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A novel finite-time control scheme is investigated for a rigid spacecraft in present of parameter uncertainties and external
disturbances. Firstly, the spacecraftmathematicalmodel is transformed into a cascading system by introducing an adaptive variable.
Then a novel finite-time attitude stabilization control scheme for a rigid spacecraft is proposed based on the homogeneous method.
Lyapunov stability analysis shows that the resulting closed-loop attitude system is proven to be stable in finite time without
parameter uncertainties and asymptotically stable with parameter uncertainties. Finally, numerical simulation examples are also
presented to demonstrate that the control strategy developed is feasible and effective for spacecraft attitude stabilization mission.

1. Introduction

With the development of aerospace science and technology
faster and faster, for its higher technical requirements also, the
spacecraft’s attitude control and stability got close attention
and extensive research. In recent years, many scholars in
this field at home and abroad have made a lot of research
results, such as optimal control [1], feedback control [2],
input-output approach [3], adaptive control [4], T-S fuzzy
theory [5–7], slidingmode control [8, 9], data driven [10], and
all this integrated control methods [11, 12]. These nonlinear
control methods have certain advantages and are widely
used in spacecraft control, although they can guarantee
the stability of the closed-loop control system, and only
for the equilibrium point, and the stable time is infinite.
From the view of time optimal control system, the finite-
time control is the optimal control scheme. Moreover, the
finite-time controller has the fractional power which makes
itself has the better robust performance than the normal
controller, thus the cause in spacecraft attitude control system
is widely researched [13, 14]. In the existing research results,
most of the control methods can only guarantee system
converge to equilibrium point when the party time tends to
infinity, and the finite time control method, to some extent

has fast response, high control precision, and interference
suppression.

For the closed-loop system research and prove the stabil-
ity of the finite time in a row, primarily based on two criteria.
The first method, mainly is to analysis based on the Lyapunov
stability theorem, including terminal sliding mode and its
deformation such as nonsingular terminal sliding mode, fast
terminal sliding mode, and double exponential fast terminal
slidingmode,mainly applied to general theoremof finite time
and limited time extension theorem, and so forth. Another
method based on the theory of homogeneous method is
validated. In [13], a six-degree-of-freedom relative motion
model is built aiming for the dynamic cooperative formation
control p of master-slave spacecraft; then a terminal slide
mode controller is proposed which guaranteed that the
dynamic cooperative formation error can be in desired track.
In [15] for using unit quaternion describing rigid spacecraft
attitude tracking problem in the system, two kinds of finite
time controller were designed to ensure the attitude of the
attitude control system to expect accessibility of limited time,
but the singular value phenomenon exists in the controller
design. according to the standard terminal sliding mode
control of singular value problem, the literature [16] has
carried on the improvement on the basis of this, putting
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forward a kind of novel nonsingular terminal sliding mode
control scheme, implementing the finite time stable attitude
tracking control system.

Method based on the theory of homogeneous finite time
stability studies, in less space in the field of application,
is a new research hotspot to cause the attention of many
scholars and attention. For only the position measurement
information of space robot arm control system, the literature
[17] proposed a class of output feedback combined with
expected gravity compensation and continuous PD control,
to solve the global problem of finite time control, and the
system stability can be proved via Lyapunov theorem and
homogeneous finite-time theorem. In addition, the literature
[18] according to rigid satellite attitude control problem,
design the existence and there is no outside interference
torque under the condition of two kinds of finite time state
feedback control law, Which in view of the situation without
disturbances, based on the nature of nonlinear homogeneous
systems, designs a kind of PD control feedback control
algorithm, the position closed-loop control system of finite
time convergences to equilibrium, and themethod has simple
structure and is convenient for application in the engineering
practice. Aiming at the finite-time attitude stabilization issue
of rigid, [19] gives a further control scheme. In this finite-time
controller, a local continuous saturation finite-time controller
and a global finite-time controller are designed, the two
controller can be switched via a switch function, then the
attitude control system could realized stability in finite-time.
However, it regrets that the controller doesn’t consider the
effect about external disturbance.

In view of the presence of parameter uncertainty space-
craft attitude stability control system, it puts forward the
category of odd theory based on the finite time control.
First of all, by introducing new adaptive state variables, the
spacecraft attitude control system is converted to a cascade
system;Then a novel finite-time attitude stabilization control
scheme for a rigid spacecraft is proposed based on the
homogeneous method. Lyapunov stability analysis show that
the resulting closed-loop attitude system is proven to be
stable in finite time without parameter uncertainties, and
asymptotically stable with parameter uncertainties, and there
is no finite time stability of closed-loop system parameter
uncertainties. Finally, the proposed algorithm is applied to
a rigid spacecraft attitude stability control task; the digital
simulation results verify the validity and feasibility of the
scheme. And design in this paper, finite time controller
structure is simple, is easy to adjust, and has the very high
practical engineering practical value.

2. The System Model and
the Preliminary Knowledge

2.1. The Spacecraft Attitude Dynamics and Kinematics Equa-
tion. Method to describe the kinematics of spacecraft atti-
tude has direction cosine, Euler angle, quaternion, Rodrigo
parameters, and modified Rodrigo (MRPs). Because the
parameters of the quaternion description with minimal said
aircraft motion attitude and global no singularity, so in this

paper, quaternion is used to describe the spacecraft attitude
kinematics:

q̇ = 1
2

Ξ (q)𝜔 = 1
2

[

−q𝑇V
𝑞

0
I
3
+ q×V
]𝜔. (1)

Type q = [𝑞
0
; q𝑇V ] ∈ R × R3 expresses this system

relative to the center of the earth of the inertial system unit
quaternion and satisfaction qV = [𝑞1; 𝑞2; 𝑞3]; 𝑞20 + q

𝑇

V qV = 1
is the revision of this system relative to the inertial system of
Rodrigo parameters; I

3
is the 3 d unit matrix;𝜔 = [𝜔

1
; 𝜔

2
; 𝜔

3
]

express this system inertial coordinate system of the rotating
angular velocity relative to the center of the component in this
system. DefinitionQ(qV) = 𝑞0I3 + q×V , by type (1) to be seen

q̇V =
1

2

(𝑞

0
I
3
+ q×V )𝜔 =

1

2

Q𝜔. (2)

Here, the definition of cross-product (⋅)× as a skew
symmetric matrix, that is to say, for a three-dimensional
vector 𝜎 = [𝜎

1
; 𝜎

2
; 𝜎

3
], 𝜎× is expressed as

𝜎
×
=

[

[

0 −𝜎

3
𝜎

2

𝜎

3
0 −𝜎

1

−𝜎

2
𝜎

1
0

]

]

. (3)

Considering the spacecraft attitude dynamics equation

J𝜔̇ + 𝜔×J𝜔 = u + d. (4)

In the type, J ∈ R3 × 3 is positive definite symmetric
matrix type, expressing the spacecraft’s inertiamatrix; u is the
three axis attitude control torque for spacecraft; and d is the
outside interference torque vector for spacecraft.

Hypothesis 1. The disturbing torque d is unknown but
bounded and is a normal number 𝑑

0
of establishments ‖d‖ <

𝑑

0
, 𝑑
0
is the upper bound of the unknown disturbance torque.

In fact, the moment of inertia of spacecraft is not known
for sure, that is to say, between the moment of inertia and its
nominal value of on-orbit spacecraft it has certain uncertainty
bounded difference, that is, as a result, the spacecraft attitude
dynamics equation can describe as follows:

J
0
𝜔̇ + 𝜔

×J
0
𝜔 = u + f . (5)

Among them, f = d − ΔJ𝜔̇ − 𝜔×(ΔJ𝜔).

Hypothesis 2. The arbitrarily 𝑡 > 0, to exit 𝑞
0
(𝑡) ̸= 0.

By definition Q(qV) = 𝑞0I3 + q×V , the definition, det(Q) =
𝑞

0
. Therefore, through this hypothesis, we know that matrix

Q(qV) is singular, namely, the 𝜔 = 2Q−1(qV)q̇V is singular.
Thus, the system equation can be modified via (1) and (5) as
for

M (qV) q̈V + C (qV, q̇V) q̇V =
1

2

F𝑇 (qV) u +
1

2

F𝑇 (qV) f . (6)

Among them, F = Q−1, M = F𝑇JF,

C = −F𝑇 (JF ̇G (𝜎) + 2(JF𝜎̇)×) F,

f = d − 2ΔJF (q̈V − ̇QFq̇V) − 4(Fq̇V)
×
(ΔJFq̇V) .

(7)
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Hypothesis 3. The value of the uncertainty of moment of
inertia of spacecraft ΔJ is unknown bounded, thus f is
unknown but bounded, and there is a normal number 𝑓

0
that

was established, ‖f‖ < 𝑓
0
.

The spacecraft’s equivalent system of (6) has the following
important properties.

Nature 1. Matrix M is a symmetrical positive definite matrix
and ̇M − 2C is a written symmetric matrix; namely, 𝜉𝑇( ̇M −
2C)𝜉 = 0, ∀𝜉 ∈ R3 × 1.

Nature 2. Matrix M(qk), C(qk, q̇k) are bounded value, that’s
there is a positive constant 𝑐

𝑀max > 𝑐𝑀min > 0 and 𝑐𝐶max >
𝑐

𝐶min > 0, yes 0 < 𝑐𝑀min ≤ ‖M(qk)‖ ≤ 𝑐𝑀max, 0 <
𝑐

𝐶min‖q̇k‖ ≤ ‖C(qk, q̇k)‖ ≤ 𝑐𝐶max‖q̇k‖.

2.2. Definitions and Lemmas. To facilitate the limited time
of attitude control system design, based on the nonlinear
system stability and the stability of finite time, the following
definitions and lemma are given.

Consider the following nonlinear autonomous system:

ẋ = f (x) , f (0) = 0, x (0) = x0, x ∈ R𝑛. (8)

f : U
0
→ R𝑛 is the continuous function of the gather U

0
,

then the system (8) has a unique solution for arbitrary initial
value.

Definition 1. If the system (8) the balance x = 0, on the field
U ⊂ U

0
type Lyapunov stability and finite time stable, it is

locally finite time stable. Finite time stable, also is a function
𝑇 : 𝑈 \ {0} → (0,∞), for ∀x

0
∈ U ⊂ R𝑛, solution of system

(8) is s
𝑓
(x
0
) = 0, and 𝑡 ∈ [0, 𝑇(x

0
)), s
𝑓
(x
0
) ∈ 𝑈 \ {0} when

𝑡 > 𝑇(x
0
), lim
𝑡→𝑇(x0)s𝑓(x0) = 0. In particular, ifU = R

𝑛, then
the system (8) is globally finite time stable.

Definition 2 (see [20]). Consider the following nonlinear
autonomous system:

ẋ = f (x) , f (0) = 0, 𝑥 ∈ R𝑛, (9)

where f(x) = [𝑓
1
(x), 𝑓
2
(x), . . . , 𝑓

𝑛
(x)]𝑇 : R𝑛 → R𝑛 as a

vector function. If any 𝜖 > 0, there exist (𝑟
1
, 𝑟

2
, . . . , 𝑟

𝑛
) ∈ R𝑛,

among them 𝑟
𝑖
> 0 (𝑖 = 1, 2, . . . , 𝑛), making f(x) satisfied

𝑓

𝑖
(𝜖

𝑟1
𝑥

1
, 𝜖

𝑟2
𝑥

2
, . . . , 𝜖

𝑟𝑛
𝑥

𝑛
) = 𝜖

𝑟𝑖+𝑘
𝑓

𝑖 (
x) . (10)

Among them, 𝑘 ≥ −max{𝑟
𝑖
, 𝑖 = 1, 2, . . . , 𝑛}, and said f(x) is

about (𝑟
1
, 𝑟

2
, . . . , 𝑟

𝑛
)With the second degree 𝑘.

Lemma 3 (see [21]). Consider the following system:

ẋ = f (x) + ̂f (x) , f (0) = 0, x ∈ R𝑛, (11)

where f(x) is a continuous homogeneous vector function, about
(𝑟

1
, 𝑟

2
, . . . , 𝑟

𝑛
) ∈ R𝑛 with homogeneous degree 𝑘 < 0, and

meets ̂f(0) = 0. Hypothesis x = 0 is a asymptotic stability of
equilibrium point in the system ẋ = f(x), if

lim
𝜖→0

𝑓

𝑖
(𝜖

𝑟1
𝑥

1
, 𝜖

𝑟2
𝑥

2
, . . . , 𝜖

𝑟𝑚
𝑥

𝑚
)

𝜖

𝑟𝑖+𝑘
= 0,

𝑖 = 1, 2, . . . , 𝑛, ∀x ̸= 0
(12)

was established, then x = 0 is a system (11) of a locally finite
time stable equilibrium point.

In addition, if the system (11) is the global asymptotic
stability and is locally finite time stable, then the system is
globally finite time stable.

Lemma 4 ((Barbalat lemma) [22]). Set 𝜙 : R → R is [0,∞),
uniformly continuous function, assuming lim

𝑡→∞
∫

𝑡

0
𝜙(𝜏)d𝜏

that exists and is limited, lim
𝑡→∞
𝜙(𝜏) = 0 was established.

Lemma 5 (see [23]). Suppose 𝑓(𝑡) : R+ → R is a differentia-
ble function and meets the following:

(1) lim
𝑡→∞
𝑓(𝑡) exists and is limited;

(2) there are two functions 𝑔
1
(𝑡) and 𝑔

2
(𝑡) satisfaction

̇

𝑓(𝑡) = 𝑔

1
(𝑡) + 𝑔

2
(𝑡);

if 𝑔
1
(𝑡) is uniformly continuous function and meets

lim
𝑡→∞
𝑔

2
(𝑡) = 0, then, lim

𝑡→∞
𝑔

1
(𝑡) = 0 is established.

3. Design of the Control System

To facilitate the design and analysis of the control system,
we define vector Tanh(𝜖), sig(𝜖)𝛼 ∈ R𝑛, diagonal matrix
Sech(𝜖) ∈ R𝑛×𝑛 is as follows:

Tanh (𝜖) = [tanh (𝜖1) , . . . , tanh (𝜖𝑛)]
𝑇
,

sig(𝜖)𝛼 = sign (𝜖) |𝜖|𝛼

= [sign (𝜖
1
)

󵄨

󵄨

󵄨

󵄨

𝜖

1

󵄨

󵄨

󵄨

󵄨

𝛼
, . . . , sign (𝜖

𝑛
)

󵄨

󵄨

󵄨

󵄨

𝜖

𝑛

󵄨

󵄨

󵄨

󵄨

𝛼
]

𝑇

,

Sech (𝜖) = diag (sech (𝜖1) , . . . , sech (𝜖𝑛)) .

(13)

Type, 𝜖 = [𝜖
1
, . . . , 𝜖

𝑛
]

𝑇
∈ R𝑛, 0 < 𝛼 < 1, tanh(⋅) and

sech(⋅) said the standard hyperbolic tangent and hyperbolic
secant function, respectively, sign(⋅) said the standard of
symbol function, diag(⋅) said a standard nonzero diagonal
matrix. According to the above definition, we can easily get
the following conclusion:

Tanh(𝜖)𝑇sig(𝜖)𝛼 ≥ Tanh(𝜖)𝑇Tanh (𝜖) ,

𝜖

𝑖

󵄨

󵄨

󵄨

󵄨

𝛼+1
≥ tanh2 (𝜖

𝑖
) ,

𝜆

𝑀
(Sech2 (𝜖)) = 1.

(14)

Among them, 𝜆
𝑀
(⋅) and 𝜆

𝑚
(⋅) express the maximum and

minimum eigenvalues of respective matrix.
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Here in order to facilitate the description and analysis of
the attitude control system, we define x = [x

1
, x
2
, x
3
]

𝑇, x
1
=

qV, x1 = qV, x3 = k, the available:

ẋ
1
= q̇V = x2,

ẋ
2
= q̈V = −M

−1
(Cq̇V −

1

2

F𝑇 (u + f)) ,

ẋ
3
= k̇.

(15)

Step 1. First, we give the Lyapunov function as follows:

𝑉

1
=

1

𝛼 + 1

3

∑

𝑖=1

𝑘

1

󵄨

󵄨

󵄨

󵄨

x
1𝑖

󵄨

󵄨

󵄨

󵄨

𝛼+1
+

1

2

x𝑇
2
Mx
2

+ 𝜌Tanh(x
1
)

𝑇M (x
1
) x
2
+

1

2

x𝑇
3
KVB
−1x
3
.

(16)

Type, 𝑘
1
> 0 and 𝜌 > 0 stay on the design on the

number of normal andKV is diagonal positive definite matrix
for constant, 𝑘V𝑖 > 0 is the diagonal element of KV, 𝑘V𝑖 > 0 is
the positive definite matrix, and there are

1

2 (𝛼 + 1)

3

∑

𝑖=1

𝑘

1

󵄨

󵄨

󵄨

󵄨

x
1𝑖

󵄨

󵄨

󵄨

󵄨

𝛼+1
+

1

4

x𝑇
2
Mx
2

+ 𝜌Tanh(x
1
)

𝑇
𝑀(x
1
) x
2

=

1

4

(x
2
+ 2𝜌Tanh (x

1
))

𝑇M (x
2
+ 2𝜌Tanh (x

1
))

− 𝜌

2Tanh(x
1
)

𝑇MTanh (x
1
)

+

1

2 (𝛼 + 1)

3

∑

𝑖=1

𝑘

1

󵄨

󵄨

󵄨

󵄨

x
1𝑖

󵄨

󵄨

󵄨

󵄨

𝛼+1

≥

3

∑

𝑖=1

(

𝑘

1

2 (𝛼 + 1)

− 𝜌

2
𝑐

𝑀max) tanh
2
(x
1𝑖
) .

(17)

If you select the appropriate parameters 𝑘
1
> 0, 𝜌 > 0,

𝑐

𝑀max > 0, and 0 < 𝛼 < 1meet

𝑘

1

2 (𝛼 + 1)

− 𝜌

2
𝑐

𝑀max > 0. (18)

Type (17) into type (16), for x = [x
1
, x
2
, x
3
]

𝑇
̸= 0 one has

𝑉

1
=

3

∑

𝑖=1

(

𝑘

1

2 (𝛼 + 1)

− 𝜌

2
𝑐

𝑀max) tanh
2
(x
1𝑖
)

+

1

4

(x
2
+ 2𝜌Tanh (x

1
))

𝑇M (x
2
+ 2𝜌Tanh (x

1
))

+

1

2 (𝛼 + 1)

3

∑

𝑖=1

𝑘

1

󵄨

󵄨

󵄨

󵄨

x
1𝑖

󵄨

󵄨

󵄨

󵄨

𝛼+1

+

1

4

x𝑇
2
Mx
2
+

1

2

x𝑇
3
𝑘VB
−1x
3

> 0. (19)

Defined type (16) of the Lyapunov functions are

̇

𝑉

1
=

1

𝛼 + 1

3

∑

𝑖=1

𝑘

1

󵄨

󵄨

󵄨

󵄨

x
1𝑖

󵄨

󵄨

󵄨

󵄨

𝛼+1
+

1

2

x𝑇
2
Mx
2

+ 𝜌Tanh(x
1
)

𝑇Mx
2
+

1

2

x𝑇
3
KVB
−1x
3

= 𝑘

1
x𝑇
2
sig(x
1
)

𝛼
+

1

2

x𝑇
2
̇Mx
2

− x𝑇
2
(Cx
2
−

1

2

F𝑇 (u + f)) + 𝜌(Sech2 (x1) x2)
𝑇

Mx
2

+ 𝜌Tanh(x
1
)

𝑇
̇Mx
2
− 𝜌Tanh(x

1
)

𝑇

× (Cx
2
−

1

2

F𝑇 (u + f)) + x𝑇
3
KVB
−1ẋ
3
.

(20)

At this point, we give the following control scheme:

u = 2QT
(−KVx3 − 𝑘1sig(x1)

𝛼
− 𝑘

2
sig(x
2
)

𝛽
− 𝑘

3
x
2
) , (21)

ẋ
3
= − Ax

3
+ Bx
2
. (22)

On the type, constant 𝑘
1
, 𝑘

2
> 0, 0 < 𝛼, 𝛽 < 1, positive

definite matrices A,B are undetermined parameters. Type
(21) with type (22) into type (20) are

̇

𝑉

1
= 𝑘

1
x𝑇
2
sig(x
1
)

𝛼
+

1

2

x𝑇
2
̇Mx
2

− x𝑇
2
(Cx
2
−

1

2

F𝑇

× (2Q𝑇 (−KVx3 − 𝑘1sig(x1)
𝛼
− 𝑘

2
sig(x
2
)

𝛽

−𝑘

3
x
2
) + f) )

+ 𝜌(Sech2 (x
1
) x
2
)

𝑇

Mx
2
+ 𝜌Tanh(x

1
)

𝑇
̇Mx
2

+ x𝑇
3
KVB
−1
(−Ax
3
+ Bx
2
) − 𝜌Tanh(x

1
)

𝑇

× (Cx
2
−

1

2

F𝑇

× (2Q𝑇 ( − KVx3 − 𝑘1sig(x1)
𝛼

−𝑘

2
sig(x
2
)

𝛽
− 𝑘

3
x
2
) + f) )
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= −x𝑇
3
KVB
−1Ax
3
− 𝜌Tanh(x

1
)

𝑇
𝑘

1
sig(x
1
)

𝛼

+ x𝑇
2
(−𝑘

2
sig(x
2
)

𝛽
+

1

2

F𝑇f) − 𝑘
3
x𝑇
2
x
2

+ 𝜌 ((Sech2 (x
1
) x
2
)

𝑇

Mx
2
+ Tanh(x

1
)

𝑇Cx
2

+ Tanh(x
1
)

𝑇
(−𝑘

2
sig(x
2
)

𝛽
+

1

2

F𝑇f)

−𝑘

3
Tanh(x

1
)

𝑇x
2
) − 𝜌Tanh(x

1
)

𝑇KVx3. (23)

By Hypotheses 1 and 3, as well as Hypothesis 2 known
nature, ‖F‖ = ‖Q−1‖ and ‖F‖ = ‖Q−1‖ are bounded, the
definition f = (1/2) Ff = [𝑓

1
, 𝑓

2
, 𝑓

3
]

𝑇, then there is 𝑓
0
met
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If you choose the appropriate parameters 𝑘
2
−(|𝑓

𝑖
|/|𝑥

2𝑖
|

𝛽
)

= 𝛾 ≥ 0make 𝑘
2
− diag(|𝑓

𝑖
|)diag−1(sig(x

2
)

𝛽
) for the positive

definite matrix, in which x
2
is now under control within the

boundary layer |𝑥
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𝛽
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According to the nature of the assumptions and functional
equation, then there is
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Here, 𝛿 ≥ 0 is the design for the stay constant.
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If we select the appropriate parameters to satisfy the
following conditions:

(KVB
−1A −

𝜌𝜆

𝑀
(KV)

2𝑘

1

) > 0,

(𝑘

3
− 𝜌 (𝑐

𝑀max + 𝑐𝐶max + 𝛾 + 𝑘3)) > 0.

(28)

we can get ̇𝑉
1
≤ 0, and when x

3
= x
2
= 0, meet x

3
= x
2
= 0.

With Lyapunov stability theoremandLaSalle lemma available
spacecraft attitude control system (15) in the controller (21)
and (22), select the appropriate parameters meeting the type
(28), the system is asymptotically stable.

Step 2. In this section, we will prove that the system type (15)
locally finite f = 0 is stable parameter uncertainty. First of all,
we have to transform type (15):

ẋ
1
= x
2
,

ẋ
2
= −M−1 (Cq̇ − 1

2

F𝑇 (u + f)) ,

ẋ
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2
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According to Lemma 3, we define ̂𝑓
2
= −M−1(Cx

2
+ KVx3 +

(1/2)𝑘

2
F𝑇sig(x

2
)
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thus the type can be turned into

ẋ
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Thus, we easily know the type of a standard system:

ẋ
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The system is a homogeneous system (𝑟

11
, 𝑟

12
, . . . , 𝑟

1𝑛
,

𝑟

21
, 𝑟

22
, . . . , 𝑟

2𝑛
, 𝑟

31
, 𝑟

32
, . . . , 𝑟

3𝑛
) ∈ R3𝑛 with 𝑘 = ((𝛼 − 1)/(𝛼 +

1)) (0 < 𝛼 < 1) homogeneous degree of, including, 𝑟
1𝑖
= 𝑟

1
=

2/(𝛼 + 1), 𝑟

2𝑖
= 𝑟

2
= 1, 𝑟

3𝑖
= 𝑟

3
= 𝑟

1
, according to Lemma 3,

we have

lim
𝜖→0

̂

𝑓

2
(𝜖

𝑟1x
1
, 𝜖

𝑟2x
2
, 𝜖

𝑟3x
3
)

𝜖

𝑟2+𝑘

= − lim
𝜖→0

((M−1 (𝜖𝑟1x
1
) (C (𝜖𝑟1x

1
, 𝜖

𝑟2x
2
) +

1

2

𝑘

3
F𝑇 (𝜖𝑟1x

1
))

×𝜖

𝑟2x
2
) × (𝜖

𝑟2+𝑘
)

−1

)

− lim
𝜖→0

M−1 (𝜖𝑟1x
1
)KV𝜖
𝑟3x
3

𝜖

𝑟2+𝑘

−

1

2

lim
𝜖→0

M−1 (𝜖𝑟1x
1
) 𝑘

2
F𝑇 (𝜖𝑟1x

1
) sig𝛽 (𝜖𝑟2x

2
)

𝜖

𝑟2+𝑘

+ lim
𝜖→0

M−1 (𝜖𝑟1x
1
) F𝑇 (𝜖𝑟1x

1
) f

𝜖

𝑟2+𝑘

= − lim
𝜖→0

M−1 (0) (C (01, 02) +
1

2

𝑘

3
F𝑇 (0
1
)) 𝜖

−𝑘x
2

− lim
𝜖→0

M−1 (0)KV𝜖
𝑟3−𝑟2−𝑘x

3

−

1

2

lim
𝜖→0

M−1 (0) 𝑘2F
𝑇
(0

1
) sig𝛽 (x

2
) 𝜖

−𝑘

+ lim
𝜖→0

M−1 (0)
F𝑇 (𝜖𝑟1x

1
) f

𝜖

𝑟2+𝑘
.

(32)

If the parameter uncertainty f = 0, thus you can type to
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Figure 1: Time responses of the attitude quaternion q without
disturbs.
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type, 𝑟
3
− 𝑟

2
− 𝑘 = 2(1 − 𝛼)/(𝛼 + 1) > 0.

In the same way, we can get

lim
𝜖→0
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A𝜖−𝑘x
3
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(34)

Therefore, via Lemma 3, we can confirmed that the
spacecraft attitude control system can realize finite-time local
stabilization when f = 0 of parameters uncertainty. Thus, we
give the following theorem.

Theorem 6. In view of the attitude control system (15), under
the Assumptions 1–3, the finite time controllers (21) and (22),
select the appropriate parameters meeting the type (28), the
system is asymptotically stable. When parameter uncertainties
f = 0, control system of spacecraft attitude can achieve partial
finite time stable.
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0 5 10 15 20

4

2

0

−2

−4

u
1

(N
·m

)

0 5 10 15 20

4

2

0

−2

−4

u
2

(N
·m

)

0 5 10 15 20

u
3

(N
·m

)

3

2

1

0

−1

PID
FTC

Time (s)

Time (s)

Time (s)

Figure 3: Time responses of the control torques u without disturbs.

Proof. See above Steps 1 and 2, just here are omitted.

4. Simulation and Analysis

In order to validate the proposed the validity of the finite time
control (FTC), usingMATLAB/Simulink software, for space-
craft attitudemaneuver control process simulation, spacecraft
main simulation parameters and controller parameters are
shown in Table 1. Another hypothesis role in spacecraft
external disturbance torque is

d (𝑡) = 10−2 ∗ [
[

3 cos (10𝑎𝑡) + 4 sin (3𝑎𝑡)
−1.5 sin (2𝑎𝑡) + 3 cos (5𝑎𝑡)
3 sin (10𝑎𝑡) − 8 sin (4𝑎𝑡)

]

]

N ⋅m. (35)

Type 𝑎 = 0.8.
Under the model parameters of the above, for the sake

of comparison, this part for limited time controller designed
in this paper (FTC) and the traditional classic PID control
simulation is to verify the effectiveness of the scheme and
superiority. In accordance with the process of the design
of the controller, the simulation is divided into a spacecraft
attitude control system without external disturbance and
outside disturbance of two parts.

(A) Without External/Internal Disturbance. In situations
where there is no disturbance torque, the finite time con-
troller designed in this limited time (21) canmake the control
system to achieve stability. Figures 1 and 2 show the stance
and attitude angular velocity of the spacecraft system time
response curves. The spacecraft attitude control system can
reach stabilization within 5 SEC under the proposed con-
troller FTC (red solid line), and the stabilization precision can
reach 10−4 also. The closed-loop control system has realized
the finite-time stabilization. In addition the PID (blue line)
under the action of the controller, the stable time of the
system inmore than 15 SEC, and stable precision only, even in
the absence of interference, the attitude of the spacecraft has
larger perturbation and steady-state error. Figure 3 shows that
the controller without interference of provides the moment
of time response curves. Thus, the traditional PID control
can achieve asymptotic stability of control system, the FTC in
this paper, the control can guarantee the stability of attitude
control of the limited time and has the very good superiority.

(B) With External/Internal Disturbance. In view of the exis-
tence of disturbance torque, without changing the model and
parameters, the controller of this paper, when compared with
the traditional PID controller, is simulated. Figures 4 and 5
show the stance and attitude angular velocity of the spacecraft
system time response curves. In the proposed controller
FTC (red solid line), under the control of spacecraft attitude
control system can achieve stability within 8 SEC, stable and
has high level of accuracy, guarantee the stability of the
closed-loop control system.Moreover, the effective inhibition
ability to external disturbance of the proposed controller



8 Journal of Applied Mathematics
q
1

0.2

0

−0.2

−0.4
0 10 20

PID
FTC

1.05

1

0.95

0.9

0.85
0 10 20

q
0

Time (s)

6

0

−6

×10
−3

10 15 20

Time (s)Time (s)

0.3

0.2

0.1

0

−0.1

q
2

0 10 20

Time (s)

−
0 10 20

q
3

q
1

1

0.9998

10 15 20

Time (s)

q
0

q
2

q
3

0.2

0.1

0

−0.1

PID
FTC

Time (s)

10 15 20

6

0

−6

×10
−3

Time (s)

10 15 20

6

0

×10
−3

Time (s)

−6

Figure 4: Time responses of the attitude quaternion q with disturbs.

Table 1: Spacecraft model and controller parameters.

The project name Parameter

Spacecraft model parameters
Moment of inertia J = [

20 0 0.9;
] [
0 17 0;

] [
0.9 0 15

] kg⋅m2

Initial position q(0) = [0.9; −0.3; 0.26; 0.18]
Initial angular velocity 𝜔(0) = [0.3; −0.25; −0.3] rad/s

Finite time controller 𝑘

1
= 1.8, 𝑘

2
= 1.2, 𝑘

3
= 2.6, 𝛼 = 0.8, 𝛽 = 0.86

KV = diag (1 1.2 2), A = diag (
1 1 1

), B = diag (
1 1 1

)

PID controller 𝐾

𝑃
= 3.2, 𝐾

𝐼
= 0.0005, 𝐾

𝐷
= 4.0
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Figure 5: Time responses of the attitude angular velocity 𝜔 with disturbs.

FTC can be seen in Figure 5, from the time responds curve
of the spacecraft attitude can be found that the attitude
almost have no chattering. In PID (blue line) under the
action of the controller, the stable time of the system in more
than 20 SEC, and stable precision only, under the action of
external disturbance, the attitude of the spacecraft has larger
perturbation and steady-state error. Figure 6 shows that the
controllers in the absence of any disturbance provide the
moment of time response curves. Thus, even in the presence
of external disturbances, in this paper, the actual FTC control

can guarantee the stability of attitude control of the limited
time and has the very good superiority.

5. Conclusions

In view of the presence of parameter uncertainty spacecraft
attitude stability control system, it puts forward the category
of odd theory based on the finite time control. First of all,
by introducing a new adaptive state variables, the spacecraft
attitude control system is converted to a cascade system;
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Figure 6: Time responses of the control torques u with disturbs.

then, based on the theory of homogeneity of the method,
the finite time asymptotically stable controller design for a
class of novel, and by using Lyapunov theory, proved that
the system asymptotic stability in the presence of parameter
uncertainties, and there is no finite time stability of closed-
loop system parameter uncertainties. Finally, the proposed
algorithm is applied to a rigid spacecraft attitude stability
control task; the digital simulation results verify the validity
and feasibility of the scheme. And design in this paper,
finite time controller structure is simple, easy to adjust, and

has the very high practical engineering practical value. But,
this paper studies to locally finite time stable, for spacecraft
attitude control system of globally finite time stable controller
design and argumentation, the difficulties and focus will be
the next step of work.
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