚

𝜆
𝑖𝑚
(𝑠)𝑑𝑠] and

immediately after the impulsive switch time 𝑡 = 𝜔,

𝑈(𝜔
+
) = 𝑋(𝜔

+
)
󸀠

𝑋(𝜔
+
) = (𝐵𝑋 (𝜔))

󸀠
𝐵𝑋 (𝜔)

= 𝑋(𝜔)
󸀠
𝐵
󸀠
𝐵𝑋 (𝜔) ≤ 𝜌𝑋(𝜔)

󸀠
𝑋 (𝜔) = 𝜌𝑈 (𝜔)

≤ 𝜌
𝑚
𝑈(𝑡
0
) exp [∫

𝑡1

𝑡0

𝜆
𝑖1
(𝑠) 𝑑𝑠 + ∫

𝑡2

𝑡1

𝜆
𝑖2
(𝑠) 𝑑𝑠

+ ⋅ ⋅ ⋅ + ∫

𝑡𝑚

𝑡𝑚−1

𝜆
𝑖𝑚
(𝑠) 𝑑𝑠]

= 𝑈 (𝑡
0
) exp [𝑚 ln 𝜌 + ∫

𝑡1

𝑡0

𝜆
𝑖1
(𝑠) 𝑑𝑠 + ∫

𝑡2

𝑡1

𝜆
𝑖2
(𝑠) 𝑑𝑠

+ ⋅ ⋅ ⋅ + ∫

𝑡𝑚

𝑡𝑚−1

𝜆
𝑖𝑚
(𝑠) 𝑑𝑠]

= 𝑈 (𝑡
0
) exp [𝑚 ln 𝜌 + 𝜏

1
𝜆
1
+ 𝜏
2
𝜆
2
+ ⋅ ⋅ ⋅ + 𝜏

𝑚
𝜆
𝑚
]

= 𝜁𝑈 (𝑡
0
) ,

(22)

where 𝜁 = exp[𝑚 ln 𝜌 + 𝜏
1
𝜆
1
+ 𝜏
2
𝜆
2
+ ⋅ ⋅ ⋅ + 𝜏

𝑚
𝜆
𝑚
] < 1 from

(19). Similarly, it can be shown that 𝑈(ℎ𝜔+) ≤ 𝜁𝑈((ℎ − 1)𝜔+)
for any integer ℎ = 1, 2, . . . and so

𝑈(ℎ𝜔
+
) ≤ 𝜁𝑈 ((ℎ − 1) 𝜔

+
) ≤ 𝜁 (𝜁𝑈 ((ℎ − 2) 𝜔

+
))

≤ ⋅ ⋅ ⋅ ≤ 𝜁
ℎ
𝑈 (𝑡
0
) ;

(23)

it follows that

lim
ℎ→∞

𝑈(ℎ𝜔
+
) = lim
ℎ→∞

𝜁
ℎ
𝑈(𝑡
0
) = 0. (24)

In general, for 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
] and ℎ𝜔 < 𝑡

𝑘
≤ (ℎ + 1)𝜔, then

𝑈(𝑡) ≤ 𝑈(ℎ𝜔
+
)𝜌
𝑚−1 exp[∫𝑡1

𝑡0

𝜆
𝑖1
(𝑠)𝑑𝑠 + ∫

𝑡2

𝑡1

𝜆
𝑖2
(𝑠)𝑑𝑠 + ⋅ ⋅ ⋅ +

∫
𝑡

𝑡𝑘−1

𝜆
𝑖𝑘
(𝑠)𝑑𝑠] ≤ 𝑀𝑈(ℎ𝜔

+
)𝜌
𝑚−1

≤ 𝜌
𝑚−1

𝑀𝑈(𝑡
0
) exp[ℎ ln 𝜁],

where𝑀 = max
𝑡𝑘−1<𝑡≤𝑡𝑘

exp[∫𝑡1
𝑡0

𝜆
𝑖1
(𝑠)𝑑𝑠 + ∫

𝑡2

𝑡1

𝜆
𝑖2
(𝑠)𝑑𝑠 + ⋅ ⋅ ⋅ +

∫
𝑡

𝑡𝑘−1

𝜆
𝑖𝑘
(𝑠)𝑑𝑠]. Note that the ln 𝜁 < 0; then, 𝑈(𝑡) converges

to zero as 𝑡 → ∞ and ℎ → ∞. Thus, the trivial solution
of system (17) is globally asymptotically stable, which implies
that the disease-free equilibrium 𝐸

0
of system (15) is globally

asymptotically stable.

Remark 6. In Theorem 5, a general criterion, characterizing
the switching term and the pulse term, is established to
guarantee the global asymptotic stability of system (15).

Remark 7. As a special case, when 𝜌 = 1, the dynamics of
the disease-free equilibrium are mainly determined by the
switching term 𝜏

𝑘
𝜆
𝑘
, for 𝑘 = 1, 2, . . . .

4. Numerical Simulations

In order to illustrate the effectiveness of the proposed results
above, the stability of HIV models with switching nonlinear
incidence functions and pulse control is presented.Moreover,
the comparison between results in HIV models with and
without the switching effect is presented. Here, we assume
that 𝑡
0
= 0.

Example 1. Consider a HIV model with switching nonlinear
incidence functions

𝑇̇ = 𝑆 − 𝑏𝑇 − 10 (1 − 𝛾
𝑖𝑘
) 𝛽
𝑖𝑘
sin (𝑇𝑉)𝑉, 𝑡 ∈ (𝑡

𝑘−1
, 𝑡
𝑘
] ,

̇𝐼 = 10 (1 − 𝛾
𝑖𝑘
) 𝛽
𝑖𝑘
sin (𝑇𝑉)𝑉 − 𝑎𝐼,

𝑉̇ = (1 − 𝜂
𝑖𝑘
)𝑁𝑎 sin (𝐼) 𝐼 − 𝑐𝑉

(25)

with 𝑖
𝑘
∈ {1, 2} following a periodic switching rule

𝜎 (𝑡) = {
1, if 𝑡 ∈ (𝑘, 𝑘 + 0.75] ,
2, if 𝑡 ∈ (𝑘 + 0.75, 𝑘 + 1] ,

𝑘 = 0, 1, 2, . . . ,
(26)

and a HIV model without switching nonlinear incidence
functions

𝑇̇ = 𝑆 − 𝑏𝑇 − 10 (1 − 𝛾) 𝛽 sin (𝑇𝑉)𝑉,

̇𝐼 = 10 (1 − 𝛾) 𝛽 sin (𝑇𝑉)𝑉 − 𝑎𝐼,

𝑉̇ = (1 − 𝜂)𝑁𝑎 sin (𝐼) 𝐼 − 𝑐𝑉.

(27)

By (26), we have 𝜏
1
= 0.75 and 𝜏

2
= 0.25. In this example,

we first consider the global asymptotic stability of system
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Figure 1: Numerical solutions of system (25) and system (27). The solutions with the switching effect (solid lines) were compared with the
solutions without the switching effect (dashed lines).

(25) with initial values 𝑇
0
= 1000, 𝐼

0
= 500, and 𝑉

0
=

500. Take parameters 𝑆 = 10
3, 𝑏 = 0.7, 𝑎 = 0.7, 𝑐 =

0.7, and 𝑁 = 2 and the switching parameters 𝛾
1
= 0.9,

𝛾
2
= 0.7, 𝜂

1
= 0.8, 𝜂

2
= 0.6, 𝛽

1
= 0.32, and 𝛽

2
=

0.15. For system (25) with these parameters specifications,
we have ‖10(1 − 𝛾

𝑖𝑘
)𝛽
𝑖𝑘
sin(𝑇𝑉)𝑉‖ ≤ 10(1 − 𝛾

𝑖𝑘
)𝛽
𝑖𝑘
‖𝑉‖ and

‖(1 − 𝜂
𝑖𝑘
)𝑁𝑎 sin(𝐼)𝐼‖ ≤ (1 − 𝜂

𝑖𝑘
)𝑁𝑎‖𝐼‖ in (7) and 𝜏

1
𝜆
1
+

𝜏
2
𝜆
2
= −0.0079 with 𝜆

1
= −0.1168 and 𝜆

2
= 0.3186 in (8).

Choosing𝐶 = 0.0080, the disease-free equilibrium (𝑇, 𝐼, 𝑉) =

(𝑆/𝑏, 0, 0) is globally asymptotically stable by Theorem 1. The
trajectory (solid lines) of system (25) is plotted in Figure 1,
which indicates that this system is globally asymptotically

stable. Furthermore, taking the parameters 𝛾 = 𝛾
2
, 𝜂 = 𝜂

2
,

and 𝛽 = 𝛽
2
of the system (27), and other parameters being

the same as that of the system (25), we present the solutions
(dashed lines) of the system (27) in Figure 1 for comparison
purposes. In the first graph, we see that the total population
of uninfected cells corresponding to the switching effect
was much higher than the one without the switching effect,
while, for infected cells and virus with the switching effect,
the total populations were lower than the one without the
switching effect (see the second graph and the third graph).
Thus, computer simulations of these models agree well with
mathematical theory.
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Figure 2: Numerical solutions of system (28).

Example 2. Consider a HIV model with switching nonlinear
incidence functions and pulse control,

𝑇̇ = 𝑆 − 𝑏𝑇 − (1 − 𝛾
𝑖𝑘
) 𝛽
𝑖𝑘
sin (𝑇𝑉)𝑉, 𝑡 ∈ (𝑡

𝑘−1
, 𝑡
𝑘
] ,

̇𝐼 = (1 − 𝛾
𝑖𝑘
) 𝛽
𝑖𝑘
sin (𝑇𝑉)𝑉 − 𝑎𝐼,

𝑉̇ = (1 − 𝜂
𝑖𝑘
)𝑁𝑎 sin (𝐼) 𝐼 − 𝑐𝑉,

𝑇 (𝑡
+
) = 𝑇 (𝑡) , 𝑡 = 𝑡

𝑘
,

𝐼 (𝑡
+
) = (1 − 𝑝) 𝐼 (𝑡) ,

𝑉 (𝑡
+
) = 𝑉 (𝑡) + 𝑞𝐼 (𝑡) ,

(28)

with 𝑖
𝑘
∈ {1, 2} following the periodic switching rule 𝜎(𝑡):

𝜏
1
= 0.5, 𝜏

2
= 0.5, 𝑚 = 2. According to Example 1, take

𝐿
𝑖𝑘
= (1−𝛾

𝑖𝑘
)𝛽
𝑖𝑘
and𝑅

𝑖𝑘
= (1−𝜂

𝑖𝑘
)𝑁𝑎 in (7). Take parameters

𝑆 = 10
4, 𝑏 = 0.6, 𝑎 = 0.6, 𝑐 = 2, and 𝑁 = 2 and

the switching parameters 𝛾
1
= 0.4, 𝛾

2
= 0.3, 𝜂

1
= 0.7,

𝜂
2
= 0.6, 𝛽

1
= 10
−4, and 𝛽

2
= 10
−5. Take the pulse control

parameters 𝑝 = 0.3 and 𝑞 = 0.1. We can derive 𝜆
1
= −0.0704,

𝜆
2
= 0.0304, and 𝜌 = 1.0193. Thus, (19) is satisfied with

𝐶 = 10
−5. By Theorem 5, we can draw the conclusion that

the disease-free equilibrium (𝑇, 𝐼, 𝑉) = (𝑆/𝑏, 0, 0) is globally
asymptotically stable. Figure 2 shows a simulation result of
this system. Moreover, it can be seen from Figure 2 that pulse
vaccination is successful to cure the HIV infection.

5. Conclusions

In this paper, new HIV models with switching nonlinear
incidence functions and pulse control are investigated. It
is reasonable from a physical perspective that nonlinear
incidence functions are assumed to be switching nonlinear

incidence to incorporate into HIV models, since nonlinear
incidence functions are changing in time, which may change
functional form in time, due to changes in host behavior. For
the periodic switching rule, some new sufficient conditions
are established to ensure the global asymptotic stability of the
disease-free equilibrium by constructing common Lyapunov
functions. The obtained results have more advantages than
those in [2, 7] and are very useful for a large class of
infection disease models. The results indicated that the HIV
model with the switching effect plays an important role in
understanding the dynamics of the disease. Furthermore,
taking pulse vaccination into the above model, a new HIV
model with switching nonlinear incidence functions and
pulse control is developed. Some sufficient conditions char-
acterizing the pulse term and the switching term are derived
to determine whether the pulse vaccination succeeded in
preventing disease. Numerical examples are carried out to
verify the proposed results. One future direction is to study
multicity HIV infections models with switching parameters.
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