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We use basic properties of superquadratic functions to obtain some new Hermite-Hadamard type inequalities via Riemann-
Liouville fractional integrals. For superquadratic functions which are also convex, we get refinements of existing results.

1. Introduction

Let f: I € R — R bea convex function and a,b € I with
a < b; then

a+b 1 (b fa)+f®)
f( 2 )Smjaf(t)dtﬁf @)

is known as the Hermite-Hadamard inequality.

This remarkable result is well known in the literature
as the Hermite-Hadamard inequality. Recently, the gener-
alizations, refinements, and improvements of the classical
Hermite-Hadamard inequality have been the subject of inten-
sive research.

Definition 1 (see [1]). A function f : [0,00) — R is
superquadratic provided that for all x > 0 there exists a
constant C,, € R such that

fzf@+Cy-x)+f(y-+), @
forall y > 0.

Theorem 2 (see [1]). The inequality
f(J gdﬂ) < J [f(g (s)) —f<|g(s) - Jgdﬂm du(s)
3)

holds for all probability measures y and all nonnegative, -
integrable functions g, if and only if f is superquadratic.

The discrete version of the above theorem is also used in
the sequel.

Lemma 3 (see [2]). Suppose that f is superquadratic. Let x; >

0,1<i<mandletx =Y., A;x;, whereA; >0and Y., A
1. Then

Z/\if (x;) = f(®)+ ZAif(lxi -%). (4)

Nonnegative superquadratic functions are much better
behaved as we see next.

Lemma 4 (see [1]). Let f be a superquadratic function with
C, € R as in Definition 1. Then one gets the following:

@) f(0) <0;

(2) if f(0) = f'(O) =0, thenC, = f'(x) whenever f is
differentiable at x > 0;

(3) if f =0, then f is convex and f(0) = f’(O) =0.

The Hermite-Hadamard inequalities for superquadratic
functions are established by Banic et al. in [3].
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Theorem 5 (see [3]). Let f: [0,00) — R bea superquadratic
function and 0 < a < b; then

(59 a5
< blaJ f(x)dx
J@+f0) (5)

2
1 b
_WJ [((b-x)f(x-a)

+(x-a) f(b-x)]dx

It is remarkable that Sarikaya et al. [4] proved the
following interesting inequalities of Hermite-Hadamard type
involving Riemann-Liouville fractional integrals.

Theorem 6 (see [4]). Let f: [a,b] — R be a positive function
witha <band f € L,[a,b]. If f is a convex function on [a, b],
then the following inequalities for fractional integrals hold:

F(oc+1)

f<a;b)< 2b-

- f(a)+f(b),
2

x [ f (b)

)+ - f (@]
(6)

with a > 0.

We remark that the symbols J% and J;- f denote the left-
sided and right-sided Riemann-Liouville fractional integrals
of the order ¢ > 0 with a > 0 which are defined by

0 f (b dt,

X > a,

« 1 *
0= s j (x
@)
_ a-1
Ff® = o )j (-0 f@dt, x<b,

respectlvely Here, I'(«) is the gamma function defined by
T(o) = [[7e't* " dt.

Fractional integral operators are widely used to solve
differential equations and integral equations. So a lot of work
has been obtained on the theory and applications of fractional
integral operators.

For more results concerning the fractional integral opera-
tors, we refer the reader to [5-10] and references cited therein.

In this paper, we establish some new Hermite-Hadamard
type inequalities for superquadratic functions via Riemann-
Liouville fractional integrals which refine the inequalities of
(6) for superquadratic functions which are also convex.
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2. Main Results

From Lemma 3 forn =2,wegetfor0<m<z<M,m< M,
for the superquadratic function f that

M — _
@) T f )+ - f (M)
M-z z—-m
S flem - T (M- 2),
Fm=z) s S )+ 2 f (M
M-z z—-m
- fle—m) - f (M - z())
8

hold, and therefore

fER+fM+m-z)< f(m)+ f(M)

2M—z
“M-m - ©)

M—m

Let0 < a < x < (a + b)/2; we get that

<a+b-x<b. (10)

Therefore, by replacing in (9)

a+b
z= ,
2

M=a+b-x, m= x, (11)

we get that

2f<“+b> f)+flatb-x) - zf(“”’ x>(.12)

Theorem 7. Let f be a superquadratic integrable function on
[0,b] with 0 < a < b. Then

(57

F((x+1)
z Usf(®) + ] f (@)]
Z20b-a) b 13)
o b la+b
_Z(b—a)"‘Lf >

X ((b —x)* 4 (x- a)a_l) dx

witha > 0.
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Proof. By inequality (12), we get that

(57)- (5

b

X b-x)""+(x-a)* 1) x

L
(“ >(b a)*
|

\H

(a+b)/ 2

X (b )+ (x —a)* 1) X

o (a+b)/2
SWL [f(x)+ f(a+b-x)]

X ((b —x)* 4 (x - a)“_l) dx

o (a+b)/2 a+b
_(b—a>“L f( 2 ‘x>

X ((b —x) T (x - a)“_l) dx.

(14)
By the change of variable x — a + b — x, we get
« (a+b)/2 ,
—2(b—a)“L fa+b-x)
x ((b ) (x - a)“_l) dx
b
o
T e @
x ((b —x) " (x - a)“_l) dx,
(15)

o (a+b)/2 a+b
(b—a)"‘L f( 2 ”“)

X ((b ) (x - a)“_l) dx

NG (Xa) J;b f<x_a;b>

X ((b —x) " (x - a)“il) dx.

Therefore

(5) (5w
|

o

=2b-ar J f

X ((b —x)* 4 (x - a)a_l) dx

- 2(b(ja)“ jbf

X ((b ) (x - a)“_l) dx

a+b
2

- X

(ot 1)
S 2(b-

) (j a)* Lb f

x ((b —x) 4 (x - a)“_l) dx.

z Uaf 0) + Ty f (@]

a+b
2

- X

(16)
We have completed the proof. O
Corollary 8. Putting o = 1 in Theorem 7 gives
f<a;b> “b-a J flx)dx
1 (b |a+b )
_b—aLf S % dx.
Let0 < a < x < (a+b)/2; we get that
a<x<a+b-x<b. (18)
Therefore, by replacing in (9)
zZ =X, M =b, m=a, (19)
we get that
FE+fa+b-x
< f(@+f(®) (0

b-x x—a
—me(x—a)—me(b—x).

Theorem 9. Let f be a superquadratic integrable function on
[0,b] with0 < a < b. Then

I‘(oc+1)
ot Vs ©+ i @)
Sf (@) + f (b)
2
o bIy-x xX—a
_Z(b—a)aL [b—af(x_a)+b—a - ]
X ((b —x) " (x - a)‘H) dx
(21)
witha > 0.



Proof. By inequality (20), we get that

f(a)+ f(b)
2

f@+f)  «
B 2 2(b - a)*

b a-1 a-1
xj((b—x) +(x—a) )dx

a

=[f @+ f®) 357

x J({Hb)/z ((b —x) " (x - a)“_l) dx,

a

T (oc + 1)
b
o
" 2b-a” J J
X ((b —x)" 4 (x- a)“_l) dx
o (a+b)/2
ZWJa [f(x)+f(a+b—x)]
X ((b —x)" 4 (x - a)“_l) dx
(a+b)/2
S ), F@erw)
X ((b —x) T (x - a)‘H) dx
o @b)2 ) _ 5
_(b—a)“L b—af(x_a)
X ((b —x)* 4 (x - a)“_l) dx
« (a+b)/2 x—a
_(b—a)aL b—af(b_x)
X ((b —x)* 4 (- a)“_l) dx
_f@+f(®)
- 2
a b-x
2(b-a) L [ P
X -
+2f (o)
X ((b —x)* 4 (x - a)“_l) dx.
(22)
The proof is completed. O
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Corollary 10. Choosing o = 1 in Theorem 9, one has

1 (b f@+f(b)
mja f(x)dxs —2

b
! ZJ [((b-x)f(x-a)

Cb-a?
+(x—a) f(b-x)]dx.
(23)
Corollary 11. Let f be defined as in Theorem 7; one gets
a+b «
(5 ) e
b
xj f atb_ (b-0""+(x-a)*")dx
T'(a+ 1)
b
< 0= x Ua f )+ f (@)] -
<fw+ﬂw_ a
B 2 2(b-a)®
b
x j [I;:—Zf(x—a)+ Z:Zf(b—x)]
X ((b —x)* 7 (x— a)“_l) dx.
Corollary 12. Taking « = 1 in Corollary 11, one obtains
a+b 1 (%, la+b
f( 2 >+b—aLf ;|
b
< J f(x)dx
@ B 1 (25)
-2 (b-ay

b
XJ [((b-x)f(x-a)

+(x—a) f(b-x)]dx.

3. Conclusion

In this note, we obtain some new Hermite-Hadamard
type inequalities for superquadratic functions via Riemann-
Liouville fractional integrals. For superquadratic functions
which are also convex, we get refinements of known results.
The concept of superquadratic functions in several variables
is introduced in [11]. An interesting topic is whether we
can use the methods in this paper to establish the Hermite-
Hadamard inequalities for superquadratic functions in sev-
eral variables via Riemann-Liouville integrals.
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