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Many modern visual tracking algorithms incorporate spatial pooling, max pooling, or average pooling, which is to achieve
invariance to feature transformations and better robustness to occlusion, illumination change, and position variation. In this
paper, max-average pooling method and Weight-selection strategy are proposed with a hybrid framework, which is combined
with sparse representation and particle filter, to exploit the spatial information of an object and make good compromises to ensure
the correctness of the results in this framework. Challenges can be well considered by the proposed algorithm. Experimental results
demonstrate the effectiveness and robustness of the proposed algorithm compared with the state-of-the-art methods on challenging

sequences.

1. Introduction

Visual tracking has a wide range of applications in computer
vision, such as space visual surveillance, driver assistance
system, and visual navigation. The challenges in designing a
robust visual tracking algorithm are caused by the presence
of occlusion, background clutter, and illumination change.
Recently, many visual tracking algorithms have been
developed to tackle these challenges using sparsity of the
image. They usually combine other sophisticated methods to
track the target object. Examples are sparse representation
combined with learning [1-3], mean shift [4-6], Bayesian
estimation [7, 8], and particle filter [9]. However, they
often ignore the pooling method and just take the max
pooling or average pooling method without analyzing it; for
example, Ross et al. [3] do not refer to the pooling method
and employ the max pooling directly. Actually, the pooling
method, as an indispensable step in sparse representation,
does have an important influence on the performance of
the algorithm. For instance, the pooling type is shown to
matter more than the careful unsupervised pretraining of
features for classification problems with little training data,
and good results with random features are obtained when
appropriate pooling is used [10]. Yang et al. [11] report much

better classification performance on several objects or scene
classification benchmarks when using the maximum value of
a feature rather than its average to summarize its activity over
a region of interest.

However, in spite of the successes of the previous work,
there still exist many limitations. As discussed by Boureau
et al. [12], the conditions max pooling and average pooling
work in are different; for the former, it is the soft coding
methods upon local descriptors, and, for the other, it is a
hard quantization method. Boureau et al. [13] discuss in the
area of visual recognition the differences of max pooling and
average pooling and explain the link between the sample
cardinality in a spatial pool and also provide results that max
pooling method is better than the average pooling method
through experiments except the resolution in visual tracking.
In this paper, we propose using max pooling and average
pooling together in sparse representation for the first stage of
the algorithm, called max-average pooling method. We will
discuss this method in Section 2.

Another popular tracking method is the sequential
Monte Carlo methods, also known as particle filters, which
recursively estimate target posterior with discrete sample-
weight pairs in a dynamic Bayesian framework. The basic
idea was introduced by Sarkar [14] and developed into
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various improved versions over the last decade. Particle filter
performs well in visual areas. It is usually merged with other
algorithms to overcome the complicated situation, such as
the color visual spectrum and thermal spectrum images are
fused in a joint sparse representation, which constructs the
particle filter [9]. Unfortunately, by the limitation of inferred,
drift will not be avoided when the similar obstacle appears.
Ghosh and Manjunath [15] considers the process of learning
the representation of each particle as an exclusive task to
increase the robustness of the tracker and obtains good
results; however, the speed of the algorithm is decreased
greatly, and the particle degeneration still exists.

In our studies, we found that there are some similarities
between sparse representation and particle filter: (1) the
assumption is applied that the current tracking is based on
correct result from the last frame, which also means that the
result from every tracking is correct; (2) before the analysis
of the current frame, they both sample particles; (3) they
compute the weights for the particles to choose the best one.
We employ the similarities to propose a novel framework
for robust object tracking, which merges the same steps
of sparse representation and particle filter. The proposed
framework samples particles around the result tracked from
the last frame, avoiding the particle degeneration. The two
algorithms are illustrated in Figure 1(a) and the proposed
framework is shown in Figure 1(b), where the W-S strategy
equals Weight-Selection (W-S) strategy; it is proposed to
balance the tracking to be more robust and correct. The W-S
strategy will be hashed out in Section 4.

In this paper, we introduce a robust tracking method
using a hybrid framework combined with sparse coding and
particle filter, for which we propose max-average pooling to
improve the traditional pooling method, and the Weight-
Selection strategy to avoid drift during object tracking. The
rest of the paper is organized as follows. Section 2 introduces
max-average pooling method; Section 3 describes the particle
filter; details on the framework of the proposed algorithm
and analysis of the proposed Weight-Selection strategy are
discussed in Section 4. Subsequently, the experiments are
explained in Section 5. In Section 6, the summary of the
paper is presented.

2. Sparse Representation with
Max-Average Pooling

A typical assumption underlying sparse representation is that
the tracking result in the last frame is enough accurate that
the tracker could utilize it for the current prediction. Based
on this assumption, we draw particles around the last result,
the center point of the bounding box from the last frame,
and make the dispersion of particles conforms to normal
distribution. In this case, the particles will disperse around
the result of the last frame.

The local patches within the target region can be repre-
sented as the linear combination of a few basic elements of
the dictionary with the sparsity assumption. For the data in
the current image x; € X, the set of the basis vector can be
obtained by the following optimal formula:
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where a unit L2-norm constraint on wy, is typically applied
to avoid trivial solutions, D denotes the dictionary and w; =
{w;1, Wy, ..., w;}, which contains many zeros to indicate
the sparsity of the image, denotes the importance of the ith
column in the dictionary D. Normally, the dictionary D is
an over-complete basis set; that is, K > N. The parameter
A > 0 is a scalar regularization parameter that balances
the tradeoft between reconstruction error and sparsity. The
reconstruction error indicates the reliability of the represen-
tation. Note that there are two unknown parameters W and
D. The purpose of this section is to obtain the weight value
W, and the dictionary should be learned first.

In many tracking methods, the earlier tracking results are
stored longer than the newly acquired results since they are
assumed to be more accurate [8, 16, 17]. Accordingly, we take
the objects from the first ten tracking results as the initial
dictionary to solve the optimization problem. Firstly, with the
help of the KNN algorithm, which is also called k nearest
neighbor algorithm, we track the first ten frames to obtain the
objects correctly and quickly. For the object tracked from the
frames, we make affine transformations and save them into
the dictionary. Finally, the dictionary is constituted as (width
# height) = 10.

The average pooling scheme for histogram generation
used by He et al. [18] is efficient, yet the strategy may miss the
spatial information of each patch. For example, if we change
the location of the left part and the right part of a human face
image, the average pooling scheme neglects the exchange.
While it is proven by Carneiro and Nascimento [19] that
compared with average pooling the method of max pooling
is more accurate, meanwhile, max pooling will be more
suitable for the sufficient sparse conditions [13]. Combining
the advantages of the two pooling methods, we propose max-
average pooling method to solve the above problems:

mMax W;q, Wiy ooy Wiy oo o, W;
wi: { il i2 ij 1N}) j=1,2,...,N,
zwij
(2

where w; denotes the final ith pooling result, which is
produced by max-average pooling method. The proposed
pooling method has two steps: maximizing of the weights
in vector w; and then averaging it. The denominator in
formula (2) indicates the first step of calculating the max-
imization of the weights, and the numerator is the sum
of {w;1, W, ..., W, ..., w;n}, which indicates the averaging
step. Utilizing the proposed max-average pooling method, we
make reconstruction and calculate errors of the reconstruc-
tion with patches, the formula used for that is as follows:

error = Z [l c; - wiD”Z, 3)

where error is a vector of 1 with N and N is the number of
the particles. Finally, we choose the minimum one as the goal
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FIGURE 1: The illustrations for the algorithmic procedures and the proposed framework: (a) algorithm procedures of sparse representation

and particle filter and (b) the proposed framework.

of our algorithm, which corresponds to the tracking result of
the current frame. The algorithm process for one frame is as
shown in the Algorithm 1.

3. Particle Filter

The particle filter is a Bayesian sequential importance sam-
pling technique for estimating the posterior distribution of
state variables characterizing a dynamic system [14].

Let X, denote the state variable of the object at time t.
The procedure of particle filter is iterative, where the initial
step is to sample N particles from a set of previous particles
X,_, proportionally to their likelihood {w}_,} according to
the distribution p(x, | x,_;,2,,). Subsequently, a new
state X, is generated. And that is the traditional sampling
means. However, the problem is that the new particles are
always affected by the likelihood {w;_,}, which is obtained
from the last state t+ — 1. That situation is called particle
degeneracy which causes most of the particles concentrate
the positions with bigger weights. This condition is easy
to cause drift. In this paper, the distribution of particles
is shared with sparse representation, avoiding the weight
change caused by the particle degeneracy. The reason is that
there is a similar assumption between sparse representation
and particle filters, which is that the tracking results before
state ¢ are all sufficiently exact that the subsequent states
utilize their results for prediction.

To accomplish the tracking, we compute and update the
importance weight of each particle. The posterior p(x, |
Z14_1) is approximated by the finite set of N samples with
importance weights w}. As is well known, if the particle x; is
the one the tracker predicts, the background information in
its bounding box will be less than the others and the weight is
bigger. Accordingly, we take two steps to calculate the weight
w} of each particle. An extra bounding box is settled in the
original one, which is shown in Figure 2. The weights of the
particles are updated separately as

i i Pj (zt | xi)pj (x; | x;—l)

tj — %1

>

qj (% | %1215 21) (4)
i=1,2,..,N, j=1.2,

where x,,_; denotes the random samples forming posterior
probability distribution, N denotes the number of the sam-
ples, z;,, denotes the observed values from the beginning to
timet, xi denotes the ith sample at time £, wi_l denotes the ith
weight vector at time t —1 (the last frame), q(x; | x,,_,,2,) =
p(x, | x,_;) is an importance distribution, and the weights
become the observation likelihood p(z, | x,). Then, one
weight is multiplied by the other for the final value. Consider

i i i
Wy =Wy - Wy (5)

The above idea can be illustrated in Figure 2. The weights
are calculated with two separated parts which are called
bounding-1 and bounding-2. The width of bounding-2 is
a quarter of bounding-1 and the height is an eighth of
bounding-1. Note that bounding-1 is much bigger than
bounding-2. The improvement for the calculation of weights
will increase the accuracy of the prediction, especially as
the position of object changes; bounding-1 will conclude the
changes of object.

4. Tracking with the Proposed Algorithm

4.1. Sparse Representation Jointed with Particle Filter. Sparse
representation and particle filter both have advantages
and disadvantages of their own. The sparse representation
method is more stable for tracking and able to consider
the spatial information, while the particle filter has stronger
adaptability for nonlinear and non-Gaussian distribution of
continuous system than the other state-of-the-art methods.
Nonetheless, for the sparse representation method, wrong
reconstruction happens occasionally and it is the fatal prob-
lem which could cause drift when shape distortion occurs,
while particle degeneration is also hard to solve for the
particle filter.
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A, and the number of particles N.

(5) Compute the error of reconstruction:

Input: An image from the video sequences, the center point of the bounding box, the noise coefficient

(1) Sample N particles around the initial point of the bounding box, and the distribution of the particles
is the normal distribution, which is implemented by the function randn.

(2) Initialize the dictionary using tracking results of the first ten frames.

(3) Compute the formula to obtain the sparse codes: miny,, Z,N:1 [l - wiD”2 + A |w,]

Note that ||di|| < land k = 1,2,...,K, where K is the size of the patch’ width by height.
(4) Pool the features by computing: w; = (max {w;;, Wy, ..., Wij, - ., Wiy D/ (X wy))

2
error = Y |x; - w,D|
(6) Finally, obtain the particle which is corresponding to the minimum error.

AvrGoriTHM I: The proposed algorithm with max-average pooling.
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FIGURE 2: Two bounding boxes for weights.

In this paper, we combine the two methods for our
tracking. Under the framework of particle filter, we employ
the sampling method of sparse representation in the phases
of initialization for each frame. We solve the optimal math-
ematical problem by using a popular tool called SPASM
library [20] with the dictionary obtained from the first
ten frames. The pooling method is used as mentioned in
Section 2. Through this, we obtain one result about the object.
Subsequently, we compute the weights of all particles sampled
at the sparse phase using weight computation method in
particle filter, and it also generates a tracking result. Actually,
two tracking results are generated from the above phases, and
one should be chosen to be the tracking result. The solution
will be proposed in the next section.

4.2. Weight-Selection Strategy. Observing the two tracking
procedures, we found that the results of sparse representation
are more accurate than those of particle filter. However,
during the tracking using the above method, there have been
always some results jumping far away from an object; for
example, Figure 3 shows this situation in the 95th frame and
96th frame: the green point denotes the result of sparse repre-
sentation (SR); the yellow point denotes the result of particle
filter (PF); the blue points denote the sampled particles; and
the red bounding box is the tracking result. Note that the

result of sparse representation suddenly “jumps” to the point
away from the object when the next frame comes, while the
one of particle filter just stays around the object though it
is not exact enough. It is obvious that the tracking result is
wrong, which means that the tracker drifts.

Analyzing the problem above, the proposed max-average
pooling method for the sparse reconstruction sometimes
is not sufficiently accurate. This problem also exists in
max pooling and average pooling method. The primary
reason for tracking inaccuracy, even for the drift, is the
sparse reconstruction error. Figure 4(a) describes well the
relationship between sparse reconstruction errors and the
image sequences as occlusion comes. In image sequences, the
occlusions occur from about the 63rd to the 88th frame and
the 93rd to 150th frame. In this figure, the two-frame sections
have the highest reconstruction errors, which indicate that
when the occlusion comes, reconstruction errors will be high
enough which can influence the results of object tracking.
After the occlusions, the errors drop down and stay below 0.1
at almost the remaining time.

To lower the impact caused by the reconstruction errors,
Zhang et al. [16] employ a regularized variant of the L1
norm to reconstruction of sparse error; Cong et al. [17]
propose a criterion, SRC (sparse representation cost), to
detect abnormal event; He et al. [18] discuss the impacts
of reconstruction errors for signal classification. Although
these methods improve the accuracy of the tracker, they
increase the algorithm complexity. For the consideration
of the tracking speed and the advantages of particle filter
for tracking, we propose Weight-Selection (W-S) strategy to
solve the above problem by choosing different results for
different track conditions.

We compute the histograms in the bounding boxes which
take tracking points as centers. Comparing the histograms,
respectively, with the result in the last frame, we choose the
one that has smaller distance. Let A to be a weight to remedy
the inaccuracy cost by the sparse representation error. If the
sparse result is similar to the last result, we will make no
difference; otherwise, calculate the result as

result = A x sparse + (1 — A) particle, (6)

where sparse denotes the tracking results of sparse represen-
tation method, particle denotes results of particle filter, and
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(a) The 95th frame

(b) The 96th frame

FIGURE 3: Tracking results in ThreePostShop2cor with the problem (green: result of SR, yellow: result of PE, blue: the sampled particles, and

red: the final tracking result).

A is set to be 0.3. Here, we do not put the particle result
to replace sparse representation directly since the particle
result is also not accurate at all the time. We take compromise
to improve the predictive validity and achieve better data
processing. When object distortion happens, the chosen
weight refrains from drifting and enhances the temporary
accuracy of the tracking.

Through W-S strategy, we improve the performance of
our tracker. The working situation about W-S strategy is
shown in Figure 4(b), which is an experiment of ThreeP-
astShop2cor sequence. The value switches between 1 and
2 to make different decisions. If the value is 1, it means
that the reconstruction error is so small that the current
prediction of sparse representation is more similar to the
former result and works as well as the tracking result;
otherwise, the reconstruction error is incorrect and the final
result is obtained by (6). Note that it also switches from 1 to
2 or from 2 to 1 even after the occlusions. That is because
W-S strategy makes a positive impact on tracking even after
the occlusions to decrease the effect of pose and position
changing.

We demonstrate the proposed method on ThreePost-
Shop2cor sequence. The results of the 95th and 96th frames
are shown in Figure 5: the green point denotes the result of
sparse representation (SR), the yellow point denotes the result
of particle filter (PF), the blue points denote the sampled
particles, and the red bounding box denotes the final tracking
result. Note that after using the Weight-Selection strategy, we
correct the jump error and improve the performance of our
tracker.

4.3. Tracking Algorithm with the Proposed Method. In the
following, we provide a summary of the proposed tracking
algorithm.

(1) Locate the target in the first frame, either manually
or by using an automated detector, and use a single
particle and a bounding box to indicate this location.

(2) Initialize the dictionary with the results by tracking
the target object in the first ten frames using KNN
method.

(3) Advance to the next frame. Draw particles according
to the dynamical model.

(4) For each particle, extract the corresponding window
from the current frame, calculate its reconstruction
error using max-average pooling, and choose the
particle with the minimum error to be the temporary
result of sparse representation method. At the same
time, calculate weights of every particle and choose
the best one as the result of particle filter according to
the particle filter principle.

(5) Utilize Weight-Selection strategy and select the best
one to be the final result.

(6) Go to Step (3).

Our tracker works as a collector at the very begin-
ning when it initializes the dictionary, which is also called
templates based on tracker. Between the accuracy and the
speed of the algorithm, there is actually a tradeoff. In the
next section, we will discuss the implementation issues and
analyze the experimental results.

5. Implementation and Experiments

The program of the proposed algorithm is implemented
in Matlab r2012b and runs at about 1.5 frames per second
on an Intel Core 3.2GHz with 4 GB memory. We apply
the affine transformation with six parameters to model the
target motion between two consecutive frames. The sparse
coding problem is solved with the SPAMS package [20]
and VLFeat open source library (http://www.vlfeat.org/). For
each sequence, we set 600 particles for every frame, and the
location of the target object is manually labeled in the first
frame. To make the scenario a bit more realistic and more
challenging, we use the same parameters for all the sequence;
for instance, the parameter A used in the W-S strategy is set
to be 0.3.

We evaluate the performance of the proposed
algorithm on three different kinds of challenging video
sequences from the previous work [8], CAVIAR data set
(http://homepages.inf.ed.ac.uk/rbf/ CAVIAR/) and our own.
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The challenges of these sequences include factors that are
generally considered to be of importance by the scholars,
such as occlusion, illumination change, pose/scale variation,
and background clutter. The compared algorithms include
two state-of-the-art tracking methods: tracking-learning-
detection (TLD) tracker [2] and incremental learning for
visual tracking (ILVT) tracker [3], which are provided by the
authors used for fair comparison. For a better comparison,
the parameters for the comparison algorithms and the
proposed algorithm are set to be the same, which will ensure
that the conditions are the same for all of the algorithms to
track the object.

5.1. Quantitative Evaluation. Evaluation criteria are em-
ployed to quantitatively assess the performance of the

trackers. Figure 6 presents the relative position errors, which
is calculated (in pixels) against the manually labeled ground
truth. Let

1 N
error = ﬁZ\/(xM,i - xgt,i)z + (i — ygt,i)z’ 7)
i=1

where error denotes the relative position error of the tracking
result (X, ¥5r,) and the ground truth (xg;, ¥, ;), M means
the tracking algorithm M, N denotes the frame number of
the tested video sequences and i indicates the ith frame. The
detail of the errors is shown in Figure 6.

Opverall, the proposed algorithm performs well against the
state-of-the-art methods. It is able to overcome the influences
of the occlusions, illumination change, and pose variation.
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(a) The 95th frame

(b) The 96th frame

FIGURE 5: Tracking results in ThreePostShop2cor with Weight-Selection strategy (green: result of SR, yellow: result of PE, blue: the sampled

particles, and red: the final tracking result).

The performance of our method can be attributed to the
efficient pooling method and W-S strategy.

5.2. Qualitative Evaluation. The first sequence, ThreePast-
Shop2cor, has been used in several recent tracking papers
[1, 8], and it presents the challenging issues such as occlusions
and scale and pose changes. Especially for occlusions, the
sequence shows a process of no occlusion, presenting occlu-
sion and the occlusion disappeared, and the occlusions are
from the 63rd to the 88th frame and the 93rd to 150th frame.
The occlusion happens twice and the two persons nearby
are similar to the object, especially the one on the right.
In Figure 7, we use a red rectangle to denote our proposed
method, blue to TLD method and green to ILVT method.
Note that during the object (the person) moving from the
close to the distant, the comparison methods begin to drift
or deviate from the object, while the proposed method is
always able to track the object; even occlusions appear twice.
The TLD tracker shows inaccuracy at about the 70th frame,
although its rectangle (blue) includes the object; it contains
too much background information, which could lead to error
for the computation of the similarity between two histograms
and make the forward or backward error not exact. ILVT
method occurs incorrectly as the red person blocks the target
object at about the 63rd frame. The reason is that, in the 78th
frame, the object disappeared temporally; at the same time,
ILVT tracker could not search for it and make the new error
information be the target object. For the next frames, ILVT
method drifts completely. In the proposed method, max-
average pooling not only considers the space construction
but also chooses the best patches which could represent the
characters of the object. The proposed tracker is able to track
the object correctly and exactly; even the occlusions occur
twice.

The second sequence, Car4, shown in Figure 6, contains
a car driven in the sunlight, and, in the middle of the
sequence, the shadow changes appearance of the car for a
short time. The illumination change will disturb the tracking
because it makes the appearance and texture of the object

different. Note that before the shadow came, the trackers
could always track the object, though TLD method contains
more background information than ILVT method and the
proposed method. As the shadow comes, TLD method is not
able to maintain the earlier situation. It loses the object and
the drift shows up. At the end of the sequence, TLD method is
able to recapture the target after drifting into the background,
but with higher tracking errors and lower success rate
(Figure 8).

We notice that, during the whole tracking, ILVT method
and the proposed method track the object all the time. The
proposed method is not as steady as ILVT method. The
reason is the influence of “jump.” As long as it jumps to the
place far away from the object, the W-S strategy makes good
compromise which can ensure the correctness of the method.
The error of the proposed method is similar to ILVT method.
If we do not consider the W-S strategy, the tracker will drift.
From the overall perspective, although the proposed method
is not as steady as ILVT method, it is able to track the object
and its rectangle includes much less background information
than ILVT method.

The last video was taken on the bus in the evening
which is shown in Figure 9. We try to track the bus in
front of the camera. The lighting is dark; the contrast
between the target and the background is low, and it is
very difficult for the general algorithm to track the target
object exactly. However, the proposed method performs
well in tracking the bus while the other two methods drift
into the cluttered background when drastic illumination
variation occurs. This can be attributed to the strategy
of Weight-Selection which is able to capture the correct
appearance change due to lighting changes. With the distance
between the bus and the camera becoming further and
further, the size of the proposed tracking box reduces. TLD
method and ILVT method contain more information than
the proposed method as the illumination changes drastically
and the distance becomes far. As time passes by, the two
compared methods lose the target object gradually. Mean-
while, the proposed method tracks the target object all the
time.
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FIGURE 6: Quantitative evaluation of the trackers in terms of positio

n errors (in pixels). The center errors of the proposed algorithm (red) in

comparison with ILVT (green) and TLD (blue) algorithm at three sequences.

6. Conclusions

In this paper, we propose an efficient tracking algorithm
based on sparse representation and particle filter using
the proposed max-average pooling and Weight-Selection
strategy. The proposed method exploits both spatial and
local information of the target by max-average pooling
and avoids the drift resulting from sparse reconstruction
errors using Weight-Selection strategy. This helps opti-
mization of the spatial and local information. In addition,
the combination of the sparse representation and parti-
cle filter avoids the particle degeneration, highlights their

respective advantages, and improves the performance of
the algorithm. Experimental results demonstrate the effec-
tiveness and robustness of the proposed algorithm com-
pared with the state-of-the-art methods on challenging
sequences.
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FIGURE 7: ThreePastShop2cor: the challenges are occlusions and pose variation (red: the proposed method; blue: TLD method; and green:
ILVT method).

FIGURE 8: Car4: a car moving underneath an overpass and trees. The challenges are the illumination change and pose variation (red: the
proposed method; blue: TLD method; green: ILVT method).

FIGURE 9: Bjbusl03: the sequence is captured on the bus in the evening. The target object is the bus in front of the camera. The challenges are
the illumination change and pose variation (red: the proposed method; blue: TLD method; green: ILVT method).
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