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This work presents a new approach to the application of the spectral homotopy analysis method (SHAM) in solving non-linear
partial differential equations (PDEs).The proposed approach is based on an innovative idea of seeking solutions that obey a rule of
solution expression that is defined in terms of bivariate Lagrange interpolation polynomials. The applicability and effectiveness of
the expanded SHAM approach are tested on a non-linear PDE that models the problem of unsteady boundary layer flow caused by
an impulsively stretching plate. Numerical simulations are conducted to generate results for the important flow properties such as
the local skin friction. The accuracy of the present results is validated against existing results from the literature and against results
generated using the Keller-box method. The preliminary results from the proposed study indicate that the present method is more
accurate and computationally efficient than more traditional methods used for solving PDEs that describe nonsimilar boundary
layer flow.

1. Introduction

In this work, a new approach for applying the spectral homo-
topy analysis method (SHAM) is used to solve a partial dif-
ferential equation (PDE) thatmodels the problemof unsteady
boundary layer flow caused by an impulsively stretching plate.
The SHAM is a discrete numerical version of the homotopy
analysis method (HAM) that has been widely applied to solve
a wide variety of nonlinear ordinary and partial differential
equations with applications in applied mathematics, physics,
nonlinear mechanics, finance, and engineering. A detailed
systematic description of the HAM and its applications can
be found in two books (and a huge list of references cited
therein) [1, 2] by Liao who is credited with developing the
method.

The SHAM was introduced in [3, 4] and it uses the prin-
ciples of the traditional HAM and combines them with the
Chebyshev spectral collocationmethodwhich is used to solve
the so-called higher order deformation equations. One of the
advantages of the SHAM is that it can accommodate very
complex linear operators in its solution algorithm. In a recent
application of the SHAMon solving PDE based problems [5],

it was observed that the linear operator that gives the best
results is one that is selected as the entire linear part of the
governing PDEs. This is in sharp contrast to the traditional
HAM which can only admit simple ordinary differential
equation based linear differential operators with constant
coefficient in its solution of PDEs describing the unsteady
boundary layer problems of the type discussed in this paper
(see, e.g., [6–17]). In the work of [5], the commonly used
ODE based linear operator was identified as a limitation if the
governing equation was a nonlinear PDE. Partial derivative
linear operators were observed to significantly improve the
accuracy and convergence speed of the SHAM approach
when solving nonlinear partial differential equations. How-
ever, it was also observed that the use of PDE based linear
operators leads to a complicated linear sequence of higher
order deformation equations whose closed form solution was
impossible to find. Consequently, the Chebyshev spectral col-
locationmethod [18, 19] coupledwith a series formof solution
constructed from monomial basis functions ({1, 𝜉, 𝜉2, . . .})
was used to solve the higher order deformation equations.
However, as it will be pointed out in this work, this approach
is only applicable to cases when 𝜉 < 1 and becomes less
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accurate when 𝜉 is very close to 1. Furthermore, the approach
of [5] cannot be used directly to solve evolution equations
of the form 𝑢

𝑡
= 𝐺(𝑢), where 𝑢(𝑥, 𝑡) is the solution and

𝐺(𝑢) is a nonlinear operator which contains all the spatial
derivatives of 𝑢. In this investigation, we propose the use of
Lagrange interpolation polynomials in place of themonomial
basis functions used in [5] for the solution of the PDEs that
describe the unsteady boundary layer flow over an impul-
sively stretching sheet.

The main objective of this work is to introduce an
extended application of the SHAM that uses bivariate
Lagrange interpolation polynomials as an alternative method
for solving nonlinear PDEs. To validate accuracy of the
present SHAM results, the governing PDEs are also solved
using the Keller-box implicit finite difference approach. The
proposed approach is found to be desirable because it is
accurate, computationally efficient, and easy to use.

2. Governing Equations

We consider an unsteady boundary layer developed by an
impulsively stretching plate in a constant pressure viscous
flow. The governing partial differential equations can be
obtained by using the standard stream function formula-
tion in conjunction with the transformations suggested by
Williams III and Rhyne [20]. The dimensionless governing
equation is obtained (see [10, 21, 22] for details) as

𝑓
󸀠󸀠󸀠
+
𝜂

2
(1 − 𝜉) 𝑓

󸀠󸀠
+ 𝜉 (𝑓𝑓

󸀠󸀠
− (𝑓
󸀠
)
2

) − 𝜉 (1 − 𝜉)
𝜕𝑓
󸀠

𝜕𝜉
= 0,

(1)

subject to the boundary conditions

𝑓 (0, 𝜉) = 0, 𝑓
󸀠
(0, 𝜉) = 1, 𝑓

󸀠
(∞, 𝜉) = 0, (2)

where the primes denote differentiation with respect to 𝜂 and
𝜉 ∈ [0, 1] is the dimensionless time-scale defined as

𝜉 = 1 − 𝑒
−𝜏
, 𝜏 = 𝑏𝑡, (3)

with 𝑏 a positive constant and 𝑡 is the time variable. In the
analysis of boundary layer flow problems, a quantity that is
of physical interest is the skin friction which is given in this
model [10, 21, 22], in dimensionless form, as

𝐶
𝑓
Re1/2
𝑥

= 𝜉
−1/2

𝑓
󸀠󸀠
(𝜉, 0) , (4)

where Re
𝑥
is the local Reynolds number.

The governing equation (1) can be considered to have an
initial solution at 𝜉 = 0 which is obtained as a solution of the
equation

𝑓
󸀠󸀠󸀠
+
1

2
𝜂𝑓
󸀠󸀠
= 0,

𝑓 (0, 0) = 0, 𝑓
󸀠
(0, 0) = 1, 𝑓

󸀠
(∞, 0) = 0.

(5)

Solving (5) gives

𝑓 (𝜂, 0) = 𝜂 erfc(
𝜂

2
) +

2

√𝜋
[1 − exp(−

𝜂
2

4
)] , (6)

where erfc(𝜂) is the standard complementary error function
defined by

erfc (𝜂) = 2

√𝜋
∫
∞

𝜂

exp (−𝑧2) 𝑑𝑧. (7)

3. Method of Solution

The solution method employed for solving the governing
nonlinear PDE (1) is summarised in the following steps.

(1) Convert the nonlinear PDE (1) into sequence nonlin-
earODEs using Lagrange polynomial interpolation in
the 𝜉 variable.

(2) Decompose the nonlinear sequence of ODEs into a
sequence of linearODEs using theHomotopy analysis
method (HAM) approach.

(3) Solve the resulting sequence of linear ODEs using the
Chebyshev collocation spectral method.

We approximate the exact solution of 𝑓(𝜂, 𝜉) by a
Lagrange form of polynomial 𝑓𝑀(𝜂, 𝜉) which interpolates
𝑓(𝜂, 𝜉) at the selected points (called collocation points):

0 = 𝜉
0
< 𝜉
1
< 𝜉
2
< ⋅ ⋅ ⋅ < 𝜉

𝑀
= 1. (8)

The approximation 𝑓𝑀(𝜂, 𝜉) has the form

𝑓
𝑀
(𝜂, 𝜉) =

𝑀

∑
𝑗=0

𝑔
𝑗
(𝜂) 𝐿
𝑗
(𝜉) , (9)

where 𝑔
𝑗
(𝜂) = 𝑓

𝑀
(𝜂, 𝜉
𝑗
) and 𝐿

𝑗
(𝜉) are the characteristic

Lagrange cardinal polynomials defined as

𝐿
𝑗
(𝜉) =

𝑀

∏
𝑗=0

𝑗 ̸= 𝑘

𝜉 − 𝜉
𝑘

𝜉
𝑗
− 𝜉
𝑘

(10)

that obey the Kronecker delta equation

𝐿
𝑗
(𝜉
𝑘
) = 𝛿
𝑗𝑘
= {

0 if 𝑗 ̸= 𝑘

1 if 𝑗 = 𝑘.
(11)

The equations for the solution of 𝑔
𝑗
(𝜂) are obtained by

substituting (9) in (1) and requiring that the equation be satis-
fied exactly at the collocation points 𝜉

𝑖
, 𝑖 = 0, 1, 2, . . . ,𝑀. An

important step in the substitution process is the evaluation of
the derivatives of 𝐿

𝑗
(𝜉) with respect to 𝜉. The derivatives can

be evaluated analytically if the interpolating points are chosen
as the Chebyshev-Gauss-Lobatto points 𝜁

𝑖
, such that

𝜉
𝑀−𝑖

=
𝜁
𝑖
+ 1

2
, 𝜁
𝑖
= cos 𝑖𝜋

𝑀
, 𝑖 = 0, 1, 2, . . . ,𝑀. (12)

The values of the derivatives at the Chebyshev-Gauss-Lobatto
points are computed as

𝜕𝑓
󸀠

𝜕𝜉

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉=𝜉𝑖

= 2

𝑀

∑
𝑗=0

𝑑
𝑖,𝑗
𝑔
󸀠
(𝜂, 𝜁
𝑗
) = 2

𝑀

∑
𝑗=0

𝑑
𝑖,𝑗
𝑔
󸀠

𝑗
(𝜂) ,

𝑖 = 0, 1, 2, . . . ,𝑀,

(13)

where 𝑑
𝑖,𝑗
(𝑖, 𝑗 = 0, 1, . . . ,𝑀) are entries of the standard

Chebyshev differentiation matrix d = [𝑑
𝑖,𝑗
] of size (𝑀 + 1) ×

(𝑀 + 1) (see, e.g., [18, 19]).
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Thus, by substituting (9) in (1) and making use of the
spectral differentiation matrices, we obtain

𝑔
󸀠󸀠󸀠

𝑖
+
1

2
(1 − 𝜉

𝑖
) 𝜂𝑔
󸀠󸀠

𝑖

− 2𝜉
𝑖
(1 − 𝜉

𝑖
)

𝑀

∑
𝑗=0

𝑑
𝑖,𝑗
𝑔
󸀠

𝑗
+ 𝜉
𝑖
(𝑔
𝑖
𝑔
󸀠󸀠

𝑖
− (𝑔
󸀠

𝑖
)
2

) = 0,

(14)

subject to the boundary conditions

𝑔
𝑖
(0) = 0, 𝑔

󸀠

𝑖
(0) = 1, 𝑔

󸀠

𝑖
(∞) = 0, 𝑖 = 0, 1, . . . ,𝑀.

(15)

Equations (14) form a sequence of𝑀+ 1 nonlinear ordinary
differential equations that are to be solved for 𝑔

𝑖
subject to the

boundary conditions (15) for 𝑖 = 0, 1, . . . ,𝑀. We remark that,
since the solution for 𝑓(𝜂, 𝜉) is known exactly when 𝜉 = 0

(corresponding to 𝜉
0
= 𝜁
𝑀

= 0), we need only solve (14) up
to𝑀−1.The next step in the solution procedure is the lineari-
sation of nonlinearODE system (14) and (15).This is achieved
by employing the Homotopy analysis method [1, 2].

In the framework of the HAM, we begin by choosing a
suitable linear operator which, as suggested in [3, 4], should
be taken to be the entire linear component of the given dif-
ferential equation. Thus, we write the governing equation as:

N (𝑔
𝑖
) = L (𝑔

𝑖
) + 𝜉
𝑖
(𝑔
𝑖
𝑔
󸀠󸀠

𝑖
− (𝑔
󸀠

𝑖
)
2

)

= 2𝜉
𝑖
(1 − 𝜉

𝑖
) 𝑑
𝑖,𝑀
𝑔
󸀠

𝑀
,

(16)

where 𝑔󸀠
𝑀

is a known function that is obtained as the first
derivative of (6) and the linear and nonlinear operators are
defined as follows:

L (𝑔
𝑖
) = 𝑔
󸀠󸀠󸀠

𝑖
+
𝜂

2
(1 − 𝜉

𝑖
) 𝑔
󸀠󸀠

𝑖
− 2𝜉
𝑖
(1 − 𝜉

𝑖
)

𝑀−1

∑
𝑗=0

𝑑
𝑖𝑗
𝑔
󸀠

𝑗
,

N (𝑔
𝑖
) = L (𝑔

𝑖
) + 𝜉
𝑖
(𝑔
𝑖
𝑔
󸀠󸀠

𝑖
− (𝑔
󸀠

𝑖
)
2

) .

(17)

The next step of the HAM decomposition involves the
construction of the so-called zeroth-order deformation equa-
tion which, for (14), is defined as

(1 − 𝑞)L [𝐺
𝑖
(𝜂; 𝑞) − 𝑔

𝑖,0
(𝜂)]

= 𝑞ℎ {N [𝐺
𝑖
(𝜂; 𝑞)] − 2𝜉

𝑖
(1 − 𝜉

𝑖
) 𝑑
𝑖,𝑀
𝑔
󸀠

𝑀
} ,

(18)

subject to the boundary conditions

𝐺
𝑖
(0; 𝑞) = 0, 𝐺

󸀠

𝑖
(0; 𝑞) = 0, 𝐺

𝑖
(∞; 𝑞) = 0, (19)

where 𝑞 ∈ [0, 1] is an embedding parameter, ℎ denotes
a nonzero convergence controlling auxiliary parameter, and
𝑔
𝑖,0
(𝜂) is the initial approximation of the solution of 𝑔

𝑖
for

𝑖 = 0, 1, 2, . . . ,𝑀 − 1. The initial approximation is chosen in
such a way that

L [𝑔
𝑖,0
] = 2𝜉

𝑖
(1 − 𝜉

𝑖
) 𝑑
𝑖,𝑀
𝑔
󸀠

𝑀
, 𝑔
𝑖,0
(0) = 0,

𝑔
󸀠

𝑖,0
= 1, 𝑔

󸀠

𝑖,0
(∞) = 0.

(20)

We remark that, as it was proposed in the SHAM application
in nonlinear ODEs [3, 4], it is convenient to obtain the initial
guess for the SHAM algorithm as the solution of the equation
formed by considering only the linear components of the
given nonlinear equation. It can be noted from the zeroth-
order deformation equation (18) that as 𝑞 increases from 0
to 1, 𝐺

𝑖
(𝜂; 𝑞) varies from the initial approximation 𝑔

𝑖,0
(𝜂) to

the solution 𝑔
𝑖
(𝜂) of the original equation (14). Expanding

𝐺
𝑖
(𝜂; 𝑞) using Taylor series about 𝑞 gives

𝐺
𝑖
(𝜂; 𝑞) = 𝐺

𝑖
(𝜂; 0) +

+∞

∑
𝑛=1

𝑔
𝑖,𝑛
(𝜂) 𝑞
𝑛
, (21)

where

𝑔
𝑖,𝑛
(𝜂) =

1

𝑛!

𝜕
𝑛
𝐺
𝑖
(𝜂; 𝑞)

𝜕𝑞𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑞=0
. (22)

Thus, since𝐺
𝑖
(𝜂; 1) = 𝑔

𝑖
(𝜂) and𝐺

𝑖
(𝜂; 0) = 𝑔

𝑖,0
(𝜂, 𝜉)we obtain

𝑔
𝑖
(𝜂) = 𝑔

𝑖,0
(𝜂) +

+∞

∑
𝑚=1

𝑔
𝑖,𝑚

(𝜂) . (23)

The series (23) converges when the auxiliary parameter ℎ is
properly chosen.

The functions 𝑔
𝑖,𝑚
, 𝑚 ≥ 1 are obtained as a solution

of higher order deformations equations. These higher order
deformation equations are obtained by differentiating the
zero-order deformation equations (18) 𝑚 times with respect
to 𝑞, then dividing by𝑚!, and finally setting 𝑞 = 0. This gives

L [𝑔
𝑖,𝑚

(𝜂) − 𝜒
𝑚
𝑔
𝑖,𝑚−1

(𝜂)] = ℎ𝑅
𝑖,𝑚
, (24)

subject to the boundary conditions

𝑔
𝑖,𝑚

(0) = 0, 𝑔
󸀠

𝑖,𝑚
(0) = 0, 𝑔

󸀠

𝑖,𝑚
(∞) = 0, (25)

where

𝑅
𝑖,𝑚

= L [𝑔
𝑖,𝑚−1

] − 2 (1 − 𝜒
𝑚
) 𝜉
𝑖
(1 − 𝜉

𝑖
) 𝑑
𝑖,𝑀
𝑔
󸀠

𝑀

+ 𝜉
𝑖

𝑚−1

∑
𝑛=0

[𝑔
𝑖,𝑚−1−𝑛

𝑔
󸀠󸀠

𝑖,𝑛
− 𝑔
󸀠

𝑖,𝑚−1−𝑛
𝑔
󸀠

𝑖,𝑛
] ,

𝜒
𝑚
= {

0, 𝑚 ≤ 1,

1, 𝑚 > 1.

(26)

The solution for the initial approximation 𝑔
𝑖,0
and higher

order deformation equation giving 𝑔
𝑖,𝑚

are obtained using
the Chebyshev spectral collocation method which is applied
independently in the 𝜂 direction using 𝑁 + 1 Chebyshev-
Gauss-Lobatto points 0 = 𝜂

0
< 𝜂
1
< ⋅ ⋅ ⋅ < 𝜂

𝑁
= 𝜂
𝑒
defined

as

𝜂
𝑁−𝑟

= 𝜂
𝑒

𝜂
𝑟
+ 1

2
, 𝜂
𝑟
= cos 𝑟𝜋

𝑁
, 𝑟 = 0, 1, 2, . . . , 𝑁, (27)

where 𝜂
𝑒
is a finite value that is chosen to be sufficiently large

to approximate the conditions at ∞. The derivatives with
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respect to 𝜂 are defined in terms of the Chebyshev differenti-
ation matrix as

𝑑
𝑝
𝑔
𝑖,𝑚

𝑑𝜂𝑝

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜂=𝜂𝑟

= (
2

𝜂
𝑒

)

𝑝 𝑁

∑
𝑠=0

𝐷
𝑝

𝑟,𝑠
𝑔
𝑖,𝑚

(𝜂
𝑠
) = D𝑝G

𝑖,𝑚
,

𝑟 = 0, 1, 2, . . . , 𝑁,

(28)

where 𝑝 is the order of the derivative,D = (2/𝜂
𝑒
)[𝐷
𝑟,𝑠
] (𝑟, 𝑠 =

0, 1, 2, . . . , 𝑁) with [𝐷
𝑟,𝑠
] being an (𝑁+1)×(𝑁+1)Chebyshev

derivative matrix, and the vector G
𝑖,𝑚

is defined as

G
𝑖,𝑚

= [𝑔
𝑖,𝑚

(𝜂
0
) , 𝑔
𝑖,𝑚

(𝜂
1
) , . . . , 𝑔

𝑖,𝑚
(𝜂
𝑁
)]
𝑡

. (29)

Thus substituting (28) in the equation that gives the initial
approximation (20) gives the following𝑀(𝑁+1)×𝑀(𝑁+1)

matrix system:

[
[
[
[

[

𝐴
0,0

𝐴
0,1

⋅ ⋅ ⋅ 𝐴
0,𝑀−1

𝐴
1,0

𝐴
1,1

⋅ ⋅ ⋅ 𝐴
1,𝑀−1

...
... d

...
𝐴
𝑀−1,0

𝐴
𝑀−1,1

⋅ ⋅ ⋅ 𝐴
𝑀−1,𝑀−1

]
]
]
]

]

[
[
[
[

[

G
0,0

G
1,0

...
G
𝑀−1,0

]
]
]
]

]

=

[
[
[
[

[

R
0,0

R
1,0

...
R
𝑀−1,0

]
]
]
]

]

,

(30)

where

𝐴
𝑖,𝑖 = D3 + 1

2
(1 − 𝜉

𝑖
) 𝜂D2 − 2𝜉

𝑖
(1 − 𝜉

𝑖
) 𝑑
𝑖,𝑖
D,

𝑖 = 0, 1, . . . ,𝑀 − 1,

(31)

𝐴
𝑖,𝑗
= −2𝜉

𝑖
(1 − 𝜉

𝑖
) 𝑑
𝑖,𝑗
D, when 𝑖 ̸= 𝑗, (32)

R
𝑖,0
= 2𝜉
𝑖
(1 − 𝜉

𝑖
) 𝑑
𝑖,𝑀

DG
𝑀
, 𝑖 = 0, 1, . . . ,𝑀 − 1, (33)

𝜂 = diag ([𝜂
0
, 𝜂
1
, . . . , 𝜂

𝑁
]
𝑡

) . (34)

Solving equation (30) gives the initial approximation
𝑓
0
(𝜂, 𝜉) which is computed as

𝑓
0
(𝜂, 𝜉) ≈ 𝑓

𝑀

0
(𝜂, 𝜉) =

𝑀

∑
𝑗=0

𝑔
𝑗,0
(𝜂) 𝐿
𝑗
(𝜉) . (35)

To obtain the approximate solution for 𝑓
𝑚
(𝜂, 𝜉), (for 𝑚 ≥ 1)

the spectral collocation method, with discretisation in the 𝜂
direction, is applied to (24). This gives the following𝑀(𝑁 +

1) ×𝑀(𝑁 + 1)matrix system:

[
[
[
[

[

𝐴
0,0

𝐴
0,1

⋅ ⋅ ⋅ 𝐴
0,𝑀−1

𝐴
1,0

𝐴
1,1

⋅ ⋅ ⋅ 𝐴
1,𝑀−1

...
... d

...
𝐴
𝑀−1,0

𝐴
𝑀−1,1

⋅ ⋅ ⋅ 𝐴
𝑀−1,𝑀−1

]
]
]
]

]

[
[
[
[

[

G
0,𝑚

G
1,𝑚

...
G
𝑀−1,𝑚

]
]
]
]

]

=

[
[
[
[

[

R
0,𝑚

R
1,𝑚

...
R
𝑀−1,𝑚

]
]
]
]

]

,

(36)

where 𝐴
𝑖,𝑖
and 𝐴

𝑖,𝑗
are as defined in (31) and (32) and

R
𝑖,𝑚

= (ℎ + 𝜒
𝑚
)(D3G

𝑖,𝑚−1
+
1

2
(1 − 𝜉

𝑖
) 𝜂D2G

𝑖,𝑚−1

−2𝜉
𝑖
(1 − 𝜉

𝑖
)

𝑀−1

∑
𝑗=0

𝑑
𝑖,𝑗
DG
𝑗,𝑚−1

)

− 2 (1 − 𝜒
𝑚
) ℎ𝜉
𝑖
(1 − 𝜉

𝑖
) 𝑑
𝑖,𝑀

DG
𝑀

+ 𝜉
𝑖
ℎ

𝑚−1

∑
𝑛=0

[G
𝑖,𝑚−1−𝑛

(D2G
𝑖,𝑛
)

− (DG
𝑖,𝑚−1−𝑛

) (DG
𝑖,𝑛
) ] .

(37)

The above procedure can easily be extended to any non-
linear partial differential equation system. In the context of
theHAMapproach the steps involved can be succinctly stated
in terms of the HAM jargon as simply looking for a solution
that obeys the following rule of solution expression:

+∞

∑
𝑚=0

𝑁

∑
𝑖=0

𝑀

∑
𝑗=0

𝑓
𝑀,𝑁

𝑚
(𝜂
𝑖
, 𝜉
𝑗
) 𝐿
𝑖
(𝜂) 𝐿
𝑗
(𝜉) , (38)

where 𝑓𝑀,𝑁
𝑚

(𝜂, 𝜉) is a Lagrange form of polynomial which
interpolates 𝑓

𝑚
(𝜂, 𝜉) independently at selected points in both

the 𝜂 and 𝜉 directions defined as

{𝜂
𝑖
} = {cos(𝜋𝑖

𝑁
)}
𝑁

𝑖=0

, {𝜉
𝑗
} = {cos(

𝜋𝑗

𝑀
)}

𝑀

𝑗=0

. (39)

We remark that both 𝜂 and 𝜉 are defined between [−1, 1] and
suitable linear transformations are employed to transform the
original domain of 𝜂 and 𝜉 to [−1, 1].

4. Results and Discussion

In this section we present the numerical solutions of the gov-
erning partial differential equations (1) that were computed
using the proposed bivariate spectral homotopy analysis
method. Starting from the initial analytical solutions at 𝜉 = 0

(corresponding to 𝜏 = 0), the SHAM was used to generate
results up to solutions near the steady state values at 𝜉 = 1

(corresponding to 𝜏 → ∞). The accuracy of the computed
SHAM approximate results was confirmed against numerical
results obtained by using the popular Keller-box implicit
finite difference method as described by [23]. The Keller-box
method is known to be accurate, fast, and easier to program
for boundary layer flow problems of the type discussed in this
work. The Keller-box method is still the preferred solution
method for most researchers (see, e.g., [24, 25]). The algo-
rithm of the Keller-box method begins with the reduction
of the governing nonlinear PDEs into a system of first-order
equations that are discretized using central differences. The
nonlinear algebraic difference equations are linearised using
Newton’s method and written in matrix-vector form. The
linear matrix systems are solved in an efficient manner using
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a block-tridiagonal-elimination technique. The grid spacing
in both the 𝜂- and 𝜉-direction is carefully selected to ensure
that the Keller-box computations yield consistent results for
the governing velocity and temperature distributions to a
convergence level of at least 10−7. On the other hand, the
SHAM was implemented with 𝑁 = 60 collocation points in
the 𝜂 variable. Furthermore, the finite value used to approxi-
mate the boundary conditions at infinity was set to be 𝜂

∞
=

30.
Using finite terms of the SHAM series we define 𝐾th

order approximation at the collocation points 𝜂
𝑖
and 𝜉
𝑗
(for

𝑖 = 0, 1, 2, . . . , 𝑁 and 𝑗 = 0, 1, 2, . . . ,𝑀) as

𝑓 (𝜂, 𝜉) ≈ 𝑓
0
(𝜂, 𝜉) +

𝐾

∑
𝑚=1

𝑓
𝑚
(𝜂, 𝜉) =

𝐾

∑
𝑚=0

𝑁

∑
𝑖=0

𝑀

∑
𝑗=0

𝑓
𝑀,𝑁

𝑚
(𝜂
𝑖
, 𝜉
𝑗
) .

(40)

Assuming that 𝐹(𝜂
𝑖
, 𝜉
𝑗
) is the SHAM approximate solution

obtained using (40) at the collocation (grid) points, the resid-
ual error is defined as

Res (𝑓) = N [𝐹 (𝜂
𝑖
, 𝜉
𝑗
; ℎ)] , (41)

whereN is defined as

N (𝑓) =
𝜕
3
𝑓

𝜕𝜂3
+
1

2
(1 − 𝜉) 𝜂

𝜕
2
𝑓

𝜕𝜂2

− 𝜉 (1 − 𝜉)
𝜕
2
𝑓

𝜕𝜉𝜕𝜂
− 𝜉 [𝑓

𝜕
2
𝑓

𝜕𝜂2
− (

𝜕𝑓

𝜕𝜂
)

2

] .

(42)

A crucial factor in obtaining accurate and converging
SHAMseries solutions is the selection of suitable convergence
controlling parameter ℎ. The infinity norm

𝐸
𝑟
(ℎ) =

󵄩󵄩󵄩󵄩N[𝐹(𝜂
𝑖
, 𝜉; ℎ)]

󵄩󵄩󵄩󵄩∞ (43)

of the residual error at particular values of 𝜉was used to iden-
tify the optimal value of ℎ that gives the best accuracy. Figure 1
is an illustration of a typical residual error curve that can be
used to calculate the optimal value of ℎ when 𝜉 = 0.98. The
optimal values of ℎ are chosen to be the clearly defined min-
imum of the residual curve. It can be seen from Figure 1 that
the optimal ℎ value lies in the range −0.6 < ℎ < −0.5. We also
note that the residual error decreases with an increase in the
number of collocation (grid) points (𝑀) used in interpolating
in the 𝜉 direction.

Figure 2 gives the residual error in the whole range of 𝜉
using a fixed value of ℎ and different collocation points𝑀 in
the 𝜉 direction. We remark that similar curves are obtained
for any fixed value of ℎ, but, for illustration purposes,ℎ = −0.5

was used in Figure 2. It can be seen from the figure that the
error decreases with an increase in the number of collocation
points used. Another interesting observation to emerge from
Figure 2 is that the residual error appears to be nearly uniform
for most parts of the domain of 𝜉. This result is what makes
the present SHAM approach with interpolation better than
the SHAM version proposed in [5] for the solution of PDEs.
We remark that convergence of the SHAMversion used in [5]
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Figure 1: Residual error curve for locating optimal ℎ when 𝜉 = 0.98

for𝑀 = 5, 10, 15, 20, 25, 30.
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Figure 2: Residual error against 𝜉 for𝑀 = 5, 10, 15, 20, 25, 30 when
ℎ = −0.5.

was seen to significantly slow down when 𝜉 was near 1. It can
be clearly seen from Figure 2 that the present approach does
not suffer from the same limitation.

In Table 1, the results for the skin friction 𝑓
󸀠󸀠
(0, 𝜉) are

given for different values of time 𝜉. Table 1 also gives the num-
ber of collocation points (𝑀) and the computational time
required to obtain a solution that is consistent with at least six
decimal places. The SHAM results match the Keller-box
numerical results exactly for all values of 𝜉. It can be observed
from this table that converged solutions are reached using
small number of collocation points𝑀 for the selected values
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Table 1: Comparison between the SHAM and Keller-box numerical
values of the skin friction 𝑓󸀠󸀠(0, 𝜉) at different values of time 𝜉 when
ℎ = −0.6.

𝜉 𝑀
SHAM Keller-box

𝑓
󸀠󸀠
(0, 𝜉) Time (sec) 𝑓

󸀠󸀠
(0, 𝜉) Time (sec)

0.1 2 −0.610468 0.02 −0.610468 3.96
0.3 4 −0.701267 0.05 −0.701267 11.45
0.5 4 −0.789828 0.05 −0.789828 18.78
0.7 4 −0.876267 0.05 −0.876266 26.17
0.8 4 −0.918701 0.05 −0.918701 29.88
0.9 8 −0.960538 0.2 −0.960538 34.05

of 𝜉. In addition, from the comparison, of the computational
times, it is clear that the proposed SHAM approach is more
computationally efficient in terms of the amount of time and
it takes the method to give the desired results. Consequently,
it can be inferred fromTable 1 that the SHAM ismore efficient
than the Keller-box in computing an accurate solution for (1).
It is worthmentioning that the apparent computational speed
of the proposed SHAM can be explained by the fact that,
unlike the Keller-box and other numerical methods, very few
grid points in both the 𝜂 and 𝜉 directions are required to give
very accurate results.

5. Conclusion

In this paper, a new approach based on the spectral homotopy
analysis method with bivariate Lagrange interpolating poly-
nomials was introduced for the solution of partial differential
equations. The applicability of the proposed method was
tested on the problem of unsteady boundary layer flows
caused by an impulsively stretching sheet. A residual error
analysis was conducted in order to assess the accuracy of the
present method. Computational efficiency of themethod was
demonstrated by comparing with results obtained using the
Keller-Box implicit finite differencemethod. It was found that
the proposed SHAM approach was significantly much faster
than the Keller-box method.The numerical results presented
in this study clearly demonstrate the potential of the proposed
bivariate SHAM approach for the simulation of PDEs with
high efficiency and accuracy. In future studies it would be
interesting to explore the use of this method in other classes
of nonlinear PDEs.
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