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System identification is a complex optimization problem which has recently attracted the attention in the field of science and
engineering. In particular, the use of infinite impulse response (IIR) models for identification is preferred over their equivalent
FIR (finite impulse response) models since the former yield more accurate models of physical plants for real world applications.
However, IIR structures tend to produce multimodal error surfaces whose cost functions are significantly difficult to minimize.
Evolutionary computation techniques (ECT) are used to estimate the solution to complex optimization problems. They are often
designed to meet the requirements of particular problems because no single optimization algorithm can solve all problems
competitively. Therefore, when new algorithms are proposed, their relative efficacies must be appropriately evaluated. Several
comparisons among ECT have been reported in the literature. Nevertheless, they suffer from one limitation: their conclusions are
based on the performance of popular evolutionary approaches over a set of synthetic functions with exact solutions andwell-known
behaviors, without considering the application context or including recent developments. This study presents the comparison of
various evolutionary computation optimization techniques applied to IIR model identification. Results over several models are
presented and statistically validated.

1. Introduction

System identification is a complex optimization problem
which has recently attracted the attention in the field of
science and engineering. System identification is important
in the disciplines of control systems [1], communication [2],
signal processing [3], and image processing [4].

In a system identification configuration, an optimization
algorithm attempts to iteratively determine the adaptive
model parameters to get an optimal model for an unknown
plant by minimizing some error function between the output
of the candidate model and the output of the plant. The opti-
mal model or solution is attained when such error function
is effectively reduced. The adequacy of the estimated model
depends on the adaptive model structure, the optimization
algorithm, and also the characteristic and quality of the input-
output data [5].

Systems or plants can be better modeled through infinite
impulse response (IIR)models because they emulate physical
plants more accurately than their equivalent FIR (finite
impulse response) models [6]. In addition, IIR models are
typically capable ofmeeting performance specifications using
fewer model parameters. However, IIR structures tend to
produce multimodal error surfaces whose cost functions
are significantly difficult to minimize [7]. Hence, in order
to identify IIR models, a practical, efficient, and robust
global optimization algorithm is necessary to minimize the
multimodal error function.

Traditionally, the least mean square (LMS) technique and
its variants [8] have been extensively used as optimization
tools for IIR model identification. The wide acceptance of
such gradient based optimization techniques is due to the low
complexity and simplicity of implementation. However, the
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error surface for the IIR model is mostly multimodal with
respect to the filter coefficients. This may result in leading
traditional gradient-descent approaches into local optima [9].

The difficulties associated with the use of gradient based
optimization methods for solving several engineering prob-
lems have contributed to the development of alternative
solutions. Evolutionary computation techniques (ECT) such
as the particle swarm optimization (PSO) [10], artificial bee
colony (ABC) [11], electromagnetism-like method (EM) [12],
cuckoo search (CS) [13], and flower pollination algorithm
(FPA) [14] have received much attention regarding their
potential as global optimizationmethods in real-world appli-
cations. Inspired by the evolution process and survival of
the fittest in the biological world, ECT are search methods
that are different from traditional optimization methods.
They are based on a collective learning process within a
population of candidate solutions. The population in ECT is
usually arbitrarily initialized, and each iteration (also called
a generation) evolves towards better and better solution
regions by means of randomized processes where several
operators are applied to each candidate solution. ECT have
been applied tomany engineering optimization problems and
have proven to be effective for solving some specific problems,
including multimodal optimization, dynamic optimization,
noisy optimization, and multiobjective optimization [15–17].
Hence, they are becoming increasingly popular tools to solve
various hard optimization problems.

As an alternative to gradient based techniques, the
problem of IIR modelling has also been handled through
evolutionary computation techniques. In general, they have
been demonstrated to yield better results than those based on
gradient algorithms with respect to accuracy and robustness
[9]. Such approaches have produced several robust IIR identi-
fication systems by using different evolutionary computation
techniques such as PSO [18], ABC [19], EM [20], and CS [21],
whose results have been individually reported.

ECT are often designed to meet the requirements of
particular problems because no single optimization algo-
rithm can solve all problems competitively [22]. Therefore,
when new alternative algorithms are proposed, their relative
efficiency must be appropriately evaluated. Many efforts [23–
25] have also been devoted to comparing ECT to each other.
Typically, such comparisons have been based on synthetic
numerical benchmark problems with most studies verifying
if one algorithm outperforms others over a given set of
benchmarks functions overlooking any statistical test. How-
ever, few comparative studies of various ECT considering the
application context are available in the literature.Therefore, it
is very important to discuss and compare the performance of
ECT methods from an application point of view.

This paper presents the comparison of various evolution-
ary computation optimization techniques that are applied
to IIR model identification. In the comparison, special
attention is paid to recently developed algorithms such as
the cuckoo search (CS) and the flower pollination algorithm
(FPA), including also popular approaches as the particle
swarm optimization (PSO), the artificial bee colony (ABC)
optimization, and the electromagnetism-like optimization
(EM) algorithm. Results over several models with different

ranges of complexity are presented and validated within a
statistically significant framework.

The rest of this paper is organized as follows: Section 2
presents a review of the evolutionary computation techniques
that are employed in the comparison whereas Section 3
discusses the IIR system identification problem. In Section 4
all experimental results are depicted with some concluding
remarks being drawn in Section 5.

2. Evolutionary Computation
Techniques (ECT)

In the real world, many optimization problems can be
considered as black box challenges. Often, less information
is available about an optimization problem itself unless the
information emerges from function evaluations. In the worst
case, nothing is known about the characteristics of the fitness
function, for example, whether it is unimodal or multimodal.

On the other hand, ECT are used to estimate the solution
to complex optimization problems since they adapt easily to
black-box formulations and extremely ill-behaved functions.
ECT are based on a collective learning process within a
population of candidate solutions. The population in ECT
is usually arbitrarily initialized while each iteration (also
called a generation) evolves towards better solution regions
by means of randomized processes with several operators
being applied to each candidate solution. ECT have been
applied tomany engineering optimization problems ensuring
an effective solution for some specific problems, including
multimodal optimization, dynamic optimization, noisy opti-
mization, multiobjective optimization, and others [15–17].

Therefore, ECT are becoming increasingly popular tools
to solve various hard optimization problems. This section
presents a brief description of five evolutionary computation
techniques: swarm optimization (PSO), artificial bee colony
(ABC) optimization and electromagnetism-like optimization
(EM), cuckoo search (CS), and flower pollination algorithm
(FPA), which have been all employed in our comparative
study.

2.1. Particle Swarm Optimization (PSO). PSO, proposed by
Kennedy and Eberhart in 1995 [10], is a population-based
stochastic optimization technique that is inspired on the
social behavior of bird flocking or fish schooling. The algo-
rithm searches for the optimum using a group or swarm
formed by possible solutions of the problem, which are
called particles. From the implementation point of view, in
the PSO operation, a population P𝑘 ({p𝑘

1
, p𝑘
2
, . . . , p𝑘

𝑁
}) of 𝑁

particles (individuals) evolves from the initial point (𝑘 =

0) to a total gen number of iterations (𝑘 = gen). Each
particle p𝑘

𝑖
(𝑖 ∈ [1, . . . , 𝑁]) represents a 𝑑-dimensional vector

{𝑝
𝑘

𝑖,1
, 𝑝
𝑘

𝑖,2
, . . . , 𝑝

𝑘

𝑖,𝑑
} where each dimension corresponds to a

decision variable of the optimization problem at hand. The
quality of each particle p𝑘

𝑖
(candidate solution) is evaluated

by using an objective function 𝑓(p𝑘
𝑖
) whose final result

represents the fitness value of p𝑘
𝑖
. During the evolution

process, the best global position g (𝑔1, 𝑔2, . . . 𝑔𝑑) seen so far
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is stored with the best position p∗
𝑖
(𝑝∗
𝑖,1
, 𝑝
∗

𝑖,2
, . . . , 𝑝

∗

𝑖,𝑑
) being

reached by each particle. Such positions are computed by
considering a minimization problem as follows:

g = argmin
𝑖∈{1,2,...,𝑁},𝑎∈{1,2,...,𝑘}

(𝑓 (p𝑎
𝑖
)) ,

p∗
𝑖
= argmin
𝑎∈{1,2,...,𝑘}

(𝑓 (p𝑎
𝑖
)) .

(1)

In this work, the modified PSO version proposed by Lin et
al. in [26] has been implemented. Under such approach, the
new position p𝑘+1

𝑖
of each particle p𝑘

𝑖
is calculated by using

the following equations:

V𝑘+1
𝑖,𝑗

= 𝑤 ⋅ V𝑘
𝑖,𝑗
+ 𝑐1 ⋅ 𝑟1 ⋅ (𝑝

∗

𝑖,𝑗
− 𝑝
𝑘

𝑖,𝑗
) + 𝑐2 ⋅ 𝑟2 ⋅ (𝑔𝑗 − 𝑝

𝑘

𝑖,𝑗
) ;

𝑝
𝑘+1

𝑖,𝑗
= 𝑝
𝑘

𝑖,𝑗
+ V𝑘+1
𝑖,𝑗

,

(2)

where 𝑤 is called the inertia weight that controls the
impact of the current velocity on the updated velocity
(𝑖 ∈ [1, . . . , 𝑁], 𝑗 ∈ [1, . . . , 𝑑]). 𝑐1 and 𝑐2 are the positive
acceleration coefficients that rule the movement of each
particle towards the positions g and p∗

𝑖
, respectively. 𝑟1 and

𝑟2 are uniformly distributed randomnumbers that are chosen
within the interval [0, 1].

2.2. Artificial Bee Colony (ABC). The artificial bee colony
(ABC) algorithm, proposed by Karaboga [11], is an ECT
inspired by the intelligent foraging behavior of a hon-
eybee swarm. In the ABC operation, a population L𝑘

({l𝑘
1
, l𝑘
2
, . . . , l𝑘

𝑁
}) of 𝑁 food locations (individuals) is evolved

from the initial point (𝑘 = 0) to a total gen number of
iterations (𝑘 = gen). Each food location l𝑘

𝑖
(𝑖 ∈ [1, . . . , 𝑁])

represents a 𝑑-dimensional vector {𝑙
𝑘

𝑖,1
, 𝑙
𝑘

𝑖,2
, . . . , 𝑙

𝑘

𝑖,𝑑
} where

each dimension corresponds to a decision variable of the
optimization problem to be solved. After initialization, an
objective function evaluates each food location to assess
whether it represent an acceptable solution (nectar-amount)
or not. Guided by the values of such an objective function,
the candidate solution l𝑘

𝑖
is evolved through different ABC

operations (honeybee types). In the main operator, each
food location l𝑘

𝑖
generates a new food source t𝑖 in the

neighborhood of its present position as follows:

t𝑖 = l𝑘
𝑖
+ 𝜙 (l𝑘

𝑖
− l𝑘
𝑟
) , 𝑖, 𝑟 ∈ (1, 2, . . . , 𝑁) , (3)

where l𝑘
𝑟
is a randomly chosen food location, satisfying the

condition 𝑟 ̸= 𝑖. The scale factor 𝜙 is a random number
between [−1, 1]. Once a new solution t𝑖 is generated, a
fitness value representing the profitability associated with
a particular solution fit(l𝑘

𝑖
) is calculated. The fitness value

for a minimization problem can be assigned to a candidate
solution l𝑘

𝑖
by the following expression:

fit (l𝑘
𝑖
) =

{

{

{

1

1 + 𝑓 (l𝑘
𝑖
)
, if 𝑓 (l𝑘

𝑖
) ≥ 0,

1 + abs (𝑓 (l𝑘
𝑖
)) , if 𝑓 (l𝑘

𝑖
) < 0,

(4)

where𝑓(⋅) represents the objective function to beminimized.
Once the fitness values are calculated, a greedy selection
process is applied between t𝑖 and l𝑘

𝑖
. If fit(t𝑖) is better

than fit(l𝑘
𝑖
), then the candidate solution l𝑘

𝑖
is replaced by t𝑖;

otherwise, l𝑘
𝑖
remains.

2.3. Electromagnetism-Like (EM) Algorithm. The EM algo-
rithm, proposed by İlker et al. [12] is a simple and population-
based search algorithm which has been inspired by the
electromagnetism phenomenon. In EM, individuals emulate
charged particles which interact to each other based on
the electromagnetism laws of repulsion and attraction. The
method utilizes 𝑁, 𝑑-dimensional points x𝑘

𝑖
, 𝑖 = 1, 2, . . . , 𝑁,

where each point x𝑘
𝑖
is a 𝑑-dimensional vector containing

the parameter values to be optimized (x𝑘
𝑖
= {𝑥
𝑘

𝑖,1
, . . . , 𝑥

𝑘

𝑖,𝑑
})

whereas 𝑘 denotes the iteration (or generation) number. The
initial population X𝑘 = {x𝑘

1
, x𝑘
2
, . . . , x𝑘

𝑁
} (being 𝑘 = 0) is

taken fromuniformly distributed samples of the search space.
We denote the population set at the 𝑘th generation by X𝑘,
becausemembers ofX𝑘 change with 𝑘. After the initialization
of X0, EM continues its iterative process until a stopping
condition (e.g., the maximum number of generations, 𝑘 =

gen) is met. An iteration of EM consists of three steps.
In the first step each point in X𝑘 moves to a different
location by using the attraction-repulsion mechanism of the
electromagnetism theory. In the second step, pointsmoved by
the electromagnetism principle are further moved locally by
a local search procedure. Finally, in the third step, in order to
generate the new population X𝑘+1, a greedy selection process
selects best points between those produced by the local search
procedure and the originals. Both the attraction-repulsion
mechanism and the local search in EM are responsible for
driving the members x𝑘

𝑖
of X𝑘 to the proximity of the global

optimum.

2.4. Cuckoo Search (CS) Method. CS is one of the latest
nature-inspired algorithms that has been developed by Yang
and Deb [13]. CS is based on the brood parasitism of some
cuckoo species. In addition, this algorithm is enhanced by
the so-called Lévy flights [27], rather than by simple isotropic
random walks. From the implementation point of view of
the CS operation, a population E𝑘 ({e𝑘

1
, e𝑘
2
, . . . , e𝑘

𝑁
}) of 𝑁

eggs (individuals) is evolved from the initial point (𝑘 = 0)

to a total gen number of iterations (𝑘 = 2 ⋅ gen). Each
egg e𝑘
𝑖
(𝑖 ∈ [1, . . . , 𝑁]) represents a 𝑑-dimensional vector

{𝑒
𝑘

𝑖,1
, 𝑒
𝑘

𝑖,2
, . . . , 𝑒

𝑘

𝑖,𝑑
} where each dimension corresponds to a

decision variable of the optimization problem to be solved.
The quality of each egg e𝑘

𝑖
(candidate solution) is evaluated

by using an objective function 𝑓(e𝑘
𝑖
) whose final result

represents the fitness value of e𝑘
𝑖
. Three different operators

define the evolution process of CS: (A) Lévy flight, (B) the
replacing of nests operator for constructing new solutions,
and (C) the elitist selection strategy.

(A) The Lévy Flight. One of the most powerful features
of cuckoo search is the use of Lévy flights to generate
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new candidate solutions (eggs). Under this approach, a new
candidate solution e𝑘+1

𝑖
(𝑖 ∈ [1, . . . , 𝑁]) is produced by

perturbing the current e𝑘
𝑖
with a change of position c𝑖. In order

to obtain c𝑖, a randomstep s𝑖 is generated by a symmetric Lévy
distribution. For producing s𝑖, Mantegna’s algorithm [28] is
employed as follows:

s𝑖 =
u

|k|1/𝛽
, (5)

where u ({𝑢1, . . . , 𝑢𝑑}) and k ({V1, . . . , V𝑑}) are 𝑛-dimensional
vectors and 𝛽 = 3/2. Each element of u and k is calculated by
considering the following normal distributions:

𝑢 ∼ 𝑁(0, 𝜎
2

𝑢
) , V ∼ 𝑁(0, 𝜎

2

V) ,

𝜎𝑢 = (
Γ(1 + 𝛽) ⋅ sin(𝜋 ⋅ 𝛽/2)

Γ ((1 + 𝛽)/2) ⋅ 𝛽 ⋅ 2(𝛽−1)/2
)

1/𝛽

, 𝜎V = 1,

(6)

where Γ(⋅) represents the Gamma distribution. Once s𝑖
has been calculated, the required change of position c𝑖 is
computed as follows:

c𝑖 = 0.01 ⋅ s𝑖 ⊕ (e
𝑘

𝑖
− ebest) , (7)

where the product ⊕ denotes entrywise multiplications
whereas ebest is the best solution (egg) seen so far in terms
of its fitness value. Finally, the new candidate solution e𝑘+1

𝑖
is

calculated by using

e𝑘+1
𝑖

= e𝑘
𝑖
+ c𝑖. (8)

(B) Replacing Some Nests by Constructing New Solutions.
Under this operation, a set of individuals (eggs) are prob-
abilistically selected and replaced with a new value. Each
individual e𝑘

𝑖
(𝑖 ∈ [1, . . . , 𝑁]) can be selected with a

probability 𝑝𝑎 ∈ [0, 1]. In order to implement this operation,
a uniform random number 𝑟1 is generated within the range
[0, 1]. If 𝑟1 is less than 𝑝𝑎, the individual e𝑘𝑖 is selected and
modified according to (5); otherwise e𝑘

𝑖
remains with no

change. This operation can be resumed by the following
model:

e𝑘+1
𝑖

= {
e𝑘
𝑖
+ rand ⋅ (e𝑘

𝑗
− e𝑘
ℎ
) , with probability𝑝𝑎,

e𝑘
𝑖
, with probability (1 − 𝑝𝑎) ,

(9)

where rand is a random number normally distributed
whereas 𝑗 and ℎ are random integers from 1 to𝑁.

(C) The Elitist Selection Strategy. After producing e𝑘+1
𝑖

either
by the operator A or by the operator B, it must be compared
with its past value e𝑘

𝑖
. If the fitness value of e𝑘+1

𝑖
is better than

e𝑘
𝑖
, then e𝑘+1

𝑖
is accepted as the final solution; otherwise, e𝑘

𝑖

is retained. This procedure can be resumed by the following
statement:

e𝑘+1
𝑖

= {
e𝑘+1
𝑖

, if 𝑓 (e𝑘+1
𝑖

) < 𝑓 (e𝑘
𝑖
) ,

e𝑘
𝑖
, otherwise.

(10)

The elitist selection strategy denotes that only high-quality
eggs (best solutions near to the optimal value) which are the
most similar to the host bird’s eggs have the opportunity to
develop (next generation) and become mature cuckoos.

2.5. Flower Pollination Algorithm (FPA). The flower pol-
lination algorithm (FPA), proposed by Yang [14], is an
ECT inspired by the pollination process of flowers. In
FPA, individuals emulate a set of flowers or pollen gametes
which behaves based on biological laws of the pollination
process. From the implementation point of view, in the
FPA operation, a population F𝑘 ({f𝑘

1
, f𝑘
2
, . . . , f𝑘

𝑁
}) of 𝑁 flower

positions (individuals) is evolved from the initial point (𝑘 =

0) to a total gen number of iterations (𝑘 = gen). Each
flower f𝑘

𝑖
(𝑖 ∈ [1, . . . , 𝑁]) represents a 𝑑-dimensional vector

{𝑓
𝑘

𝑖,1
, 𝑓
𝑘

𝑖,2
, . . . , 𝑓

𝑘

𝑖,𝑑
} where each dimension corresponds to a

decision variable of the optimization problem to be solved.
In FPA, a new population F𝑘+1 is produced by considering
two operators: local and global pollination. A probabilistic
global pollination factor 𝑝 is associated with such operators.
In order to decide which operator should be applied to each
current flower position f𝑘

𝑖
, a uniform random number 𝑟𝑝 is

generated within the range [0, 1]. If 𝑟𝑝 is less than 𝑝, the
global pollination operator is applied to f𝑘

𝑖
. Otherwise, the

local pollination operator is considered.

Global Pollination Operator.Under this operator, the original
position f𝑘

𝑖
is displaced to a new position f𝑘+1

𝑖
according to

the following model:

f𝑘+1
𝑖

= f𝑘
𝑖
+ 𝑠𝑖 ⋅ (f

𝑘

𝑖
− g) , (11)

where g is the global best position seen so far whereas
𝑠𝑖 controls the length of the displacement. The 𝑠𝑖 value is
generated by a symmetric Lévy distribution according to (5)-
(6).

Local Pollination Operator. In the local pollination operator,
the current position f𝑘

𝑖
is perturbed to a new position f𝑘+1

𝑖
as

follows:

f𝑘+1
𝑖

= f𝑘
𝑖
+ 𝜀 ⋅ (f𝑘

𝑗
− f𝑘
ℎ
) ; 𝑖, 𝑗, ℎ ∈ (1, 2, . . . , 𝑁) , (12)

where f𝑘
𝑗
and f𝑘
ℎ
are two randomly chosen flower positions,

satisfying the condition 𝑗 ̸= ℎ ̸= 𝑖. The scale factor 𝜀 is a
random number between [−1, 1].

3. IIR Model Identification
(Problem Formulation)

System identification is the mathematical representation of
an unknown system by using only input-output data. In a
system identification configuration, an optimization algo-
rithm attempts to iteratively determine the adaptive model
parameters to get an optimal model for the unknown plant
based onminimizing some error function between the output
of the candidate model and the actual output of the plant.
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u(t)

d(t)

y(t)

e(t)Plant

IIR model

Evolutionary computation
technique

+

−

∑

Figure 1: Adaptive IIR model for system identification.

The use of infinite impulse response (IIR) models for
identification is preferred over their equivalent FIR (finite
impulse response) models since the former produce more
accurate models of physical plants for real world applications
[6]. In addition, IIR models are typically capable of meeting
performance specifications using fewer model parameters.
Figure 1 represents an IIR identification model of any arbi-
trary system.

An IIR system can be represented by the transfer func-
tion:

𝑌 (𝑧)

𝑋 (𝑧)
=
𝑏0 + 𝑏1𝑧

−1
+ 𝑏2𝑧
−2
+ ⋅ ⋅ ⋅ + 𝑏𝑚𝑧

−𝑚

1 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2 + ⋅ ⋅ ⋅ + 𝑎𝑛𝑧
−𝑛

, (13)

where 𝑚 and 𝑛 are the number of numerator and denomi-
nator coefficients of the transfer function, respectively, and,
𝑎𝑖 and 𝑏𝑗 are the pole and zero parameters of the IIR model
(𝑖 ∈ [1, . . . , 𝑛], 𝑗 ∈ [1, . . . , 𝑚]). Equation (13) can be written as
difference equation of the form:

𝑦 (𝑡) =

𝑛

∑
𝑖=1

𝑎𝑖 ⋅ 𝑦 (𝑡 − 𝑖) +

𝑚

∑
𝑗=0

𝑏𝑗 ⋅ 𝑥 (𝑡 − 𝑗) , (14)

where 𝑢(𝑡) and 𝑦(𝑡) represent the 𝑡th input and output
of the system, respectively. Therefore, the set of unknown
parameters that models the IIR system is represented by
𝜃 = {𝑎1, . . . , 𝑎𝑛, 𝑏0, . . . , 𝑏𝑚}. Considering that the number of
unknown parameters of 𝜃 is (𝑛 +𝑚+1), the search space S of
feasible values for 𝜃 isR(𝑛+𝑚+1).

According to the block diagram of Figure 1, the output of
the plant is 𝑑(𝑡)whereas the output of the IIR filter is𝑦(𝑡).The
output difference between the actual system and its model
yields the error 𝑒(𝑡) = 𝑑(𝑡) − 𝑦(𝑡). Hence, the problem of
IIRmodel identification can be considered as a minimization
problem of the function 𝑓(𝜃) stated as the following:

𝑓 (𝜃) =
1

𝑊

𝑊

∑
𝑡=1

(𝑑 (𝑡) − 𝑦 (𝑡))
2
, (15)

where𝑊 is the number of samples used in the simulation.
The aim is tominimize the cost function𝑓(𝜃) by adjusting

𝜃.The optimalmodel 𝜃∗ or solution is attainedwhen the error
function 𝑓(𝜃) reaches its minimum value, as follows:

𝜃
∗
= argmin
𝜃∈S

(𝑓 (𝜃)) . (16)

4. Experimental Results

In the comparison study, a comprehensive set of experiments
has been used to test the performance of each evolutionary
computation technique. The set considers the use of IIR
models with different orders. Such experimental set has been
carefully selected to assure compatibility between similar
works reported in the literature [18–21]. In the comparison,
five ETC have been considered: PSO, ABC, EM, CS, and FPA.

The parameter setting for each evolutionary computation
algorithm that is used in the comparison is described as
follows.

(1) PSO: the parameters are set to 𝑐1 = 2, 𝑐2 = 2; besides,
the weight factor decreases linearly from 0.9 to 0.2
[18].

(2) ABC: the algorithm has been implemented using the
guidelines provided by its own reference [19], using
the parameter 𝑙𝑖𝑚𝑖𝑡 = 100.

(3) EM: particle number = 50, 𝛿 = 0.001, 𝐿𝐼𝑆𝑇𝐸𝑅 = 4,
𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = 300. Such values, according to [12, 20]
represent the best possible configuration.

(4) CS: according to [13, 21], the parameters are set to𝑝𝑎 =
0.25 and the number of generations gen = 500.

(5) FPA: the probabilistic global pollination factor 𝑝 is set
to 0.8. Under such value, the algorithm presents the
best performance according to [14].

For all algorithms, the population size has been set to 25
(𝑁 = 25) whereas the maximum iteration number has been
configured to 3000 generations (gen = 3000).

The results are divided into two sections. In the first set,
the performance of each ETC for each identification experi-
ment is presented. In the second set, the results are analyzed
from a statistical point of view by using the Wilcoxon test.

4.1. IIR Model Identification Results. The results are reported
considering three experiments that include (1) a second-
order plant with a first-order IIR model; (2) a second-order
plant with a second-order IIR model; and finally, (3) a high-
order plant with a high-order model. Each case is discussed
below.

(1) A Plant with a Second-Order System and a First-Order IIR
Model (First Experiment). In this experiment, each algorithm
is applied to identify a second-order plant through a first-
order IIR model. Under such conditions, the unknown plant
𝐻𝑃 and the IIR model 𝐻𝑀 hold the following transfer
functions:

𝐻𝑃 (𝑧
−1
) =

0.05 − 0.4𝑧
−1

1 − 1.1314𝑧−1 + 0.25𝑧−2
,

𝐻𝑀 (𝑧
−1
) =

𝑏

1 − 𝑎𝑧−1
.

(17)

In the simulations, it has been considered a white sequence
of 100 samples (𝑊 = 100) for the input 𝑢(𝑡). Since a reduced
order model is employed to identify a plant of a superior
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Figure 2: Multimodal error surface 𝑓(𝜃) for the first experiment: (a) tridimensional figure and (b) contour.

order, 𝑓(𝜃) is multimodal [19]. The error surface 𝑓(𝜃) is
shown in Figure 2.

The performance evaluation over 30 different executions
is reported in Table 1 considering the following indexes: the
best parameter values (ABP), the average 𝑓(𝜃) value (AV),
and the standard deviation (SD). The best parameter values
(ABP) report the best model parameters obtained during the
30 executions while the average 𝑓(𝜃) value (AV) indicates
the average minimum value of 𝑓(𝜃), considering the same
number of executions. Finally, the standard deviation (SD)
reports the dispersion from the average 𝑓(𝜃) value regarding
30 executions.

According to Table 1, the CS algorithm provides better
results than PSO, ABC, and EM. In particular, the results
show that CS maintains a considerable precision (the low-
est AV value) and more robustness (smallest SD value).
Nevertheless, the CS performance is similar to the FPA
algorithm. On the other hand, the worst performance is
reached by the PSO algorithm. Such a fact corresponds to its
difficulty (premature convergence) to overcome localminima
in multimodal functions.

(2) A Plant with Second-Order System and Second-Order
IIR Model (Second Experiment). In the second experiment,
the performance for each algorithm is evaluated at the
identification of a second-order plant through a second-order
IIR model. Therefore, the unknown plant 𝐻𝑃 and the IIR
model𝐻𝑀 hold the following transfer functions:

𝐻𝑃 (𝑧
−1
) =

1

1 − 1.4𝑧−1 + 0.49𝑧−2
,

𝐻𝑀 (𝑧
−1
) =

𝑏

1 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2
.

(18)

For the simulations, the input𝑢(𝑡) that is applied to the system
and to the IIRmodel simultaneously has been configured as a
white sequencewith 100 samples. Since the order of themodel
𝐻𝑀 is equal to the order of the to-be-identified system 𝐻𝑃,
only one global minimum exists in 𝑓(𝜃) [19]. The results of
this experiment over 30 different executions are reported in
Table 2.

Table 1: Performance results of the first experiment.

Algorithms ABP AV SD
𝑎 𝑏

PSO 0.9125 −0.3012 0.0284 0.0105
ABC 0.1420 −0.3525 0.0197 0.0015
EM 0.9034 0.3030 0.0165 0.0012
CS 0.9173 −0.2382 0.0101 3.118𝑒 − 004

FPA 0.9364 −0.2001 0.0105 5.103𝑒 − 004

The results in Table 2 show that PSO, ABC, EM, CS,
and FPA have similar values in their performance. The
evidence shows that evolutionary algorithms maintain a
similar average performance when they face unimodal low-
dimensional functions [29, 30]. In particular, the test remarks
that the small difference in performance is directly related to
a better exploitation mechanism included in CS and FPA.

(3) A Superior-Order Plant and a High-Order Model (Third
Experiment). Finally, the performance for each algorithm
is evaluated at the identification of a superior-order plant
through a high-order IIR model. Therefore, the unknown
plant 𝐻𝑃 and the IIR model 𝐻𝑀 hold the following transfer
functions:

𝐻𝑃 (𝑧
−1
) =

1 − 0.4𝑧
−2
− 0.65𝑧

−4
+ 0.26𝑧

−6

1 − 0.77𝑧−2 − 0.8498𝑧−4 + 0.6486𝑧−6
,

𝐻𝑀 (𝑧
−1
) =

𝑏0 + 𝑏1𝑧
−1
+ 𝑏2𝑧
−2
+ 𝑏3𝑧
−3
+ 𝑏4𝑧
−4

1 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2 + 𝑎3𝑧
−3 + 𝑎4𝑧

−4
.

(19)

Since the plant is a sixth-order system and the IIR model a
fourth-order system, the error surface𝑓(𝜃) ismultimodal just
as it is in the first experiment. A white sequence with 100
samples has been used as input.The results of this experiment
over 30 different executions are reported in Tables 3 and 4.
Table 3 presents the best parameter values (ABP) whereas
Table 4 shows the average 𝑓(𝜃) value (AV) and its standard
deviation (SD).

According to the AV and SD indexes in Table 4, the CS
algorithm finds better results than PSO, ABC, EM, and FPA.
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Table 2: Performance results of the second experiment.

Algorithms ABP AV SD
𝑎1 𝑎2 𝑏

PSO −1.4024 0.4925 0.9706 4.0035𝑒 − 005 1.3970𝑒 − 005

ABC −1.2138 0.6850 0.2736 0.3584 0.1987
EM −1.0301 0.4802 1.0091 3.9648𝑒 − 005 8.7077𝑒 − 005

CS −1.400 0.4900 1.000 0.000 0.000
FPA −1.400 0.4900 1.000 4.6246𝑒 − 32 2.7360𝑒 − 31

Table 3: The best parameter values (ABP) for the second experiment.

Algorithms ABP
𝑎1 𝑎2 𝑎3 𝑎4 𝑏0 𝑏1 𝑏2 𝑏3 𝑏4

PSO 0.3683 −0.7043 0.2807 0.3818 0.9939 −0.6601 −0.8520 0.2275 −1.4990

ABC −1.1634 −0.6354 −1.5182 0.6923 0.5214 −1.2703 0.3520 1.1816 −1.9411

EM −0.4950 −0.7049 0.5656 −0.2691 1.0335 −0.6670 −0.4682 0.6961 −0.0673

CS 0.9599 0.0248 0.0368 −0.0002 −0.2377 0.0031 −0.3579 0.0011 −0.5330

FPA 0.0328 −0.1059 −0.0243 −0.7619 1.0171 0.0038 0.2374 0.0259 −0.3365

Table 4: The average 𝑓(𝜃) value (AV) and the standard deviation
(SD).

Algorithms AV SD
PSO 5.8843 3.4812
ABC 7.3067 4.3194
EM 0.0140 0.0064
CS 6.7515𝑒 − 004 4.1451𝑒 − 004

FPA 0.0018 0.0020

Table 5: 𝑃-values produced by Wilcoxon’s test comparing CS vs
PSO, ABC, EM and FPA over the “The average 𝑓(𝜃) values (AV)”
from Tables 1, 2 and 4.

CS vs PSO ABC EM FPA
First
experiment 6.5455𝑒 − 13 8.4673𝑒 − 13 3.8593𝑒 − 08 0.7870

Second
experiment 1.5346𝑒 − 14 1.5346𝑒 − 14 1.5346𝑒 − 14 0.3313

Third
experiment 6.5455𝑒 − 13 1.5346𝑒 − 14 4.3234𝑒 − 13 0.1011

The results show that CS presents better precision (AV value)
and robustness (SD value).These results also indicate that CS,
FPA, and EM are able to identify the sixth-order plant under
different accuracy levels. On the other hand, PSO and ABC
obtain suboptimal solutions whose parameters weakly model
the unknown system.

4.2. Statistical Analysis. In order to statistically validate the
results, a nonparametric statistical significance-proof which
is known as Wilcoxon’s rank sum test for independent sam-
ples [31, 32] has been conducted over the “the average 𝑓(𝜃)
value” (AV) data of Tables 1, 2, and 4 with a 5% significance
level. The test has been conducted considering 30 different
executions for each algorithm. Table 5 reports the 𝑃 values

produced by Wilcoxon’s test for the pairwise comparison of
the “the average 𝑓(𝜃) value” of four groups. Such groups are
formed by CS versus PSO, CS versus ABC, CS versus EM, and
CS versus FPA. As a null hypothesis, it is assumed that there is
no significant difference between averaged values of the two
algorithms.The alternative hypothesis considers a significant
difference between the AV values of both approaches.

For the case of PSO, ABC, and EM, all 𝑃 values reported
in Table 5 are less than 0.05 (5% significance level) which is a
strong evidence against the null hypothesis. Therefore, such
evidence indicates that CS results are statistically significant
and that it has not occurred by coincidence (i.e., due to
common noise contained in the process). On the other hand,
since the 𝑃 values for the case of CS versus FPA are more
than 0.05, there is not statistical difference between both.
Therefore, it can be concluded that the CS algorithm is better
than PSO, ABC, and EM in the application of IIR modeling
for system identification. However, CS presents the same
performance as FPA and therefore there is not statistical
evidence that CS surpasses the FPA algorithm.

5. Conclusions

This paper presents a comparison study between five evo-
lutionary algorithms for the IIR-based model identification.
Under this research, the identification task is considered as an
optimization problem. In the comparison, special attention
is paid to recently developed algorithms such as the cuckoo
search (CS) and the flower pollination algorithm (FPA), also
including popular approaches such as the particle swarm
optimization (PSO), the artificial Bee colony optimization
(ABC), and the electromagnetism-like (EM) optimization
algorithm.

The comparison has been experimentally evaluated over a
test suite of three benchmark experiments that produce mul-
timodal functions.The experiment results have demonstrated
that CS outperforms PSO, ABC, and EM in terms of both the
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accuracy (AV values) and robustness (SD values), within a
statistically significant framework (Wilcoxon test). However,
there is not statistical evidence that CS surpasses the FPA
performance.

The remarkable performance of CS and FPA is explained
by two different features: (i) operators (such as Lévy flight)
that allow a better exploration of the search space, increasing
the capacity to find multiple optima, and (ii) their exploita-
tion operators that allow a better precision of previously
found solutions.
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nologı́a, vol. 14, no. 1, pp. 125–138, 2013.

[21] A. P. Patwardhan, R. Patidar, and N. V. George, “On a cuckoo
search optimization approach towards feedback system identi-
fication,” Digital Signal Processing, vol. 32, pp. 156–163, 2014.

[22] D. H.Wolpert andW.G.Macready, “No free lunch theorems for
optimization,” IEEE Transactions on Evolutionary Computation,
vol. 1, no. 1, pp. 67–82, 1997.

[23] E. Elbeltagi, T. Hegazy, and D. Grierson, “Comparison among
five evolutionary-based optimization algorithms,” Advanced
Engineering Informatics, vol. 19, no. 1, pp. 43–53, 2005.

[24] D. Shilane, J. Martikainen, S. Dudoit, and S. J. Ovaska, “A
general framework for statistical performance comparison of
evolutionary computation algorithms,” Information Sciences,
vol. 178, no. 14, pp. 2870–2879, 2008.

[25] V. Osuna-Enciso, E. Cuevas, and H. Sossa, “A comparison of
nature inspired algorithms for multi-threshold image segmen-
tation,” Expert Systems with Applications, vol. 40, no. 4, pp. 1213–
1219, 2013.

[26] Y.-L. Lin, W.-D. Chang, and J.-G. Hsieh, “A particle swarm
optimization approach to nonlinear rational filter modeling,”
Expert Systems with Applications, vol. 34, no. 2, pp. 1194–1199,
2008.
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