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We establish some new nonlinear retarded finite difference inequalities. The results that we propose here can be used as tools in
the theory of certain new classes of finite difference equations in various difference situations. We also give applications of the
inequalities to show the usefulness of our results.

1. Introduction

An integral inequality that provides an explicit bound to
the unknown function furnishes a handy tool to investi-
gate qualitative properties of solutions of differential and
integral equations. One of the best known and widely used
inequalities in the study of nonlinear differential equations
is Gronwall-Bellman inequality [1, 2], which can be stated as
follows. If 𝑢 and 𝑓 are nonnegative continuous functions on
an interval [𝑎, 𝑏] satisfying

𝑢 (𝑡) ≤ 𝑐 + ∫

𝑡

𝑎

𝑓 (𝑠) 𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ [𝑎, 𝑏] , (1)

for some constant 𝑐 ≥ 0, then

𝑢 (𝑡) ≤ 𝑐 exp(∫
𝑡

𝑎

𝑓 (𝑠) 𝑑s) , 𝑡 ∈ [𝑎, 𝑏] . (2)

Being an important tool in the study of qualitative properties
of solutions of differential equations and integral equations,
various generalizations of Gronwall inequalities [1, 2] and
their applications have attracted great interests of many
mathematicians [3–5]. Some recentworks can be found in [6–
12] and the references therein. Alongwith the development of
the theory of integral inequalities and the theory of difference
equations, more and more attentions are paid to discrete

versions of Gronwall-type inequalities; see [13–36] and the
references cited therein.

Sugiyama [13] established the most precise and complete
discrete analogue of the Gronwall inequality [1] in the
following form. Let 𝑢(𝑛) and 𝑓(𝑛) be nonnegative functions
defined for 𝑛 ∈ N, and suppose that 𝑓(𝑛) ≥ 0 for every 𝑛 ∈ N.
If

𝑢 (𝑛) < 𝑢
0
+

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠) 𝑢 (𝑠) , 𝑛 ∈ N, (3)

whereN is the set of points 𝑛
0
+ 𝑘 (𝑘 = 0, 1, 2, . . .), 𝑛

0
≥ 0 is a

given integer, and 𝑢
0
is a nonnegative constant, then

𝑢 (𝑛) < 𝑢
0

𝑛−1

∏

𝑠=𝑛0

[1 + 𝑓 (𝑠)] , 𝑛 ∈ N. (4)

Pachpatte [15] established some generalized discrete analogue
of the Gronwall inequality in the following form. Let𝑚(𝑠) be
a positive and monotone nondecreasing function on N, and
let 𝑎(𝑠), 𝑏(𝑠) be nonnegative functions on N. If 𝑢(𝑛) satisfies

𝑢 (𝑛) ≤ 𝑚 (𝑠) +

𝑛−1

∑

𝑠=𝑛0

𝑎 (𝑠) (𝑢 (𝑠) +

𝑠−1

∑

𝜏=𝑛0

𝑏 (𝜏) 𝑢 (𝜏)) , ∀𝑛 ∈ N,

(5)
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then

𝑢 (𝑛) ≤ 𝑃 (𝑛)𝑚 (𝑠) , ∀𝑛 ∈ N, (6)

where

𝑃 (𝑛) = 1 +

𝑛−1

∑

𝑠=𝑛0

𝑎 (𝑠)

𝑠−1

∏

𝜏=𝑛0

[1 + 𝑎 (𝜏) + 𝑏 (𝜏)] , ∀𝑛 ∈ N. (7)

Lemma 1 (see [16]). Suppose that 𝑢
0
is a nonnegative constant

and 𝑢(𝑛), 𝑎(𝑛), 𝑏(𝑛), 𝑐(𝑛), and 𝑑(𝑛) are nonnegative functions
defined onN, 1 + 𝑎(𝑛) − 𝑏(𝑛) ≥ 0 for all 𝑛 ∈ N. If 𝑢(𝑛) satisfies
the inequality

𝑢 (𝑛) ≤ 𝑢
0
+

𝑛−1

∑

𝑠=𝑛0

𝑎 (𝑠) 𝑢 (𝑠)

+

𝑛−1

∑

𝑠=𝑛0

𝑏 (𝑠) (

𝑠−1

∑

𝜏=𝑛0

𝑐 (𝜏) 𝑢 (𝜏)(

𝜏−1

∑

𝑡=𝑛0

𝑑 (𝑡) 𝑢 (𝑡))) ,

∀𝑛 ∈ N,

(8)

then

𝑢 (𝑛) ≤ 𝑢
0

𝑛−1

∏

𝑠=𝑛0

[1 + 𝑎 (𝑠) − 𝑏 (𝑠)]

+

𝑛−1

∑

𝑠=𝑛0

𝑏 (𝑠) 𝑅 (𝑠)

𝑛−1

∏

𝑡=𝑠+1

[1 + 𝑎 (𝑡) − 𝑏 (𝑡)] ,

∀𝑛 ∈ N,

(9)

where

𝑅 (𝑛)

≤

𝑢
0
∏
𝑛−1

𝑠=𝑛0
[1 + 𝑎 (𝑠) + 𝑏 (𝑠) + 𝑐 (𝑠) 𝑄 (𝑠)]

1 + 𝑢
0
∑
𝑛−1

𝑠=𝑛0
𝑐 (𝑠)∏

𝑠

𝑡=𝑛0
[1 + 𝑎 (𝑡) + 𝑏 (𝑡) + 𝑐 (𝑡) 𝑄 (𝑡)]

,

∀𝑛 ∈ N,
(10)

in which

𝑄 (𝑛)

≤

𝑢
0
∏
𝑛−1

𝑠=𝑛0
[1 + 𝑎 (𝑠) + 𝑏 (𝑠) + 𝑑 (𝑠)]

1 − 𝑢
0
∑
𝑛−1

𝑠=𝑛0
𝑐 (𝑠)∏

𝑠

𝑡=𝑛0
[1 + 𝑎 (𝑡) + 𝑏 (𝑡) + 𝑑 (𝑡)]

,

∀𝑛 ∈ N,

(11)

and∑𝑛−1
𝑠=𝑛0

𝑐(𝑠)∏
𝑠

𝑡=𝑛0
[1 + 𝑎(𝑡) + 𝑏(𝑡) + 𝑑(𝑡)] < 𝑢

−1

0
for all 𝑛 ∈ N.

Lemma 2 (see [14, 18]). Let 𝑤(𝑛, 𝑟) be a real-valued function
defined for 𝑛 ∈ N, 0 ≤ 𝑟 < ∞ and monotone nondecreasing
with respect to 𝑟 for any fixed 𝑛 ∈ N. Let 𝑢(𝑛) be a real-valued
function defined for 𝑛 ∈ N such that

Δ𝑢 (𝑛) ≤ 𝑤 (𝑛, 𝑢 (𝑛)) , ∀𝑛 ∈ N. (12)

Let 𝑟(𝑛) be a solution of

Δ𝑟 (𝑛) = 𝑤 (𝑛, 𝑟 (𝑛)) , 𝑟 (0) = 𝑟
0
, ∀𝑛 ∈ N, (13)

such that 𝑢(0) ≤ 𝑟(0). Then

𝑢 (𝑛) ≤ 𝑟 (𝑛) , ∀𝑛 ∈ N. (14)

Pachpatte [18, 19] also established some difference
inequalities of product form as follows. Let 𝑢, 𝑎, 𝑏 be non-
negative functions defined on N and let 𝑐 be a nonnegative
constant. Let 𝑤(𝑛, 𝑟) be a nonnegative function defined for
𝑛 ∈ N, 0 ≤ 𝑟 < ∞ and monotone nondecreasing with respect
to 𝑟 for any fixed 𝑛 ∈ N. If 𝑢(𝑛) satisfies

𝑢
2
(𝑛) ≤ 𝑐

2
+ 2

𝑛−1

∑

𝑠=𝑛0

𝑢 (𝑠) [𝑎 (𝑠) (𝑢 (𝑠) +

𝑠−1

∑

𝑡=𝑛0

𝑏 (𝑡) 𝑢 (𝑡))

+ 𝑤 (𝑠, 𝑢 (𝑠))] , ∀𝑛 ∈ N,

(15)

then

𝑢 (𝑛) ≤ 𝑃 (𝑛) 𝑟 (𝑛) , ∀𝑛 ∈ N, (16)

where 𝑃(𝑛) is defined by (7), and 𝑟(𝑛) is a solution of

Δ𝑟 (𝑛) = 𝑤 (𝑛, 𝑃 (𝑛) 𝑟 (𝑛)) , 𝑟 (0) = 𝑐, ∀𝑛 ∈ N. (17)

Let 𝑢, 𝑎, 𝑏 be nonnegative functions defined for 𝑛 ∈ N and
let 𝑐 be a nonnegative constant. Let 𝑤(𝑛, 𝑟) be a nonnegative
function defined for 𝑛 ∈ N, 0 ≤ 𝑟 < ∞ and monotone
nondecreasing with respect to 𝑟 for any fixed 𝑛 ∈ N. If 𝑢(𝑛)
satisfies

𝑢
2
(𝑛) ≤ 𝑐

2
+

𝑛−1

∑

𝑠=𝑛0

𝑎 (𝑠) (𝑢 (𝑠 + 1) + 𝑢 (𝑠))

× [(𝑢 (𝑠) +

𝑠−1

∑

𝜏=𝑛0

𝑏 (𝜏) 𝑢 (𝜏))

+ 𝑤 (𝑠, 𝑢 (𝑠))] , ∀𝑛 ∈ N,

(18)

then

𝑢 (𝑛) ≤ 𝑃 (𝑛) 𝑟 (𝑛) , ∀𝑛 ∈ N, (19)

where 𝑃(𝑛) is defined by (7), and 𝑟(𝑛) is a solution of the
difference equation

Δ𝑟 (𝑛) = 𝑎 (𝑛)𝑤 (𝑛, 𝑃 (𝑛) 𝑟 (𝑛)) , 𝑟 (0) = 𝑐, ∀𝑛 ∈ N.
(20)
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Motivated by the results given in [16, 18, 19], in this paper,
we discuss new nonlinear finite difference inequalities:

𝑢
2
(𝑛) ≤ 𝑐

2
+

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠) (𝑢 (𝑠 + 1) + 𝑢 (𝑠))

× [(𝑢 (𝑠) +

𝑠−1

∑

𝑡=𝑛0

𝑔 (𝑡) 𝑢 (𝑡)

×

𝑡−1

∑

𝜏=𝑛0

ℎ (𝜏) 𝑢 (𝜏))

+ 𝑤 (𝑠, 𝑢 (𝑠))] , ∀𝑛 ∈ N.

(21)

Our inequalities can be used as tools in the study of certain
classes of finite difference equations. We also present some
immediate applications to show the importance of our results
to study the various problems in the theory of finite difference
equations.

2. Main Results

Throughout this paper, let R = (−∞, +∞), R
+
= [0, +∞).

Let N := {𝑛
0
, 𝑛
0
+ 1, 𝑛

0
+ 2, . . .} and N

𝑇
:= {𝑛
0
, 𝑛
0
+ 1, 𝑛

0
+

2, . . . , 𝑇}, 𝑇 ∈ N. For function 𝑢(𝑛), 𝑛 ∈ N, we define
the operator Δ by Δ𝑢(𝑛) = 𝑢(𝑛 + 1) − 𝑢(𝑛). Obviously,
the linear difference equation Δ𝑢(𝑛) = 𝑓(𝑛) with the initial
condition 𝑢(𝑛

0
) = 0 has the solution 𝑢(𝑛) = ∑𝑛−1

𝑠=𝑛0
𝑓(𝑠). For

convenience, in the sequel we complementarily define that
∑
𝑛0−1

𝑠=𝑛0
𝑓(𝑠) = 0 and∏𝑛0−1

𝑠=𝑛0
𝑓(𝑠) = 1.

Theorem 3. Let 𝛽 > 0 be a constant, 𝑥, 𝑦 positive functions
defined on N, 𝑥 a monotone increasing function, and 𝑦 a
monotone decreasing function. Let 𝜙 be a nonnegative function
defined on N such that

𝑥 (𝑛 + 1) 𝑦 (𝑛 + 1) − 𝑥 (𝑛) 𝑦 (𝑛) ≤ 𝜙 (𝑛) [𝑥 (𝑛) 𝑦 (𝑛 + 1)]
𝛽

,

∀𝑛 ∈ 𝑁.

(22)

(i) Suppose 𝛽 > 1. If 1+ (1−𝛽)[𝑥(𝑛
0
)𝑦(𝑛
0
)]
𝛽−1
∑
𝑛−1

𝑠=𝑛0
𝜙(𝑠)

> 0, then

𝑥 (𝑛) ≤

𝑥 (𝑛
0
) 𝑦 (𝑛
0
) 𝑦 (𝑛)

{1 + (1 − 𝛽) [𝑥 (𝑛
0
) 𝑦 (𝑛
0
)]
𝛽−1

∑
𝑛−1

𝑠=𝑛0
𝜙 (𝑠)}

1/(𝛽−1)
,

∀𝑛 ∈ 𝑁.

(23)

(ii) Suppose 0 < 𝛽 < 1. Then

𝑥 (𝑛) ≤ 𝑦
−1
(𝑛) {[𝑥 (𝑛

0
) 𝑦 (𝑛
0
)]
1−𝛽

+

𝑛−1

∑

𝑠=𝑛0

(1 − 𝛽) 𝜙 (𝑠)}

1/(1−𝛽)

, ∀𝑛 ∈ 𝑁.

(24)

Proof. (i) We apply mean value theorem for differentiation to
the function

𝐹 (𝑧) =

𝑧
1−𝛽

(1 − 𝛽)

, 𝑧 > 0, (25)

and then there exists 𝜉 between 𝑥(𝑛)𝑦(𝑛) and 𝑥(𝑛+1)𝑦(𝑛+1)
such that

[𝑥 (𝑛 + 1) 𝑦 (𝑛 + 1)]
1−𝛽

− [𝑥 (𝑛) 𝑦 (𝑛)]
1−𝛽

= (1 − 𝛽) 𝜉
−𝛽
[𝑥 (𝑛 + 1) 𝑦 (𝑛 + 1) − 𝑥 (𝑛) 𝑦 (𝑛)] .

(26)

Because 𝑥(𝑛) is monotone increasing and 𝑦(𝑛) is monotone
decreasing and −𝛽 < 0, we see that [𝑥(𝑛)𝑦(𝑛 + 1)]−𝛽 ≥ [𝑥(𝑛 +
1)𝑦(𝑛 + 1)]

−𝛽 and [𝑥(𝑛)𝑦(𝑛 + 1)]−𝛽 ≥ [𝑥(𝑛)𝑦(𝑛)]−𝛽. So for all
values of 𝜉 between 𝑥(𝑛)𝑦(𝑛) and 𝑥(𝑛 + 1)𝑦(𝑛 + 1) we have

[𝑥 (𝑛) 𝑦 (𝑛 + 1)]
−𝛽

≥ 𝜉
−𝛽
. (27)

From (22) and (27), we have

𝜉
−𝛽
[𝑥 (𝑛 + 1) 𝑦 (𝑛 + 1) − 𝑥 (𝑛) 𝑦 (𝑛)]

≤ [𝑥 (𝑛) 𝑦 (𝑛 + 1)]
−𝛽

𝜙 (𝑛) [𝑥 (𝑛) 𝑦 (𝑛 + 1)]
𝛽

= 𝜙 (𝑛) .

(28)

Since 1 − 𝛽 < 0, from (26) and (28) we have

[𝑥 (𝑛 + 1) 𝑦 (𝑛 + 1)]
1−𝛽

− [𝑥 (𝑛) 𝑦 (𝑛)]
1−𝛽

≥ (1 − 𝛽) 𝜙 (𝑛) .

(29)

Taking 𝑛 = 𝑠 in (29) and summing up over 𝑠 from 𝑛
0
to 𝑛 − 1,

we obtain

[𝑥 (𝑛) 𝑦 (𝑛)]
1−𝛽

≥ [𝑥 (𝑛
0
) 𝑦 (𝑛
0
)]
1−𝛽

+

𝑛−1

∑

𝑠=𝑛0

(1 − 𝛽) 𝜙 (𝑠) .

(30)

From (30), we obtain our required estimation (23).
(ii) Now by following the same steps as in the proof of (i)

before (29) we have

[𝑥 (𝑛 + 1) 𝑦 (𝑛 + 1)]
1−𝛽

− [𝑥 (𝑛) 𝑦 (𝑛)]
1−𝛽

≤ (1 − 𝛽) 𝜙 (𝑛) ,

(31)

because 1 − 𝛽 > 0. Taking 𝑛 = 𝑠 in (31) and summing up over
𝑠 from 𝑛

0
to 𝑛 − 1, we obtain

[𝑥 (𝑛) 𝑦 (𝑛)]
1−𝛽

≤ [𝑥 (𝑛
0
) 𝑦 (𝑛
0
)]
1−𝛽

+

𝑛−1

∑

𝑠=𝑛0

(1 − 𝛽) 𝜙 (𝑠) .

(32)

From (32), we obtain our required estimation (24).
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Theorem 4. Let𝑚(𝑠) be a positive and monotone nondecreas-
ing function defined on N and 𝑓(𝑠), 𝑔(𝑠), ℎ(𝑠) nonnegative
functions defined on N. If 𝑢(𝑛) satisfies

𝑢 (𝑛) ≤ 𝑚 (𝑛) +

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠) 𝑢 (𝑠)

+

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠)(

𝑠−1

∑

𝑡=𝑛0

𝑔 (𝑡) 𝑢 (𝑡)

×(

𝑡−1

∑

𝜏=𝑛0

ℎ (𝜏) 𝑢 (𝜏))) ,

∀𝑛 ∈ N,
(33)

then

𝑢 (𝑛) ≤ 𝑚 (𝑛) +

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠)𝑈 (𝑠) , ∀𝑛 ∈ N, (34)

where

𝑈 (𝑛) ≤

𝑚 (𝑛)∏
𝑛−1

𝑠=𝑛0
[1 + 𝑓 (𝑠) + 𝑔 (𝑠) 𝑉 (𝑠)]

1 + 𝑚 (𝑛)∑
𝑛−1

𝑠=𝑛0
𝑔 (𝑠)∏

𝑠

𝑡=𝑛0
[1 + 𝑓 (𝑡) + 𝑔 (𝑡) 𝑉 (𝑡)]

,

∀𝑛 ∈ N,
(35)

in which

𝑉 (𝑛) =

𝑚 (𝑛)∏
𝑛−1

𝑠=𝑛0
[1 + 𝑓 (𝑠) + ℎ (𝑠)]

1 − 𝑚 (𝑛)∑
𝑛−1

𝑠=𝑛0
𝑔 (𝑠)∏

𝑠

𝑡=𝑛0
[1 + 𝑓 (𝑡) + ℎ (𝑡)]

,

∀𝑛 ∈ N,

(36)

and ∑𝑛−1
𝑠=𝑛0

𝑔(𝑠)∏
𝑠

𝑡=𝑛0
[1 + 𝑓(𝑡) + ℎ(𝑡)] < 𝑚

−1
(𝑛) for all n ∈ N.

Proof. Fix 𝑇 ∈ N, where 𝑇 is chosen arbitrarily, since 𝑚(𝑡) is
a nonnegative and monotone nondecreasing function, from
(33), we have

𝑢 (𝑛) ≤ 𝑚 (𝑇) +

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠) 𝑢 (𝑠)

+

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠)(

𝑠−1

∑

𝑡=𝑛0

𝑔 (𝑡) 𝑢 (𝑡)

× (

t−1
∑

𝜏=𝑛0

ℎ (𝜏) 𝑢 (𝜏))) ,

∀𝑛 ∈ 𝑁
𝑇
.

(37)

Define a function 𝑧(𝑛) by the right-hand side of (37). Then
𝑧(𝑛) is a positive and monotone nondecreasing function
defined on N. We have

𝑧 (𝑛
0
) = 𝑚 (𝑇) , 𝑢 (𝑛) ≤ 𝑧 (𝑛) , ∀𝑛 ∈ N. (38)

Using the definitions of the operator Δ and 𝑧, we obtain

Δ𝑧 (𝑛) = 𝑓 (𝑛){𝑢 (𝑛) + [

𝑛−1

∑

𝑡=𝑛0

𝑔 (𝑡) 𝑢 (𝑡) (

𝑡−1

∑

𝜏=𝑛0

ℎ (𝜏) 𝑢 (𝜏))]}

≤ 𝑓 (𝑛){𝑧 (𝑛) + [

𝑛−1

∑

𝑡=𝑛0

𝑔 (𝑡) 𝑧 (𝑡) (

𝑡−1

∑

𝜏=𝑛0

ℎ (𝜏) 𝑧 (𝜏))]} ,

∀𝑛 ∈ 𝑁
𝑇
.

(39)

Let

𝑧
1
(𝑛) = 𝑧 (𝑛) + [

𝑛−1

∑

𝑡=𝑛0

𝑔 (𝑡) 𝑧 (𝑡) (

𝑡−1

∑

𝜏=𝑛0

ℎ (𝜏) 𝑧 (𝜏))] ,

∀𝑛 ∈ 𝑁
𝑇
.

(40)

Then

𝑧
1
(𝑛
0
) = 𝑧 (𝑛

0
) = 𝑚 (𝑇) , 𝑧 (𝑛) ≤ 𝑧

1
(𝑛) , ∀𝑛 ∈ 𝑁

𝑇
.

(41)

It follows that

Δ𝑧
1
(𝑛) = Δ𝑧 (𝑛) + 𝑔 (𝑛) 𝑧 (𝑛)(

𝑛−1

∑

𝜏=𝑛0

ℎ (𝜏) 𝑧 (𝜏))

≤ 𝑓 (𝑛) 𝑧
1
(𝑛) + 𝑔 (𝑛) 𝑧

1
(𝑛)(

𝑛−1

∑

𝜏=𝑛0

ℎ (𝜏) 𝑧
1
(𝜏)) ,

∀𝑛 ∈ 𝑁
𝑇
.

(42)

Adding 𝑔(𝑛)𝑧2
1
(𝑛) to both sides of the above inequality we

have

Δ𝑧
1
(𝑛) + 𝑔 (𝑛) 𝑧

2

1
(𝑛) ≤ 𝑓 (𝑛) 𝑧

1
(𝑛) + 𝑔 (𝑛) 𝑧

1
(𝑛)

× [𝑧
1
(𝑛) + (

𝑛−1

∑

𝜏=𝑛0

ℎ (𝜏) 𝑧
1
(𝜏))] ,

∀𝑛 ∈ 𝑁
𝑇
.

(43)

Put

𝑧
2
(𝑛) = 𝑧

1
(𝑛) +

𝑛−1

∑

𝜏=𝑛0

ℎ (𝜏) 𝑧
1
(𝜏) , ∀𝑛 ∈ 𝑁

𝑇
, (44)

and then 𝑧
1
(𝑛) ≤ 𝑧

2
(𝑛), 𝑧
2
(𝑛
0
) = 𝑧
1
(𝑛
0
) = 𝑚(𝑇) and

Δ𝑧
2
(𝑛) = Δ𝑧

1
(𝑛) + ℎ (𝑛) 𝑧

1
(𝑛)

≤ 𝑓 (𝑛) 𝑧
2
(𝑛) + 𝑔 (𝑛) 𝑧

2

2
(𝑛) + ℎ (𝑛) 𝑧

2
(𝑛) ,

∀𝑛 ∈ 𝑁
𝑇
.

(45)

We see that the inequality

𝑧
2
(𝑛 + 1) − (1 + 𝑓 (𝑛) + ℎ (𝑛)) 𝑧

2
(𝑛) ≤ 𝑔 (𝑛) 𝑧

2

2
(𝑛) ,

∀𝑛 ∈ 𝑁
𝑇
.

(46)
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Define a function

𝑃
1
(𝑛) =

𝑛−1

∏

𝑠=𝑛0

(1 + 𝑓 (𝑠) + ℎ (𝑠))
−1

, ∀𝑛 ∈ 𝑁
𝑇
. (47)

Multiplying by 𝑃
1
(𝑛 + 1) to both sides of (46) we obtain

𝑧
2
(𝑛 + 1) 𝑃

1
(𝑛 + 1) − 𝑧

2
(𝑛) 𝑃
1
(𝑛)

≤ 𝑃
−1

1
(𝑛 + 1) 𝑔 (𝑛) [𝑧

2
(𝑛) 𝑃
1
(𝑛 + 1)]

2

,

∀𝑛 ∈ 𝑁
𝑇
.

(48)

Let𝑥(𝑛) = 𝑧
2
(𝑛),𝑦(𝑛) = 𝑃

1
(𝑛),𝜙(𝑛) = 𝑃−1

1
(𝑛+1)𝑔(𝑛), and𝛽 =

2. Because 𝑧
2
(𝑛) is monotone increasing, 𝑃

1
(𝑛) is monotone

decreasing and 2 > 0; applyingTheorem 3 to (48) we obtain

𝑧
2
(𝑛) ≤

𝑧
2
(𝑛
0
) 𝑃
−1

1
(𝑛)

1 − 𝑧
2
(𝑛
0
)∑
𝑛−1

𝑠=𝑛0
𝑔 (𝑠) 𝑃

−1

1
(𝑠 + 1)

=

𝑚 (𝑇)∏
𝑛−1

𝑠=𝑛0
[1 + 𝑓 (𝑠) + ℎ (𝑠)]

1 − 𝑚 (𝑇)∑
𝑛−1

𝑠=𝑛0
𝑔 (𝑠)∏

𝑠

𝑡=𝑛0
[1 + 𝑓 (𝑡) + ℎ (𝑡)]

,

∀𝑛 ∈ 𝑁
𝑇
,

(49)

where 𝑃
1
(𝑛
0
) = 1, 𝑧

2
(𝑛
0
) = 𝑚(𝑇) are used. Define a function

𝑉̃ of the right-hand side of (49). Substituting (49) in (43) we
obtain

𝑧
1
(𝑛 + 1) − (1 + 𝑓 (𝑛) + 𝑔 (𝑛) 𝑉̃ (𝑛)) 𝑧

1
(𝑛) ≤ −𝑔 (𝑛) 𝑧

2

1
(𝑛) ,

∀𝑛 ∈ 𝑁
𝑇
.

(50)

Performing the same derivation as in (46)–(49), we obtain
from (50) that

𝑧
1
(𝑛) ≤

𝑚 (𝑇)∏
𝑛−1

𝑠=𝑛0
[1 + 𝑓 (𝑠) + 𝑔 (𝑠) 𝑉̃ (𝑠)]

1 + 𝑚 (𝑇)∑
𝑛−1

𝑠=𝑛0
𝑔 (𝑠)∏

𝑠

𝑡=𝑛0
[1 + 𝑓 (𝑡) + 𝑔 (𝑡) 𝑉̃ (𝑡)]

,

∀𝑛 ∈ 𝑁
𝑇
.

(51)

Define a function 𝑈̃ of the right-hand side of (51). Substitut-
ing (51) in (39) we obtain

Δ𝑧 (𝑛) = 𝑓 (𝑛) 𝑈̃ (𝑛) , ∀𝑛 ∈ 𝑁
𝑇
. (52)

Using (38), from (52) it follows that

𝑢 (𝑛) ≤ 𝑚 (𝑇) +

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠) 𝑈̃ (𝑠) , ∀𝑛 ∈ 𝑁
𝑇
. (53)

Since 𝑇 ∈ N is arbitrary, from (53), we get the required
estimate (35).

Theorem 5. Let 𝑢, 𝑓, 𝑔, ℎ be nonnegative functions defined for
𝑛 ∈ N and 𝑐 a nonnegative constant. Let 𝑤(𝑛, 𝑟) be a real-
valued function defined for 𝑛 ∈ N, 0 ≤ 𝑟 < ∞, and monotone

nondecreasing with respect to 𝑟 for any fixed 𝑛 ∈ N. If 𝑢(𝑛)
satisfies (21), then

𝑢 (𝑛) ≤ V (𝑛) +
𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠)𝑊
1
(𝑠) , ∀𝑛 ∈ N, (54)

where

𝑊
1
(𝑛)

≤

V (𝑛)∏𝑛−1
𝑠=𝑛0

[1 + 𝑓 (𝑠) + 𝑔 (𝑠)𝑊
2
(𝑠)]

1 + V (𝑛)∑𝑛−1
𝑠=𝑛0

𝑔 (𝑠)∏
𝑠

𝑡=𝑛0
[1 + 𝑓 (𝑡) + 𝑔 (𝑡)𝑊

2
(𝑡)]

,

∀𝑛 ∈ N,
(55)

in which

𝑊
2
(𝑛) =

V (𝑛)∏𝑛−1
𝑠=𝑛0

[1 + 𝑓 (𝑠) + ℎ (𝑠)]

1 − V (𝑛)∑𝑛−1
𝑠=𝑛0

𝑔 (𝑠)∏
𝑠

𝑡=𝑛0
[1 + 𝑓 (𝑡) + ℎ (𝑡)]

,

∀𝑛 ∈ N,

(56)

and V(𝑛) is a solution of the difference equation

Δ𝑟 (𝑛) = 𝑓 (𝑛)𝑤(𝑛, 𝑟 (𝑛) +

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠)𝑊
3
(𝑠)) ,

𝑟 (0) = 𝑐, ∀𝑛 ∈ N,

(57)

where

𝑊
3
(𝑛) ≤

𝑟 (𝑛)∏
𝑛−1

𝑠=𝑛0
[1 + 𝑓 (𝑠) + 𝑔 (𝑠)𝑊

4
(𝑠)]

1 + 𝑟 (𝑛)∑
𝑛−1

𝑠=𝑛0
𝑔 (𝑠)∏

𝑠

𝑡=𝑛0
[1 + 𝑓 (𝑡) + 𝑔 (𝑡)𝑊

4
(𝑡)]

,

∀𝑛 ∈ N,
(58)

in which

𝑊
4
(𝑛) =

𝑟 (𝑛)∏
𝑛−1

𝑠=𝑛0
[1 + 𝑓 (𝑠) + ℎ (𝑠)]

1 − 𝑟 (𝑛)∑
𝑛−1

𝑠=𝑛0
𝑔 (𝑠)∏

𝑠

𝑡=𝑛0
[1 + 𝑓 (𝑡) + ℎ (𝑡)]

,

∀𝑛 ∈ N,

(59)

and ∑𝑛−1
𝑠=𝑛0

𝑔(𝑠)∏
𝑠

𝑡=𝑛0
[1 + 𝑓(𝑡) + ℎ(𝑡)] < V−1(𝑛) for all 𝑛 ∈ N.

Proof. We first assume that 𝑐 > 0 and define a function 𝑧(𝑛)
by the right-hand side of (21). Then 𝑧(𝑛) is a positive and
monotone nondecreasing function defined on N. We have

𝑧 (0) = 𝑐
2
, 𝑢 (𝑛) ≤ √𝑧 (𝑛), ∀𝑛 ∈ N. (60)
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Using the definitions of the operator Δ and 𝑧, we obtain

Δ𝑧 (𝑛) = 𝑓 (𝑛) (𝑢 (𝑛 + 1) + 𝑢 (𝑛))

× [(𝑢 (𝑛) +

𝑛−1

∑

𝑡=𝑛0

𝑔 (𝑡) 𝑢 (𝑡)

𝑡−1

∑

𝜏=𝑛0

ℎ (𝜏) 𝑢 (𝜏))

+ 𝑤 (𝑛, 𝑢 (𝑛))]

≤ 𝑓 (𝑛) (√𝑧 (𝑛 + 1) + √𝑧 (𝑛))

× [(√𝑧 (𝑛) +

𝑛−1

∑

𝑡=𝑛0

𝑔 (𝑡)√𝑧 (𝑡)

×

𝑡−1

∑

𝜏=𝑛0

ℎ (𝜏)√𝑧 (𝜏)) + 𝑤 (𝑛,√𝑧 (𝑛))] ,

∀𝑛 ∈ N.

(61)

From (61) it follows that the inequality

Δ (√𝑧 (𝑛)) =

Δ𝑧 (𝑛)

√𝑧 (𝑛 + 1) + √𝑧 (𝑛)

≤ 𝑓 (𝑛) [(√𝑧 (𝑛) +

𝑛−1

∑

𝑡=𝑛0

𝑔 (𝑡)√𝑧 (𝑡)

×

𝑡−1

∑

𝜏=𝑛0

ℎ (𝜏)√𝑧 (𝜏))

+ 𝑤 (𝑛,√𝑧 (𝑛))]

(62)

holds for all 𝑛 ∈ N. Setting 𝑛 = 𝑠 in (62) and substituting
𝑠 = 𝑛
0
, 1, 2, . . . , 𝑛 − 1, successively, we get

√𝑧 (𝑛) ≤ 𝑐 +

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠)

× [((√𝑧 (𝑠)) +

𝑠−1

∑

𝑡=𝑛0

𝑔 (𝑡)√𝑧 (𝑡)

×

𝑡−1

∑

𝜏=𝑛0

ℎ (𝜏)√𝑧 (𝜏))

+ 𝑤 (𝑠, √𝑧 (𝑠))] ,

∀𝑛 ∈ N.

(63)

Define a function 𝑧
1
(𝑛) by

𝑧
1
(𝑛) = 𝑐 +

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠) 𝑤 (𝑠, √𝑧 (𝑠)) , ∀𝑛 ∈ N. (64)

Then 𝑧
1
(𝑛) = 𝑐 and

Δ𝑧
1
(𝑛) = 𝑓 (𝑛)𝑤 (𝑛,√𝑧 (𝑛)) , ∀𝑛 ∈ N. (65)

Using (64), the inequality (63) can be written as

√𝑧 (𝑛) ≤ 𝑧
1
(𝑛)

+

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠)(√𝑧 (𝑠) +

𝑠−1

∑

𝑡=𝑛0

𝑔 (𝑡)√𝑧 (𝑡)

×

𝑡−1

∑

𝜏=𝑛0

ℎ (𝜏)√𝑧 (𝜏)) ,

∀𝑛 ∈ N.
(66)

Since 𝑧
1
(𝑛) is positive and monotone nondecreasing for 𝑛 ∈

N, 𝑓(𝑠), 𝑔(𝑠), ℎ(𝑠) satisfy the conditions in Theorem 4. Now
an application of Theorem 4 to (66) yields

√𝑧 (𝑛) ≤ 𝑧
1
(𝑛) +

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠) 𝑊̃
1
(𝑠) , ∀𝑛 ∈ N, (67)

where

𝑊̃
1
(𝑛)

≤

𝑧
1
(𝑛)∏

𝑛−1

𝑠=𝑛0
[1 + 𝑓 (𝑠) + 𝑔 (𝑠) 𝑊̃

2
(𝑠)]

1 + 𝑧
1
(𝑛)∑
𝑛−1

𝑠=𝑛0
𝑔 (𝑠)∏

𝑠

𝑡=𝑛0
[1 + 𝑓 (𝑡) + 𝑔 (𝑡) 𝑊̃

2
(𝑡)]

,

∀𝑛 ∈ N,
(68)

in which

𝑊̃
2
(𝑛) =

𝑧
1
(𝑛)∏

𝑛−1

𝑠=𝑛0
[1 + 𝑓 (𝑠) + ℎ (𝑠)]

1 − 𝑧
1
(𝑛)∑
𝑛−1

𝑠=𝑛0
𝑔 (𝑠)∏

𝑠

𝑡=𝑛0
[1 + 𝑓 (𝑡) + ℎ (𝑡)]

,

∀𝑛 ∈ N.
(69)

Since𝑤(𝑛, 𝑟) is monotone nondecreasing with respect to 𝑟 for
any fixed 𝑛 ∈ N, from (65) and (67), we have

Δ𝑧
1
(𝑛) ≤ 𝑓 (𝑛)𝑤(𝑛, 𝑧

1
(𝑛) +

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠) 𝑊̃
1
(𝑠)) , ∀𝑛 ∈ N.

(70)

Now as a suitable application of Lemma 2, we obtain

𝑧
1
(𝑛) ≤ V (𝑛) , ∀𝑛 ∈ N, (71)

where V(𝑛) is a solution of (57). Using (60), (67), and (71), we
obtain our required estimation (54).

If 𝑐 is nonnegative, we can carry out the above procedure
with 𝑐 + 𝜖 instead of 𝑐 where 𝜖 is an arbitrary small number.
Letting 𝜖 → 0, we obtain (54).
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3. Application to Finite Difference Equations

In this section, we consider the following difference equation:

Δ𝑥 (𝑛) = 𝑓 (𝑛)

× [𝐹(𝑛, 𝑥 (𝑛) ,

𝑛−1

∑

𝑡=𝑛0

𝑔 (𝑡) 𝑥 (𝑡)

×

𝑡−1

∑

𝜏=𝑛0

𝐻(𝑡, 𝜏, 𝑥 (𝜏))) + 𝐾 (𝑛, 𝑥 (𝑛))] ,

∀𝑛 ∈ N,
(72)

𝑥 (𝑛
0
) = 𝑥
0
, (73)

where 𝐹,𝐻,𝐾 are real-valued functions defined, respectively,
on N × R2, N2 × R, N × R, 𝑓 is as defined in Theorem 5, and
𝑥
0
is a constant. We assume that

|𝐾 (𝑛, 𝑥 (𝑛))| ≤ 𝑤 (𝑛, |𝑥 (𝑛)|) ,

|𝐻 (𝑛, 𝑡, 𝑥 (𝑡))| ≤

𝑛−1

∑

𝑡=𝑛0

ℎ (𝑡) |𝑥 (𝑡)| ,

󵄨
󵄨
󵄨
󵄨
𝐹 (𝑛, 𝑥 (𝑛) , 𝑦 (𝑛))

󵄨
󵄨
󵄨
󵄨
≤ |𝑥 (𝑛)| +

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑛)

󵄨
󵄨
󵄨
󵄨
,

(74)

where 𝑔, ℎ, 𝑤 are as defined in Theorem 5. Using the
definitions of the operator Δ, from (72), we see that the
inequality

𝑥 (𝑛 + 1) − 𝑥 (𝑛)

= 𝑓 (𝑛) [𝐹(𝑛, 𝑥 (𝑛) ,

𝑛−1

∑

𝑡=𝑛0

𝑔 (𝑡) 𝑥 (𝑡)

×

𝑡−1

∑

𝜏=𝑛0

𝐻(𝑡, 𝜏, 𝑥 (𝜏))) + 𝐾 (𝑛, 𝑥 (𝑛))]

(75)

holds for all 𝑛 ∈ N. It follows that

𝑥
2
(𝑛 + 1) − 𝑥

2
(𝑛)

= 𝑓 (𝑛) [𝑥 (𝑛 + 1) − 𝑥 (𝑛)]

× [𝐹(𝑛, 𝑥 (𝑛) ,

𝑛−1

∑

𝑡=𝑛0

𝑔 (𝑡) 𝑥 (𝑡)

𝑡−1

∑

𝜏=𝑛0

𝐻(𝑡, 𝜏, 𝑥 (𝜏)))

+ 𝐾 (𝑛, 𝑥 (𝑛))] , ∀𝑛 ∈ N.

(76)

From (76), we have

𝑥
2
(𝑛) = 𝑥

2
(𝑛
0
) +

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠) [𝑥 (𝑠 + 1) − 𝑥 (𝑠)]

× [𝐹(𝑠, 𝑥 (𝑠) ,

𝑠−1

∑

𝑡=𝑛0

𝑔 (𝑡) 𝑥 (𝑡)

×

𝑡−1

∑

𝜏=𝑛0

𝐻(𝑡, 𝜏, 𝑥 (𝜏)))

+ 𝐾 (𝑠, 𝑥 (𝑠))] , ∀𝑛 ∈ N.

(77)

Using the conditions (74), we obtain

|𝑥 (𝑛)|
2
= 𝑥
2
(𝑛
0
) +

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠) [|𝑥 (𝑠 + 1)| − |𝑥 (𝑠)|]

× [|𝑥 (𝑠)| +

𝑠−1

∑

𝑡=𝑛0

𝑔 (𝑡) |𝑥 (𝑡)|

×

𝑡−1

∑

𝜏=𝑛0

ℎ (𝜏) |𝑥 (𝜏)|

+ 𝑤 (𝑠, |𝑥 (𝑠)|)] , ∀𝑛 ∈ N.

(78)

Now an application ofTheorem 5 to (78) yields the estimation
of the difference equation (72), that is,

|𝑥 (𝑛)| ≤ V (𝑛) +
𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠)𝑊
5
(𝑠) , ∀𝑛 ∈ N, (79)

where

𝑊
5
(𝑛) ≤

V (𝑛)∏𝑛−1
𝑠=𝑛0

[1 + 𝑓 (𝑠) + 𝑔 (𝑠)𝑊
6
(𝑠)]

1 + V (𝑛)∑𝑛−1
𝑠=𝑛0

𝑔 (𝑠)∏
𝑠

𝑡=𝑛0
[1 + 𝑓 (𝑡) + 𝑔 (𝑡)𝑊

6
(𝑡)]

,

∀𝑛 ∈ N,
(80)

in which

𝑊
6
(𝑛) =

V (𝑛)∏𝑛−1
𝑠=𝑛0

[1 + 𝑓 (𝑠) + ℎ (𝑠)]

1 − V (𝑛)∑𝑛−1
𝑠=𝑛0

𝑔 (𝑠)∏
𝑠

𝑡=𝑛0
[1 + 𝑓 (𝑡) + ℎ (𝑡)]

,

∀𝑛 ∈ N,

(81)

and V(𝑛) is a solution of the difference equation

Δ𝑟 (𝑛) = 𝑓 (𝑛)𝑤(𝑛, 𝑟 (𝑛) +

𝑛−1

∑

𝑠=𝑛0

𝑓 (𝑠)𝑊
7
(𝑠)) ,

𝑟 (0) =
󵄨
󵄨
󵄨
󵄨
𝑥
0

󵄨
󵄨
󵄨
󵄨
, ∀𝑛 ∈ N,

(82)
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where

𝑊
7
(𝑛) ≤

𝑟 (𝑛)∏
𝑛−1

𝑠=𝑛0
[1 + 𝑓 (𝑠) + 𝑔 (𝑠)𝑊

8
(𝑠)]

1 + 𝑟 (𝑛)∑
𝑛−1

𝑠=𝑛0
𝑔 (s)∏𝑠

𝑡=𝑛0
[1 + 𝑓 (𝑡) + 𝑔 (𝑡)𝑊

8
(𝑡)]

,

∀𝑛 ∈ N,
(83)

in which

𝑊
8
(𝑛) =

𝑟 (𝑛)∏
𝑛−1

𝑠=𝑛0
[1 + 𝑓 (𝑠) + ℎ (𝑠)]

1 − 𝑟 (𝑛)∑
𝑛−1

𝑠=𝑛0
𝑔 (𝑠)∏

𝑠

𝑡=𝑛0
[1 + 𝑓 (𝑡) + ℎ (𝑡)]

,

∀𝑛 ∈ N,

(84)

and ∑𝑛−1
𝑠=𝑛0

𝑔(𝑠)∏
𝑠

𝑡=𝑛0
[1 + 𝑓(𝑡) + ℎ(𝑡)] < V−1(𝑛) for all 𝑛 ∈ N.
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