Hindawi Publishing Corporation

Journal of Applied Mathematics

Volume 2014, Article ID 814159, 15 pages
http://dx.doi.org/10.1155/2014/814159

Research Article

Towards Light-Weight Probabilistic Model Checking

Savas Konur

Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK

Correspondence should be addressed to Savas Konur; s.konur@sheffield.ac.uk

Received 28 January 2014; Revised 19 May 2014; Accepted 3 June 2014; Published 10 July 2014

Academic Editor: Guiming Luo

Copyright © 2014 Savas Konur. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Model checking has been extensively used to verify various systems. However, this usually has been done by experts who have a good
understanding of model checking and who are familiar with the syntax of both modelling and property specification languages.
Unfortunately, this is not an easy task for nonexperts to learn description languages for modelling and formal logics/languages
for property specification. In particular, property specification is very daunting and error-prone for nonexperts. In this paper, we
present a methodology to facilitate probabilistic model checking for nonexperts. The methodology helps nonexpert users model
their systems and express their requirements without any knowledge of the modelling and property specification languages.

1. Introduction

Model checking [1] is a computational and algorithmic
verification technique analysing if certain requirements hold
in a system. These requirements are expressed as formal prop-
erties, such as temporal logic formulas. Model checking then
exhaustively checks if these formal properties are satisfied by
a structured model, for example, state transition system and
finite state automaton, describing all system behaviours.
Model checking is an established research subject within
computer science. There has been a vast amount of work
carried out during the last two decades. Many tools have been
devised and used in both academia and industry, for example,
NuSMV [2], Spin [3], UppaaL [4], and KroNos [5]. Since
model checking provides a comprehensive and an exhaustive
computational analysis, it can reveal all possible system
behaviours, which cannot be normally done by simulation
or testing techniques. For this reason, it has been applied
to various engineering problems, for example, hardware
verification, software and programme verification, analysis of
communication protocols, and safety-critical systems.

Standard model checking techniques are normally used
to analyse qualitative temporal and dynamic properties.
However, in order to have a deeper understanding of the
system behaviour, some quantitative analysis is also required.
Along with technological advances, systems are getting more
complex. This requires the formal analysis to also include

other aspects such as uncertainy, as the systems are getting
more ubiquitous and probabilistic. In fact, while analysing
many realistic systems, we need to consider uncertainty in
system components and the reliability of communication [6]
as well as uncertainty in planning and analysing performance.
Unfortunately, standard model checking techniques are not
sufficient to provide the level of analysis that we need in these
cases.

Probabilistic model checking is a probabilistic variant of
classical temporal model checking, which provides quantita-
tive information regarding the likelihood that certain system
behaviour is observed. This verification method has been
successfully applied to formal analysis of a vast number of
systems, for example, “bluetooth protocols, self-configuring
protocols, self-organising systems, fault-tolerant algorithms,
and scalable protocols” [7]. This is an active research subject
within the model checking study. Various tools have been
devised, such as Prism [8], MRMC [9], YMER [10], and VESTA
[11]. Among these, PrisM is the most widely used probabilistic
model checking tool. MRMC is also another popular tool with
new improvements employed recently.

Although probabilistic model checking tools have been
used to verify various systems, this usually has been done by
experts who have a good understanding of model checking
and who are familiar with the syntax of both modelling and
property specification languages. Unfortunately, this is not an
easy task for nonexperts to learn description languages for

http://dx.doi.org/10.1155/2014/814159

modelling and formal logics/languages for property specifica-
tion. In particular, property specification is very daunting and
error-prone for nonexperts. Research has shown that even
experts make errors when they formally specify an informal
requirement [12].

In this paper, we present a methodology to facilitate
probabilistic model checking for nonexperts. As part of our
methodology, we propose using some tools to achieve this.
Namely,

(i) we propose a property generator tool which auto-
matically generates formal properties using natural
language statements;

(ii) we use a front-end tool which provides a graphical-
user interface that allows constructing probabilistic
state machines from which the model code is auto-
matically generated;

(iii) we also devise a strategy which reduces the state space
of probabilistic models to increase the performance
of model checking and relieve the state explosion
problem.

In this way, nonexperts can model their systems and
express their requirements without any knowledge of the
modelling and property specification languages and can
analyse their systems using probabilistic model checking
without having any expertise. We are not aware of any work
which considers simplifying both modeling and property
specification for model checking tool(s)—except very few
studies introducing some simplifications for property spec-
ification, which will be reported in Section 5. We believe the
idea and approach presented in this paper is novel, and this
is an important step towards making model checking a more
accessible computational technique for nonexpert users.

The paper is organised as follows: Section 2 summarises
probabilistic model checking; Section 3 presents our method-
ology; Section 4 describes the model construction compo-
nent; Section 5 describes the property generation component;
Section 6 applies the methodology to an example system;
Section 7 discusses how we will extend our methodology; and
Section 8 concludes the paper.

2. Probabilistic Model Checking

In model checking, a finite system model (e.g., state transition
system and finite state automaton), representing all system
behaviours, is checked against a temporal logic formula.
The entire state space represented by this model is then
exhaustively analysed to verify if the formula is satisfied. For
example, model checking allows us to check if the temporal
logic formula,

AG-deadlock 1)

stating that “deadlock (deadlock) never occurs (G-) in any
execution trace (A), is satisfied in a given system model.

In probabilistic model checking, probabilistic finite state
machines are used as modelling language. The simplest prob-
abilistic models are Discrete-Time Markov Chains (DTMCs),

Journal of Applied Mathematics

Continuous-Time Markov Chains (CTMCs), and Markov
Decision Processes (MDPs). Formal properties are then
expressed using probabilistic logics, a probabilistic extension
of temporal logics. For discrete-time models (e.g., DTMCs
and MDPs), the probabilistic extension of CTL, PCTL [13], is
used and for continuous-time models (e.g., CTMCs) Contin-
uous Stochastic Logic (CSL [14]) is used. Both languages can
express quantitative expressions, such as “the probability that
deadlock never occurs is greater than 0.9,” formally translated
as

P.yo [G~deadlock]. (2)

PCTL is defined according to the following grammar:

¢ == true |p| =@ p A | P_, [y], o
y == Xg |pUp| U,

where p is a set of atomic propositions, 0 < r < 1lisa
probability bound, and ~¢ {<,>,<,>,=}. The probabilistic
operator P_, is the probabilistic extension of branch/path
quantifiers A and E of CTL. Informally speaking, P_,[y] is
satisfied at a state s if, and only if, the probability of taking the
path from the state s which satisfies ¥ meets the bound “~r.”
The path formulas y are constructed using the next (X) until
(U) and bounded-until (U") operators. We can derive other
temporal operators, such as F (eventually) and G (always)
from X and U. For example, Fo = true Up and Gg = —F-¢.
The informal meanings of path formulas are as follows:

(i) X¢ holds at a state on a path if, and only if, ¢ holds in
the next state on the path;

(ii) Fo holds at a state on a path if, and only if, ¢ holds
eventually at some future state on the path;

(iii) Ge holds at a state on a path if, and only if, ¢ holds at
all future states on the path;

(iv) ¢, Ug, holds at a state on a path if, and only if, ¢, holds
on the path up until ¢, holds; and

(v) ¢,U'g, holds at a state on a path if, and only if, ¢,
holds on the path at some time step within the interval
I and @, holds at all preceding states on the path.

The formal semantics of the operators X, U, and U" are
defined as follows:

(i) #,0 E X¢ if and only if 4, o[1] E ¢;

(ii) M,0 & ¢, Ug, ifand only if Ji > 0s.t. #,0[i] E ¢,
and (for all j < i) M,0[j] E ¢;;

(iii) #,0 & ¢,U'e, if and only if Ji € T = [d,d'] s.t.
M,oli] E @, and (for all d < j < i) M,0l]] E ¢,

where . is a Markov chain (or an Markov decision process)
and o is a path, that is, a (possible infinite) sequences of states.
The ith element of a path ¢ is denoted by o/[i].

In addition to the operators of PCTL, the logic CSL also
contains the steady-state (long-run) S_, operator. Namely, the
formula S_, [w] holds in a state s if, and only if, the steady-state

Journal of Applied Mathematics

module module_name

/lvariable declarations
s:[0...10] init 0;

//state transitions
[Js=0 - 04:(s =1)+0.6: (s =2);

endmodule

ALGORITHM 1

probability of being in a state which satisfies y is bounded by

~1"
A probabilistic model checker can be used to verify if a
PCTL or CSL formula—depending on the time semantics—
holds in a given probabilistic model. In this paper, we
particularly consider the model checkers Prism, MRMC, and
YMER because of their support for these languages and useful

features which they employ.

2.1. PrisM. Prism is the most widely used probabilistic model
checking tool. It provides formal verification for different
probabilistic models such as DTMCs, CTMCs, and MDPs,
which are coded as the Prism’s reactive modules, a simple
state-based language. PrisM is a symbolic model checker;
namely, it uses a compact and structured representation of
“data structures based on binary decision diagrams (BDDs)
and multiterminal binary decision diagrams (MTBDDs)” in
order to reduce the size of probabilistic models [15].

The Prism modelling language can be described as
follows (summarised from [16]). The language is composed
of a set of components, called modules, representing an
encapsulation for different parts of the system and variables
representing the state of each module. The global state of the
model at any time point is determined by the values of all
variables (and optionally global variables). Variables can be
declared using the syntax

s:[0---10] init0; (4)

meaning that s is an integer variable whose values range
between 0 and 10; that is, 0 is the lower bound and 10 is
the upper bound. State transitions can be modeled using the
following syntax:

[act] guard — rate: update, (5)

where “act is an (optional) label, guard is a predicate over
the variables of the model, rate is a (nonnegative) real-valued
expression, and update is the values of variables in the next
state” [15]. For example,

(s=0—04:(s'=1)+06: (s =2); (6)
states that if the variable s is 0 then s will be 1 in the next state

with probability 0.4 and will be 2 with probability 0.6, other-
wise. A module is then described as shown in Algorithm 1.

The property specification languages supported by the
tool include PCTL and CSL. In addition to probabilistic
properties, PrisM also supports rewards structures, providing
reward properties based on quantitative information such as
“expected number of deadlocks” and “expected time taken to
reach a state where a deadlock occurs” This is done using
“R” operator. PrisM provides the following reward types: the
reachability reward (R_,[Fe]), cumulative reward (R_.[C <
t]), instantaneous reward (R_,[I = t]), and steady-state
reward (R_,[S]). These formulas can be intuitively described
as follows [15]:

(i) R_,[Fe] asserts that the expected reward accumulated
until ¢ is satisfied is bounded by ~7;

(ii) R_,[C < t] asserts that the expected reward accumu-
lated until time ¢ is bounded by ~7;

(iii) R_,[I = t] asserts that the expected value of the state
reward at time instant ¢ is bounded by ~r;

(iv) R_,[S] asserts that the long-run average expected
reward is bounded by ~r.

We remark that rewards are added to model files. The reward
structures denote labellings of states and transitions with
associated real values. These values are then used when
calculating the accumulated or instantaneous rewards.

Prism provides both a command-line tool and a graphical
user interface. The latter provides (i) a model editor for the
description/modelling language; (ii) an editor for property
specification langauge; (iii) a simulator tool to debug model
execution traces; and (iv) graph-plotting tools [16]. Prism
also provides an approximate/statistical model checking
feature, but this is only allowed to a subset of PCTL/CSL
formulas. For example, statistical model checking cannot be
used in verification of steady-state properties.

2.2. MrMc. MrMc is another probabilistic model check-
ing tool, which allows formal verification for DTMCs and
CTMC:s (as well as Continuous-Time Markov Decision Pro-
cesses, a nondeterministic variant of CTMCs). As in PrRisM,
DTMCs and CTMCs are verified against PCTL and CSL
formulas, respectively.

MrmMc also features the logics PRCTL and CRSL, which
are an extension of PCTL and CSL, respectively, with rewards
structures. The syntax of the reward formulas are slightly
different than Prism’s reward formulas [17]: reachability
reward: E[t][r|,r,]l¢], cumulative reward: Y[t][r,,r,][¢],
instantaneous reward: C[t][r,, ,][¢], and steady-state reward:
E[r,7,][@]. The rewards represent expected rewards per time
unit and are checked against a reward bound [r,,r,]. For
example,

Y [t] [ry,7,] [@] (7)

meaning that the expected accumulated reward rate per time
unit in ¢ states until the tth transition will be within the
interval [ry,7,].

Some important features of MRMC are summarised as
follows [9]. Unlike Prism, MRMC is a command-line explicit

dtmc

const int SEARCHING = 0;
const int HOMING = 1;
const int GRABBING = 2;

Journal of Applied Mathematics

Qualitative result

© 9

const int DEPOSITING = 3;

const int RESTING = 4;

module forging

s :[0..4] init 0;

[]'s= SEARCHING — 0.5: (s'= s) + 0.2 : (s'= HOMING) +
0.3 : (s'= GRABBING);

[]s= HOMING —> 0.3: (s'= s) + 0.7 : (s' = RESTING);

Probabilistic model checker

e.g., PRISM, MRMC, and YMER

T

Quantitative result

[] s = GRABBING — 0.2 : (s'='s) + 0.5 : (s'= SEARCHING) +
0.2: (s'= HOMING) + 0.1 : (s'= DEPOSITING);

[1's = DEPOSITING —> 0.4 : (s'= 5) + 0.6 : (s'= RESTING);
[] s = RESTING —> 0.4 : (s'= s) + 0.6 : (s'= SEARCHING);
endmodule

P < 0.1 [G searching]

raging robots (x20)

0 200 400 600 800 1,000

Time (s)

FIGURE 1: Standard approach for probabilistic model checking.

state model checker employing a “numerical solution engine.”
It has been therefore used as a back-end model checking tools
for various systems including Petri nets, process algebras, and
stochastic hybrid systems. MrRMc has recently been improved
with a better memory management and implementation of
the sparse matrices and support for bisimulation minimiza-
tion. This increases its efficiency and performance on large
models.

MRrumc also employs a “discrete-event simulation engine”
for statistical CSL model checking. In statistical model
checking, rather than exhaustively exploring the entire state
space, the system is simulated finitely many times to obtain
execution traces and statistical evidence is provided for
the verification of a property [18]. Unlike PrRisM, MRMC’s
statistical model checking covers the entire formula set of
CSL, including steady-state properties.

2.3. YMER. YMER is a statistical model checking tool, used to
verify transient properties of CTMCs [10]. So, unlike Prism
and MRrMG, it does not exhaustively analyse all system behav-
iour. Instead, it employs statistical techniques relying on “dis-
crete event simulation and sequential acceptance sampling”
[10]. The modelling language of YMER is very similar to that of
Prism with a difference that YMER also supports generalized
semi-Markov processes. The property specification language of
the tool is CSL, but Prism and MRMC support a richer set of
properties than YMER.

3. Light-Weight Approach to
Probabilistic Model Checking

As in classical model checking, a probabilistic model checker
requires two inputs: (i) a probabilistic model of the system

to be analysed and (ii) a probabilistic property. As discussed
above, a probabilistic model can be a DTMC, CTMC, or
MDP, which is coded according to the high-level modelling
language of the model checker, for example, reactive modules
in case of PrisM. A probabilistic property is the formal speci-
fication of a requirement to be checked, which is expressed in
one of the probabilistic logics described above, for example,
PCTL when the system is modeled in DTMC. The model
checker then automatically checks if the model satisfies the
given specification. Based on the type of the property, it
produces either a qualitative answer (a “yes” or “no”) or a
quantitative result. If the property is not satisfied, the model
checker also produces a counterexample to help the modellers
debug the output and find the bug. The overall process is
illustrated in Figure 1.

In standard approach, models are created manually using
a high-level modelling language tailored to a particular model
checker and properties are specified in a specific formal
logic/language. This, however, requires having a good under-
standing of both modeling and property specification and
being familiar with the syntax of both high-level description
and specification languages. Unfortunately, this is not an easy
task for nonexperts to learn description languages for mod-
elling and formal logics for property specification. In partic-
ular, property specification is very daunting and error-prone
for nonexperts and even for experts in case of some complex
properties.

To make this process easier for nonexperts, we propose
an approach facilitating probabilistic model checking by
providing an abstraction over high-level modeling and prop-
erty specification languages. Namely, we suggest creating a
system model using a graphical user interface and generate

Journal of Applied Mathematics

© 9

Probabilistic model checker
e.g., PRISM, MRMC, and
YMER

-——->
dtme
const int SEARCHING = 0;
05 const int HOMING = 1
const int GRABBING = 2;
const int DEPOSITING = 3;
const int RESTING = 4;
module forging
51 (0..4] init 0;
E [)'s = SEARCHING — 0.5 : (s'=5) + 0.2 : (s'= HOMING) +
0.3: (s'= GRABBING);
[]'s = HOMING — 0.3 : (s' = 5) + 0.7 : (§' = RESTING);
[1s=GRABBING — 0.2: (s'=5) + 0.5 : (s' = SEARCHING) +
02 (s'=HOMING) + 0.1 : (s' = DEPOSITING);
[Is = DEPOSITING —> 0.4: (s'= 5) + 0.6 : (s' = RESTING);
[1s=RESTING —» 0.4: (5' =5) + 0.6 : (s'= SEARCHING);
endmodule
Property specification
in natural language -—

eg.,

Probability that robot
searches forever is
less than 0.1

P < 0.1 [G searching]

0 200 400 600 800 1,000

Time (s)

FIGURE 2: A light-weight approach for probabilistic model checking.

Simulation
runs

Ll

-

Invariant
detector

Property
generator

IProbabilistic model checker
e.g., PRISM, MRMC, and
YMER

FIGURE 3: System overview.

informal properties using natural language statements. The
constructed model is then translated to the corresponding
high-level modelling language, and the informal properties
are translated into their formal counterparts. Our approach
is illustrated in Figure 2. Here, we consider the models con-
structed as probabilistic state machines and natural language
statements as probabilistic properties, because in this paper
we focus on probabilistic model checking.

The system overview of our approach is shown in
Figure 3, summarised as follows.

Model Construction. A system model is constructed using
the Model Generator, which is a graphical user interface
providing drawing features to construct probabilistic state
machines. The constructed model is then translated into a

high-level modelling language, which then becomes an input
to the corresponding model checker.

Reducing Model Size. A well-known problem with model
checking is the state explosion problem. Namely, the number
of states increases so rapidly that model checking cannot
become feasible any more. The size of model, mostly depend-
ing on the number of states, is an important factor for the
model checking efficiency, because the resources required to
perform model checking are very sensitive to the model size.
Unfortunately, it is very easy to create huge models when
variables are unnecessarily assigned to very large ranges.
A good strategy to tackle the state explosion problem and
increase the performance of model checking is therefore to
reduce the number of states. As discussed in Section 2.1,

variable ranges are defined using a lower and an upper bound.
In most cases, users might not be able to know the exact lower
and upper bounds. If the estimation of variable ranges is not
realistic, then the resulting model size will be very large.

In order to tackle this issue, we devise a method auto-
matically estimating a reasonable lower and upper bound for
model variables. In order to do this, we simulate the model
generated by the Model Generator, use an invariant detector
to analyse the simulation results, and acquire the lower and
upper bounds for variables. In the Model Adjusment process
we then update the model variables with the bounds acquired
from the invariant detector. In this way, even if the users
provide very large bounds, we can reduce them and update
the model accordingly. The updated model is then given to
the model checker as an input.

Property Construction. The Property Generator tool provides
a graphical user interface allowing users to create properties
easily by manipulating a configurable form with some inter-
faces such as combo and text boxes. So, by only selecting
natural language statements, users can generate a set of
informal properties which are automatically translated into
their formal counterparts. The formal properties can be
directly given to the corresponding model checker as an
input.

4. Model Construction

As part of the proposed methodology, we aim to use various
tools to make the modeling task less complicated for nonex-
perts. In this section, we provide a more detailed account for
the tools and methods used.

4.1. Model Generator. The Model Generator component relies
on the prototype front-end tool, called Drawing Prism,
developed in [19]. The Drawing Prism tool, DP in short,
provides drawing features to construct probabilistic state
machines, which are then translated into a PrRism model file.

DP implements two interfaces: (i) drawing interface
allowing users to draw probabilistic state machines—see
Figure 4—and to populate their state machines as a data
model; (ii) translator, which translates the data model repre-
senting the probabilistic state machine into the Prism’s high-
level modelling language.

DP employs ArgoUML [20] as the drawing tool.
ArgoUML is an open source project, and it supports most
popular standards, for example, UML, XMI, and SVG. It is
written in Java; it is therefore supported by any platform with
a Java environment.

ArgoUML converts a state diagram into an XMI data.
XM]I, standing for XML-based Metadata Interchange Format,
is mainly used as a model interchange format for UML.
Although XMI is not an easy format to read, it has some
advantages, for instance, its abstract tree representation
which makes parsing easy. XMI stores all the necessary
information in a state machine, for example, states, transi-
tions, labels, and probability values. The translator extracts all

Journal of Applied Mathematics

State diagram®

Standard buttons

AD =R P
®

& &

Diagram tools

01 ()
u » SElECE

State
@ scenario start
(@) Scenario end
06 1 Note
J2) Linked diagram
“ Event/ Action

0.2
i 05
05 06
RESTING
05

*+. Mote connector

Extended functions

& ShowiHide side bar

o . Select

FIGURE 4: A probabilistic state machine constructed in DP [19].

information from a state machine in XMI and then translates
it into the format accepted by Prism.

The DP function design is presented in Figure 5. The
functional components can be summarised as follows [19].

(i) User Interface. “It has a control and drawing panel
through which users access DP and interact closely
with system operators. Control components provide
a common control surface used by GUI, scripts,
and programmatic access. The Interface is used to
integrate the rest of these subsystems”

(ii) Drawing System. It classifies every component of the
state machine drawn using the user interface and then
integrates these components in the data structure.

(iii) XMI Data. It is the data structure acquired from the
Drawing System and translated to the XMI format.

(iv) Translator. It translates state machine information in
the XMI data structure to a Prism model file using
specific algorithms.

4.2. Invariant Detector. The Invariant Detector component
generates reasonable lower and upper bounds for model vari-
ables by automatically detecting invariants through analysing
the simulation traces produced by Model Generator. For this
task we employ the Daikon tool [21].

Daikon is an invariant detector tool which dynamically
reports invariants in a program. An invariant is simply
a mathematical property, such as x = 3, y < 2x, z
is one of {0, 1}, holding at specific execution points of a
program. Daikon executes a code, analyses the values of
program variables, and then detects invariants which are true
over certain points.

Daikon is originally developed to support high-level
programming languages, for example, C, C++, Java, and
Perl. However, its source code is freely available and can be
modified to be able to use it in other formats. In order to
facilitate its usage in detecting invariants from simulation
traces, we have extended its functionality. After analysing
the simulations, it produces some mathematical relations

Journal of Applied Mathematics

User interface

e ™
Drawing system XMI data Translator PRISM
States, transitions, and State machine [Extracting algorithm code
labels . .
translating algorithm
N J

FIGURE 5: Functional components of DP [19].

806 Daikon Utility
File

Input Output
Select either a trace (.dtrace) file or a result (x) file:

[RunDaikon | | Save Invariants |

/konur/Desktop/foraging-sim.dtrace | Browse

Daikon 4.2.9, released September 1, 2006; http://pag.csail.mit.e
4 claration files [1:09:27 PM]:

I
1 [1:09:28 PM]: Finished reading foraging-sim.dtrace

Function::EXIT66 Function::ENTER
step step == step

99 s==s
1

s step >=0
o step >= 0
1 s<=4
Function::ENTER step - step == 0

(step == 0) ==> (s == 0)
99 s-5==0

1

s Function:::EXIT
) step == step
1

Function::EXIT66
step

100

1

s

0

1

>=0
orig(step) <= 99
orig(step) >= 0

FIGURE 6: Daikon invariant detector.

between various model variables. The ranges provided by
Daikon then become a realistic lower and upper bound.

Daikon was previously used to detect invariants to con-
struct formal specifications [22, 23]. In contrast, here we
use the invariants to estimate reasonable bounds for model
variables, as discussed above. In [24], Daikon was used to
formulate temporal logic formulas to be model checked by
NUSMV. Here, we extend the work done in [24] by adjusting
it to accept the outputs of Prism’s discrete event simulator. A
screen shot of the tool is shown in Figure 6.

Depending on the quality of information contained in
execution traces, Daikon can report many types of invariants,
such as arithmetic (y < 2x), non-zero (e.g., x #0), element of
(e.g.,x is one of {0, 1}),and interval (e.g.,0 < x < 5). Daikon
might also report some redundant invariants (e.g., x == x).
However, it employs a filtering mechanism allowing to omit
redundant and unwanted invariants to be returned. In this
way, we can only obtain upper bound (e.g., x < 2) and lower
bound (e.g., x > 0) invariants.

Remark. The Daikon tool is originally developed to detect
invariants within a program written in a high-level program-
ming language. In a typical programme, there can be hun-
dreds of variables. Daikon is capable of reporting invari-
ants for such large numbers of variables over thousands of

executions. A typical system for which model checking is
feasible probably contains tens of model variables in the
model description (which might lead to millions/billions of
states/transitions when the model is constructed by the model
checker). It will be sufficient to obtain around a hundred
simulation traces to find the bounds for model variables. This
suggests that the resources required to use the Daikon tool to
obtain variable bounds are not more than those required by
its original usage.

4.3. Model Adjustment. In the Model Adjustment process we
perform two tasks as follows. (i) We update the bounds of
model variables in the PrisM model file with the bounds
acquired from the invariant detector. In this way, even if the
users provide very large bounds, we can reduce them, and
update the model accordingly. The updated model is then
given to PRrIsM as an input. (ii) We also translate the same
model to the corresponding MrMC language. At the moment,
we are using PRism’s built-in export facility to translate PRism
models to the Mrmc format. The modelling language of
YMER is very similar to that of Prism, which requires a few
minor changes. Currently, we make these changes manually,
but an automatic translation is a very primitive process.

5. Property Construction

Property specification is very daunting and error-prone for
nonexperts. It is even cumbersome for experts to specify
complex properties. In most cases, properties are not intuitive
and self-explanatory, so their meanings will not be clear to
those not familiar with formal methods. This unfortunately
hinders reusability of properties already studied in the litera-
ture and makes them inaccessible to a wide audience. Another
issue that we would like to address is that although a formal
property can be syntactically correct it might not be a valid
representation of the requirement we wish to verify [12]. This
is especially the case when the formal specification is complex
and long.

In order to tackle these issues and facilitate property
specification, we propose the Property Generator tool, which
provides guidance to construct properties using the natural

language statements representing informal properties and
then automatically translates them to their formal coun-
terparts. Users are able to construct properties easily by
manipulating a configurable form with some interfaces such
as combo and text boxes, which makes the property specifi-
cation a very simple and intuitive task.

The Property Generator tool features a set of property
patterns based on most recurring properties studied in the
literature. These patterns provide a systematical classification,
guiding users to construct natural language expressions
representing the properties that they want to express. The tool
works based on a structured grammar defined for both natural
language representation of these patterns and their formal
translations.

The idea of categorising properties into a set of patters
initially started in [12], where several hundreds of properties
were analysed. Since this seminal work, there have been
several studies in this direction. [25] extended the pattern
classes of [12] with more time related patterns and their
“associated observer automata” [26] provided a set of pat-
terns in the context of real-time specification. [27] introduced
a unified pattern system extended with a new set of real-
time pattern classes. [28] analysed probabilistic properties
and provided a probabilistic category system along with a
structured grammar. In [29] we proposed a set of query
templates similar to the one presented in this paper which
targeted biological models.

A subset of the patterns which we used in the Property
Generator tool and their formal translations in Prism and
MRMc are shown in Table 1. In the table, phi and psi are state
expressions returning true or false (e.g., x < 4),x € {<,>,<
, >} is a relational operator, p € [0, 1] isareal, 7,71, 72 are real
numbers, and t,¢1,12 are integers. Here, where applicable,
we provide both the unbounded and bounded versions of the
patterns. Note that YMER can express only a subset of these
patterns, and we therefore do not include it in the table.

As Table 1 illustrates, properties in natural language are
much more intuitive and comprehensive than their formal
translations. For example, the natural language representa-
tion of the Bounded Response pattern

“phi is always followed by psi within time

(8)
bound [t1,t2] with a probability x p”

is much more easier than its formal translation, for example,
MRMC,

P {xp} [! (tt U !(phi => P >= 1 [tt U[t1, 2] psi]))].
9)

The Property Generator tool makes the property construction
a very easy and effortless task without requiring the knowl-
edge about the formal syntax of the target model checker. For
example, to build this property, the user selects the bounded
version of the Response pattern using the graphical user
interface provided. The user only needs to provide the values
for phi, psi, t1, t2, X, and p. The formal translation is then
done automatically.

Journal of Applied Mathematics

806 Property Builder v.1.0 "

Target: | pRisM

Expressions 7T Log |
Select a Category
[Responce

Patterns.
Expression el is always followed by expression e2 with a probability bound p. The process p1 is always

Expression el is always followed by expression e2 within time bound [t1,t2] with a probability bound | 'ﬁ}”:wed hg process p2 within
seconds.

Formula
Expression ¢ | 15 always followed by ' Expression | Withintime bound [20, 20 Jwitha probability | >=3| 09 .

[P>=0.9[G((s=0)=>P>0[F[20,20](s=1)])]

Label: property #2 Add Delete Save

Properties
Label Formula
Property #1 P>=0.9[G ((s=0) =>P>0[F[10,10](s=1)1)]

| Done

FIGURE 7: Property Generator tool.

A screen shot of the Property Generator tool is illustrated
in Figure7. We developed a previous version of the tool
to construct (linear) temporal properties used in formal
verification of kP System models [30].

The operation of the tool during a property construction
process is as follows. The user first selects a target, for
example, PrisM, MRMC, and YMER, to which the property
is translated. When a pattern is selected from the category
combo box, a template (for bounded and unbounded cases)
is displayed in the text field. When the appropriate template
is clicked, both the informal representation and its formal
translation appear in the corresponding text box. Also, a
typical example of the selected pattern is displayed at another
text field. In order to complete the formula, the user is
required to select and fill in the missing values. The selection
and typing are interactively shown in the text box displaying
the formal translation. When the formula is complete, the
user can save it. If there are still missing fields to be completed,
he/she receives a warning. The user can edit a saved property
at any time.

The main components of the Property Generator tool are
shown in Figure 8. The Expression Builder component of the
Property Generator GUI constructs atomic expressions, that
is, state formulas returning true or false, using model vari-
ables and constants, and Boolean expressions using atomic
expressions. The grammar for building expression is defined
in the Expressions file. The Property Builder of the GUI
constructs properties using the generated expressions and
a set of patterns whose grammar is defined in the Patterns
file. The Cached Data component keeps the expressions and
properties created or managed throughout a user session. It
works as a repository to keep the generated data until they are
saved to a file and the application closes.

Remark. The performance of the Property Generator tool
does not depend on the model size. The properties are
constructed from a set of patterns. Once the user fills in the
empty fields, the construction is done instantly. So, it does not
matter whether one uses this tool for a small example or a
large example.

Journal of Applied Mathematics

[tud][zx ‘7x][3]d

74 PUE [.L U22M)Q ST SHUN W) 1 UM
Sp[oY 1yd [MUN pIeMdI paje[NUWNoOe pajoadxa ayT,

[tud n enza] 4my

A ST SP[OY 744d [IUN PIEMII Paje[nWnode pajoadxa ayT,

[(([rudn 23] T=<d)in33)i] {dx}d

[([tud n en13] T =< d) 9] d™d

dw Liqeqoad e yym uayo Apyruyur spjoy 1yd

[(([tsd [g3 “T2]n 93] T =< d <= Tud)i n 23)i] {dx}d

[([rsd n 23] T =< d <= tud)i n 33)i] {dx}d

[([rsd [za ‘1a]n enxa] T =< d <= 1yd) 5] dxd

[([tsd n onx3] T =< d <= tud) 9] dxd

dw Aymiqeqoad e yyim
[27 17] punoq owm urym 1sd £q pamoyjoy skempe st zyd

dw fiqeqoad e yym 1sd Aq pamorjog skempe st 1yd

[((vud)i[za ‘T3]0 39)i] {dw}d
[((tud)i 0 22)i] {dx}d

[tud [z2 12]9] dxd

[tud p] dxd

dw Lnqeqoxd
B)M [77 ‘T7] pUNOQ SWI} UTYIIM SP[OY skem[e 1yd

dw Liqeqoad e yym spioy skemre 1yd

[tud [z3 ‘720 Tsd] {dx}d

[tud n 1sd] {dx}d

[tud [z2 ‘T72]n Tsd] dxd

[tud n tsd] dnd

dw Auiqeqord e yym sproyg

1sd uay) MunN (g7 ‘14] punoq awn uryym pioy [m ryd
dw fymiqeqoxd

e)M spoy zsd Uy} [HuN proy A[[ENIUaAd [[IM 1yd

uornesuet) OWIN

uorne[sue) WSrad

aSenSuey fexmjeu ur £yrodorg

"SUOIje[SURI) DIWYIN pUe WSIYd 110y} pue suraped Ajrodoid 1 a14v],

10

N
Property generator GUI

o)

Journal of Applied Mathematics

Cached data

t/ '\/
Expression builder Property builder

_

\L
L

Expressions Patterns

Property file

FIGURE 8: Main components of the Property Generator tool.

6. An Example: Foraging Robots

In this section, we illustrate our approach on an example
system. Here, we choose the foraging robot scenario, presented
in [31]. We analysed the system in [32, 33], which can be
described as follows:

“Within a fixed size arena, there are a number of
foraging robots; that is, each robot must search
a finite area and bring food items back to the
common nest. Food is placed randomly over the
arena and more may appear over time. There is
no guarantee that robots will actually find any
food.

The behaviour of each robot in the system is
represented by the probabilistic state machine in
Figure 9, comprising the states: (i) SEARCHING,
wherein the robot is searching for food items; (ii)
GRABBING, wherein the robot attempts to grab a
food item it has found; (iii) DEPOSITING, wherein
the robot moves home with the food item;
(iv) HOMING, wherein the robot moves home
without having found food; and (v) RESTING,
wherein the robot rests for a particular time
interval”

In this scenario, we assume that all transitions occur with
a probability. The state machine in Figure 9 operates on the
following probabilities: y; (the probability of finding a food
item), y, (the probability of grabbing a food item), y, (the
probability of moving to HOMING state), y, (the probability of
moving to RESTING state), and y, (the probability of moving
to SEARCHING state).

We can draw this machine using the Drawing Prism tool
as in Figure 4. Here we assume y; = 0.3, y, = 0.1, y, = 0.2,
y, = 0.6, and y, = 0.5. Note that this state machine represents
the behaviour of an individual robot; however, a robot swarm

is a collection of (often) identical robots working together. We
therefore need a set of state machines to model the dynamic
behaviour of the overall swarm. Fortunately, the Drawing
PrisM tool has a feature allowing us to have a multiple copies
of a probabilistic model, working as a parallel composition.
Using this feature we can model the overall swarm.

The DP tool automatically translates the probabilistic
state machine in Figure 4 to the PrisM’s high-level modelling
language, given in Algorithm 2.

After obtaining the model code, we simulate the model
and have a number of simulation traces. We then run the
invariant detector tool over these traces to estimate a lower
and upper bound for the model variable s. Not surprisingly,
we obtain the following constraints:

s>=0, s <=4. (10)
The model therefore will not be adjusted. We remark that,
since the model is very intuitive, we could give the exact range
of the variable s because we know the values thats will take.
Daikon has then returned the precise same bounds. However,
in realistic cases, users might not be able to know the exact
lower and upper bounds, and range estimations might not
be realistic. The invariant detector will then provide more
realistic bounds and reduce the state space.

We now construct some properties using the Property
Generator tool and property patterns provided. Our strategy
to build properties is as follows:

(i) first specify the properties that we are interested
informally;

(ii) construct the corresponding natural language repre-
sentations using the Property Generator tool;

(iii) select the target language to which the properties are
converted automatically;

(iv) run model checking experiments using the translated
formal properties.

Journal of Applied Mathematics

L=y =

earching

1

I_Yr

Resting

I_Yr

FIGURE 9: Probabilistic state machine for a foraging robot.

dtmc

const int SEARCHING = 0;
const int HOMING = 1;
const int GRABBING = 2;
const int DEPOSITING = 3;
const int RESTING = 4;

module foraging
s : [0...4] init 0O;

+0.1: (s’ =DEPOSITING);

endmodule

[] s = SEARCHING -> 0.5 : (s’ =s) +0.2 : (s’ =HOMING) + 0.3 : (s’ = GRABBING);
[] s =HOMING -> 0.4 : (s’ =s) +0.6 : (s’ =RESTING);
[l s =GRABBING -> 0.2 : (s’ =s) +0.5: (s’ = SEARCHING) + 0.2 : (s’ = HOMING)

[] s = DEPOSITING -> 0.4 : (s’ =s) +0.6 : (s’ =RESTING);
[] s =RESTING -> 0.5 : (s’ =s) +0.5 : (s’ = SEARCHING);

ALGORITHM 2

Table 2 shows informal, natural language and formal
specifications of some properties. Here, we translate the
properties to the PrisM’s property language. The results of
the verification experiments are also illustrated in the table.
We remark that a property can be constructed as a query
using ? symbol. In this case, PRisM returns the corresponding
probability result after verifying the query. In Table 2, we
show some query samples.

Multiple Robots. Figure 9 corresponds to a single robot
behaviour, comprising five states that the robot visits during
the execution of the system. However, a foraging swarm
contains several robots. To model such a swarm, we can
construct a state machine for each robot in the swarm and
then take the product of all these to provide the behaviour of
the overall swarm. To calculate the product, we take a simple
and synchronous view. Namely, for each state machine A, say

A, A, A, ..., and the state machine B, say B, B,, B, ...,
given that the transitions A; — A, are labelled by o and
B, — B, arelabelled by 3, we can have a transition A B, —
A, B, labelled by af where A B,, A,B,, and so forth are states
in the product state machine and «f is a consistent label.
This is done for every possible pair of transitions. The overall
swarm system as the product of individual robots is shown in
Figure 10. The DP tool permits creating multiple instances of
modules, allowing composing individual state machines.
Table 3 compares the state spaces for different swarm
populations. The table shows that the model size exponen-
tially grows when the swarm size increases. We note that
the construction times illustrated in Table 3 correspond to
the building models by the model checker. The translation of
models into the model checking language is not significantly
affected by the size of the model. Namely, the time to translate

12 Journal of Applied Mathematics

TABLE 2: Sample properties for a single robot.

Property Informal, Natural language and Prism specifications Result

The robot eventually grabs food with a probability greater than 0.9
1 s = 3 will eventually hold, until then true holds with a probability >0.9 TRUE
P> 0.9 [true Us = 3]
What is the probability that the robot grabs food within 50 s?
2 s = 3 will eventually hold within time bound [0, 50], until then true holds with a probability? 0.55
P = 7 [true U[0, 50] s = 3]
What is the probability that the robot searches for food for 50s. before going to home?
3 s = 1 will hold within time bound [0, 50], until then s = 0 holds with a probability? 0.39
P=7[s=0TU[0, 50] s = 1]
The robot never goes to home within 50 s
4 s! = 1 always holds within time bound [0, 50] with a probability >=1 FALSE
P >=1 [G[0, 50] s! = 1]
The robot does not continuously search for food forever
5 s = 0 always holds with a probability <=0 TRUE
P<=0[Gs=0]
When searching starts, the robot eventually grabs food with a probability greater than 0.6
6 s = 0 is always followed by s = 3 with a probability >0.6 TRUE
P>0.6[G(s=0=>P >=1 [true Us = 3])]
The robot repeats its behaviour forever (e.g. searches for food)
7 s = 0 holds infinitely often with a probability >=1 TRUE
P>=1[G (P >=1 [true Us = 0])]

Robot 1 Robot N
L=y =7, L=y =7y

epositing]i) 1-v,

FIGURE 10: Probabilistic state machine for a foraging swarm.

TABLE 3: State space for different swarm populations.

Number of robots States Transitions Model construction
5 13 0.001 seconds

2 25 105 0.002 seconds

3 125 725 0.003 seconds

4 625 4625 0.006 seconds

5 3125 28125 0.008 seconds

10 9765625 166015625 0.024 seconds

20 95367431640625 3147125244140625 0.733 seconds

Journal of Applied Mathematics

a model into the model checking format can be neglected
with respect to the resources required for model checking.

7. Discussion

Standard model checking methods work on a basic principle:
a model is described in a certain modelling paradigm, for
example, a probabilistic model; a property is specified in
a certain logic, for example, a probabilistic temporal logic;
and a suitable model checker is then used, for example,
a probabilistic model checker. This approach suggests that
whatever model checker the user selects, he/she has to
analyse his/her system based on the aspects of modelling
and specification languages. If he/she wants to use a different
model checker, the user must start all over again. This, of
course, means learning the syntax of all model checkers to be
used, which is surely a big cuambersome for nonexperts (even
for experts in some cases).

Another drawback is that existing specification languages
are limited to a certain dimension, for example, time and
probability. This unfortunately prevents specifying and ver-
ifying multidimensional behaviour, which can reveal more
novel information about system behaviour.

We believe next generation model checkers should be
able to do more than standard model checkers and hence
should employ some new features in order to eliminate these
drawbacks. Here, we discuss two of such features that we can
integrate into our methodology.

Generic Model Checking. Although we have presented our
approach for probabilistic model checking, it can be gener-
alised to cover model checking for temporal, real-time, and
probabilistic temporal logics. The property generator tool we
have proposed is very feasible as it supports the translation of
natural language statements to any logic. We can also extend
the pattern list presented in Table1 to cover temporal and
real-time logics.

As we already know, the semantics of different logics are
defined over different structures. For example, temporal, real-
time, and probabilistic temporal logics are usually interpreted
over Kripke structures, timed automata (TA) [34], and
probabilistic models (e.g., DTMCs, CTMCs, and MDPs),
respectively. We remind that a timed automaton models
real-time behaviour using a finite set of real-valued clocks
associated with states and transitions.

In order to allow model checking for these logics in
the same platform, we therefore need a generic structure to
cover all these models. Probabilistic timed automata (PTA)
[35] can be used as a generic structure, because PTA extend
TA with discrete probability distributions and embed Kripke
structures, timed automata, and probabilistic models. We
can construct PTA using the Drawing PRrism tool because
it already supports labelling the states and transitions. If
we allow clock constraints in labels, we can obtain PTA,
which can then be instantiated to construct corresponding
models. Namely, to construct a probabilistic model we disable
clocks (i.e., state and transition labels do not include clock
constraints); to construct a timed automaton we disable

13

probability distributions (i.e., transition labels do not include
probabilities); and to contract Kripke structures we dis-
able both clocks and probability distributions. Models con-
structed using the tool can then be translated to the modelling
languages of corresponding model checkers. For example,
Kripke structures are translated to the PROMELA language
for SPIN, timed automata are translated to the UppaAL’s
description language, and probabilistic state machines and
probabilistic timed automate are translated to the Prism’s
reactive modules.

This general approach will allow us to use model checkers
for temporal logics, for example, SPIN and NUSMYV, real-
time model checkers, for example, UppaAL and Kronos, and
probabilistic model checkers, for example, Prism and MrRMC,
in the same platform.

Combined Model Checking. Standard model checking is
defined for standalone logics. We can also develop a model
checking strategy for combined logics. A combined logic
synthesizes different aspects using constituent logics, for
example, (i) classic temporal logics (CTL, LTL, etc.); (ii)
belief/knowledge logics (modal logics KD45, S5, etc.); (iii)
probabilistic temporal logics (PCTL, etc.); and (iv) real-time
temporal logics (TCTL, etc.). We can then write statements
specifying multidimensional behaviour. For example, assume
that, in our foraging scenario, we want to combine the belief
and probability aspects, which can be done by combining
PCTL and KD45. The statement

The robot i believes that the probability of robot j’s
grabbing a food item within 50s. is greater than
0.9

is expressed in the combined logic as
B; [P>0_9 (true U[O’So]sj = 3)] 1)

which cannot be stated using standard logics.

Based on the combination strategy, a model checking
procedure can be defined. In [36] we provide a generic model
checking method, which synthesizes a combined model
checker from the model checkers of simpler constituent
logics. We also “show that the complexity of the synthesized
model checker is essentially the supremum of the complexi-
ties of the component model checkers” [36].

This result suggests that we can devise a generic model
checking platform based on the method proposed in [36].
If we consider combining the aspects discussed above, a
probabilistic timed automaton will be sufficient to construct
the combined model. In this case, we only need to introduce
special tags to distinguish the transitions of component
logics. We can then verify properties expressing multidi-
mensional behaviour using component model checkers of
constituent logics. In this way, we do not need to implement
a new model checker. We can devise the model checking
engine based on individual model checkers, for example,
SPIN, UPPAAL, and PRISM.

14

8. Conclusion

In this paper, we have presented a methodology to make
probabilistic model checking more intuitive and accessible
for nonexpert users. As part of our methodology, we have
proposed the Property Generator tool automatically generat-
ing formal properties using natural language statements. As
for the model construction, we have used the Drawing Prism
tool, providing a GUI that allows us to construct probabilistic
state machines from which the model code is automatically
generated. In this way, nonexperts can model their systems
and express their requirements without any knowledge of
the modelling and property specification languages and can
analyse their systems without having any expertise.

In our methodology, we have also devised a strategy
which reduces the state space of probabilistic models, using
the Daikon invariant detector, to increase the performance of
model checking and relieve the state explosion problem.

At the moment, the tools discussed and presented in this
paper are standalone. As future work, we will integrate these
tools to create a software suit. We already have the methods
for two features discussed in Section 7. They will also be
integrated into the toolset.

Conflict of Interests

The author declares no conflict of interests regarding the
publication of this paper.

Acknowledgments

This work is partially supported by the EPSRC (UK) funded
ROADBLOCK Project, a joint Project with Dr. M. Gheorghe
at the University of Sheflield (EP/1031812/1), Dr. N. Krasnogor
at the University of Nottingham (EP/1031642), and Dr. S.
Kalvala at the University of Warwick (EP/103157X).

References

(1] E. Clarke, O. Grumberg, and D. Peled, Model Checking, MIT
Press, 1999.

[2] A. Cimatti, E. Clarke, E Giunchiglia, and M. Roveri, “ Nusmv :
a new symbolic model verifier,” in Proceedings of International
Conference on Computer-Aided Verification (CAV '99), pp. 495-
499, Trento, Italy, 1999.

[3] G. J. Holzmann, The Spin Model Checker, Addison-Wesley,
Boston, Mass, USA, 2003.

[4] J. Bengtsson, K. G. Larsen, E. Larsson, P. Pettersson, and W. Yi,
“UPPAAL—a tool suite for automatic verification of real time
systems,” in Proceedings of Workshop on Verification and Control
of Hybrid Systems III, vol. 1066 of Lecture Notes in Computer
Science, pp. 232-243, Springer, New York, NY, USA, 1995.

[5] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S.
Yovine, “Kronos: a model-checking tool for realtime systems,
in Proceedings of the 10th International Conference on Computer
Aided Verification (CAV ’98), pp. 546-550, Springer, New York,
NY, USA, 1998.

[6] S. Konur, M. Fisher, S. Dobson, and S. Knox, “Formal veri-
fication of a pervasive messaging system,” Formal Aspects of
Computing, vol. 2013, 18 pages, 2013.

Journal of Applied Mathematics

[7] M. Kwiatkowska, G. Norman, and D. Parker, “Quantitative anal-
ysis with the pro babilistic model checker PRISM,” Electronic
Notes in Theoretical Computer Science, vol. 153, no. 2, pp. 5-31,
2006.

[8] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker,
“PRISM: a tool for automatic verification of probabilistic sys-
tems,” in Tools and Algorithms for the Construction and Analysis
of Systems: Proceedings of the 12th International Conference,
TACAS 2006, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2006, Vienna, Austria,
March 25-April 2, 2006, vol. 3920 of Lecture Notes in Computer
Science, pp. 441-444, Springer, Berlin, Germany, 2006.

J. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N.
Jansen, “The ins and outs of the probabilistic model checker
MRMC,” Performance Evaluation, vol. 68, no. 2, pp. 90-104,
2011.

[10] H. L. Younes, “Ymer: a statistical model checker;” in Computer
Aided Verification, vol. 3576 of Lecture Notes in Computer
Science, pp. 429-433, Springer, Berlin, Germany, 2005.

[11] K. Sen, M. Viswanathan, and G. Agha, “On statistical model
checking of stochastic systems,” in Proceedings of the I17th
International Conference on Computer Aided Verification (CAV
’05), vol. 3576 of Lecture Notes in Computer Science, pp. 266—
280, Springer, 2005.

[12] M.B.Dwryer, G.S. Avrunin, and J. C. Corbett, “Patterns in prop-
erty specifications for finite-state verification,” in Proceedings of
the International Conference on Software Engineering (ICSE 99),
pp. 411-420, ACM, May 1999.

[13] H. Hansson and B. Jonsson, “A logic for reasoning about time
and reliability,” Formal Aspects of Computing, vol. 6, no. 5, pp.
512-535,1994.

[14] C. Baier, B. Haverkort, H. Hermanns, and J. Katoen, “Model-
checking algorithms for continuous-time Markov chains,” IEEE
Transactions on Software Engineering, vol. 29, no. 6, pp. 524-541,
2003.

PRISM, Probabilistic Symbolic Model Checker, 2013, http://www
.prismmodelchecker.org/.

[16] M. Kwiatkowska, G. Norman, and D. Parker, “Prism: proba-
bilistic model checking for performance and reliability analysis,”
ACM SIGMETRICS Performance Evaluation Review, vol. 36, no.
4, pp. 40-45, 2009.

[17] MRMC, “Markov Reward Mmodel Checker, Version 1.5, 2011,
http://www.mrme-tool.org/downloads/MRMC/Specs/ MRMC
_Manual _1.5.pdf.

[18] A. Legay, B. Delahaye, and S. Bensalem, “Statistical model
checking: an overview; in Runtime Verification, vol. 6418 of
Lecture Notes in Computer Science, pp. 122-135, Springer, 2010.
E Zhang, A swarm-checker, a robot swarm front-end for PRISM
[M.S. thesis], Department of Computer Science, University of
Liverpool, Liverpool, UK, 2010.

[20] A. Ramirez, P. Vanpeperstraete, A. Rueckert et al., ArgoUML
User Manual, 2010, http://argouml-stats.tigris.org/documen-
tation/manual-0.30/.

[21] M. D. Ernst, J. H. Perkins, P. J. Guo, C. Pacheco, M. S. Tschantz,
and C. Xiao, “The Daikon system for dynamic detection of likely
invariants,” Science of Computer Programming, vol. 69, no. 1-3,
pp. 35-45, 2007.

[22] E Bernardini, M. Gheorghe, E. J. Romero-Campero, and N.
Walkinshaw, “A hybrid approach to modeling biological sys-
tems,” in Membrane Computing, vol. 4860 of Lecture Notes in
Computer Science, pp. 138-159, Springer, Berlin, Germany, 2007.

[9

(15

[19

Journal of Applied Mathematics

(23]

[25

[26

[27

(30]

(31]

(36]

M. Gheorghe, E Ipate, R. Lefticaru, and C. Dragomir, “An inte-
grated approach to P systems formal verification,” in Membrane
Computing, vol. 6501, pp. 226-239, Springer, Berlin, Germany;,
2011.

R. Lefticaru, F. Ipate, L. Valencia-Cabrera et al., “Towards an
integrated approach for model simulation, property extraction
and verification of P systems;” in Proceedings of the 10th
Brainstorming Week on Membrane Computing, vol. 1, pp. 291-
318, Sevilla, Spain, January 2012.

V. Gruhn and R. Laue, “Patterns for timed property specifica-
tions,” Electronic Notes in Theoretical Computer Science, vol. 153,
no. 2, pp. 117-133, 2006.

S. Konrad and B. Cheng, “Real-time specification patterns,” in
Proceedings of the 27th International Conference on Software
Engineering (ICSE '05), pp. 372-38l, St. Louis, Mo, USA, May
2005.

P. Bellini, P. Nesi, and D. Rogai, “Expressing and organizing
real-time specification patterns via temporal logics,” Journal of
Systems and Software, vol. 82, no. 2, pp. 183-196, 2009.

L. Grunske, “Specification patterns for probabilistic quality
properties,” in Proceedings of the 30th International Conference
on Software Engineering (ICSE "08), pp. 31-40, ACM, May 2008.

J. Blakes, J. Twycross, S. Konur, F. Romero-Campero, N. Krasno-
gor, and M. Gheorghe, “Infobiotics workbench: A p systems
based tool for systems and synthetic biology;” in Applications of
Membrane Computing in Systems and Synthetic Biology, vol. 7
of Emergence, Complexity and Computation, pp. 1-41, Springer,
2014.

C. Dragomir, E. Ipate, S. Konur, R. Lefticaru, and M. Laurentiu,
“Model checking Kernel P systems,” in Proceedings of the 14th
International Conference on Membrane Computing (CMC ’13),
pp- 131-152, Chisinau, Moldova, 2013.

W. Liu, A. Winfield, and J. Sa, “Modelling swarm robotic
systems: a study in collective foraging,” in Proceedings of the
Towards Autonomous Robotic Systems (TAROS °07), pp. 25-32,
2007.

S. Konur, C. Dixon, and M. Fisher, “Formal verification of prob-
abilistic swarm behaviours,” in Swarm Intelligence, vol. 6234
of Lecture Notes in Computer Science, pp. 440-447, Springer,
Berlin, Germany, 2010.

S. Konur, C. Dixon, and M. Fisher, “Analysing robot swarm
behaviour via probabilistic model checking,” Robotics and
Autonomous Systems, vol. 60, no. 2, pp. 199-213, 2012.

R. Alur, C. Courcoubetis, and D. Dill, “‘Model-checking in dense
real-time,” Information and Computation, vol. 104, no. 1, pp. 2-
34,1993.

M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston, “Auto-
matic verification of real-time systems with discrete probability
distributions,” Theoretical Computer Science, vol. 282, no. 1, pp.
101-150, 2002.

S. Konur, M. Fisher, and S. Schewe, “Combined model checking
for temporal, probabilistic, and real-time logics,” Theoretical
Computer Science, vol. 503, pp. 61-88, 2013.

15

