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An analysis of a PT symmetric coupler with “gain in one waveguide and loss in another” is made; a transformation in the PT system
and some assumptions results in a scalar cubic Schrödinger equation. We investigate the relationship between the conservation
laws and Lie symmetries and investigate a Lagrangian, corresponding Noether symmetries, conserved vectors, and exact solutions
via “double reductions.”

1. Introduction

Physical systems exhibiting parity-time (PT) symmetry have
been the subject of much investigation in recent years and
are now extensively considered in diverse areas of physics,
namely, quantum field theories, non-Hermitian Anderson
models, and complex Lie algebras, just to name a few [1–
10]. We know that even a single PT cell can exhibit uncon-
ventional features; it follows that one may wish to investigate
what new behaviour and properties can be expected from PT
symmetric lattices [11, 12].

In optics, it has recently been discovered that there is a
class of optical systems, of which elements consist of gain and
loss, that can be interpreted as an optics equivalent of the
PT symmetry in quantummechanics [11, 13]. The underlying
equations describing the effects of pulse dispersion [13] have
the following form:

𝑖𝑈
𝑡
+ 𝑈
𝑥𝑥

+ 2|𝑈|
2
𝑈 = −𝑉 + 𝑖𝛾𝑈,

𝑖𝑉
𝑡
+ 𝑉
𝑥𝑥

+ 2|𝑉|
2
𝑉 = −𝑈 − 𝑖𝛾𝑉.

(1)

To analyze the solutions of this equation wemake a change of
variables

𝑈 (𝑥, 𝑡) = 𝑒
𝑖(𝜔𝑡−𝜃)

𝛼 (𝑥, 𝑡) , 𝑉 (𝑥, 𝑡) = 𝑒
𝑖𝜔𝑡

𝛽 (𝑥, 𝑡) , (2)

where 𝜃 is a constant angle satisfying

sin 𝜃 = 𝛾 (3)

and 𝜔 is an arbitrary real parameter. As a result of the
transformation, (1) becomes

𝑖𝛼
𝑡
+ 𝛼
𝑥𝑥

− 𝜔𝛼 + 2|𝛼|
2
𝛼 = − cos 𝜃𝛽 + 𝑖𝛾 (𝛼 − 𝛽) ,

𝑖𝛽
𝑡
+ 𝛽
𝑥𝑥

− 𝜔𝛽 + 2
󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨

2

𝛽 = − cos 𝜃𝛼 + 𝑖𝛾 (𝛼 − 𝛽) .

(4)

The system (4) admits a reduction 𝛼 = 𝛽 = 𝑞 to the following
scalar cubic Schrödinger equation:

𝑖𝑞
𝑡
+ 𝑞
𝑥𝑥

− 𝑎
2
𝑞 + 2

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

2

𝑞 = 0, (5)

where 𝑞 is the complex valued dependent variable and 𝑎
2
=

𝜔 − cos 𝜃.
Equation (5) has a family of stationary soliton solutions;

however, we will study the invariance, exact solutions, con-
servation laws, and double reductions. This will be done by
decomposing (5) into real and imaginary parts to obtain the
following system of partial differential equations (PDEs); if
𝑞 = 𝑢 + 𝑖V, then we have the following system:

𝑢
𝑡
+ V
𝑥𝑥

− 𝑎
2V + 2V (𝑢2 + V2) = 0,

−V
𝑡
+ 𝑢
𝑥𝑥

− 𝑎
2
𝑢 + 2𝑢 (𝑢

2
+ V2) = 0.

(6)
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In light of symmetries, conservation laws, and double reduc-
tion to exact solutions, we will briefly consider the system of
PDEs in (1) but the bulk of the analysis will centre around (5)
via the system (6).

2. On the Conservation Laws of (1)
In order to determine conserved densities and fluxes, we
resort to the invariance and multiplier approach based on
the well-known result that the Euler-Lagrange operator
annihilates a total divergence (see [14]). Firstly, if (𝑇𝑡, 𝑇𝑥) is a
conserved vector corresponding to a conservation law, then

𝐷
𝑡
𝑇
𝑡
+ 𝐷
𝑥
𝑇
𝑥
= 0 (7)

along the solutions of the differential equation (𝐺(𝑥, 𝑡, 𝑞,

𝑞
(𝑖)
, . . .) = 0, say).
If the system (1) is split into real and imaginary parts with

𝑈 = 𝜇 + 𝑖] and 𝑉 = 𝜖 + 𝑖𝛿 and replacing 𝛾 with “general”
parameters, we get

𝜇
𝑡
+ ]
𝑥𝑥

+ 2 (𝜇
2
+ ]2) ] + 𝛿 − 𝑔

1
𝜇 = 0,

−]
𝑡
+ 𝜇
𝑥𝑥

+ 2 (𝜇
2
+ ]2) 𝜇 + 𝜖 + 𝑔

2
] = 0,

𝜖
𝑡
+ 𝛿
𝑥𝑥

+ 2 (𝜖
2
+ 𝛿
2
) 𝛿 + ] + 𝑔

3
𝜖 = 0,

𝛿
𝑡
+ 𝜖
𝑥𝑥

+ 2 (𝜖
2
+ 𝛿
2
) 𝜖 + 𝜇 − 𝑔

4
𝛿 = 0.

(8)

It turns out that the system (8) only admits nontrivial
conservation laws (two) for 𝑔

2
= −𝑔

1
and 𝑔

4
= −𝑔

3

corresponding to multipliers (see below) 𝑄 = (]
𝑡
, 𝜇
𝑡
, 𝛿
𝑡
, 𝜖
𝑡
)

and𝑄 = (]
𝑥
, 𝜇
𝑥
, 𝛿
𝑥
, 𝜖
𝑥
)which in turn correspond to time and

space translations, respectively. In this case, (8) becomes

𝜇
𝑡
+ ]
𝑥𝑥

+ 2 (𝜇
2
+ ]2) ] + 𝛿 − 𝑔

1
𝜇 = 0,

−]
𝑡
+ 𝜇
𝑥𝑥

+ 2 (𝜇
2
+ ]2) 𝜇 + 𝜖 − 𝑔

2
] = 0,

𝜖
𝑡
+ 𝛿
𝑥𝑥

+ 2 (𝜖
2
+ 𝛿
2
) 𝛿 + ] + 𝑔

3
𝜖 = 0,

𝛿
𝑡
+ 𝜖
𝑥𝑥

+ 2 (𝜖
2
+ 𝛿
2
) 𝜖 + 𝜇 + 𝑔

3
𝛿 = 0.

(9)

Thus, (1) has no nontrivial conservation laws even though the
system is invariant under time and space translations.

We thus do a detailed study of the special case given in (6)
instead.

3. Symmetries, Reductions, and
Conservation Laws of (6)

The Lie symmetry approach on differential equations is well
known; for details, see, for example, [15, 16]. In this section,
we list a summary of these and explore the notion of a “double
reduction” in order to obtain symmetry invariant (exact)
solutions.

3.1. Symmetries and Reductions. A one parameter Lie group
of transformations that leave invariant (6) will be written as a
vector field

𝑋 = 𝜏 (𝑡, 𝑥, 𝑢, V) 𝜕
𝑡
+ 𝜉 (𝑡, 𝑥, 𝑢, V) 𝜕

𝑥

+ 𝜂
1
(𝑡, 𝑥, 𝑢, V) 𝜕

𝑢
+ 𝜂
2
(𝑡, 𝑥, 𝑢, V) 𝜕V.

(10)

This would be a generator of point symmetries of the system.
We get the algebra generated by

𝑋
1
= 𝜕
𝑡
,

𝑋
2
= 𝜕
𝑥
,

𝑋
3
= 𝑢𝜕V − V𝜕

𝑢
,

𝑋
4
= 2𝑡𝜕
𝑥
+ 𝑢𝑥𝜕V − V𝑥𝜕

𝑢
,

𝑋
5
= (−2𝑎

2
𝑡𝑢 − V) 𝜕V + 2𝑡𝜕

𝑡
+ (−𝑢 + 2𝑎

2
𝑡V) 𝜕
𝑢
+ 𝑥𝜕
𝑥
.

(11)

3.2. Conservation Laws. In order to determine conserved
densities and fluxes, we resort to the invariance andmultiplier
approach based on the well-known result that the Euler-
Lagrange operator annihilates a total divergence (see [14]).
Firstly, if (𝑇𝑡, 𝑇𝑥) is a conserved vector corresponding to a
conservation law, then

𝐷
𝑡
𝑇
𝑡
+ 𝐷
𝑥
𝑇
𝑥
= 0 (12)

along the solutions of the differential equation (𝐺(𝑥, 𝑡, 𝑞,

𝑞
(𝑖)
, . . .) = 0, say).

3.2.1. The Mutiplier Approach. If there exists a nontrivial
differential function 𝑄, called a “multiplier,” such that

𝐸
𝑞
[𝑄𝐺 (𝑥, 𝑡, 𝑞, 𝑞

(𝑖)
, . . .)] = 0, (13)

then 𝑄(𝐺(𝑥, 𝑡, 𝑞, 𝑞
(𝑖)
, . . .)) is a total divergence; that is,

𝑄 (𝐺 (𝑥, 𝑡, 𝑞, 𝑞
(𝑖)
, . . .)) = 𝐷

𝑡
𝑇
𝑡
+ 𝐷
𝑥
𝑇
𝑥
, (14)

for some (conserved) vector (𝑇𝑡, 𝑇𝑥) and 𝐸
𝑞
is the respective

Euler-Lagrange operator. Thus, knowledge of each multiplier
𝑄 leads to a conserved vector determined by, inter alia, a
homotopy operator. See details and references in [14, 17].

For a system 𝐺
1
(𝑥, 𝑡, 𝑢, V, 𝑢

(𝑖)
, V
(𝑖)
, . . .) = 0 and 𝐺

2
(𝑥, 𝑡, 𝑢,

V, 𝑢
(𝑖)
, V
(𝑖)
, . . .) = 0, 𝑄 = (𝑄

1
, 𝑄
2
), say, we get

𝑄
1
(𝐺
1
(𝑥, 𝑡, 𝑞, 𝑢

(𝑖)
, V
(𝑖)
, . . .))

+ 𝑄
2
(𝐺
2
(𝑥, 𝑡, 𝑞, 𝑢

(𝑖)
, V
(𝑖)
, . . .)) = 𝐷

𝑡
𝑇
𝑡
+ 𝐷
𝑥
𝑇
𝑥
,

𝐸
(𝑢,V) [𝐷𝑡𝑇

𝑡
+ 𝐷
𝑥
𝑇
𝑥
] = 0.

(15)

In each case, 𝑇𝑡 is the conserved density.
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The lengthy calculations for the system (6) lead to the
following multipliers and corresponding conserved vectors.

(i) Consider (𝑄1, 𝑄2) = (V
𝑡
, 𝑢
𝑡
),

𝑇
𝑥
=

1

2
(𝑢
𝑡
𝑢
𝑥
+ V
𝑡
V
𝑥
− 𝑢𝑢
𝑥𝑡

− VV
𝑥𝑡
) ,

𝑇
𝑡
=

1

2
(𝑢
4
− 𝑢
2
(𝑎
2
− 2V2) + 𝑢𝑢

𝑥𝑥
+ V (−𝑎2V + V3 + V

𝑥𝑥
)) .

(16)

The conserved density for the scalar equation is

Φ
𝑡
=

1

2

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

4

+
1

2
(ℎ − 1)

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

2

+ 𝑞𝑞
𝑥𝑥

+ 𝑞𝑞
𝑥𝑥
. (17)

(ii) Consider (𝑄1, 𝑄2) = (V
𝑥
, 𝑢
𝑥
). Consider

𝑇
𝑥
=

1

2
(𝑢
4
− 𝑎
2V2 + V4 − 𝑢

2
(𝑎
2
− 2V2)

+V𝑢
𝑡
− 𝑢V
𝑡
+ 𝑢
𝑥

2
+ V
𝑥

2
) ,

𝑇
𝑡
=

1

2
(−V𝑢
𝑥
+ 𝑢V
𝑥
) .

(18)

The conserved density for the scalar equation is

Φ
𝑡
= −

𝑖

4
(𝑞𝑞
𝑥
− 𝑞𝑞
𝑥
) . (19)

(iii) Consider (𝑄1, 𝑄2) = (𝑢, −V),

𝑇
𝑥
− V𝑢
𝑥
+ 𝑢V
𝑥
,

𝑇
𝑡
=

1

2
(𝑢
2
+ V2) .

(20)

The conserved density for the scalar equation is

Φ
𝑡
= −

1

2

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

2

. (21)

(iv) Consider (𝑄1, 𝑄2) = (−(1/2)𝑥𝑢 + 𝑡V
𝑥
, (1/2)𝑥V + 𝑡𝑢

𝑥
),

𝑇
𝑥
=

1

2
(𝑡𝑢
4
− 𝑎
2
𝑡V2 + 𝑡V4 − 𝑡𝑢

2
(𝑎
2
− 2V2)

+V (𝑡𝑢
𝑡
+ 𝑥𝑢
𝑥
) − 𝑢 (𝑡V

𝑡
+ 𝑥V
𝑥
) + 𝑡 (𝑢

𝑥

2
+ V
𝑥

2
)) ,

𝑇
𝑡
=

1

4
(−𝑥𝑢
2
− V (𝑥V + 2𝑡𝑢

𝑥
) + 2𝑡𝑢V

𝑥
) .

(22)

The conserved density for the scalar equation is

Φ
𝑡
= −

1

4
𝑥
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

2

− 𝑖𝑡 (𝑞𝑞
𝑥
− 𝑞𝑞
𝑥
) . (23)

3.2.2. A Lagrangian Formulation. The system (6) admits a
Lagrangian

𝐿 = −
1

2
𝑢
𝑥

2
−

1

2
V
𝑥

2
+

1

2
𝑢
𝑡
V −

1

2
V
𝑡
𝑢

−
1

2
𝑎
2
(𝑢
2
+ V2) +

1

2
𝑢
4
+

1

2
V4 + 𝑢

2V2
(24)

so that the corresponding Lagrangian for the Schrödinger
equation (5) is L = −(1/2)|𝑞

𝑥
|
2
− (1/2)𝑎

2
|𝑞|
2
+ (1/2)|𝑞|

4
+

(𝑖/4)(𝑞𝑞
𝑡
− 𝑞𝑞
𝑡
). The Noether symmetries, that is, the one

parameter Lie groups of transformations, that leave invariant
the functional∬𝐿𝑑𝑥𝑑𝑡with zero gauges are the translations

𝑋
1
= 𝜕
𝑡
, 𝑋

2
= 𝜕
𝑥

(25)

with corresponding conserved vectors

𝑇
𝑥
= V
𝑥
V
𝑡
+ 𝑢
𝑥
𝑢
𝑡
,

𝑇
𝑡
= −

1

2
𝑢
𝑥

2
−

1

2
V
𝑥

2
−

1

2
𝑎
2
𝑢
2
−

1

2
𝑎
2V2

+
1

2
𝑢
4
+

1

2
V4 + 𝑢

2V2,

(26)

with density of (5) given by

Φ
𝑡
= −

1

2

󵄨󵄨󵄨󵄨𝑞𝑥
󵄨󵄨󵄨󵄨

2

−
1

2
𝑎
2󵄨󵄨󵄨󵄨𝑞

󵄨󵄨󵄨󵄨

2

+
1

2

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

4 (27)

and

𝑇
𝑥
=

1

2
𝑢
𝑥

2
+

1

2
V
𝑥

2
+

1

2
V𝑢
𝑡
−

1

2
𝑢V
𝑡
−

1

2
𝑎
2
𝑢
2

−
1

2
𝑎
2V2 +

1

2
𝑢
4
+

1

2
V4 + 𝑢

2V2,

𝑇
𝑡
=

1

2
(V
𝑥
𝑢 − 𝑢
𝑥
V) ,

(28)

with density of (5) given by

Φ
𝑡
= −

𝑖

4
(𝑞𝑞
𝑥
− 𝑞𝑞
𝑥
) , (29)

respectively.

3.3.Double Reduction. Todemonstrate howoneuses symme-
tries and conservation laws to double reduce PDEs, we recall
some definitions and theorems.

Definition 1 (see [18]). A Lie-Bäcklund symmetry generator
𝑋 of the form (1) is associated with a conserved vector 𝑇 of
the system (6) if𝑋 and 𝑇 satisfy the relations

𝑋(𝑇
𝑖
) + 𝑇
𝑖
𝐷
𝑘
(𝜉
𝑘
) − 𝑇
𝑘
𝐷
𝑘
(𝜉
𝑖
) = 0, 𝑖 = 1, . . . , 𝑛. (30)

Theorem 2 (see [19]). Suppose that 𝑋 is any Lie-Bäcklund
symmetry of (6) and 𝑇

𝑖, 𝑖 = 1, . . . , 𝑛, are the components of
the conserved vector of (6). Then

𝑇
∗𝑖

= [𝑇
𝑖
, 𝑋] = 𝑋 (𝑇

𝑖
) + 𝑇
𝑖
𝐷
𝑗
𝜉
𝑗
− 𝑇
𝑗
𝐷
𝑗
𝜉
𝑖
, 𝑖 = 1, . . . , 𝑛,

(31)

constitute the components of a conserved vector of (6); that is,
𝐷
𝑖
𝑇
∗𝑖
|
(6)

= 0.
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Theorem3 (see [20]). Suppose that𝐷
𝑖
𝑇
𝑖
= 0 is a conservation

law of the partial differential equation system (6). Then under
a contact transformation, there exist functions 𝑇̃

𝑖 such that
𝐽𝐷
𝑖
𝑇
𝑖
= 𝐷
𝑖
𝑇̃
𝑖, where 𝑇̃𝑖 are given as

(

𝑇̃
1

𝑇̃
2

.

.

.

𝑇̃
𝑛

) = 𝐽(𝐴
−1
)
𝑇

(

𝑇
1

𝑇
2

.

.

.

𝑇
𝑛

),

𝐽(

𝑇
1

𝑇
2

.

.

.

𝑇
𝑛

) = 𝐴
𝑇
(

𝑇̃
1

𝑇̃
2

.

.

.

𝑇̃
𝑛

)

(32)

in which

𝐴 = (

𝐷
1
𝑥
1

𝐷
1
𝑥
2

⋅ ⋅ ⋅ 𝐷
1
𝑥
𝑛

𝐷
2
𝑥
1

𝐷
2
𝑥
2

⋅ ⋅ ⋅ 𝐷
2
𝑥
𝑛

.

.

.
.
.
.

.

.

.
.
.
.

𝐷
𝑛
𝑥
1

𝐷
𝑛
𝑥
2

⋅ ⋅ ⋅ 𝐷
𝑛
𝑥
𝑛

),

𝐴
−1

= (

𝐷
1
𝑥
1

𝐷
1
𝑥
2

⋅ ⋅ ⋅ 𝐷
1
𝑥
𝑛

𝐷
2
𝑥
1

𝐷
2
𝑥
2

⋅ ⋅ ⋅ 𝐷
2
𝑥
𝑛

.

.

.
.
.
.

.

.

.
.
.
.

𝐷
𝑛
𝑥
1

𝐷
𝑛
𝑥
2

⋅ ⋅ ⋅ 𝐷
𝑛
𝑥
𝑛

)

(33)

and 𝐽 = det(𝐴).

Theorem4 (fundamental theoremondouble reduction [20]).
Suppose that 𝐷

𝑖
𝑇
𝑖
= 0 is a conservation law of the partial

differential equation system (6). Then under a similarity
transformation of a symmetry 𝑋 of the form (1) for the partial
differential equation, there exist functions 𝑇̃𝑖 such that𝑋 is still
a symmetry for the partial differential equation 𝐷

𝑖
𝑇̃
𝑖
= 0 and

(

𝑋𝑇̃
1

𝑋𝑇̃
2

.

.

.

𝑋𝑇̃
𝑛

) = 𝐽(𝐴
−1
)
𝑇
(

(

[𝑇
1
, 𝑋]

[𝑇
2
, 𝑋]

.

.

.

[𝑇
𝑛
, 𝑋]

)

)

, (34)

where

𝐴 = (

𝐷
1
𝑥
1

𝐷
1
𝑥
2

⋅ ⋅ ⋅ 𝐷
1
𝑥
𝑛

𝐷
2
𝑥
1

𝐷
2
𝑥
2

⋅ ⋅ ⋅ 𝐷
2
𝑥
𝑛

.

.

.
.
.
.

.

.

.
.
.
.

𝐷
𝑛
𝑥
1

𝐷
𝑛
𝑥
2

⋅ ⋅ ⋅ 𝐷
𝑛
𝑥
𝑛

),

𝐴
−1

= (

𝐷
1
𝑥
1

𝐷
1
𝑥
2

⋅ ⋅ ⋅ 𝐷
1
𝑥
𝑛

𝐷
2
𝑥
1

𝐷
2
𝑥
2

⋅ ⋅ ⋅ 𝐷
2
𝑥
𝑛

.

.

.
.
.
.

.

.

.
.
.
.

𝐷
𝑛
𝑥
1

𝐷
𝑛
𝑥
2

⋅ ⋅ ⋅ 𝐷
𝑛
𝑥
𝑛

)

(35)

and 𝐽 = det(𝐴).

Our original system is equivalent to

sys
1
= {

𝑞
1

1
𝐺
1
+ 𝑞
1

2
𝐺
2
= 0,

𝑞
1

1
𝐺
1
− 𝑞
1

2
𝐺
2
= 0.

(36)

The system (36) can be rewritten as

𝐷
𝑡
𝑇
1

𝑡
+ 𝐷
𝑥
𝑇
1

𝑥
= 0,

𝑞
1

1
𝐺
1
− 𝑞
1

2
𝐺
2
= 0.

(37)

3.3.1. A Double Reduction of (6) by ⟨𝑋
2
,𝑋
3
⟩. We first show

that 𝑋
2
and 𝑋

3
are associated with 𝑇

1
= (𝑇
𝑡

2
, 𝑇
𝑥

2
) using the

following version of (6) for 𝑖 = 1, 2:

𝑇
∗
= 𝑋(

𝑇
𝑡

𝑇
𝑥) − (

𝐷
𝑡
𝜉
𝑡

𝐷
𝑥
𝜉
𝑡

𝐷
𝑡
𝜉
𝑥

𝐷
𝑥
𝜉
𝑥)(

𝑇
𝑡

𝑇
𝑥)

+ (𝐷
𝑡
𝜉
𝑡
+ 𝐷
𝑥
𝜉
𝑥
) (

𝑇
𝑡

𝑇
𝑥) .

(38)

We obtain

(
𝑇
∗𝑡

2

𝑇
∗𝑥

2

) = 𝑋
[1]

3
(
𝑇
𝑡

2

𝑇
𝑥

2

) − (
0 0

0 0
)(

𝑇
𝑡

2

𝑇
𝑥

2

) + (0) (
𝑇
𝑡

2

𝑇
𝑥

2

)

= (

(−VV
𝑥
− 𝑢𝑢
𝑥
+ VV
𝑥
+ 𝑢𝑢
𝑥
)

(
1

2
(𝑢
𝑡
𝑢
𝑥
+ V
𝑡
V
𝑥
− 𝑢𝑢
𝑥𝑡

− VV
𝑥𝑡
))

)

= (
0

0
) ,

(
𝑇
∗𝑡

2

𝑇
∗𝑥

2

) = 𝑋
[1]

2
(
𝑇
𝑡

2

𝑇
𝑥

2

) − (
0 0

0 0
)(

𝑇
𝑡

2

𝑇
𝑥

2

) + (0) (
𝑇
𝑡

2

𝑇
𝑥

2

)

= (

𝜕

𝜕𝑥
[
1

2
(𝑢V
𝑥
− V𝑢
𝑥
)]

𝜕

𝜕𝑥
[
1

2
(𝑢
𝑡
𝑢
𝑥
+ V
𝑡
V
𝑥
− 𝑢𝑢
𝑥𝑡

− VV
𝑥𝑡
)]

)

= (
0

0
) ,

(39)

where

𝑋
[1]

3
= −V

𝜕

𝜕𝑢
+ 𝑢

𝜕

𝜕V
− V
𝑡

𝜕

𝜕𝑢
𝑡

− V
𝑥

𝜕

𝜕𝑢
𝑥

+ 𝑢
𝑡

𝜕

𝜕V
𝑡

+ 𝑢
𝑥

𝜕

𝜕V
𝑥

,

𝑋
[1]

2
=

𝜕

𝜕𝑥
.

(40)

Thus,𝑋
2
and𝑋

3
are both associated with 𝑇

2
.

We can get a reduced conserved form for the first
equation of the first system, sys

1
from (36), since 𝑋

2
and 𝑋

3

are both associated symmetries with 𝑇
2
.

We consider a linear combination of 𝑋
2
and 𝑋

3
, that is,

of the form 𝑋 = 𝑋
2
+ 𝑐𝑋
3
, and transform this generator

to its canonical form 𝑌 = 𝜕/𝜕𝑠, where we assume that this
generator is of the form 𝑌 = 0(𝜕/𝜕𝑟) + 𝜕/𝜕𝑠 + 0(𝜕/𝜕𝑤) +

0(𝜕/𝜕𝑝).
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From 𝑋(𝑟) = 0, 𝑋(𝑠) = 1, 𝑋(𝑤) = 0, and 𝑋(𝑝) = 0, we
obtain

𝑑𝑡

0
=

𝑑𝑥

1
=

𝑑𝑢

−𝑐V
=

𝑑V
𝑐𝑢

=
𝑑𝑟

0
=

𝑑𝑠

1
=

𝑑𝑤

0
=

𝑑𝑝

0
. (41)

We solve (41) using the method of invariance, where the
results are summarized as follows:

𝑏
1
= 𝑡, 𝑏

2
= 𝑢
2
+ V2, 𝑏

3
= arctan(

V
𝑢
) − 𝑐𝑥,

𝑏
4
= 𝑟, 𝑏

5
= 𝑠 − 𝑥, 𝑏

6
= 𝑤, 𝑏

7
= 𝑝,

(42)

where 𝑏
4
, 𝑏
5
, 𝑏
6
, and 𝑏

7
are arbitrary functions all dependent

on 𝑏
1
, 𝑏
2
, and 𝑏

3
.

By choosing 𝑏
4
= 𝑏
1
, 𝑏
5
= 0, 𝑏

6
= √𝑏
2
, and 𝑏

7
= 𝑏
3
, we

obtain the canonical coordinates

𝑟 = 𝑡, 𝑠 = 𝑥, 𝑤 = √𝑢2 + V2,

𝑝 = arctan(
V
𝑢
) − 𝑐𝑠,

(43)

where 𝑤 = 𝑤(𝑟) and 𝑝 = 𝑝(𝑟), since 𝑌 = 𝜕/𝜕𝑠.
From (32), we compute 𝐴 and (𝐴

−1
)
𝑇:

𝐴 = (
𝐷
𝑟
𝑡 𝐷
𝑟
𝑥

𝐷
𝑠
𝑡 𝐷
𝑠
𝑥
) = (

1 0

0 1
) ,

𝐴
−1

= (
𝐷
𝑡
𝑟 𝐷
𝑡
𝑠

𝐷
𝑥
𝑟 𝐷
𝑥
𝑠
) = (

1 0

0 1
) = (𝐴

−1
)
𝑇

,

(44)

where 𝐽 = det(𝐴) = 1.
From (43), the inverse canonical coordinates are given by

𝑡 = 𝑟, 𝑥 = 𝑠, 𝑢 = 𝑤 (𝑟) cos (𝑝 (𝑟) + 𝑐𝑠) ,

V = 𝑤 (𝑟) sin (𝑝 (𝑟) + 𝑐𝑠) .

(45)

We compute the first- and second-order partial derivatives of
𝑢 and V from (45):

𝑢
𝑡
= (

𝑑

𝑑𝑟
𝑤 (𝑟)) cos (𝑝 (𝑟) + 𝑐𝑠)

− 𝑤 (𝑟) (
𝑑

𝑑𝑟
𝑝 (𝑟)) sin (𝑝 (𝑟) + 𝑐𝑠) ,

𝑢
𝑥
= −𝑐𝑤 (𝑟) sin (𝑝 (𝑟) + 𝑐𝑠) ,

V
𝑡
= (

𝑑

𝑑𝑟
𝑤 (𝑟)) sin (𝑝 (𝑟) + 𝑐𝑠)

+ 𝑤 (𝑟) (
𝑑

𝑑𝑟
𝑝 (𝑟)) cos (𝑝 (𝑟) + 𝑐𝑠) ,

V
𝑥
= 𝑐𝑤 (𝑟) cos (𝑝 (𝑟) + 𝑐𝑠) ,

𝑢
𝑥𝑥

= −𝑐
2
𝑤 (𝑟) cos (𝑝 (𝑟) + 𝑐𝑠) ,

V
𝑥𝑥

= −𝑐
2
𝑤 (𝑟) sin (𝑝 (𝑟) + 𝑐𝑠) .

(46)

We now apply the formula from (33) with 𝑖 = 1, 2 to obtain
the reduced conserved form

(
𝑇
𝑟

2

𝑇
𝑠

2

) = 𝐽(𝐴
−1
)
𝑇

(
𝑇
𝑡

2

𝑇
𝑥

2

) . (47)

By substituting (45) and (46) into (47), we obtain

(
𝑇
𝑟

2

𝑇
𝑠

2

)

= (

1

2
𝑐𝑤(𝑟)
2

1

2
[𝑤(𝑟)

4
+ 𝑎
2
𝑤(𝑟)
2
− (

𝑑

𝑑𝑟
𝑝 (𝑟))𝑤(𝑟)

2
+ 𝑐
2
𝑤(𝑟)
2
]

) ,

(48)

where the reduced conserved form is also given by
𝐷
𝑟
𝑇
𝑟

2
= 0. (49)

The second step of double reduction can be given as

𝑐𝑤(𝑟)
2
= 𝑘 (50)

or equivalently

𝑤(𝑟)
2
= 𝑘, (51)

where 𝑘 is a constant.
Differentiating (50) implicitly with respect to 𝑟 results in

𝑑

𝑑𝑟
𝑤 (𝑟) = 0. (52)

The second equation of sys
1
from (36) is given by

V
𝑥
[𝑢
𝑡
+ V
𝑥𝑥

− 𝑎
2V + 2 (𝑢

2
+ V2) V]

− 𝑢
𝑥
[−V
𝑡
+ 𝑢
𝑥𝑥

− 𝑎
2
𝑢 + 2 (𝑢

2
+ V2) 𝑢] = 0.

(53)

After transforming (53) using (45) and (46), we obtain

−2𝑐𝑤(𝑟)
2 𝑑

𝑑𝑟
𝑝 (𝑟) [cos (𝑝 (𝑟) + 𝑐𝑠) sin (𝑝 (𝑟) + 𝑐𝑠)] ,

+4𝑤(𝑟)
4
[cos (𝑝 (𝑟) + 𝑐𝑠) sin (𝑝 (𝑟) + 𝑐𝑠)] = 0.

(54)

We now substitute (50) and (52) into (54) and simplify.
This results in the ordinary differential equation (ODE)

𝑑

𝑑𝑟
𝑝 (𝑟) =

2𝑤(𝑟)
2

𝑐
. (55)

If we substitute (51) into (55) and then integrate both sides
with respect to 𝑟, we obtain

𝑝 (𝑟) =
2𝑘𝑟

𝑐
+ 𝑚, (56)

where𝑚 is an integration constant.
Using (45), we obtain the final solution to our original

system (6) as

𝑢 (𝑡, 𝑥) = √𝑘 cos(2𝑘𝑡

𝑐
+ 𝑚 + 𝑐𝑥) ,

V (𝑡, 𝑥) = √𝑘 sin(
2𝑘𝑡

𝑐
+ 𝑚 + 𝑐𝑥) .

(57)

Thus, 𝑞 = √𝑘𝑒
𝑖(2𝑘𝑡/𝑐+𝑚+𝑐𝑥).
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3.3.2. Case 2: A Reduction of (6) by 𝑋
4
on 𝑇
3
. We now show

that 𝑋
4
is associated with 𝑇

3
= (𝑇
𝑡

3
, 𝑇
𝑥

3
) using the formula

(38).
We obtain

(
𝑇
∗𝑡

3

𝑇
∗𝑥

3

)

= 𝑋
[1]

4
(
𝑇
𝑡

3

𝑇
𝑥

3

) − (
0 0

2 0
)(

𝑇
𝑡

3

𝑇
𝑥

3

) + (0) (
𝑇
𝑡

3

𝑇
𝑥

3

)

= (

1

2
(−2𝑥𝑢V + 2𝑥𝑢V)

(−𝑥VV
𝑥
− 𝑥𝑢𝑢

𝑥
+ 𝑥VV

𝑥
+ V2 + 𝑥𝑢𝑢

𝑥
+ 𝑢
2
− 𝑢
2
− V2)

)

= (
0

0
) ,

(58)

where

𝑋
[1]

4
= 2𝑡

𝜕

𝜕𝑥
− 𝑥V

𝜕

𝜕𝑢
+ 𝑥𝑢

𝜕

𝜕V
− (𝑥V
𝑡
+ 2𝑢
𝑥
)

𝜕

𝜕𝑢
𝑡

− (𝑥V
𝑥
+ V)

𝜕

𝜕𝑢
𝑥

+ (𝑥𝑢
𝑡
− 2V
𝑥
)

𝜕

𝜕V
𝑡

+ (𝑥𝑢
𝑥
+ 𝑢)

𝜕

𝜕V
𝑥

.

(59)

Thus,𝑋
4
is associated with 𝑇

3
.

We again transform the generator𝑋
4
to its canonical form

𝑌 = 𝜕/𝜕𝑠.
From 𝑋(𝑟) = 0, 𝑋(𝑠) = 1, 𝑋(𝑤) = 0, and 𝑋(𝑝) = 0, we

obtain
𝑑𝑡

0
=

𝑑𝑥

2𝑡
=

𝑑𝑢

−𝑥V
=

𝑑V
𝑥𝑢

=
𝑑𝑟

0
=

𝑑𝑠

1
=

𝑑𝑤

0
=

𝑑𝑝

0
. (60)

The results from solving (60) are summarized as follows:

𝑏
1
= 𝑡, 𝑏

2
= 𝑢
2
+ V2, 𝑏

3
= arctan(

V
𝑢
) −

𝑥
2

4𝑡
,

𝑏
4
= 𝑟, 𝑏

5
= 𝑠 −

𝑥

2𝑡
, 𝑏

6
= 𝑤, 𝑏

7
= 𝑝,

(61)

where 𝑏
4
, 𝑏
5
, 𝑏
6
, and 𝑏

7
are arbitrary functions all dependent

on 𝑏
1
, 𝑏
2
, and 𝑏

3
.

By choosing 𝑏
4
= 𝑏
1
, 𝑏
5
= 0, 𝑏

6
= √𝑏
2
, and 𝑏

7
= 𝑏
3
, we

obtain the canonical coordinates

𝑟 = 𝑡, 𝑠 =
𝑥

2𝑡
, 𝑤 = √𝑢2 + V2,

𝑝 = arctan(
V
𝑢
) −

𝑥
2

4𝑡
.

(62)

From (32), we compute 𝐴 and (𝐴
−1
)
𝑇:

𝐴 = (
𝐷
𝑟
𝑡 𝐷
𝑟
𝑥

𝐷
𝑠
𝑡 𝐷
𝑠
𝑥
) = (

1 2𝑠

0 2𝑟
) ,

(𝐴
−1
)
𝑇

= (
𝐷
𝑡
𝑟 𝐷
𝑡
𝑠

𝐷
𝑥
𝑟 𝐷
𝑥
𝑠
) = (

1 0

−
𝑠

𝑟

1

2𝑟

) ,

(63)

where 𝐽 = det(𝐴) = 2𝑟.

From (62), the inverse canonical coordinates are given by

𝑡 = 𝑟, 𝑥 = 2𝑟𝑠, 𝑢 = 𝑤 (𝑟) cos (𝑝 (𝑟) + 𝑟𝑠
2
) ,

V = 𝑤 (𝑟) sin (𝑝 (𝑟) + 𝑟𝑠
2
) .

(64)

We compute the first- and second-order partial derivatives of
𝑢 and V from (64):

𝑢
𝑡
= (

𝑑

𝑑𝑟
𝑤 (𝑟)) cos (𝑝 (𝑟) + 𝑟𝑠

2
)

− 𝑤 (𝑟) (
𝑑

𝑑𝑟
𝑝 (𝑟)) sin (𝑝 (𝑟) + 𝑟𝑠

2
)

+ 𝑠
2
𝑤 (𝑟) sin (𝑝 (𝑟) + 𝑟𝑠

2
) ,

𝑢
𝑥
= −𝑠𝑤 (𝑟) sin (𝑝 (𝑟) + 𝑟𝑠

2
) ,

V
𝑡
= (

𝑑

𝑑𝑟
𝑤 (𝑟)) sin (𝑝 (𝑟) + 𝑟𝑠

2
)

+ 𝑤 (𝑟) (
𝑑

𝑑𝑟
𝑝 (𝑟)) cos (𝑝 (𝑟) + 𝑟𝑠

2
)

− 𝑠
2
𝑤 (𝑟) cos (𝑝 (𝑟) + 𝑟𝑠

2
) ,

V
𝑥
= 𝑠𝑤 (𝑟) cos (𝑝 (𝑟) + 𝑟𝑠

2
) ,

𝑢
𝑥𝑥

= −

𝑤 (𝑟) sin (𝑝 (𝑟) + 𝑟𝑠
2
)

2𝑟

− 𝑠
2
𝑤 (𝑟) cos (𝑝 (𝑟) + 𝑟𝑠

2
) ,

V
𝑥𝑥

=

𝑤 (𝑟) cos (𝑝 (𝑟) + 𝑟𝑠
2
)

2𝑟

− 𝑠
2
𝑤 (𝑟) sin (𝑝 (𝑟) + 𝑟𝑠

2
) .

(65)

By substituting (64) and (65) into (47), we obtain

(
𝑇
𝑟

3

𝑇
𝑠

3

) = (
𝑟𝑤(𝑟)

2

0
) , (66)

where the reduced conserved form is also given by

𝐷
𝑟
𝑇
𝑟

3
= 0. (67)

The second step of double reduction can be given as

𝑟𝑤(𝑟)
2
= 𝑘 (68)

or equivalently

𝑤(𝑟)
2
=

𝑘

𝑟
, (69)

where 𝑘 is a constant.
Differentiating (68) implicitly with respect to 𝑟 results in

2𝑟𝑤
𝑑

𝑑𝑟
𝑤 (𝑟) + 𝑤(𝑟)

2
= 0 (70)
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or equivalently, after dividing both sides by 2𝑟,

𝑤
𝑑

𝑑𝑟
𝑤 (𝑟) +

𝑤(𝑟)
2

2𝑟
= 0. (71)

The second equation of sys
2
from (36) is given by

𝑢𝑢
𝑡
− VV
𝑡
+ 𝑢V
𝑥𝑥

+ V𝑢
𝑥𝑥

− 2𝑎
2
𝑢V + 4𝑢

3V + 4V3𝑢 = 0.

(72)

After transforming (72) using (64) and (65) and multiplying
both sides by 2𝑟, we get the ODE

𝑑

𝑑𝑟
𝑝 (𝑟) = 2𝑘 − 𝑎

2
. (73)

If we substitute (69) into (73) and then integrate both sides
with respect to 𝑟,

𝑝 (𝑟) = 2𝑘𝑟 − 𝑟𝑎
2
+ 𝑚. (74)

Using (64), we obtain the final solution to our original system
(6) as

𝑢 (𝑡, 𝑥) = √
𝑘

𝑡
cos(2𝑘𝑡 − 𝑡𝑎

2
+ 𝑚 +

𝑥
2

4𝑡
) ,

V (𝑡, 𝑥) = √
𝑘

𝑡
sin(2𝑘𝑡 − 𝑡𝑎

2
+ 𝑚 +

𝑥
2

4𝑡
) ,

(75)

so that 𝑞 = √𝑘/𝑡𝑒
𝑖(2𝑘𝑡−𝑡𝑎

2
+𝑚+𝑥

2
/4𝑡).

4. Conclusion

We have constructed conservation laws for the scalar cubic
Schrödinger equation via the invariance and multiplier
approach based on the well-known result that the Euler-
Lagrange operator annihilates total divergence. Interestingly
enough, the scalar cubic Schrödinger equation admits a
Lagrangian resulting in Noether symmetries. Furthermore,
two cases of double reduction were successfully performed
and exact solutions were calculated and diagrammatically
represented.
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