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Based on the risk control of conditional value-at-risk, distributionally robust return-risk optimization models with box constraints
of random vector are proposed. They describe uncertainty in both the distribution form and moments (mean and covariance
matrix of random vector). It is difficult to solve them directly. Using the conic duality theory and the minimax theorem, the models
are reformulated as semidefinite programming problems, which can be solved by interior point algorithms in polynomial time. An
important theoretical basis is therefore provided for applications of themodels.Moreover, an application of themodels to a practical
example of portfolio selection is considered, and the example is evaluated using a historical data set of four stocks. Numerical results
show that proposed methods are robust and the investment strategy is safe.

1. Introduction

Themean-variance portfolio model developed by Markowitz
[1] is considered as the beginning of the financial investment
research.The return and risk of a portfolio were measured by
the expected value and the variance of the random portfolio
return in this model. The risk measures “value-at-risk” (VaR)
and “conditional VaR” (CVaR) have been studied extensively
in recent literature of risk management and portfolio selec-
tion. However, when return distributions are not elliptical,
the variance and VaR fail for risk evaluations. Artzner et al.
[2], Mausser and Rosen [3], Rockafellar and Uryasev [4],
and Uryasev and Rockafellar [5] also showed that CVaR
has the most desirable properties. For example, it satisfies
subadditivity property and looks deeply into the tail of a
distribution. To cope with nonnormal elliptical distributions,
CVaR may be compared with the widely accepted VaR risk
performancemeasure. Based on the risk control of CVaR, Lin
and Gong [6] established a mean-CVaR model on the basis
of the mean-variance model and under normal distribution
condition. Assuming that security rates of return have a
multivariate normal distribution, Alexander and Baptista [7]
analyzed the portfolio selection implications arising from

imposing a VaR or a CVaR constraint on the mean-variance
model. They showed that a CVaR constraint dominates a
VaR constraint as a risk management tool when a risk-free
security is present. Based on CVaR risk measure, Andersson
et al. [8] examined a new approach for credit risk opti-
mization. In this approach, the credit risk distribution was
generated byMonteCarlo simulations, so it was not necessary
to assume that the credit risk distribution is known. The
optimization problem was solved by linear programming.
However, generated several thousands of scenarios may lead
to the linear programming with huge number of variables
and constraints thus decreasing the computational efficiency
of the problem. To overcome this difficulty, nondifferential
optimization techniques and linear programming duality
theory were explored in [9] and [10], respectively.

Robust optimization refers to finding a strategy whose
behavior under the worst possible realizations of the uncer-
tain inputs is optimized, to deal with uncertain data in
optimization models. Robust optimization models have been
designed and discussed extensively; see, for example, Ben-
Tal et al. [11] and Bertsimas et al. [12] and the references
therein. The research on robust optimization in both theory
and application was surveyed in [12]. Ogryczak [13] showed

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 784715, 9 pages
http://dx.doi.org/10.1155/2014/784715

http://dx.doi.org/10.1155/2014/784715


2 Journal of Applied Mathematics

that for box uncertainty the robust model of the mean is
essentially a CVaR, and also the robust model of the CVaR
itself is a CVaR with appropriately redefined probabilities.
Based on the worst-case CVaR, Gao and Bian [14] gave an
objective model considering the overall investment period’s
risk level and derived a dynamic optimal portfolio model.
Using vector autoregressive method and Monte Carlo sim-
ulation, the concrete steps for solving the optimal investment
strategy were presented. Zhu and Fukushima [15] considered
the worst-case CVaR in the situation where only partial
information on the underlying probability distribution was
available. The minimization of the worst-case CVaR under
mixture distribution uncertainty, box uncertainty, and ellip-
soidal uncertainty was investigated. Its application to robust
portfolio optimization was given, and the corresponding
problems were cast as linear programming and second-order
cone programming. Tong and Liu [16] presented a worst-case
CVaR index under the knowing part information of random
variable, and three profit-risk robust portfolio models were
proposed. The models were restated as linear programming
problems for the case of box discrete distribution of random
variable and the linear loss function. Bertsimas et al. [17]
proposed a semidefinite optimization model for a class of
minimax two-stage stochastic linear optimization problems
with risk aversion. The distribution of second-stage random
variables belongs to an uncertainty set of multivariate distri-
butions with known first- and second-order moments. Zym-
ler et al. [18] developed tractable semidefinite programming
based approximations for distributionally robust individual
and joint chance constraints, assuming that only the first-
and second-order moments as well as the support of the
uncertain parameters are given. They demonstrated that the
worst-case CVaR can be computed efficiently for some classes
of constraint functions. And the worst-case CVaR approxi-
mation for joint chance constraints was studied. Delage and
Ye [19] proposed a model that describes uncertainty in both
the distribution form and moments of random variable. Its
application to portfolio selection that maximizes expected
utility obtained from the single-step return of investment
portfolio was given, and the problem was reformulated as a
semidefinite programming problem when random variable
belongs to R𝑛 or an ellipsoidal set.

In this paper, based on the risk control of CVaR, we pro-
pose distributionally robust return-risk optimizationmodels,
with box constraints of a random vector and the uncertainty
in both the distribution form and moments of a random
vector. The models are restated equivalently as semidefinite
programming problems, which is computationally tractable
both practically and theoretically.Moreover, an application of
the models to a practical example of portfolio selection and
corresponding numerical results are given.

The present paper is organized as follows. After this
introduction in Section 2 distributionally robust return-risk
optimization models are presented. Using the conic duality
theory and the minimax theorem, the models are reformu-
lated as semidefinite programming problems. In Section 3 we
apply the models to a portfolio selection problem, and the
problem is evaluated using a historical data set. Numerical
results show that our proposed methods are robust and

the obtained investment strategy is safe. Finally Section 4 is
devoted to research perspective.

2. Distributionally Robust Return-Risk
Optimization Models

In this section, we propose distributionally robust return-risk
optimization models with first- and second-order moments
uncertainty and box constraints of random vector. Their
equivalent semidefinite programming formulations are pre-
sented.

Let 𝑥 ∈ R𝑛 be the decision variable, let 𝜉 ∈ R𝑚 be the
random vector, and let 𝑃(𝜉) be the probability distribution of
the random vector 𝜉. Suppose that a loss function is defined
as𝑓(𝑥, 𝜉) = −𝑥𝑇𝜉. From [4], the CVaR performance function
CVaR

𝛽
(𝑥) can be written as

CVaR
𝛽
(𝑥) = min

𝛼∈R
𝐹
𝛽
(𝑥, 𝛼) , (1)

where 𝛽 ∈ R is a confidence level,

𝐹
𝛽
(𝑥, 𝛼) = 𝛼 + (1 − 𝛽)

−1

∫

𝜉∈R𝑚
[𝑓 (𝑥, 𝜉) − 𝛼]

+

𝑑𝑃 (𝜉) ,

[𝑓 (𝑥, 𝜉) − 𝛼]
+

= max {0, 𝑓 (𝑥, 𝜉) − 𝛼} .
(2)

In many economic and financial planning models, which
depend on uncertain parameters (for example future interest
rates, future demands for a product, or future commodity
prices), their probability distribution is usually unknown. In
such situations, using historical data of uncertain parameters,
lower and upper bounds on the parameters and empirical
estimates of the mean and covariance matrix of the param-
eters can usually be obtained. We use them to define a
distributional uncertainty set below. Distributional set taking
into accountmoments’ uncertainty in randomvector and box
constraints of random vector is as follows:

P (𝜉, 𝜉, 𝜇, Σ, 𝛾
1
, 𝛾
2
)

=

{
{
{

{
{
{

{

𝑃 (𝜉) ∈ 𝑀 :

𝑃 (𝜉 ∈ 𝑆) = 1, 𝑆 = {𝜉 : 𝜉 ≤ 𝜉 ≤ 𝜉}

(E
𝜉
[𝜉] − 𝜇)

𝑇

Σ

−1

(E
𝜉
[𝜉] − 𝜇) ≤ 𝛾

1

E
𝜉
[𝜉 − 𝜇] (E

𝜉
[𝜉 − 𝜇])

𝑇

⪯ 𝛾
2
Σ

}
}
}

}
}
}

}

,

(3)

where𝑀 is the set of all probability measures on the measur-
able space (R𝑚,B), B is the Borel 𝜎-algebra on R𝑚, 𝜉 and 𝜉
are lower and upper bounds on the random vector 𝜉, 𝜉 < 𝜉, 𝜇
and Σ are estimates of the mean and covariance matrix of the
random vector 𝜉, respectively, and the constants 𝛾

1
≥ 0 and

𝛾
2
≥ 1quantify one’s confidence in𝜇 andΣ, respectively. Same

as inequalities in [19], the second inequality inP(⋅) assumes
that the mean of 𝜉 lies in an ellipsoid of size 𝛾

1
centered at

the estimate 𝜇, and the last inequality in P(⋅) assumes that
the “centered second-moment matrix” of 𝜉 lies in a positive
semidefinite cone defined with a matrix inequality.

Based on the distributional set and classical portfolio
optimization models, we set up the following distributionally
robust return-risk optimization models.
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Model 1. Maximize the worst-case expected return with
constraint including worst-case CVaR:

max
𝑥

min
𝑃∈P

E
𝜉
[−𝑓 (𝑥, 𝜉)]

s.t. max
𝑃∈P

min
𝛼∈R

𝐹
𝛽
(𝑥, 𝛼) ≤ 𝜎

1
,

𝑥 ∈ 𝜒,

(4)

where 𝜒 = {𝑥 : ∑
𝑛

𝑖=1
𝑥
𝑖
= 1, 𝑥 ≥ 0} ⊆ R𝑛 is a convex set and

the upper bound 𝜎
1
> 0 on CVaR is given constant.

Model 2. Minimize the worst-case CVaR with constraint
including the worst-case expected return:

min
𝑥

max
𝑃∈P

min
𝛼∈R

𝐹
𝛽
(𝑥, 𝛼)

s.t. min
𝑃∈P

E
𝜉
[−𝑓 (𝑥, 𝜉)] ≥ 𝜎

2
,

𝑥 ∈ 𝜒,

(5)

where the lower bound 𝜎
2
> 0 on expected return is given

constant.

Model 3. Maximize the objective function including worst-
case expected return and CVaR:

max
𝑥∈𝜒

min
𝑃∈P

(E
𝜉
[−𝑓 (𝑥, 𝜉)] − 𝜎

3
min
𝛼∈R

𝐹
𝛽
(𝑥, 𝛼)) , (6)

where 𝜎
3
≥ 0 is a risk-aversion constant used to trade off the

reward (expected return) and risk (CVaR).

Remark 1. The objective function of Model 3 represents a
risk-adjusted expected return function. In the models above,
𝜎
𝑖
(𝑖 = 1, 2, 3) should be given at first. Model 2 with bounded

return is more common than Model 1 with bounded risk,
because it is not so easy to expect an investor to specify
maximum risk aversion levels with confidence. See, for
example, Mansini et al. [20] and the references therein. The
consideration to robust versions of the Sharpe ratio model
[21] without requiring bounds on reward or risk will be
included in our future work.

Because it is not easy to solve the models numerically, we
give their tractable formulations by the following theorems.
In the theorems, we use the following notation: the scalar
product of any two symmetric matrices 𝐴 and 𝐵 is defined
as 𝐴 ⋅ 𝐵 = Tr(𝐴𝑇𝐵), where “Tr” denotes the trace (sum of
diagonal elements) of a matrix.

Theorem 2. Model 1 can be reformulated as the following
semidefinite programming problem:

max − (𝛾
2
(Σ ⋅ 𝑄

1
) − 𝜇
𝑇

𝑄
1
𝜇 + 𝑟
1
+ Σ ⋅ 𝑃

1
− 2𝜇
𝑇

𝑝
1
+ 𝛾
1
𝑠
1
)

s.t. (

𝑟
1
+ 𝜆
𝑇

1
𝜉 − 𝜆
𝑇

2
𝜉 − 𝑟
3

(𝑞
1
+ 𝑥 + 𝜆

2
− 𝜆
1
)
𝑇

2

(𝑞
1
+ 𝑥 + 𝜆

2
− 𝜆
1
)

2

𝑄
1

) ⪰ 0,

(

𝑟
2
+ 𝜆
𝑇

3
𝜉 − 𝜆
𝑇

4
𝜉 − 𝑟
4

(𝑞
2
+ 𝜆
4
− 𝜆
3
)
𝑇

2

(𝑞
2
+ 𝜆
4
− 𝜆
3
)

2

𝑄
2

) ⪰ 0,

(

𝑟
2
+ 𝜆
𝑇

5
𝜉 − 𝜆
𝑇

6
𝜉 − 𝑟
5

(𝑞
2
+ (𝑥/ (1 − 𝛽)) + 𝜆

6
− 𝜆
5
)
𝑇

2

𝑞
2
+ (𝑥/ (1 − 𝛽)) + 𝜆

6
− 𝜆
5

2

𝑄
2

) ⪰ 0,

(

𝑃
1
𝑝
1

𝑝
𝑇

1
𝑠
1

) ⪰ 0, (

𝑃
2
𝑝
2

𝑝
𝑇

2
𝑠
2

) ⪰ 0,

𝛾
2
(Σ ⋅ 𝑄

2
) − 𝜇
𝑇

𝑄
2
𝜇 + 𝑟
2
+ Σ ⋅ 𝑃

2
− 2𝜇
𝑇

𝑝
2
+ 𝛾
1
𝑠
2
≤ 𝜎
1
,

𝑝
1
= −

𝑞
1

2

− 𝑄
1
𝜇, 𝑝

2
= −

𝑞
2

2

− 𝑄
2
𝜇,

𝑟
3
≥ 0, 𝑟

4
≥ 𝛼, 𝑟

5
≥ (1 −

1

1 − 𝛽

)𝛼,

𝜆
𝑖
≥ 0, 𝑖 = 1, . . . , 6,

𝑥 ∈ 𝜒,

(7)

where 𝑥, 𝛼, 𝑃
𝑖
, 𝑄
𝑖
, 𝑝
𝑖
, 𝑞
𝑖
, 𝑟
𝑖
, 𝑠
𝑖
, and 𝜆

𝑖
are variables.
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Proof. From min
𝑃∈PE𝜉[−𝑓(𝑥, 𝜉)] = −max

𝑃∈PE𝜉[𝑓(𝑥, 𝜉)]

and Theorem4 in [19], we have that, for any given 𝑥 ∈ R𝑛,
the problemmin

𝑃∈PE𝜉[−𝑓(𝑥, 𝜉)] can be transformed into the
following problem:

−min 𝛾
2
(Σ ⋅ 𝑄

1
) − 𝜇
𝑇

𝑄
1
𝜇 + 𝑟
1
+ Σ ⋅ 𝑃

1
− 2𝜇
𝑇

𝑝
1
+ 𝛾
1
𝑠
1

s.t. 𝜉
𝑇

𝑄
1
𝜉 + (𝑞

1
+ 𝑥)
𝑇

𝜉 + 𝑟
1
≥ 0, ∀ 𝜉 ∈ 𝑆,

(

𝑃
1
𝑝
1

𝑝
𝑇

1
𝑠
1

) ⪰ 0, 𝑄
1
⪰ 0,

𝑝
1
= −

𝑞
1

2

− 𝑄
1
𝜇,

(8)

where 𝑃
1
, 𝑄
1
, 𝑝
1
, 𝑞
1
, 𝑟
1
, and 𝑠

1
are variables.

Similarly to the above proof, for any given 𝑥 ∈ R𝑛, we
have thatmax

𝑃∈Pmin
𝛼∈R𝐹𝛽(𝑥, 𝛼) can be transformed into the

following problem:

min 𝛾
2
(Σ ⋅ 𝑄

2
) − 𝜇
𝑇

𝑄
2
𝜇 + 𝑟
2
+ Σ ⋅ 𝑃

2
− 2𝜇
𝑇

𝑝
2
+ 𝛾
1
𝑠
2

s.t. 𝜉
𝑇

𝑄
2
𝜉 + 𝜉
𝑇

𝑞
2
+ 𝑟
2
≥ 𝛼, ∀ 𝜉 ∈ 𝑆,

𝜉
𝑇

𝑄
2
𝜉 + 𝜉
𝑇

𝑞
2
+ 𝑟
2
≥ 𝛼 −

𝛼

1 − 𝛽

−

𝑥
𝑇

𝜉

1 − 𝛽

, ∀ 𝜉 ∈ 𝑆,

(

𝑃
2
𝑝
2

𝑝
𝑇

2
𝑠
2

) ⪰ 0, 𝑄
2
⪰ 0,

𝑝
2
= −

𝑞
2

2

− 𝑄
2
𝜇,

(9)

where 𝑃
2
, 𝑄
2
, 𝑝
2
, 𝑞
2
, 𝑟
2
, 𝑠
2
, and 𝛼 are variables.

In (8), 𝜉𝑇𝑄
1
𝜉 + (𝑞

1
+ 𝑥)
𝑇

𝜉 + 𝑟
1
≥ 0 for any 𝜉 ∈ 𝑆 if and

only if

min
𝜉

{𝜉
𝑇

𝑄
1
𝜉 + (𝑞

1
+ 𝑥)
𝑇

𝜉 + 𝑟
1
: 𝜉 ∈ 𝑆} ≥ 0. (10)

Because 𝑄
1
⪰ 0, the convex set 𝑆 has an interior point

and objective function 𝜉
𝑇

𝑄
1
𝜉 + (𝑞

1
+ 𝑥)
𝑇

𝜉 + 𝑟
1
in the left-

hand side of (10) is bounded below on 𝑆, and from the conic
duality theorem, we know that (10) can be transformed into
the following problem:

max
𝑟
3
,𝜆
1
,𝜆
2

{

{

{

𝑟
3
:
(
𝑟
1
+ 𝜆
𝑇

1
𝜉 − 𝜆
𝑇

2
𝜉 − 𝑟
3

]𝑇
1

]
1

𝑄
1

) ⪰ 0

𝜆
1
, 𝜆
2
≥ 0

}

}

}

≥ 0, (11)

where ]
1
= (𝑞
1
+𝑥+𝜆

2
−𝜆
1
)/2, the left-hand side of (11), is dual

problem of the left-hand side of (10) with the same optimal
value. Similarly to the above proof, 𝜉𝑇𝑄

2
𝜉 + 𝜉
𝑇

𝑞
2
+ 𝑟
2
≥ 𝛼 for

any 𝜉 ∈ 𝑆 if and only if

max
𝑟
4
,𝜆
3
,𝜆
4

{

{

{

𝑟
4
:
(
𝑟
2
+ 𝜆
𝑇

3
𝜉 − 𝜆
𝑇

4
𝜉 − 𝑟
4

]𝑇
2

]
2

𝑄
2

) ⪰ 0

𝜆
3
, 𝜆
4
≥ 0

}

}

}

≥ 𝛼, (12)

where ]
2
= (𝑞
2
+ 𝜆
4
− 𝜆
3
)/2. Similarly, 𝜉𝑇𝑄

2
𝜉 + 𝜉
𝑇

𝑞
2
+ 𝑟
2
≥

(1 − 1/(1 − 𝛽))𝛼 − (1/(1 − 𝛽))𝑥
𝑇

𝜉 for any 𝜉 ∈ 𝑆 if and only if

max
𝑟
5
,𝜆
5
,𝜆
6

{

{

{

𝑟
5
:
(
]
3

]𝑇
4

]
4
𝑄
2

) ⪰ 0

𝜆
5
, 𝜆
6
≥ 0

}

}

}

≥ (1 −

1

1 − 𝛽

)𝛼, (13)

where ]
3
= 𝑟
2
+ 𝜆
𝑇

5
𝜉 − 𝜆
𝑇

6
𝜉 − 𝑟
5
, and ]

4
= (𝑞
2
+ (1/(1 − 𝛽))𝑥 +

𝜆
6
− 𝜆
5
)/2.

From (8) and (11), we have that min
𝑃∈PE𝜉[−𝑓(𝑥, 𝜉)] can

be transformed into the following problem:

−min 𝛾
2
(Σ ⋅ 𝑄

1
) − 𝜇
𝑇

𝑄
1
𝜇 + 𝑟
1
+ Σ ⋅ 𝑃

1
− 2𝜇
𝑇

𝑝
1
+ 𝛾
1
𝑠
1

s.t. (𝑃
1
, 𝑄
1
, 𝑝
1
, 𝑞
1
, 𝑟
1
, 𝑟
3
, 𝑠
1
, 𝜆
1
, 𝜆
2
) ∈ C

1
(𝑥) ,

(14)

where

C
1
(𝑥)

=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

(𝑃
1
, 𝑄
1
, 𝑝
1
, 𝑞
1
, 𝑟
1
, 𝑟
3
, 𝑠
1
, 𝜆
1
, 𝜆
2
)
:

(
𝑟
1
+ 𝜆
𝑇

1
𝜉 − 𝜆
𝑇

2
𝜉 − 𝑟
3

]𝑇
1

]
1

𝑄
1

) ⪰ 0

(

𝑃
1
𝑝
1

𝑝
𝑇

1
𝑠
1

) ⪰ 0, 𝑄
1
⪰ 0

𝑝
1
= −

𝑞
1

2

− 𝑄
1
𝜇, 𝑟

3
, 𝜆
1
, 𝜆
2
≥ 0

}
}
}
}
}
}
}

}
}
}
}
}
}
}

}

.

(15)

From (9), (12), and (13), we have that
max
𝑃∈Pmin

𝛼∈R𝐹𝛽(𝑥, 𝛼) ≤ 𝜎1 if and only if the set

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

Θ:

Σ ⋅ (𝛾
2
𝑄
2
+ 𝑃
2
) − 𝜇
𝑇

𝑄
2
𝜇 + 𝑟
2
− 2𝜇
𝑇

𝑝
2
+ 𝛾
1
𝑠
2
≤ 𝜎
1

(

𝑟
2
+ 𝜆
𝑇

3
𝜉 − 𝜆
𝑇

4
𝜉 − 𝑟
4

(𝑞
2
+ 𝜆
4
− 𝜆
3
)
𝑇

2

(𝑞
2
+ 𝜆
4
− 𝜆
3
)

2

𝑄
2

) ⪰ 0

(
𝑟
2
+ 𝜆
𝑇

5
𝜉 − 𝜆
𝑇

6
𝜉 − 𝑟
5

]𝑇
4

]
4

𝑄
2

) ⪰ 0, 𝑄
2
⪰ 0

(

𝑃
2
𝑝
2

𝑝
𝑇

2
𝑠
2

) ⪰ 0, 𝑝
2
= −

𝑞
2

2

− 𝑄
2
𝜇

𝑟
4
≥ 𝛼, 𝑟

5
≥ (1 −

1

1 − 𝛽

)𝛼, 𝜆
3
, 𝜆
4
, 𝜆
5
, 𝜆
6
≥0

}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}

}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}
}

}

(16)

(denoted by C
2
(𝑥)) is nonempty, where Θ = (𝑃

2
, 𝑄
2
, 𝑝
2
, 𝑞
2
,

𝑠
2
, 𝑟
2
, 𝑟
4
, 𝑟
5
, 𝜆
3
, 𝜆
4
, 𝜆
5
, 𝜆
6
, 𝛼).

From equality

max
𝑥

min
𝑃∈P

E
𝜉
[−𝑓 (𝑥, 𝜉)] = −min

𝑥

{−min
𝑃∈P

E
𝜉
[−𝑓 (𝑥, 𝜉)]} ,

(17)
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(20), (15), and (16), we have that Model 1 can be restated
equivalently as the following problem:

max − (Σ ⋅ (𝛾
2
𝑄
1
+ 𝑃
1
) − 𝜇
𝑇

𝑄
1
𝜇 + 𝑟
1
− 2𝜇
𝑇

𝑝
1
+ 𝛾
1
𝑠
1
)

s.t. (𝑃
1
, 𝑄
1
, 𝑝
1
, 𝑞
1
, 𝑟
1
, 𝑟
3
, 𝑠
1
, 𝜆
1
, 𝜆
2
) ∈ C

1
(𝑥) ,

(𝑃
2
, 𝑄
2
, 𝑝
2
, 𝑞
2
, 𝑠
2
, 𝑟
2
, 𝑟
4
, 𝑟
5
, 𝜆
3
, 𝜆
4
, 𝜆
5
, 𝜆
6
, 𝛼) ∈ C

2
(𝑥) ,

𝑥 ∈ 𝜒.

(18)

Because the matrix inequality

(

𝑟
1
+ 𝜆
𝑇

1
𝜉 − 𝜆
𝑇

2
𝜉 − 𝑟
3

(𝑞
1
+ 𝑥 + 𝜆

2
− 𝜆
1
)
𝑇

2

(𝑞
1
+ 𝑥 + 𝜆

2
− 𝜆
1
)

2

𝑄
1

) ⪰ 0 (19)

implies that 𝑄
1
⪰ 0, the matrix inequality 𝑄

1
⪰ 0 inC

1
(𝑥) is

removed. Similarly, the matrix inequality 𝑄
2
⪰ 0 in C

2
(𝑥) is

removed. So our proof is complete.

Theorem 3. Model 2 can be reformulated as the following
semidefinite programming problem:

min Σ ⋅ (𝛾
2
𝑄
2
+ 𝑃
2
) − 𝜇
𝑇

𝑄
2
𝜇 + 𝑟
2
− 2𝜇
𝑇

𝑝
2
+ 𝛾
1
𝑠
2

s.t. (

𝑟
1
+ 𝜆
𝑇

1
𝜉 − 𝜆
𝑇

2
𝜉 − 𝑟
3

(𝑞
1
+ 𝑥 + 𝜆

2
− 𝜆
1
)
𝑇

2

(𝑞
1
+ 𝑥 + 𝜆

2
− 𝜆
1
)

2

𝑄
1

) ⪰ 0,

(

𝑟
2
+ 𝜆
𝑇

3
𝜉 − 𝜆
𝑇

4
𝜉 − 𝑟
4

(𝑞
2
+ 𝜆
4
− 𝜆
3
)
𝑇

2

(𝑞
2
+ 𝜆
4
− 𝜆
3
)

2

𝑄
2

) ⪰ 0,

(

𝑟
2
+ 𝜆
𝑇

5
𝜉 − 𝜆
𝑇

6
𝜉 − 𝑟
5

(𝑞
2
+ (𝑥/ (1 − 𝛽)) + 𝜆

6
− 𝜆
5
)
𝑇

2

𝑞
2
+ (𝑥/ (1 − 𝛽)) + 𝜆

6
− 𝜆
5

2

𝑄
2

) ⪰ 0,

(

𝑃
1
𝑝
1

𝑝
𝑇

1
𝑠
1

) ⪰ 0, (

𝑃
2
𝑝
2

𝑝
𝑇

2
𝑠
2

) ⪰ 0,

− {𝛾
2
(Σ ⋅ 𝑄

1
) − 𝜇
𝑇

𝑄
1
𝜇 + 𝑟
1
+ Σ ⋅ 𝑃

1
− 2𝜇
𝑇

𝑝
1
+ 𝛾
1
𝑠
1
} ≥ 𝜎
2
,

𝑝
1
= −

𝑞
1

2

− 𝑄
1
𝜇, 𝑝

2
= −

𝑞
2

2

− 𝑄
2
𝜇,

𝑟
3
≥ 0, 𝑟

4
≥ 𝛼, 𝑟

5
≥ (1 −

1

1 − 𝛽

)𝛼,

𝜆
𝑖
≥ 0, 𝑖 = 1, . . . , 6,

𝑥 ∈ 𝜒,

(20)

where 𝑥, 𝛼, 𝑃
𝑖
, 𝑄
𝑖
, 𝑝
𝑖
, 𝑞
𝑖
, 𝑟
𝑖
, 𝑠
𝑖
, and 𝜆

𝑖
are variables.

Proof. The proof is similar to that of Theorem 2, so it is
omitted.

Theorem 4. Model 3 can be reformulated as the following
semidefinite programming problem:

max − (𝛾
2
(Σ ⋅ 𝑄) − 𝜇

𝑇

𝑄𝜇 + 𝑟
1
+ Σ ⋅ 𝑃 − 2𝜇

𝑇

𝑝 + 𝛾
1
𝑠)

s.t. (

𝑟
1
+ 𝜆
𝑇

1
𝜉 − 𝜆
𝑇

2
𝜉 − 𝑟
2

(𝑞 + 𝑥 + 𝜆
2
− 𝜆
1
)
𝑇

2

(𝑞 + 𝑥 + 𝜆
2
− 𝜆
1
)

2

𝑄

) ⪰ 0,

(
𝑟
1
+ 𝜆
𝑇

3
𝜉 − 𝜆
𝑇

4
𝜉 − 𝑟
3
]𝑇
5

]
5

𝑄

) ⪰ 0,

(

𝑃 𝑝

𝑝
𝑇

𝑠

) ⪰ 0, 𝑝 = −

𝑞

2

− 𝑄𝜇,

𝑟
2
≥ 𝜎
3
𝛼, 𝑟

3
≥ (1 −

1

1 − 𝛽

)𝛼𝜎
3
,

𝜆
𝑖
≥ 0, 𝑖 = 1, . . . , 4,

𝑥 ∈ 𝜒,

(21)
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where ]
5
= (𝑞 + (1 + (𝜎

3
/(1 − 𝛽)))𝑥 + 𝜆

4
− 𝜆
3
)/2, and

𝑥, 𝛼, 𝑃, 𝑄, 𝑝, 𝑞, 𝑟
𝑖
, 𝑠, and 𝜆

𝑖
are variables.

Proof. From equality

− 𝜎
3
min
𝛼∈R

𝐹
𝛽
(𝑥, 𝛼)

= −𝜎
3
min
𝛼∈R

∫

𝜉∈R𝑚
(𝛼 + (1 − 𝛽)

−1

[𝑓 (𝑥, 𝜉) − 𝛼]
+

) 𝑑𝑃 (𝜉)

= max
𝛼∈R

[−∫

𝜉∈R𝑚
max(𝛼𝜎

3
, 𝛼𝜎
3
+

𝜎
3
(𝑓 (𝑥, 𝜉) − 𝛼)

1 − 𝛽

)𝑑𝑃 (𝜉)]

= max
𝛼∈R

∫

𝜉∈R𝑚
𝐺
1
(𝑥, 𝜉) 𝑑𝑃 (𝜉) ,

(22)

where𝐺
1
(𝑥, 𝜉) = min(−𝛼𝜎

3
, −𝛼𝜎
3
−(𝜎
3
(𝑓(𝑥, 𝜉)−𝛼)/(1−𝛽))),

we have that

E
𝜉
[−𝑓 (𝑥, 𝜉)] − 𝜎

3
min
𝛼∈R

𝐹
𝛽
(𝑥, 𝛼)

= max
𝛼∈R

∫

𝜉∈R𝑚
(−𝑓 (𝑥, 𝜉) + 𝐺

1
(𝑥, 𝜉)) 𝑑𝑃 (𝜉)

= max
𝛼∈R

∫

𝜉∈R𝑚
𝐺
2
(𝑥, 𝜉) 𝑑𝑃 (𝜉) ,

(23)

where𝐺
2
(𝑥, 𝜉) = min(−𝑓−𝛼𝜎

3
, −𝑓−𝛼𝜎

3
−(𝜎
3
(𝑓−𝛼)/(1−𝛽))).

Hence,

min
𝑃∈P

(E
𝜉
[−𝑓 (𝑥, 𝜉)] − 𝜎

3
min
𝛼∈R

𝐹
𝛽
(𝑥, 𝛼))

= min
𝑃∈P

max
𝛼∈R

∫

𝜉∈R𝑚
𝐺
2
(𝑥, 𝜉) 𝑑𝑃 (𝜉)

= −max
𝑃∈P

min
𝛼∈R

∫

𝜉∈R𝑚
[−𝐺
2
(𝑥, 𝜉)] 𝑑𝑃 (𝜉)

= −max
𝑃∈P

min
𝛼∈R

∫

𝜉∈R𝑚
𝐺
3
(𝑥, 𝜉) 𝑑𝑃 (𝜉)

= −min
𝛼∈R

max
𝑃∈P

∫

𝜉∈R𝑚
𝐺
3
(𝑥, 𝜉) 𝑑𝑃 (𝜉) ,

(24)

where 𝐺
3
(𝑥, 𝜉) = max(𝑓 + 𝛼𝜎

3
, 𝑓 + 𝛼𝜎

3
+ (𝜎
3
(𝑓 − 𝛼)/(1 −

𝛽))); interchanging of the “min” and “max” operators in the

last equality is obtained by using theminimax theorem ([22]).
Hence,

max
𝑥∈𝜒

min
𝑃∈P

(E
𝜉
[−𝑓 (𝑥, 𝜉)] − 𝜎

3
min
𝛼∈R

𝐹
𝛽
(𝑥, 𝛼))

= max
𝑥∈𝜒

(−min
𝛼∈R

max
𝑃∈P

∫

𝜉∈R𝑚
𝐺
3
(𝑥, 𝜉) 𝑑𝑃 (𝜉))

= −min
𝑥∈𝜒

min
𝛼∈R

max
𝑃∈P

∫

𝜉∈R𝑚
𝐺
3
(𝑥, 𝜉) 𝑑𝑃 (𝜉)

= − min
𝑥∈𝜒,𝛼∈R

max
𝑃∈P

∫

𝜉∈R𝑚
𝐺
3
(𝑥, 𝜉) 𝑑𝑃 (𝜉) .

(25)

Similarly to the proof ofTheorem 2, we can prove that Model
3 can be reformulated as the problem (21).Therefore the proof
of the theorem is concluded.

3. Application in Portfolio Selection

In this section, we apply the models discussed in the previous
section to solve portfolio problem and compare the behavior
of the solutions obtained by our models and the solutions
obtained by the model in [23] and the model

max
𝑥

𝑥
𝑇

𝜇

s.t. 𝑥
𝑇

Σ𝑥 ≤ 𝜎
1
,

𝑥 ∈ 𝜒,

(26)

using nominal data. The equivalent semidefinite program-
ming problems for our models are solved by interior point
methods [24].

In the following application, decision variable 𝑥 means
portfolio weights and random vector 𝜉means daily logarith-
mic return of the stocks. For Example 2, we evaluated our
portfolio optimization problem using a historical data set of
four stocks (China Mingsheng Banking (600016), Sinopec
Group (600028), SanyHeavyMachinery (600031), andChina
Unicom (600050)) over a horizon of 10 years (2003–2012),
obtained from CSMAR Solution. The historical data set we
choose consisted of daily closing price of each stock of
Shanghai Stock Exchange. Daily logarithmic returns were
calculated by daily closing price. The parameters 𝜇 and Σ are
assigned as the estimates of the mean and covariance matrix
of daily logarithmic return.

Example 1 (see [23]). Let the mean and covariance matrix of
daily return of seven stocks be as follows:

𝜇 = (0.11, 0.11, 0.10, 0.09, 0.09, 0.12, 0.09)
𝑇

,

Σ =

(

(

(

(

0.293 −0.229 −0.237 −0.259 0.257 −0.193 0.256

−0.229 0.210 0.210 0.221 −0.216 0.162 −0.215

−0.237 0.210 0.225 0.239 −0.216 0.168 −0.219

−0.259 0.221 0.239 0.275 −0.246 0.189 −0.247

0.257 −0.216 −0.216 −0.246 0.256 −0.185 0.254

−0.193 0.162 0.168 0.189 −0.185 0.142 −0.188

0.256 −0.215 −0.219 −0.247 0.254 −0.188 0.266

)

)

)

)

.

(27)
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Figure 1: Efficient frontier obtained by Models 1 and 3 for Example 1.

Table 1: Numerical results for Example 1 (𝜎
1
= 𝜎
3
= 0.2).

Model ER SD (WER, WCVaR)
Model 1 0.1103 0.0429 (0.0868, 0.2000)
Model 3 0.1103 0.0429 0.0468
[21] 0.1090 0.0417 —
(21) 0.1200 0.3768 —

Table 2: Numerical results for Example 2 (𝜎
1
= 𝜎
3
= 0.2).

Model ER SD (WER, WCVaR)
Model 1 0.7161𝑒 − 04 0.0209 (−0.0174, 0.1976)
Model 3 0.6785𝑒 − 04 0.0209 −0.0400
[21] 0.6386𝑒 − 04 0.0209 —
(21) 0.2783𝑒 − 03 0.0253 —

Example 2. The empirical estimates 𝜇 and Σ of the mean and
covariance matrix of daily logarithmic return calculated by
the historical data of the four stocks are as follows:

𝜇 = 10
−4

(−1.257, 2.783, −3.273, 0.276)
𝑇

,

Σ = (

0.0009 0.0003 0.0004 0.0003

0.0003 0.0006 0.0003 0.0003

0.0004 0.0003 0.0020 0.0003

0.0003 0.0003 0.0003 0.0006

) .

(28)

The results for Examples 1 and 2 are listed in Tables
1 and 2, respectively. The tables give the expected return
(ER) 𝜇𝑇𝑥∗, standard deviation (SD) √𝑥∗𝑇Σ𝑥∗, worst-case
expected return, and worst-case CVaR ((WER,WCVaR), it
is the risk-adjusted expected return function value (i.e.,
objective value) for Model 3 in tables), where 𝑥∗ is a global
solution of models.

From tables and figures, we arrive at the following
conclusion.

(1) We compare the models with the model in [23]
and (26). The byproduct-solution pair (𝜇

𝑇

𝑥
∗

,
√
𝑥
∗𝑇
Σ𝑥
∗
),

obtained by our models, is not worse than that obtained by
the model in [23] and (26). Our model sometimes gives a
slightly better result. That is, the investment decision with
highest return is obtained. And our models give worst-case
return and risk. So our model may be a better choice.

(2)Usually, the estimatedmean and the covariancematrix
of a return vector of the stocks based on the market data are
subjected to errors. That is, there are errors between nominal
data and true data. To analyze the robustness of the solution,
for Example 1, let the nominal data be slightly perturbed.That
is, let

𝜇 = 𝜇,

Σ̃ = Σ + diag ([0; 0; 0; 0.1; 0.1; 0.1; 0.1]) ,
(29)

be the exact mean and covariance matrix, where “diag(𝑥)”
denotes a diagonal matrix whose 𝑖th diagonal element is
𝑥
𝑖
. Using the data to solve the models, the solution pair

(𝜇
𝑇

𝑥
∗

,
√
𝑥
∗𝑇
Σ𝑥
∗
) obtained by model in [23] and (26) is

(0.1068, 0.0611) and (0.1200, 0.3899), respectively. Hence,
using results obtained by model in [23] and (26) in Table 1,
investors tend to overestimate return and underestimate risk.
From E

𝜉
[𝜉] = 𝜇 = 𝜇, E

𝜉
[𝜉 − 𝜇](E

𝜉
[𝜉 − 𝜇])

𝑇

= Σ̃, and Σ̃ ⪯ 5Σ,
we have that distribution of random vector 𝜉 with mean 𝜇

and covariance matrix Σ̃ lies in the set P. So our proposed
methods are robust and the investment strategy is safe.

(3) By solving Models 1 and 3 for different values of 𝜎
1

and 𝜎
3
, one can generate a sequence of optimal portfolios on

the efficient frontier. From Figures 1 and 2, we observe that it
ranges from the portfolio with the smallest overall variance to
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Figure 2: Efficient frontier obtained by Models 1 and 3 for Example 2.

the portfoliowith the highest expected return; that is, efficient
frontier is monotonically increasing. This is consistent with
the reality.

4. Conclusion

Weproposed distributionally robust return-risk optimization
models based on the riskmeasure CVaR, with box constraints
of random vector and uncertainty in both the distribution
form andmoments (mean and covariance matrix) of random
vector. The models are reformulated as computationally
tractable semidefinite programming problems. And the scale
of semidefinite programming problems is independent of
the number of sample points. Moreover, an application of
the models to a practical example of portfolio selection with
historical stock data shows that proposed methods are robust
and the investment strategy obtained by them is safe. The
models are suitable for investors with high security demands.
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