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This paper continues with the construction of the exact solution for parabolic coupled systems of the type 𝑢
𝑡
= 𝐴𝑢

𝑥𝑥
, 𝐴
1
𝑢(0, 𝑡) +

𝐵
1
𝑢
𝑥
(0, 𝑡) = 0, 𝐴

2
𝑢(𝑙, 𝑡) + 𝐵

2
𝑢
𝑥
(𝑙, 𝑡) = 0, 0 < 𝑥 < 1, 𝑡 > 0, and 𝑢(𝑥, 0) = 𝑓(𝑥), where 𝐴

1
, 𝐴
2
, 𝐵
1
, and 𝐵

2
are arbitrary matrices

for which the block matrix ( 𝐴1 𝐵1
𝐴2 𝐵2
) is nonsingular, and 𝐴 is a positive stable matrix. Although this problem has been solved in the

literature (Soler et al., 2013), in this work we are using completely new conditions.

1. Introduction

Coupled partial differential systems with coupled boundary-
value conditions are frequent in different areas of science
and technology, as in chemical physics [1–3], in scattering
problems in quantum mechanics [4–6], thermoelastoplastic
modelling [7], coupled diffusion problems [8–10], and so
forth.

In [11], eigenfunctions of problems of the type

𝑢
𝑡
(𝑥, 𝑡) = 𝐴𝑢

𝑥𝑥
(𝑥, 𝑡) , 0 < 𝑥 < 1, 𝑡 > 0,

𝐴
1
𝑢 (0, 𝑡) + 𝐵

1
𝑢
𝑥
(0, 𝑡) = 0 ∈ C

𝑚
, 𝑡 > 0,

𝐴
2
𝑢 (1, 𝑡) + 𝐵

2
𝑢
𝑥
(1, 𝑡) = 0 ∈ C

𝑚
, 𝑡 > 0,

(1)

where the unknown 𝑢 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
)
𝑇 is a𝑚-dimensional

vector, are constructed under the following hypotheses.

(i) Thematrix coefficient𝐴 is a matrix which satisfies the
following condition:

Re (𝑧) > 0 for all eigenvalues 𝑧 of 𝐴, (2)

and thus 𝐴 is a positive stable matrix (where Re(𝑧)
denotes the real part of 𝑧 ∈ C).

(ii) Matrices 𝐴
𝑖
, 𝐵
𝑖
, 𝑖 = 1, 2, are𝑚×𝑚 complex matrices,

and we assume that the block matrix

(

𝐴
1
𝐵
1

𝐴
2
𝐵
2

) is regular, (3)

and also the matrix pencil

𝐴
1
+ 𝜌𝐵
1
is regular. (4)

Observe that condition (4) involves the existence of some𝜌
0
∈

C, matrix 𝐴
1
+ 𝜌
0
𝐵
1
being invertible [12].

In order to construct the eigenfunctions in [11], the
following matrices 𝐴

1
and 𝐵

1
were defined by

𝐴
1
= (𝐴
1
+ 𝜌
0
𝐵
1
)
−1

𝐴
1
, 𝐵

1
= (𝐴
1
+ 𝜌
0
𝐵
1
)
−1

𝐵
1
, (5)

thus satisfying the condition

𝐴
1
+ 𝜌
0
𝐵
1
= 𝐼, (6)

where matrix 𝐼 denotes, as usual, the identity matrix. Under
hypothesis (3), matrix 𝐵

2
− (𝐴
2
+ 𝜌
0
𝐵
2
)𝐵
1
is regular; see [11,

page 431], and 𝐴
2
and 𝐵

2
are the matrices defined by

𝐴
2
= [𝐵
2
− (𝐴
2
+ 𝜌
0
𝐵
2
) 𝐵
1
]

−1

𝐴
2
,

𝐵
2
= [𝐵
2
− (𝐴
2
+ 𝜌
0
𝐵
2
) 𝐵
1
]

−1

𝐵
2
,

(7)
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which satisfy the following conditions:

𝐵
2
− (𝐴
2
+ 𝜌
0
𝐵
2
) 𝐵
1
= 𝐼, 𝐵

2
𝐴
1
− 𝐴
2
𝐵
1
= 𝐼. (8)

In [11] authors also assumed the following essential hypothe-
sis:

exist 𝑏
1
∈ 𝜎 (𝐵

1
) − {0} , 𝑏

2
∈ 𝜎 (𝐵

2
) , V ∈ C𝑚 − {0} ,

such that (𝐵
1
− 𝑏
1
𝐼) V = (𝐵

2
− 𝑏
2
𝐼) V = 0,

(9)

where 𝜎(𝐶) denotes the set of all the eigenvalues of a matrix
𝐶 inC𝑚×𝑚. These eigenfunctions introduced in [11] were also
used in [13] to construct a series solution of the initial-value
problem:

𝑢
𝑡
(𝑥, 𝑡) = 𝐴𝑢

𝑥𝑥
(𝑥, 𝑡) , 0 < 𝑥 < 1, 𝑡 > 0, (10)

𝐴
1
𝑢 (0, 𝑡) + 𝐵

1
𝑢
𝑥
(0, 𝑡) = 0, 𝑡 > 0, (11)

𝐴
2
𝑢 (1, 𝑡) + 𝐵

2
𝑢
𝑥
(1, 𝑡) = 0, 𝑡 > 0, (12)

𝑢 (𝑥, 0) = 𝑓 (𝑥) , 0 ≤ 𝑥 ≤ 1, (13)

where𝑓(𝑥) = (𝑓
1
(𝑥), 𝑓
2
(𝑥), . . . , 𝑓

𝑚
(𝑥))
𝑇 is an𝑚-dimensional

vector, under the additional hypothesis:

Ker (𝐵
1
− 𝑏
1
𝐼)⋂Ker (𝐵

2
− 𝑏
2
𝐼)

is an invariant subspace with respect to matrix 𝐴,
(14)

where a subspace 𝐸 of C𝑚 is invariant by the matrix 𝐴 ∈
C𝑚×𝑚, if 𝐴(𝐸) ⊂ 𝐸.

It is not difficult to show examples where this assumption
(9) is held but (14) is not held. Let us consider the following
example:

Example 1. We will consider the homogeneous parabolic
problem with homogeneous conditions (10)–(13), where
matrix 𝐴 ∈ C4×4 is chosen:

𝐴 = (

2 1 0 −1

1 2 0 −2

−1 0 2 1

0 0 0 1

) , (15)

and the 4 × 4matrices 𝐴
𝑖
, 𝐵
𝑖
, 𝑖 ∈ {1, 2}, are

𝐴
1
= (

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

) , 𝐴
2
= (

0 1 0 0

1 0 0 0

0 0 0 1

0 0 0 0

)

𝐵
1
= (

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

) , 𝐵
2
= (

1 0 0 0

1 0 0 0

0 0 1 0

0 0 0 1

) .

(16)

Due to (5)–(7) we obtain

𝐴
1
= (𝐴
1
+ 𝜌
0
𝐵
1
)
−1

𝐴
1
= 𝐴
1
,

𝐵
1
= (𝐴
1
+ 𝜌
0
𝐵
1
)
−1

𝐵
1
= 𝐵
1
,

(17)

𝐴
2
= (𝐵
2
− (𝐴
2
+ 𝜌
0
𝐵
2
) 𝐵
1
)

−1

𝐴
2

= (

−1 0 0 0

0 −1 0 0

0 0 0 1

0 0 0 0

) ,

𝐵
2
= (𝐵
2
− (𝐴
2
+ 𝜌
0
𝐵
2
) 𝐵
1
)

−1

𝐵
2

= (

−1 0 0 0

−1 0 0 0

0 0 1 0

0 0 0 1

) .

(18)

It is easy to verify that 𝜎(𝐵
1
) = {0, 1} and 𝜎(𝐵

2
) =

{1, 0, −1}. If we take 𝑏
1
= 1, one gets

Ker (𝐵
1
− 𝐼) =⟨

{
{
{

{
{
{

{

(

1

0

0

0

) ,(

0

1

0

0

)

}
}
}

}
}
}

}

⟩. (19)

Taking into account that𝜎(𝐵
2
), wewill have three possible

values for 𝑏
2
.

(i) For 𝑏
2
= 1 there is

Ker (𝐵
2
− 𝐼) =⟨

{
{
{

{
{
{

{

(

0

0

1

0

) ,(

0

0

0

1

)

}
}
}

}
}
}

}

⟩, (20)

and then condition (9) is not fulfilled.
(ii) For 𝑏

2
= 0, one gets

Ker (𝐵
2
) =⟨

{
{
{

{
{
{

{

(

0

1

0

0

)

}
}
}

}
}
}

}

⟩. (21)

Thus, condition (9) is satisfied with

V = (

0

1

0

0

) ∈ Ker (𝐵
1
− 𝐼)⋂Ker (𝐵

2
) =

{
{
{

{
{
{

{

(

0

1

0

0

)

}
}
}

}
}
}

}

. (22)

Next, let us verify if subspace Ker(𝐵
1
− 𝐼)⋂Ker(𝐵

2
) is an

invariant subspace for𝐴. Let 𝑥 ∈ Ker(𝐵
1
−𝐼)⋂Ker(𝐵

2
); then

𝑥 takes the form 𝑥 = (
0

𝜆

0

0

), 𝜆 ∈ C. In this case we obtain

𝐴𝑥 = (

𝜆

2𝜆

0

0

) ∉ Ker (𝐵
1
− 𝐼)⋂Ker (𝐵

2
) . (23)

Thus, condition (14) is not fulfilled.
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(iii) For 𝑏
2
= −1 see

Ker (𝐵
2
+ 𝐼) =⟨

{
{
{

{
{
{

{

(

1

1

0

0

)

}
}
}

}
}
}

}

⟩. (24)

Thus, condition (9) is fulfilled with V = (
1

1

0

0

) ∈ Ker(𝐵
1
−

𝐼)⋂Ker(𝐵
2
+ 𝐼).

Now, we verify if subspace Ker(𝐵
1
−𝐼)⋂Ker(𝐵

2
+𝐼) is an

invariant subspace for 𝐴. Let 𝑥 ∈ Ker(𝐵
1
− 𝐼)⋂Ker(𝐵

2
+ 𝐼);

then 𝑥 takes the form 𝑥 = (
𝜆

𝜆

0

0

), 𝜆 ∈ C. In this case we have

𝐴𝑥 = (

3𝜆

3𝜆

−𝜆

0

) ∉ Ker (𝐵
1
− 𝐼)⋂Ker (𝐵

2
+ 𝐼) . (25)

Thus, condition (14) is not fulfilled.
Observe that, in this example, hypothesis (9) is satisfied

but in (14) it is not satisfied. Thus, the method proposed in
[13] cannot be used to solve this problem.

This paper deals with the construction of eigenfunctions
of problem (10)–(12) by assuming hypotheses (2), (3), and
(4) but not hypothesis (9). This set of eigenfunctions allows
us to construct a series solution of the problem (10)–(13).
We provide conditions for the function 𝑓(𝑥) and the matrix
coefficients, in order to ensure the existence of a series
solution of the problem.

The paper is organized as follows: in Section 2 a set of
eigenfunctions will be constructed under a new condition,
different from condition (9); in Section 3 a series solution for
the problem is presented. In Section 4 we will introduce an
algorithm and give an illustrative example.

Throughout this paper we will assume the results and
nomenclature given in [11]. If𝐵 is amatrix inC𝑛×𝑚, we denote
by 𝐵† its Moore-Penrose pseudoinverse [12]. A collection of
examples, properties, and applications of this concept may be
found in [14], and 𝐵† can be efficiently computed with the
MATLAB andMathematica computer algebra systems.

2. The New Conditions

In Section 2 of [11] the eigenfunctions of problem (10)–
(12) were constructed by using a matrix variable separation
technique. We can repeat the calculations in this section to
reach condition (44):

𝜆cot (𝜆) ∈ 𝜎 (−𝐴
2
𝐴
1
− 𝜆
2
𝐵
2
𝐵
1
) . (26)

Instead of (9), we will assume the following new condition:

0 ∈ 𝜎 (𝐵
1
) , 𝑎

2
∈ 𝜎 (𝐴

2
) ,

and we have 𝑤 ∈ C𝑚 − {0} ,

being 𝐵
1
𝑤 = (𝐴

2
− 𝑎
2
𝐼)𝑤 = 0.

(27)
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Figure 1: Graphical representation of 𝑦 = 𝜆cot(𝜆) and determina-
tion of the eigenvalues 𝜆

𝑛
for −𝑎

2
< 0.

From relation (6) 𝐴
1
𝑤 = 𝑤 is obtained (because, obvi-

ously, 𝐵
1
𝑤 = 0). Considering (8) 𝐵

2
𝑤 = 𝑤 is obtained. Thus

(−𝐴
2
𝐴
1
− 𝜆
2
𝐵
2
𝐵
1
)𝑤 = −𝑎

2
𝑤; that is, −𝑎

2
is the eigenvalue

which will be equal to 𝜆cot (𝜆) in (26):

𝜆cot (𝜆) = −𝑎
2
. (28)

Let us assume that 𝑎
2
given in (28) satisfies

𝑎
2
∈ R. (29)

We will observe that, under hypothesis (29), we have guaran-
teed the existence of the solutions for the equation

𝜆cot (𝜆) = −𝑎
2
. (30)

Equation (30) has a unique solution 𝜆
𝑘
in each interval

(𝑘𝜋, (𝑘+1)𝜋) for 𝑘 ≥ 1, as seen in Figure 1. Also, the following
lemma is easily demonstrated.

Lemma 2. Under hypothesis (29), the roots 𝜆
𝑘
of (30) fulfil

lim
𝑛→∞
𝜆
𝑛
= +∞. Also,

lim
𝑛→∞

󵄨
󵄨
󵄨
󵄨
sin (𝜆

𝑛
)
󵄨
󵄨
󵄨
󵄨
= 1, lim

𝑛→∞
cos (𝜆

𝑛
) = 0,

lim
𝑛→∞

(𝜆
𝑛+1
− 𝜆
𝑛
) = 𝜋.

(31)

Proof. Function𝑓(𝜆) = 𝜆cot(𝜆)has got vertical asymptotes at
the points 𝜆 = 𝑘𝜋, 𝑘 ∈ N and 𝑓(𝜆) has got zeros at the points
𝜆 = 𝜋/2 + 𝑘𝜋, 𝑘 ∈ N. Therefore, as we have stated, the real
coefficient function −𝑎

2
intersects the graph of the function

𝑓(𝜆) in each interval (𝑘𝜋, (𝑘+1)𝜋), where 𝜆
𝑘
∈ (𝑘𝜋, (𝑘+1)𝜋)

is the point of intersection.Therefore, the sequence {𝜆
𝑘
}
𝑘≥1

is
monotone increasing with lim

𝑘→∞
𝜆
𝑘
= ∞. First, we have to

consider two possibilities.

(i) If −𝑎
2
> 0, as can be seen in Figure 1, for 𝑘 being large

enough, 𝜆
𝑘
∈ (𝑘𝜋, 𝜋/2 + 𝑘𝜋).

(ii) If −𝑎
2
< 0, as can be seen in Figure 1, for 𝑘 being large

enough, 𝜆
𝑘
∈ (𝜋/2 + 𝑘𝜋, (𝑘 + 1)𝜋).

Therefore, observe that 𝜋/2 < 𝜆
𝑘+1
− 𝜆
𝑘
< 3𝜋/2 for 𝑘

being large enough. For 𝜆
𝑘
, substituted in (30), we get

𝜆
𝑘
cot (𝜆

𝑘
) = −𝑎

2
, (32)
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by dividing by 𝜆
𝑘
. By taking limits where 𝑘 → ∞,

lim
𝑘→∞

cot(𝜆
𝑘
) = 0 is obtained, and in this way the

sequence {sin(𝜆
𝑘
)}
𝑘≥1

is bounded, lim
𝑘→∞

cos(𝜆
𝑘
) = 0, and

lim
𝑘→∞
| sin(𝜆

𝑘
)| = 1. Moreover,

cot (𝜆
𝑘+1
− 𝜆
𝑘
) =

cot (𝜆
𝑘+1
) cot (𝜆

𝑘
) + 1

cot (𝜆
𝑘
) − cot (𝜆

𝑘+1
)

, (33)

so, considering limits where 𝑘 → ∞, one gets
lim
𝑘→∞

cot(𝜆
𝑘+1
− 𝜆
𝑘
) = ∞, and the sequence {cos(𝜆

𝑘+1
−

𝜆
𝑘
)}
𝑘≥1

is also bounded. Moreover lim
𝑘→∞

sin(𝜆
𝑘+1
− 𝜆
𝑘
) =

0, and with 𝜋/2 < 𝜆
𝑘+1
− 𝜆
𝑘
< 3𝜋/2, one gets that

lim
𝑘→∞
(𝜆
𝑘+1
− 𝜆
𝑘
) = 𝜋.

Finally, if 𝑎
2
= 0, (30) is reduced to 𝜆cot(𝜆) = 0, whose

roots are 𝜆
𝑘
= 𝜋/2 + 𝑘𝜋, 𝑘 ∈ N, and trivially 𝜆

𝑘+1
− 𝜆
𝑘
= 𝜋,

then lim
𝑘→∞
(𝜆
𝑘+1
− 𝜆
𝑘
) = 𝜋.

Observe that under hypothesis −𝑎
2
< 1 there is a root

𝜆
0
∈ (0, 𝜋), and we can define the set of eigenvalues of the

problem (10)–(12) as

F = {𝜆
𝑘
∈ (𝑘𝜋, (𝑘 + 1) 𝜋) ; 𝜆

𝑘
cot (𝜆

𝑘
) = −𝑎

2
, 𝑘 ≥ 1} ∪F

0
,

(34)

where

F
0
=

{
{

{
{

{

0, if − 𝑎
2
> 1

{0} , if − 𝑎
2
= 1

𝜆
0
∈ (0, 𝜋) , if − 𝑎

2
< 1.

(35)

Thus, by [11, page 433] a set of solutions of problem (10)–(12)
is given by

𝑢 (𝑥, 𝑡, 𝜆
𝑘
) = 𝑒
−𝜆
𝑘
𝐴𝑡
{sin (𝜆

𝑘
𝑥)𝐴
1
− 𝜆
𝑘
cos (𝜆

𝑘
𝑥) 𝐵
1
} 𝐶 (𝜆

𝑘
) ,

𝜆
𝑘
∈ F,

(36)

where 𝐶(𝜆
𝑘
) satisfies

(𝐵
1
𝐴
𝑗
− 𝐴
𝑗
𝐵
1
) 𝐶 (𝜆

𝑘
) = 0, 0 < 𝑗 < 𝑝,

(−𝑎
2
𝐼 + 𝐴

2
𝐴
1
+ 𝜆
2
𝐵
2
𝐵
1
)𝐴
𝑗
𝐶 (𝜆
𝑘
) = 0, 0 ≤ 𝑗 < 𝑝,

(37)

and where 𝑝 is the degree of minimal polynomial of 𝐴.
Formulas (37) are equivalent to the matrix equation:

𝐺
𝜆
𝑘

(𝜌
0
) 𝐶 (𝜆

𝑘
) = 0, (38)

where

𝐺
𝜆
𝑘

(𝜌
0
) =

(

(

(

(

(

(

(

(

𝐵
1
𝐴 − 𝐴𝐵

1

...
𝐵
1
𝐴
𝑝−1
− 𝐴
𝑝−1
𝐵
1

𝐴
2
𝐴
1
+ 𝜆
2

𝑘
𝐵
2
𝐵
1
− 𝑎
2
𝐼

(𝐴
2
𝐴
1
+ 𝜆
2

𝑘
𝐵
2
𝐵
1
− 𝑎
2
𝐼)𝐴

...
(𝐴
2
𝐴
1
+ 𝜆
2

𝑘
𝐵
2
𝐵
1
− 𝑎
2
𝐼)𝐴
𝑝−1

)

)

)

)

)

)

)

)

. (39)

In order to ensure that 𝐶(𝜆
𝑘
) ̸= 0 fulfils (37) we have

rank 𝐺
𝜆
𝑘

(𝜌
0
) < 𝑚, (40)

and under condition (40), the solution of (37) is given by

𝐶 (𝜆
𝑘
) = (𝐼 − 𝐺

𝜆
𝑘

(𝜌
0
)
†

𝐺
𝜆
𝑘

(𝜌
0
)) 𝑆, 𝑆 ∈ C

𝑚
. (41)

The eigenfunctions associated to the problem (10)–(12) are
then given by

𝑢 (𝑥, 𝑡, 𝜆
𝑘
) = 𝑒
−𝜆
𝑘
𝐴𝑡
{sin (𝜆

𝑘
𝑥)𝐴
1
− 𝜆
𝑘
cos (𝜆

𝑘
𝑥) 𝐵
1
} 𝐶 (𝜆

𝑘
) ,

𝜆
𝑘
∈ F.

(42)

Working in a similar form to that in [11, page 433], we can
show that also 𝜆 = 0 is an eigenvalue of problem (10), if

1 ∈ 𝜎 (−𝐴
2
𝐴
1
) . (43)

Under hypothesis (43), if we denote

𝐶 (0) = (𝐼 − 𝐺
0
(𝜌
0
)
†

𝐺
0
(𝜌
0
)) 𝑆, 𝑆 ∈ C

𝑚
, (44)

one gets that function

𝑢 (𝑥, 0) = (𝑥𝐴
1
− 𝐵
1
) 𝐶 (0) (45)

is an eigenfunction of problem (10) associated to eigenvalue
𝜆 = 0.

As a conclusion, the following theorem has been demon-
strated.

Theorem 3. Consider problem (10)–(12) which fulfils condi-
tions (2) and (3). Let 𝑝 be the degree of theminimal polynomial
of matrix 𝐴 and let 𝜌

0
be a real number satisfying (4). Let 𝐴

1
,

𝐵
1
be thematrices defined by (5) and𝐴

2
,𝐵
2
by (7), respectively.

(1) Let us assume conditions (27) and (29). Then (28)
admits a set of real positive solutions denoted by
F and defined by (34). Let 𝐺

𝜆
𝑘

(𝜌
0
) be the matrix

defined by (39) where 𝜆
𝑘
∈ F and suppose that

condition (40) is fulfilled. Then, problem (10)–(12)
admits eigenfunctions 𝑢(𝑥, 𝑡, 𝜆

𝑘
) associated to positive

eigenvalues 𝜆
𝑘
∈ F and defined by (42), where 𝐶(𝜆

𝑘
)

is given by (41) where 𝑆 is a vector in C𝑚.
(2) 𝜆 = 0 is an eigenvalue of problem (10)–(12) if condition

(43) is fulfilled. Under hypothesis (43), if 𝐺
0
(𝜌
0
) =

𝐴
2
𝐴
1
+ 𝐼, then expression (45) provides eigenfunction

of problem (10)–(12) associated to eigenvalue 𝜆 = 0.

3. A Series Solution

By assuming superposition principle, a possible series solu-
tion of problem (10)–(13) is given by

𝑢 (𝑥, 𝑡) =

{
{
{

{
{
{

{

𝑢 (𝑥, 0) + ∑

𝜆
𝑛
∈F

𝑢 (𝑥, 𝑡, 𝜆
𝑘
) , 0 ∈ F,

∑

𝜆
𝑛
∈F

𝑢 (𝑥, 𝑡, 𝜆
𝑘
) , 0 ∉ F,

(46)
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where 𝑢(𝑥, 𝑡, 𝜆
𝑘
) and 𝑢(𝑥, 0) are defined by (42) and (45),

respectively, for suitable vectors 𝐶(𝜆
𝑛
) and 𝐶(0).

Assuming that series (46) and the corresponding deriva-
tives 𝑢

𝑥
(𝑥, 𝑡), 𝑢

𝑥𝑥
(𝑥, 𝑡), and 𝑢

𝑡
(𝑥, 𝑡) are convergent (we will

demonstrate this later), (46) will be a solution of (10)–(12).
Now, we need to determine vectors𝐶(𝜆) and𝐶(0) so that (46)
satisfies (13).

Note that, by taking 𝑤 to fulfil (27), from (8) we have

𝐴
2
𝑤 = 𝑎

2
𝑤, 𝐴

1
𝑤 = 𝑤. (47)

Under condition (47), we will consider the scalar Sturm-
Liouville problem:

𝑋
󸀠󸀠
(𝑥) + 𝜆

2
𝑋(𝑥) = 0,

𝑋 (0) = 0,

𝑎
2
𝑋 (1) + 𝑋

󸀠
(1) = 0,

(48)

which provides a family of eigenvaluesF given in (34).Then,
the associated eigenfunctions are

𝑋
𝜆
𝑛
(𝑥) = sin (𝜆

𝑛
𝑥) , 𝜆

𝑛
> 0,

𝑋
0
(𝑥) = 𝑥, if 𝜆

0
= 0.

(49)

According to the theorem of convergence of Sturm-
Liouville for functional series [15, chapter 11], with the initial
condition 𝑓(𝑥) = (𝑓

1
(𝑥), . . . , 𝑓

𝑚
(𝑥))
𝑡 given in (13) which

fulfils the following properties:

𝑓 ∈ C
2
([0, 1]) ,

𝑓 (0) = 0,

𝑎
2
𝑓 (1) + 𝑓

󸀠
(1) = 0,

(50)

each component 𝑓
𝑖
of 𝑓, for 1 ≤ 𝑖 ≤ 𝑚, has got a series

expansion which converges absolutely and uniformly to the
interval [0, 1]; namely,

𝑓
𝑖
(𝑥) = 𝛼𝑥𝑒

0𝑖
+ ∑

𝜆
𝑛
∈F

sin (𝜆
𝑛
𝑥) 𝑒
𝜆
𝑛
𝑖
, (51)

where

𝛼 = {

1, si 𝜆
0
= 0,

0, si 𝜆
0
̸= 0,

𝑒
0𝑖
=

∫

1

0
𝑥𝑓
𝑖
(𝑥) 𝑑𝑥

∫

1

0
𝑥
2
𝑑𝑥

if 𝜆
0
= 0,

𝑒
𝜆
𝑛
𝑖
=

∫

1

0
sin (𝜆

𝑛
𝑥)𝑓
𝑖
(𝑥) 𝑑𝑥

∫

1

0
(sin (𝜆

𝑛
𝑥))
2

𝑑𝑥

if 𝜆
𝑛
> 0.

(52)

Thus,

𝑓 (𝑥) = 𝛼𝑥𝐸 (0) + ∑

𝜆
𝑛
∈F

sin (𝜆
𝑛
𝑥) 𝐸 (𝜆

𝑛
) , (53)

where 𝐸(0) = (
𝑒
01

...
𝑒
0𝑚

) and 𝐸(𝜆
𝑛
) = (

𝑒
𝜆𝑛1

...
𝑒
𝜆𝑛𝑚

). On the other

hand, from (46) and taking into account (42) and (45), we
obtain

𝑢 (𝑥, 0) = 𝛼 (𝑥𝐴
1
− 𝐵
1
) 𝐶 (0)

+ ∑

𝜆
𝑛
∈F

(sin (𝜆
𝑛
𝑥)𝐴
1
− 𝜆
𝑛
cos (𝜆

𝑛
𝑥) 𝐵
1
) 𝐶 (𝜆

𝑛
) .

(54)

We can equate the two expressions (53) and (54) if
𝐶(0) and 𝐶(𝜆

𝑛
), apart from conditions (41) and (44), satisfy

{𝐶(0), 𝐶(𝜆)} ⊂ Ker(𝐵
1
). Then, we have

𝐶 (𝜆
𝑛
) = 𝐸 (𝜆

𝑛
) =

∫

1

0
sin (𝜆

𝑛
𝑥)𝑓 (𝑥) 𝑑𝑥

∫

1

0
(sin (𝜆

𝑛
𝑥))
2

𝑑𝑥

, if 𝜆
𝑛
> 0,

𝐶 (0) = 𝐸 (0) =

∫

1

0
𝑥𝑓 (𝑥) 𝑑𝑥

∫

1

0
𝑥
2
𝑑𝑥

if 𝜆
0
= 0.

(55)

Note 𝐶(0) and 𝐶(𝜆) ∈ Ker(𝐵
1
), if

𝑓 (𝑥) ∈ Ker (𝐵
1
) . (56)

Then 𝑢(𝑥, 𝑡) is defined by

𝑢 (𝑥, 𝑡) = 𝛼𝑥𝐶 (0) + ∑

𝜆
𝑛
∈F

𝑒
−𝜆
2

𝑛
𝐴𝑡 sin (𝜆

𝑛
𝑥)𝐶 (𝜆

𝑛
) , (57)

where 𝛼 and 𝐶(𝜆
𝑛
) are defined by (52) and (55), respectively,

and 𝑢(𝑥, 𝑦) fulfils the initial condition (13). Note that condi-
tions (37)–(40) are held if

𝐴
𝑗
𝑓 (𝑥) ∈ Ker (𝐵

1
) ∩ Ker (𝐴

2
− 𝑎
2
𝐼) , 0 ≤ 𝑗 < 𝑝 − 1.

(58)

Condition (58) is equivalent to

𝑓 (𝑥) ∈ Ker (𝐵
1
) ∩ Ker (𝐴

2
− 𝑎
2
𝐼) , 0 ≤ 𝑥 ≤ 1,

Ker (𝐵
1
) ∩ Ker (𝐴

2
− 𝑎
2
𝐼)

is an invariant subspace with respect to matrix 𝐴.

(59)

The study of the convergence of the series solution (57)
with 𝛼 defined by (52) and 𝐶(𝜆

𝑛
) by (55), by using Lemma 2,

can be reduced to that made in [13] for the case 𝑏
1
=

0. Similarly, independence of the series solution (57) with
respect to the chosen 𝜌

0
∈ R can be demonstrated with the

same technique as given in [16].
We can summarize the results in the following theorem.

Theorem 4. Consider the homogeneous problem with homo-
geneous conditions (10)–(13) under hypotheses given in
Theorem 3. Assume that function 𝑓 of (13) fulfils conditions
(50) and (59). Then, the series defined in (46) is a solution of
problem (10)–(13).
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Input data:𝐴,𝐴
1
, 𝐴
2
, 𝐵
1
, 𝐵
2
∈ C𝑚×𝑚, 𝑓(𝑥) ∈ C𝑚.

Result: 𝑢(𝑥, 𝑡).

(1) Verify that matrix 𝐴 satisfies (2).

(2) Verify that matrices 𝐴
𝑖
, 𝐵
𝑖
∈ C𝑚×𝑚, 𝑖 ∈ {1, 2} are singular, and check that the block matrix (𝐴1 𝐵1

𝐴
2
𝐵
2

) is regular.

(3) Determine a number 𝜌
0
∈ R so that the matrix pencil 𝐴

1
+ 𝜌
0
𝐵
1
is regular.

(4) Determine matrices 𝐴
1
and 𝐵

1
defined in (5).

(5) Determine matrices 𝐴
2
and 𝐵

2
defined in (7).

(6) Consider the following cases:
(i)Case 1:Condition (27) is fulfilled, that is, matrices 𝐵

1
and 𝐴

2
have a common eigenvector 𝑤 ̸= 0 associated with

eigenvalues 0 ∈ 𝜎 (𝐵
1
) and 𝑎

2
∈ 𝜎 (𝐴

2
). In this case we will continue with step (7).

(ii)Case 2:Condition (27) is not fulfilled. In this case the algorithm is not completed because it is not possible to find the
solution of (10)–(13) for the given data.

(7) Take 0 ∈ 𝜎 (𝐵
1
) and determine 𝑎

2
∈ 𝜎 (𝐴

2
)⋂R, and vector 𝑤 ̸= 0 when 𝑤 ∈ Ker (𝐵

1
)⋂Ker (𝐴

2
) in a way that:

(i) Conditions (59) fulfilled, that is:
(1.1) Ker (𝐵

1
)⋂Ker (𝐴

2
− 𝑎
2
𝐼) is an invariant subspace respect to matrix 𝐴.

(1.2) 𝑓(𝑥) ∈ Ker (𝐵
1
)⋂Ker (𝐴

2
− 𝑎
2
𝐼), ∀𝑥 ∈ [0, 1].

(ii) The vectorial function 𝑓(𝑥) fulfils (50), that is:
(1.3) 𝑓 ∈ C2 ([0, 1]).
(1.4) 𝑓(0) = 0.
(1.5) 𝑎

2
𝑓(1) + 𝑓

󸀠
(1) = 0.

If these conditions are not satisfied, go back over step (6) of Algorithm (1) and discard the value taken for a2.
(8) Determine the positive solutions of (30) and determineF defined in (34).
(9) Determine degree 𝑝 of minimal polynomial of matrix 𝐴.
(10) Build block matrix 𝐺

𝜆𝑘
(𝜌
0
) defined in (39).

(11) Determine 𝜆
𝑘
∈ F so that rank𝐺

𝜆𝑘
(𝜌
0
) < 𝑚.

(12) Include the eigenvalue 𝜆 = 0 if 1 ∈ 𝜎 (−𝐴
2
𝐴
1
).

(13) Determine 𝛼 given in (52).
(14) Determine vectors 𝐶(𝜆

𝑛
) defined in (55).

(15) Determine the series solution 𝑢(𝑥, 𝑡) of problem (10)–(13) defined in (57).

Algorithm 1: Solution of the homogeneous problem with homogeneous conditions (10)–(13).

4. Algorithm and Example

We can summarize the process to calculate the solution of the
homogeneous problem with homogeneous conditions (10)–
(13) in Algorithm 1.

Example 5. We will consider the homogeneous parabolic
problem with homogeneous conditions (10)–(13), given in
Example 1, that is, where the matrix 𝐴 ∈ C4×4 is given in (15)
and matrices 𝐴

𝑖
, 𝐵
𝑖
, 𝑖 ∈ {1, 2} are given in (16). We consider

the vector-valued function 𝑓(𝑥) to be defined as

𝑓 (𝑥) = (

0

0

𝑥
2
− 2𝑥

0

) . (60)

Observe that, as demonstrated in Example 1, hypothesis
(9) is fulfilled but (14) is not fulfilled. Thus, the method
proposed in [13] cannot be used to solve this problem.

Algorithm 1 (step by step). Consider

(1) Matrix 𝐴 satisfies the condition (2), because 𝜎(𝐴) =
{1, 2, 3}; that is, 𝐴 is positive stable.

(2) Each of the matrices 𝐴
𝑖
, 𝐵
𝑖
, 𝑖 ∈ {1, 2} is singular, and

the block matrix,

(

𝐴
1
𝐵
1

𝐴
2
𝐵
2

) =

(

(

(

(

(

(

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0

1 0 0 0 1 0 0 0

0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 1

)

)

)

)

)

)

, (61)

is regular.
(3) Note that although 𝐴

1
is singular, if we take 𝜌

0
= 1 ∈

R, the matrix pencil,

𝐴
1
+ 𝜌
0
𝐵
1
= 𝐼
4×4
, (62)

is regular. Therefore, 𝜌
0
= 1.
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(4) In (17) we have

𝐴
1
= (𝐴
1
+ 𝜌
0
𝐵
1
)
−1

𝐴
1
= 𝐴
1
,

𝐵
1
= (𝐴
1
+ 𝜌
0
𝐵
1
)
−1

𝐵
1
= 𝐵
1
.

(63)

(5) In (18) we have

𝐴
2
= (𝐵
2
− (𝐴
2
+ 𝜌
0
𝐵
2
) 𝐵
1
)

−1

𝐴
2

= (

−1 0 0 0

0 −1 0 0

0 0 0 1

0 0 0 0

) ,

𝐵
2
= (𝐵
2
− (𝐴
2
+ 𝜌
0
𝐵
2
) 𝐵
1
)

−1

𝐵
2

= (

−1 0 0 0

−1 0 0 0

0 0 1 0

0 0 0 1

) .

(64)

(6) Also 𝜎(𝐵
1
) = {0, 1} and 𝜎(𝐴

2
) = {0, −1}. Note that

in this case the condition (27) is fulfilled because
with 0 ∈ 𝜎(𝐵

1
) and 𝑎

2
= 0 ∈ 𝜎(𝐴

2
) there is a

common eigenvector 𝑤 ∈ C4, 𝑤 = (
0

0

1

0

), and thus

Ker(𝐵
1
)⋂Ker(𝐴

2
) ̸= (

0

0

0

0

). Therefore, we are in case

1 of Algorithm 1.
(7) We take the values 𝑏

1
= 0, 𝑎

2
= 0, and we will check

the conditions given in step 7 of the algorithm:

(1.1)

Ker (𝐵
1
)⋂Ker (𝐴

2
) =⟨(

0

0

1

0

)⟩. (65)

Let 𝑥 ∈ Ker(𝐵
1
)⋂Ker(𝐴

2
); then 𝑥 = (

0

0

𝜆

0

), 𝜆 ∈

C. In this case we have

𝐴𝑥 = (

0

0

2𝜆

0

) ∈ Ker (𝐵
1
)⋂Ker (𝐴

2
) , (66)

and then the subspace Ker(𝐵
1
)⋂Ker(𝐴

2
) is

invariant by matrix 𝐴.
It is trivial to verify the following:

(1.2)

𝑓 (𝑥) ∈ Ker (𝐵
1
)⋂Ker (𝐴

2
) , ∀𝑥 ∈ [0, 1] . (67)

(1.3) 𝑓(𝑥) ∈ C2([0, 1]),

(1.4) 𝑓(0) = (
0

0

0

0

),

(1.5) 𝑎
2
𝑓(1) + 𝑓

󸀠
(1) = (

0

0

0

0

),

(8) Equation (30) is as follows:

𝜆cot (𝜆) = 0. (68)

We can solve (68) exactly, 𝜆
𝑘
= 𝜋/2 + 𝑘𝜋, with an

additional solution 𝜆
0
∈]0, 𝜋[, because

−𝑎
2
= 0 < 1, (69)

and then 𝜆
0
= 𝜋/2. Thus, we have a numerable family

of solutions for (68) which we denoteF, given by

F = {𝜆
𝑘
=

𝜋

2

+ 𝑘𝜋; 𝜆
𝑘
∈ (𝑘𝜋, (𝑘 + 1) 𝜋) , 𝑘 ≥ 1} ∪F

0
,

F
0
= {𝜆
0
=

𝜋

2

} .

(70)

(9) The minimal polynomial of matrix 𝐴 is given by
𝑝(𝑥) = (𝑥 − 1)

2
(𝑥 − 3)(𝑥 − 2), and then 𝑝 = 4.

(10) If 𝜆
𝑘
is a positive solution of (68), the matrix 𝐺

𝜆
𝑘

(𝜌
0
)

given by (39) takes the form

𝐺
𝜆
𝑘

(𝜌
0
) =

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

0 0 0 −1

0 0 0 −2

1 0 0 0

0 0 0 0

0 0 0 −5

0 0 0 −7

4 1 0 0

0 0 0 0

0 0 0 −18

0 0 0 −21

13 6 0 0

0 0 0 0

−𝜆
2

𝑘
0 0 0

−𝜆
2

𝑘
0 0 0

0 0 0 1

0 0 0 0

−2𝜆
2

𝑘
−𝜆
2

𝑘
0 𝜆
2

𝑘

−2𝜆
2

𝑘
−𝜆
2

𝑘
0 𝜆
2

𝑘

0 0 0 1

0 0 0 0

−5𝜆
2

𝑘
−4𝜆
2

𝑘
0 5𝜆

2

𝑘

−5𝜆
2

𝑘
−4𝜆
2

𝑘
0 5𝜆

2

𝑘

0 0 0 1

0 0 0 0

−14𝜆
2

𝑘
−13𝜆
2

𝑘
0 18𝜆

2

𝑘

−14𝜆
2

𝑘
−13𝜆
2

𝑘
0 18𝜆

2

𝑘

0 0 0 1

0 0 0 0

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

. (71)

(11) Since the third column 𝐺
𝜆
𝑘

(𝜌
0
) is zero, rank 𝐺

𝜆
𝑘

(𝜌
0
) < 4. Thus, each of the positive solutions given

in (70) is an eigenvalue.



8 Abstract and Applied Analysis

(12) It is trivial to verify that 1 ∉ 𝜎(−𝐴
2
𝐴
1
), because

−𝐴
2
𝐴
1
= (

0 0 0 0

0 0 0 0

0 0 0 −1

0 0 0 0

) , 𝜎 (−𝐴
2
𝐴
1
) = {0} , (72)

and thus we will not include 0 as an eigenvalue.
(13) Taking into account that 𝜆

0
̸= 0, 𝛼 = 0.

(14) Vectors 𝐶(𝜆
𝑛
) defined in (55) take the following

values:

𝐶 (𝜆
𝑛
) = −

32

𝜋
3
(2𝑘 + 1)

3
(

0

0

1

0

) . (73)

(15) When the minimal theorem [17, page 571] is used,

𝑒
𝐴𝑢
=

(

(

(

(

𝑒
2𝑢 cosh (𝑢) 𝑒

2𝑢 sinh (𝑢) 0

1

4

𝑒
𝑢
(3 − 3𝑒

2𝑢
+ 2𝑢)

𝑒
2𝑢 sinh (𝑢) 𝑒

2𝑢 cosh (𝑢) 0 −

1

4

𝑒
𝑢
(−3 + 3𝑒

2𝑢
+ 2𝑢)

−𝑒
2𝑢 sinh (𝑢) −1

2

𝑒
𝑢
(−1 + 𝑒

𝑢
)
2

𝑒
2𝑢 1

4

𝑒
𝑢
(1 + 𝑒

𝑢
(−4 + 3𝑒

𝑢
) + 2𝑢)

0 0 0 𝑒
𝑢

)

)

)

)

. (74)

Next, by considering (74) with 𝑢 = −(𝜋/2 + 𝑛𝜋)2𝑡 and
simplifying, we obtain the value of 𝑒−(𝜋/2+𝑛𝜋)

2
𝐴𝑡.

(16) Values of 𝐶(𝜆
𝑛
) given in (73) are replaced in (57),

and we take into account the value of the matrix
𝑒
−(𝜋/2+𝑛𝜋)

2
𝐴𝑡. After simplification, we finally obtain the

solution of problem (10)–(13) given by

𝑢 (𝑥, 𝑡)

= (∑

𝑛≥0

−

32𝑒
−(1/2)(𝜋+2𝑛𝜋)

2
𝑡 sin ((1/2) (𝜋 + 2𝑛𝜋) 𝑥)
𝜋
3
(2𝑛 + 1)

3
)

×(

0

0

1

0

) , (𝑥, 𝑡) ∈ [0, 1] × [0, +∞) .

(75)
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[11] E. Navarro, L. Jódar, andM. V. Ferrer, “Constructing eigenfunc-
tions of strongly coupled parabolic boundary value systems,”
Applied Mathematics Letters, vol. 15, no. 4, pp. 429–434, 2002.

[12] S. L. Campbell andC.D.Meyer Jr.,Generalized Inverses of Linear
Transformations, Pitman, London, UK, 1979.

[13] V. Soler, E. Defez, M. V. Ferrer, and J. Camacho, “On exact
series solution of strongly coupled mixed parabolic problems,”
Abstract and Applied Analysis, vol. 2013, Article ID 524514, 9
pages, 2013.

[14] C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and
Its Applications, Wiley, New York, NY, USA, 1971.

[15] E. L. Ince, Ordinary Differential Equations, Dover, New York,
NY, USA, 1962.



Abstract and Applied Analysis 9

[16] V. Soler, E. Navarro, and M. V. Ferrer, “Invariant properties of
eigenfunctions for multicondition boundary value problems,”
Applied Mathematics Letters, vol. 19, no. 12, pp. 1308–1312, 2006.

[17] N. Dunford and J. Schwartz, Linear Operators, Part I, Inter-
science, New York, NY, USA, 1977.


