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We study the existence and uniqueness of the solutions for the boundary value problem of fractional differential equations with
nonlinear boundary conditions. By using the upper and lower solutionsmethod in reverse order andmonotone iterative techniques,
we obtain the sufficient conditions of both the existence of the maximal and minimal solutions between an upper solution and a
lower solution and the uniqueness of the solutions for the boundary value problem and present the iterative sequence for calculating
the approximate analytical solutions of the boundary value problem and the error estimate. An example is also given to illustrate
the main results.

1. Introduction

In this paper, we study the following fractional differential
equation with nonlinear boundary conditions:

𝐶
𝐷
𝛿

0+
𝑢 (𝑡) − 𝑀𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ 𝐽,

𝑢
󸀠
(0) = 0, 𝑢 (0) = 𝑔 (𝑢 (𝑇)) ,

(1)

where 𝐽 = [0, 𝑇], 0 < 𝑇 < +∞.𝑀 ≥ 0 is a constant.𝑓 ∈ 𝐶(𝐽×

R,R), 𝑔 ∈ 𝐶
1
(R,R) are given functions. 𝐶𝐷𝛿

0+
is the standard

Caputo fractional derivative of order 𝛿 with 1 < 𝛿 < 2.
With the development of mathematics, fractional deriva-

tive occurs more and more frequently in different research
areas, such as physics, mechanics, electricity, and economics
(see [1, 2]). At the same time, significant progress has also
been made on the studies of fractional differential equations
(see [3–12]).

The upper and lower solutions method and monotone
iterative techniques have been widely used in the studies
for the boundary value problems of integer-order differential

equations (see [13–15] and the references therein). In [13], the
authors studied first order differential equation

𝑢
󸀠
(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢 (𝜃 (𝑡))) ,

𝑔 (𝑢 (0)) = 𝑢 (𝑇) .
(2)

By using the upper and lower solutions method and the
monotone iterative techniques, the authors concluded that
(2) exists the maximal and minimal solutions in [𝛽(𝑡), 𝛼(𝑡)],
where 𝛼(𝑡), 𝛽(𝑡) are the lower and upper solutions of (2).

As for the fractional differential problems, upper and
lower solutions and monotone iterative techniques have also
been widely used in the studies of boundary value problem
(see [16–18]). For example, in [16], by using the method, the
authors discussed the existence and uniqueness of solutions
for the fractional differential equation with linear boundary
condition

𝐷
𝛿
𝑢 (𝑡) − 𝑀𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ 𝐽, 0 < 𝛿 < 1,

𝑢 (0) = 𝑟𝑢 (𝑇) ,

(3)

where 𝑀 ≥ 0, 0 < 𝑟 < 1/𝐸
𝛿,1

(𝑀𝑇
𝛿
).

In this paper, we study the existence and uniqueness
of the solutions for the boundary value problem of the
fractional differential equation (1), which has nonlinear
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2 Abstract and Applied Analysis

boundary conditions. It is very difficult to get the iterative
sequence which is used to obtain the solutions since the
boundary value problem has nonlinear boundary conditions.
By using the upper and lower solutions method in reverse
order and monotone iterative techniques, we not only obtain
the sufficient conditions that the boundary value problem
(1) has the maximal and minimal solutions between an
upper solution and a lower solution as well as having the
unique solution, but also present the iterative sequence
for calculating the approximate analytical solutions of the
boundary value problem and the error estimate. An example
is also given to illustrate the main results.

The organization of this paper is as follows. In Sec-
tion 2, we provide the necessary background and comparison
principles which are used to prove our main results. In
Section 3, we consider a linear problem associated with
(1). In Section 4, by using the method of upper and lower
solutions and the monotone iterative techniques, we obtain
the existence and uniqueness solutions of (1). In Section 5, the
calculation method of the approximate analytical solutions
for the boundary value problems (1) is obtained. In Section 6,
an example is presented to illustrate our main results.

2. Preliminaries and Comparison Principles

In this section, we present some basic definitions, lemmas,
and comparison principles which play important roles in our
investigation.

Definition 1 (See [3, 4]). Let 𝛿 > 0 and function 𝑢 :

(0, +∞) → R. The Riemann-Liouville fractional integral
operator of order 𝛿 of 𝑢 is defined by

𝐼
𝛿
𝑢 (𝑡) =

1

Γ (𝛿)
∫

𝑡

0

(𝑡 − 𝑠)
𝛿−1

𝑢 (𝑠) d𝑠, (4)

provided the integral exists.
The Caputo derivative of order 𝛿 for function 𝑢 :

(0, +∞) → R is given by

𝐶
𝐷
𝛿
𝑢 (𝑡) =

1

Γ (𝑛 − 𝛼)
∫

𝑡

0

𝑢
(𝑛)

(𝑠)

(𝑡 − 𝑠)
𝛿+1−𝑛

d𝑠, (5)

provided the right side is pointwise defined on (0, +∞),
where 𝑛 ∈ N+ with 𝑛 − 1 < 𝛿 < 𝑛.

If 𝛿 = 𝑛 ∈ N+, then 𝐶𝐷𝛿𝑢(𝑡) = 𝑢
(𝑛)

(𝑡).

Definition 2. Let 𝐴𝐶[0, 1] be the space of the functions
𝑢 which are absolutely continuous on [0, 1]. We denote
𝐴𝐶
𝑛
[0, 1] by the set of the functions 𝑢which have continuous

derivatives up to order 𝑛 − 1 on [0, 1] such that 𝑢
(𝑛−1)

∈

𝐴𝐶[0, 1]. In particular, 𝐴𝐶
1
[0, 1] = 𝐴𝐶[0, 1].

Lemma 3 (see [3]). If 𝑢 ∈ 𝐴𝐶
𝑛
[0, 1], then the Caputo

fractional derivative 𝐶𝐷𝛿𝑢(𝑡) exists almost everywhere on
[0, 1], where 𝑛 is the smallest integer greater than or equal to
𝛿.

Lemma 4 (see [3]). Suppose 𝛿 > 0 and 𝑢 ∈ 𝐴𝐶
𝑛
(𝐽). Then

𝐼
𝛿𝐶

𝐷
𝛿
𝑢 (𝑡) = 𝑢 (𝑡) + 𝑐

0
+ 𝑐
1
𝑡 + 𝑐
2
𝑡
2
+ ⋅ ⋅ ⋅ + 𝑐

𝑛−1
𝑡
𝑛−1

,

𝑐𝑘 =
𝑢
(𝑘)

(0)

𝑘!
, 𝑘 = 0, 1, 2, . . . , 𝑛 − 1,

(6)

where 𝑛 is the smallest integer greater than or equal to 𝛿.

Definition 5. One says 𝑢 is a solution of the boundary value
problem (1) if 𝑢 ∈ 𝐴𝐶

2
(𝐽) and 𝐶𝐷𝛿𝑢 ∈ 𝐶(𝐽) and satisfies (1).

Definition 6 (see [4]). Let the real 𝑛 > 0. The function 𝐸
𝑛
is

defined by

𝐸
𝑛 (𝑧) =

∞

∑

𝑗=0

𝑧
𝑗

Γ (𝑗𝑛 + 1)
, (7)

whenever the series converges called the Mittag-Leffler func-
tion of order 𝑛.

Definition 7 (see [4]). Let 𝑛
1, 𝑛2 > 0. The function 𝐸𝑛

1
,𝑛
2

is
defined by

𝐸𝑛
1
,𝑛
2
(𝑧) =

∞

∑

𝑗=0

𝑧
𝑗

Γ (𝑗𝑛
1
+ 𝑛
2
)
, (8)

whenever the series converges called the two-parameter
Mittag-Leffler function with parameters 𝑛

1
and 𝑛
2
.

Remark 8 (see [4]). It is evident that the one-parameter
Mittag-Leffler functionsmay be defined in terms of their two-
parameter counterparts via the relation 𝐸

𝑛
(𝑧) = 𝐸

𝑛,1
(𝑧).

Lemma 9 (see [4], Theorem 4.1). The two-parameter Mittag-
Leffler function 𝐸

𝑛
1
,𝑛
2

(𝑧) for some 𝑛
1
, 𝑛
2
> 0. The power series

defining 𝐸
𝑛
1
,𝑛
2

(𝑧) is convergent for all 𝑧 ∈ R.

Lemma 10 (see [3], Theorem 4.3). Let ℎ ∈ 𝐶(𝐽). The Cauchy
problem

𝐶
𝐷
𝛿

0+
𝑢 (𝑡) − 𝑀𝑢 (𝑡) = ℎ (𝑡) , 𝑡 ∈ 𝐽,

𝑢 (0) = 𝑏, 𝑢
󸀠
(0) = 𝑑, 𝑏, 𝑑 ∈ R,

(9)

with 1 < 𝛿 < 2 and 𝑀 ∈ R has a unique solution

𝑢 (𝑡) = 𝑏𝐸
𝛿
(𝑀𝑡
𝛿
) + 𝑑𝐸

𝛿,2
(𝑀𝑡
𝛿
) 𝑡

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛿−1

𝐸
𝛿,𝛿

(𝑀(𝑡 − 𝑠)
𝛿
) ℎ (𝑠) d𝑠.

(10)

Lemma 11 (see [19]). Let 𝐸 be a partially ordered Banach
space, 𝑥𝑛 ≤ 𝑦𝑛 (𝑛 = 1, 2, 3, . . .), if 𝑥𝑛 → 𝑥

∗, 𝑦𝑛 → 𝑦
∗

0
.

Then 𝑥
∗
≤ 𝑦
∗.

In this paper, we assume the following conditions are
satisfied.
(H0) A given function 𝑐 ∈ 𝐴𝐶

2
(𝐽) and 𝐶𝐷𝛿

0+
𝑐 ∈ 𝐶(𝐽). 𝑐

is monotone decreasing on 𝐽, and 𝑐(0) = 𝑐
󸀠
(0) = 0,

𝑐(𝑇) ≤ −1.
(H1) 𝑔 ∈ 𝐶

1
(R,R), 𝑔(0) ≥ 0, and 0 < 𝑔

󸀠
(𝑥) < 1/𝐸

𝛿
(𝑀𝑇
𝛿
).
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Definition 12. Let 𝛼 ∈ 𝐴𝐶
2
(𝐽) and 𝐶𝐷𝛿

0+
𝛼 ∈ 𝐶(𝐽); we say that

𝛼 is a lower solution of the boundary value problem (1), if

𝐶
𝐷
𝛿

0+
𝛼 (𝑡) − 𝑀𝛼 (𝑡) ≥ 𝑓 (𝑡, 𝛼 (𝑡)) − 𝑎

𝛼 (𝑡) , 𝑡 ∈ 𝐽,

𝛼
󸀠
(0) ≥ 0,

(11)

where

𝑎
𝛼 (𝑡)

=

{{

{{

{

0, 𝑔 (𝛼 (𝑇)) ≤ 𝛼 (0) ,

(
𝐶
𝐷
𝛿

0+
𝑐 (𝑡) − 𝑀𝑐 (𝑡))

× (𝛼 (𝑇) − 𝑔
−1

(𝛼 (0))) , 𝑔 (𝛼 (𝑇)) > 𝛼 (0) .

(12)

Let 𝛽 ∈ 𝐴𝐶
2
(𝐽) and 𝐶𝐷𝛿

0+
𝛽 ∈ 𝐶(𝐽); we say that 𝛽 is an upper

solution of the boundary value problem (1), if

𝐶
𝐷
𝛿

0+
𝛽 (𝑡) − 𝑀𝛽 (𝑡) ≤ 𝑓 (𝑡, 𝛽 (𝑡)) + 𝑏𝛽 (𝑡) , 𝑡 ∈ 𝐽,

𝛽
󸀠
(0) ≤ 0,

(13)

where

𝑏𝛽 (𝑡) =

{{

{{

{

0, 𝑔 (𝛽 (𝑇)) ≥ 𝛽 (0) ,

(
𝐶
𝐷
𝛿

0+
𝑐 (𝑡) − 𝑀𝑐 (𝑡))

× (𝑔
−1

(𝛽 (0)) − 𝛽 (𝑇)) , 𝑔 (𝛽 (𝑇)) < 𝛽 (0) ,

(14)

and 𝑐(𝑡) is defined in (H0).

Lemma 13. Let 𝑔
1
∈ 𝐶
1
(R,R) be any function with 𝑔

1
(0) ≥ 0

and 0 < 𝑔
󸀠

1
(𝑢) < 1/𝐸

𝛿
(𝑀𝑇
𝛿
). If 𝑢 ∈ 𝐴𝐶

2
(𝐽) and 𝐶𝐷𝛿

0+
𝑢 ∈

𝐶(𝐽) and satisfies

𝐶
𝐷
𝛿

0+
𝑢 (𝑡) − 𝑀𝑢 (𝑡) ≥ 0, 𝑡 ∈ 𝐽,

𝑢
󸀠
(0) ≥ 0, 𝑢 (0) ≥ 𝑔

1 (𝑢 (𝑇)) ,

(15)

then 𝑢(𝑡) ≥ 0 for 𝑡 ∈ 𝐽.

Proof. If 𝑢(0) < 0, by the boundary conditions, we have

0 > 𝑢 (0) ≥ 𝑔
1 (𝑢 (𝑇)) = 𝑔

1 (0) + 𝑔
󸀠

1
(𝜉) 𝑢 (𝑇) ≥ 𝑔

󸀠

1
(𝜉) 𝑢 (𝑇) ,

(16)

where 𝜉 is a constant between 0 and 𝑢(𝑇).
Because 𝑔

1
(0) ≥ 0 and 0 < 𝑔

󸀠

1
(𝑢) < 1/𝐸

𝛿
(𝑀𝑇
𝛿
), then

𝑢(𝑇) < 0 and 𝑢(0) > (1/𝐸
𝛿
(𝑀𝑇
𝛿
))𝑢(𝑇); that is,

𝑢 (𝑇) < 𝑢 (0) 𝐸𝛿 (𝑀𝑇
𝛿
) . (17)

Let ℎ(𝑡) =
𝐶
𝐷
𝛿

0+
𝑢(𝑡) − 𝑀𝑢(𝑡), 𝑢(0) = 𝑏, and 𝑢

󸀠
(0) = 𝑑,

and then ℎ(𝑡) ≥ 0 for 𝑡 ∈ 𝐽 and 𝑑 ≥ 0.
By Lemma 10, we can get that the Cauchy problem

𝐶
𝐷
𝛿

0+
𝑢 (𝑡) − 𝑀𝑢 (𝑡) = ℎ (𝑡) , 𝑡 ∈ 𝐽,

𝑢 (0) = 𝑏, 𝑢
󸀠
(0) = 𝑑,

(18)

has a unique solution

𝑢 (𝑡) = 𝑏𝐸
𝛿
(𝑀𝑡
𝛿
) + 𝑑𝐸

𝛿,2
(𝑀𝑡
𝛿
) 𝑡

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛿−1

𝐸
𝛿,𝛿

(𝑀(𝑡 − 𝑠)
𝛿
) ℎ (𝑠) d𝑠.

(19)

So we can obtain that

𝑢 (𝑇) = 𝑏𝐸𝛿 (𝑀𝑇
𝛿
) + 𝑑𝑇𝐸𝛿,2 (𝑀𝑇

𝛿
)

+ ∫

𝑇

0

(𝑇 − 𝑠)
𝛿−1

𝐸𝛿,𝛿 (𝑀(𝑇 − 𝑠)
𝛿
) ℎ (𝑠) d𝑠

≥ 𝑏𝐸
𝛿
(𝑀𝑇
𝛿
) = 𝑢 (0) 𝐸𝛿 (𝑀𝑇

𝛿
) ,

(20)

which is contradictory to (17).
Hence, 𝑏 = 𝑢(0) ≥ 0. By (19), we can obtain that 𝑢(𝑡) ≥ 0

for 𝑡 ∈ 𝐽.

Let the function 𝑔
1
(𝑥) = 𝑟

1
𝑥 in Lemma 13; we can obtain

Corollary 14.

Corollary 14. If there exists a constant 𝑟
1
with 0 < 𝑟

1
<

1/𝐸
𝛿
(𝑀𝑇
𝛿
) such that 𝑢 ∈ 𝐴𝐶

2
(𝐽) and 𝐶𝐷𝛿

0+
𝑢 ∈ 𝐶(𝐽) and

satisfies

𝐶
𝐷
𝛿

0+
𝑢 (𝑡) ≥ 𝑀𝑢 (𝑡) , 𝑡 ∈ 𝐽,

𝑢
󸀠
(0) ≥ 0, 𝑢 (0) ≥ 𝑟

1
𝑢 (𝑇) ,

(21)

then 𝑢(𝑡) ≥ 0 on 𝐽.

Corollary 15. Suppose (H0) holds, and there exists a constant
𝑟
2
> 𝐸
𝛿
(𝑀𝑇
𝛿
) such that 𝑢 ∈ 𝐴𝐶

2
(𝐽) and 𝐶𝐷𝛿

0+
𝑢 ∈ 𝐶(𝐽) and

satisfies

𝐶
𝐷
𝛿

0+
𝑢 (𝑡) ≥ 𝑀𝑢 (𝑡) − (

𝐶
𝐷
𝛿

0+
𝑐 (𝑡) − 𝑀𝑐 (𝑡))

× (𝑢 (𝑇) − 𝑟
2
𝑢 (0)) , 𝑡 ∈ 𝐽,

𝑢
󸀠
(0) ≥ 0, 𝑢 (𝑇) ≥ 𝑟

2𝑢 (0) ;

(22)

then 𝑢(𝑡) ≥ 0 for 𝑡 ∈ 𝐽.

Proof. Let 𝑔
1(𝑥) = (1/𝑟2)𝑥 and 𝑦(𝑡) = 𝑢(𝑡) + 𝑐(𝑡)(𝑢(𝑇) −

𝑟2𝑢(0)), 𝑡 ∈ 𝐽.
Since 𝑐(𝑡) is monotone decreasing and 𝑐(0) = 0, then

𝑐(𝑡) ≤ 0 on 𝐽. So 𝑦(𝑡) ≤ 𝑢(𝑡), 𝑡 ∈ 𝐽.
By (22), we have

𝐶
𝐷
𝛿

0+
𝑦 (𝑡) − 𝑀𝑦 (𝑡)

=
𝐶
𝐷
𝛿

0+
𝑢 (𝑡) − 𝑀𝑢 (𝑡)

+ (
𝐶
𝐷
𝛿

0+
𝑐 (𝑡) − 𝑀𝑐 (𝑡)) (𝑢 (𝑇) − 𝑟2𝑢 (0)) ≥ 0,

(23)

and 𝑦
󸀠
(0) = 𝑢

󸀠
(0) ≥ 0.

Because 𝑐(0) = 0 and 𝑐(𝑇) ≤ −1, then 𝑦(𝑇) = 𝑢(𝑇) +

𝑐(𝑇)(𝑢(𝑇) − 𝑟
2
𝑢(0)) ≤ 𝑟

2
𝑢(0) = 𝑟

2
𝑦(0).

So 𝑦(0) ≥ (1/𝑟
2
)𝑦(𝑇) = 𝑔

1
(𝑢(𝑇)).
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By Lemma 13, we can get that 𝑦(𝑡) ≥ 0, which implies that
𝑢(𝑡) ≥ 0 for 𝑡 ∈ 𝐽.

3. Boundary Value Problems for
the Linear Equation

In this section, we consider the existence and uniqueness of
solutions for the linear fractional differential equation with
nonlinear boundary conditions

𝐶
𝐷
𝛿

0+
𝑢 (𝑡) − 𝑀𝑢 (𝑡) = ℎ (𝑡) , 𝑡 ∈ 𝐽,

𝑢
󸀠
(0) = 0, 𝑢 (0) = 𝑔 (𝑢 (𝑇)) ,

(24)

where ℎ ∈ 𝐶(𝐽).

Theorem 16. Assume that (H0) and (H1) hold; there exist a
lower solution 𝛼 and an upper solution 𝛽 of the boundary value
problem (24) with 𝛼(𝑡) ≥ 𝛽(𝑡) on 𝐽. Then the boundary value
problem (24) has a unique solution 𝑢. Moreover, 𝛼 ≥ 𝑢 ≥ 𝛽;
that is, 𝛼(𝑡) ≥ 𝑢(𝑡) ≥ 𝛽(𝑡) for 𝑡 ∈ 𝐽.

Proof. (1) We show that the solution of (24) is unique if it
exists.

Suppose that 𝑢
1
, 𝑢
2
are two solutions of (24) and let V =

𝑢
1
− 𝑢
2
. Then,

𝐶
𝐷
𝛿

0+
V (𝑡) − 𝑀V (𝑡) = 0, 𝑡 ∈ 𝐽,

V󸀠 (0) = 0,

V (0) = 𝑔 (𝑢
1 (𝑇)) − 𝑔 (𝑢

2 (𝑇)) = 𝑔
󸀠
(𝜏
1
) V (𝑇) ,

(25)

where 𝜏
1
is a constant between 𝑢

1
(𝑇) and 𝑢

2
(𝑇) and 0 <

𝑔
󸀠
(𝜏
1
) < 1/𝐸

𝛿
(𝑀𝑇
𝛿
) is a constant.

By Corollary 14, we have that V(𝑡) ≥ 0; that is, 𝑢
1
(𝑡) ≥

𝑢
2
(𝑡) for 𝑡 ∈ 𝐽.
Similarly, we can also obtain that 𝑢

2
(𝑡) ≥ 𝑢

1
(𝑡), for 𝑡 ∈ 𝐽.

Hence, 𝑢
1
= 𝑢
2
.

(2) We prove that 𝛽 ≤ 𝑢 ≤ 𝛼 if 𝑢 is a solution of the
boundary value problem (24).

Let 𝑚 = 𝛼 − 𝑢.
If 𝑔(𝛼(𝑇)) ≤ 𝛼(0), then 𝑎

𝛼
(𝑡) = 0 on 𝐽. We have

𝐶
𝐷
𝛿

0+
𝑚(𝑡) − 𝑀𝑚 (𝑡) ≥ 0, 𝑡 ∈ 𝐽,

𝑚
󸀠
(0) ≥ 0,

𝑚 (0) ≥ 𝑔 (𝛼 (𝑇)) − 𝑔 (𝑢 (𝑇)) = 𝑔
󸀠
(𝜏
2
)𝑚 (𝑇) ,

(26)

where 𝜏
2
is a constant between 𝑢(𝑇) and 𝛼(𝑇).

We denote 𝑟
1
= 𝑔
󸀠
(𝜏
2
). Hence, 0 < 𝑟

1
< 1/𝐸

𝛿
(𝑀𝑇
𝛿
).

By Corollary 14, we can obtain that𝑚(𝑡) = 𝛼(𝑡) −𝑢(𝑡) ≥ 0

on 𝐽.

If 𝑔(𝛼(𝑇)) > 𝛼(0), then 𝑎
𝛼
(𝑡) = (

𝐶
𝐷
𝛿

0+
𝑐(𝑡)−𝑀𝑐(𝑡))(𝛼(𝑇)−

𝑔
−1

(𝛼(0))). We have that

𝐶
𝐷
𝛿

0+
𝑚(𝑡) − 𝑀𝑚 (𝑡)

=
𝐶
𝐷
𝛿

0+
𝛼 (𝑡) − 𝑀𝛼 (𝑡) −

𝐶
𝐷
𝛿

0+
𝑢 (𝑡) + 𝑀𝑢 (𝑡)

≥ − (
𝐶
𝐷
𝛿

0+
𝑐 (𝑡) − 𝑀𝑐 (𝑡)) (𝛼 (𝑇) − 𝑔

−1
(𝛼 (0)))

= − (
𝐶
𝐷
𝛿

0+
𝑐 (𝑡) − 𝑀𝑐 (𝑡))

× (𝛼 (𝑇) − 𝑢 (𝑇) + 𝑔
−1

(𝑢 (0)) − 𝑔
−1

(𝛼 (0)))

= − (
𝐶
𝐷
𝛿

0+
𝑐 (𝑡) − 𝑀𝑐 (𝑡)) (𝑚 (𝑇) − (𝑔

−1
)
󸀠

(𝜏3)𝑚 (0)) ,

(27)

where 𝜏
3
is a constant between 𝛼(0) and 𝑢(0).

We denote 𝑟2 = (𝑔
−1

)
󸀠

(𝜏3). Hence, 𝑟2 > 𝐸𝛿(𝑀𝑇
𝛿
).

We can show 𝑚
󸀠
(0) ≥ 0, 𝑚(𝑇) ≥ 𝑔

−1
(𝛼(0)) − 𝑔

−1
(𝑢(0)) =

𝑟
2
𝑚(0).
By Corollary 15, we have 𝑚(𝑡) ≥ 0; that is, 𝛼(𝑡) ≥ 𝑢(𝑡) on

𝐽. So 𝛼(𝑡) ≥ 𝑢(𝑡) on 𝐽.
Similarly, we can obtain that 𝑢(𝑡) ≥ 𝛽(𝑡) for 𝐽. Therefore,

𝛽 ≤ 𝑢 ≤ 𝛼.
(3) We prove that the problem (24) has a unique solution.
Let

𝑝 (𝑡) =

{{

{{

{

𝛼 (𝑡) , 𝑔 (𝛼 (𝑇)) ≤ 𝛼 (0) ,

𝛼 (𝑡) + 𝑐 (𝑡)

× (𝛼 (𝑇) − 𝑔
−1

(𝛼 (0))) , 𝑔 (𝛼 (𝑇)) > 𝛼 (0) ,

(28)

𝑞 (𝑡) =

{{

{{

{

𝛽 (𝑡) , 𝑔 (𝛽 (𝑇)) ≥ 𝛽 (0) ,

𝛽 (𝑡) − 𝑐 (𝑡)

× (𝑔
−1

(𝛽 (0)) − 𝛽 (𝑇)) , 𝑔 (𝛽 (𝑇)) < 𝛽 (0) .

(29)

It is obvious that 𝑝, 𝑞 ∈ 𝐴𝐶
2
(𝐽), 𝐶𝐷𝛿

0+
𝑝, 𝐶𝐷𝛿

0+
𝑞 ∈ 𝐶(𝐽),

and 𝑝(0) = 𝛼(0), 𝑞(0) = 𝛽(0). If 𝑔(𝛼(𝑇)) ≤ 𝛼(0), we have
𝑝(𝑇) = 𝛼(𝑇). If 𝑔(𝛼(𝑇)) > 𝛼(0), we have 𝑝(𝑇) ≤ 𝑔

−1
(𝛼(0));

that is,

𝑔 (𝑝 (𝑇)) ≤ 𝑝 (0) . (30)

Similarly, we can get

𝑔 (𝑞 (𝑇)) ≥ 𝑞 (0) . (31)

If 𝑔(𝛼(𝑇)) ≤ 𝛼(0), we have

𝐶
𝐷
𝛿

0+
𝑝 (𝑡) − 𝑀𝑝 (𝑡) ≥ ℎ (𝑡) , 𝑡 ∈ 𝐽. (32)
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If 𝑔(𝛼(𝑇)) > 𝛼(0), since 𝛼 is a lower solution of boundary
value problem (24), then 𝐶𝐷𝛿

0+
𝛼(𝑡) − 𝑀𝛼(𝑡) ≥ ℎ(𝑡) − 𝑎

𝛼
(𝑡).

And by (12), we can obtain that

𝐶
𝐷
𝛿

0+
𝑝 (𝑡) − 𝑀𝑝 (𝑡)

= (
𝐶
𝐷
𝛿

0+
𝛼 (𝑡) − 𝑀𝛼 (𝑡))

+ (
𝐶
𝐷
𝛿

0+
𝑐 (𝑡) − 𝑀𝑐 (𝑡)) (𝛼 (𝑇) − 𝑔

−1
(𝛼 (0)))

≥ ℎ (𝑡) − 𝑎
𝛼 (𝑡)

+ (
𝐶
𝐷
𝛿

0+
𝑐 (𝑡) − 𝑀𝑐 (𝑡)) (𝛼 (𝑇) − 𝑔

−1
(𝛼 (0)))

= ℎ (𝑡) , 𝑡 ∈ 𝐽.

(33)

Hence, we obtain

𝐶
𝐷
𝛿

0+
𝑝 (𝑡) − 𝑀𝑝 (𝑡) ≥ ℎ (𝑡) , 𝑡 ∈ 𝐽. (34)

Using the same way as mentioned above, we can get that

𝐶
𝐷
𝛿

0+
𝑞 (𝑡) − 𝑀𝑞 (𝑡) ≤ ℎ (𝑡) , 𝑡 ∈ 𝐽. (35)

Since (H0) holds, it is easy to see that 𝑐(𝑡) ≤ 0 for 𝑡 ∈ 𝐽. We
can easily get that 𝛽(𝑡) ≤ 𝑞(𝑡) and 𝑝(𝑡) ≤ 𝛼(𝑡) for 𝑡 ∈ 𝐽.

Let 𝑛(𝑡) = 𝑝(𝑡) − 𝑞(𝑡). It follows from (34) and (35) that

𝐶
𝐷
𝛿

0+
𝑛 (𝑡) − 𝑀𝑛 (𝑡)

=
𝐶
𝐷
𝛿

0+
𝑝 (𝑡) − 𝑀𝑝 (𝑡) −

𝐶
𝐷
𝛿

0+
𝑞 (𝑡) + 𝑀𝑞 (𝑡) ≥ 0,

𝑛
󸀠
(0) = 𝑝

󸀠
(0) − 𝑞

󸀠
(0) = 𝛼

󸀠
(0) − 𝛽

󸀠
(0) ≥ 0,

𝑛 (0) = 𝑝 (0) − 𝑞 (0) ≥ 𝑔 (𝑝 (𝑇)) − 𝑔 (𝑞 (𝑇))

= 𝑔
󸀠
(𝜏
4
) 𝑛 (𝑇) ,

(36)

where 𝜏
4
is a constant between 𝑝(𝑇) and 𝑞(𝑇) and 0 <

𝑔
󸀠
(𝜏4) < 1/𝐸𝛿(𝑀𝑇

𝛿
) is a constant.

By Corollary 14, we have 𝑛(𝑡) ≥ 0 for 𝑡 ∈ 𝐽; that is,

𝑝 (𝑡) ≥ 𝑞 (𝑡) for 𝑡 ∈ 𝐽. (37)

According to Lemma 10, for each 𝜆 ∈ R, the Cauchy
problem

𝐶
𝐷
𝛿

0+
𝑢 (𝑡) − 𝑀𝑢 (𝑡) = ℎ (𝑡) ,

𝑢
󸀠
(0) = 0, 𝑢 (0) = 𝜆,

(38)

has a unique solution

𝑢 (𝑡, 𝜆) = 𝜆𝐸
𝛿
(𝑀𝑡
𝛿
)

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛿−1

𝐸
𝛿,𝛿

(𝑀(𝑡 − 𝑠)
𝛿
) ℎ (𝑠) d𝑠, 𝑡 ∈ 𝐽.

(39)

In the following, we show that 𝑞(𝑇) ≤ 𝑢(𝑇, 𝜆) ≤ 𝑝(𝑇) for
each 𝜆 ∈ [𝑔(𝑞(𝑇)), 𝑔(𝑝(𝑇))], where 𝑢(𝑡, 𝜆) is defined by (39).

If 𝑢(𝑇, 𝜆) < 𝑞(𝑇), we denote 𝑙(𝑡) = 𝑢(𝑡, 𝜆) − 𝑞(𝑡), and then

𝑙 (𝑇) < 0, (40)

𝑙 (0) = 𝑢 (0, 𝜆) − 𝑞 (0) ≥ 𝜆 − 𝑔 (𝑞 (𝑇)) ≥ 0. (41)

So 𝑙(0) ≥ 𝑟
1
𝑙(𝑇), for any 𝑟

1
∈ (0, 1/𝐸

𝛿
(𝑀𝑇
𝛿
)).

It follows that 𝑐󸀠(0) = 0 from (H0), and by (29), we have
that 𝑞󸀠(0) = 𝛽

󸀠
(0). Then

𝑙
󸀠
(0) = 𝑢

󸀠
(0, 𝜆) − 𝑞

󸀠
(0) = −𝛽

󸀠
(0) ≥ 0. (42)

And from (35), we have

𝐶
𝐷
𝛿

0+
𝑙 (𝑡) − 𝑀𝑙 (𝑡)

=
𝐶
𝐷
𝛿

0+
𝑢 (𝑡) − 𝑀𝑢 (𝑡) − (

𝐶
𝐷
𝛿

0+
𝑞 (𝑡) − 𝑀𝑞 (𝑡))

= ℎ (𝑡) − (
𝐶
𝐷
𝛿

0+
𝑞 (𝑡) − 𝑀𝑞 (𝑡))

≥ 0.

(43)

By Corollary 14, we can obtain that 𝑙(𝑡) ≥ 0, for all 𝑡 ∈ 𝐽,
which is a contradiction to (40). So

𝑢 (𝑇, 𝜆) ≥ 𝑞 (𝑇) . (44)

Similarly, we can get

𝑢 (𝑇, 𝜆) ≤ 𝑝 (𝑇) . (45)

Let 𝐻(𝜆) = 𝑔(𝑢(𝑇, 𝜆)) − 𝜆. Since
𝐻(𝑔(𝑞(𝑇)))𝐻(𝑔(𝑝(𝑇))) ≤ 0 and

𝐻
󸀠
(𝜆) = 𝑔

󸀠
(𝑢 (𝑇, 𝜆)) 𝑢

󸀠

𝜆
(𝑇, 𝜆) − 1

<
1

𝐸
𝛿
(𝑀𝑇𝛿)

⋅ 𝐸
𝛿
(𝑀𝑇
𝛿
) − 1 = 0,

(46)

then 𝐻(𝜆) is strictly monotone decreasing and continuous
for 𝜆 ∈ [𝑔(𝑞(𝑇)), 𝑔(𝑝(𝑇))].

Hence, we can get that 𝐻(𝜆) = 0 has a unique solution
𝜆
0
∈ [𝑔(𝑞(𝑇)), 𝑔(𝑝(𝑇))] with 𝑔(𝑢(𝑇, 𝜆

0
)) = 𝜆

0
= 𝑢(0).

It is easy to see that 𝑢(𝑡, 𝜆
0
) is the unique solution of the

boundary value problem (24).

4. Existence and Uniqueness of the Solutions
for Boundary Value Problem

In this section, we study the existence and uniqueness of the
solutions for fractional differential equation with nonlinear
boundary conditions (1).

Let 𝐸 = 𝐶(𝐽) endowed with norm ‖𝑢‖ = max𝑡∈𝐽|𝑢(𝑡)| for
𝑢 ∈ 𝐸. Then 𝐸 is a Banach space. Denote

[𝛽, 𝛼] = {𝑢 ∈ 𝐶 (𝐽) : 𝛽 (𝑡) ≤ 𝑢 (𝑡) ≤ 𝛼 (𝑡) , 𝑡 ∈ 𝐽} , (47)

and 𝛽 ≤ 𝛼 if and only if 𝛽(𝑡) ≤ 𝛼(𝑡) on 𝐽.
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Theorem 17. Suppose that (H0) and (H1) hold; there exist 𝛼
0
,

𝛽
0
which are lower and upper solutions of the boundary value

problem (1) with 𝛽
0
(𝑡) ≤ 𝛼

0
(𝑡) for 𝑡 ∈ 𝐽. And 𝑓 satisfies

(H2) 𝑓(𝑡, 𝑥
2
) − 𝑓(𝑡, 𝑥

1
) ≥ 0 for any 𝛽

0
≤ 𝑥
1

≤ 𝑥
2

≤ 𝛼
0
,

𝑡 ∈ 𝐽.
Then there exist monotone sequences {𝛼𝑛}, {𝛽𝑛} such that

lim
𝑛→∞

𝛼𝑛 (𝑡) = 𝛼
∗
(𝑡) , lim

𝑛→∞
𝛽𝑛 (𝑡) = 𝛽

∗
(𝑡) , (48)

converging uniformly on 𝐽, and 𝛽
∗, 𝛼∗ are the minimal and the

maximal solutions of (1) on [𝛽
0
, 𝛼
0
].

Proof. We denote 𝐷 = [𝛽
0
, 𝛼
0
]. For any 𝛾 ∈ 𝐷, we consider

the following boundary value problem:
𝐶
𝐷
𝛿

0+
𝑢 (𝑡) − 𝑀𝑢 (𝑡) = 𝑓 (𝑡, 𝛾 (𝑡)) , 𝑡 ∈ 𝐽,

𝑢
󸀠
(0) = 0, 𝑢 (0) = 𝑔 (𝑢 (𝑇)) .

(49)

Since 𝛼
0
(𝑡), 𝛽

0
(𝑡) are lower and upper solutions of the

boundary value problem (1), by (H2), we have
𝐶
𝐷
𝛿

0+
𝛼
0 (𝑡) − 𝑀𝛼

0 (𝑡) ≥ 𝑓 (𝑡, 𝛼
0 (𝑡)) − 𝑎

𝛼 (𝑡)

≥ 𝑓 (𝑡, 𝛾 (𝑡)) − 𝑎
𝛼 (𝑡) ,

𝐶
𝐷
𝛿

0+
𝛽
0 (𝑡) − 𝑀𝛽

0 (𝑡) ≤ 𝑓 (𝑡, 𝛽
0 (𝑡)) − 𝑏

𝛽 (𝑡)

≤ 𝑓 (𝑡, 𝛾 (𝑡)) − 𝑏
𝛽 (𝑡) ,

(50)

for 𝑡 ∈ 𝐽.
Therefore, 𝛼0(𝑡), 𝛽0(𝑡) are also the lower and upper

solutions of the boundary value problem (49), respectively.
In view of Theorem 16, the boundary value problem (49)

has a unique solution 𝑢 and 𝑢 ∈ 𝐷.
Define 𝑃 : [𝛽0, 𝛼0] → [𝛽

0
, 𝛼
0
] by 𝑃𝛾 = 𝑢. Hence, 𝛼

0
≥

𝑃𝛼0, 𝛽0 ≤ 𝑃𝛽0.
We will show that 𝑃𝑥1 ≤ 𝑃𝑥2 if 𝛽0 ≤ 𝑥1 ≤ 𝑥2 ≤ 𝛼0.
Let 𝑚 = 𝑃𝑥

2
− 𝑃𝑥
1
. By (H2) and (49), we have

𝐶
𝐷
𝛿

0+
𝑚(𝑡) − 𝑀𝑚 (𝑡) = 𝑓 (𝑡, 𝑥

2 (𝑡)) − 𝑓 (𝑡, 𝑥
1 (𝑡)) ≥ 0,

𝑚
󸀠
(0) = 0, 𝑚 (0) = 𝑔

󸀠
(𝜏
5
)𝑚 (𝑇) ,

(51)

where 𝜏
5
is a constant between 𝑃𝑥

1
(𝑇) and 𝑃𝑥

2
(𝑇), and

denote 𝑟
1 = 𝑔
󸀠
(𝜏5) < 1/𝐸𝛿,1(𝑀𝑇

𝛿
). By Corollary 14,𝑚(𝑡) ≥ 0,

which implies 𝑃𝑥1 ≤ 𝑃𝑥
2
. Hence, 𝑃 is monotone increasing

in [𝛽0, 𝛼0].
Let 𝛼𝑛 = 𝑃𝛼𝑛−1 and 𝛽𝑛 = 𝑃𝛽𝑛−1 for 𝑛 = 1, 2, . . .. We can

get monotone iterative sequences

𝛽
1
≤ 𝛽
2
≤ ⋅ ⋅ ⋅ ≤ 𝛽

𝑛
≤ ⋅ ⋅ ⋅ ≤ 𝛼

𝑛
≤ ⋅ ⋅ ⋅ ≤ 𝛼

2
≤ 𝛼
1
. (52)

Therefore, there exist 𝛼∗, 𝛽∗ ∈ 𝐸, such that

lim
𝑛→∞

𝛼
𝑛 (𝑡) = 𝛼

∗
(𝑡) , lim

𝑛→∞
𝛽
𝑛 (𝑡) = 𝛽

∗
(𝑡) . (53)

It is easy to see that 𝛼
𝑛
(𝑡) satisfies

𝐶
𝐷
𝛿

0+
𝛼
𝑛 (𝑡) − 𝑀𝛼

𝑛 (𝑡) = 𝑓 (𝑡, 𝛼
𝑛−1 (𝑡)) ,

𝛼
󸀠

𝑛
(0) = 0, 𝛼

𝑛 (0) = 𝑔 (𝛼
𝑛 (𝑇)) .

(54)

By Lemma 10, we have

𝛼
𝑛 (𝑡) = 𝛼

𝑛 (0) 𝐸𝛿 (𝑀𝑡
𝛿
)

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛿−1

𝐸𝛿,𝛿 (𝑀(𝑡 − 𝑠)
𝛿
) 𝑓 (𝑠, 𝛼𝑛−1 (𝑠)) d𝑠.

(55)

Because 𝑓 is continuous and 𝛼
𝑛−1

∈ 𝐷, there exists a constant
𝐿 > 0 such that

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝛼
𝑛−1 (𝑡))

󵄨󵄨󵄨󵄨 ≤ 𝐿, 𝑡 ∈ 𝐽, 𝑛 = 1, 2, . . . ,

𝑓 (𝑡, 𝛼
𝑛−1 (𝑡)) 󳨀→ 𝑓 (𝑡, 𝛼

∗
(𝑡)) , 𝑡 ∈ 𝐽, 𝑛 󳨀→ ∞.

(56)

By Lebesgue dominated convergence theorem, we can get
that

lim
𝑛→∞

𝛼
𝑛 (𝑡) = lim

𝑛→∞
𝛼
𝑛 (0) 𝐸𝛿 (𝑀𝑡

𝛿
)

+ lim
𝑛→∞

∫

𝑡

0

(𝑡 − 𝑠)
𝛿−1

𝑓 (𝑠, 𝛼𝑛−1 (𝑠)) d𝑠

= 𝛼
∗
(0) 𝐸𝛿 (𝑀𝑡

𝛿
) + ∫

𝑡

0

(𝑡 − 𝑠)
𝛿−1

𝑓 (𝑠, 𝛼
∗
(𝑠)) d𝑠.

(57)

That is,

𝛼
∗
(𝑡) = 𝛼

∗
(0) 𝐸𝛿 (𝑀𝑡

𝛿
) + ∫

𝑡

0

(𝑡 − 𝑠)
𝛿−1

𝑓 (𝑠, 𝛼
∗
(𝑠)) d𝑠.

(58)

Therefore,

𝛼
∗
(𝑡) = 𝑃𝛼

∗
(𝑡) for 𝑡 ∈ 𝐽. (59)

It is similar to show that

𝛽
∗
(𝑡) = 𝑃𝛽

∗
(𝑡) for 𝑡 ∈ 𝐽. (60)

It is clear that 𝛼∗, 𝛽∗ are solutions of the boundary value
problem (1).

Assume 𝑢 ∈ [𝛽
0
, 𝛼
0
] is a solution of the boundary value

problem (1). We can easily obtain that 𝑃𝛽
0
(𝑡) ≤ 𝑃𝑢(𝑡) ≤

𝑃𝛼
0
(𝑡) by the fact that 𝑃 is increasing in [𝛽

0
, 𝛼
0
]. That is,

𝛽
1
(𝑡) ≤ 𝑢(𝑡) ≤ 𝛼

1
(𝑡). Doing this repeatedly, we have 𝛽

𝑛
(𝑡) ≤

𝑢(𝑡) ≤ 𝛼
𝑛
(𝑡), for 𝑛 = 1, 2, . . .. From Lemma 11, we obtain that

𝛽
∗
(𝑡) ≤ 𝑢(𝑡) ≤ 𝛼

∗
(𝑡), as 𝑛 → ∞.

Hence, 𝛼∗, 𝛽∗ are themaximal and theminimal solutions
of the boundary value problem (1), respectively.

Theorem 18. Suppose that the conditions (H0) and (H1)
hold; there exist 𝛼

0
, 𝛽
0
lower and upper solutions of the

boundary value problem (1) with 𝛽
0
(𝑡) ≤ 𝛼

0
(𝑡) for 𝑡 ∈ 𝐽,

respectively. If there exists a constant 𝑘 with 0 < 𝑘 < 𝛿(1 −

𝑎𝐸
𝛿(𝑀𝑇

𝛿
))/𝑇
𝛿
𝐸𝛿,𝛿(𝑀𝑇

𝛿
), where 𝑎 = max𝑢∈[𝛽

0
,𝛼
0
]𝑔
󸀠
(𝑢), and

𝑓 satisfies

(H3) 𝑓(𝑡, 𝑥
2
) −𝑓(𝑡, 𝑥

1
) ≤ 𝑘(𝑥

2
−𝑥
1
) for any 𝛽

0
≤ 𝑥
1
≤ 𝑥
2
≤

𝛼
0
, 𝑡 ∈ 𝐽,
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then the boundary value problem (1) has a unique solution 𝑢
∗

on [𝛽
0
, 𝛼
0
] and for any 𝑢

0
∈ [𝛽
0
, 𝛼
0
], the iterative sequence

𝑢
𝑛

= 𝑃𝑢
𝑛−1

, 𝑛 = 0, 1, 2, . . ., converging uniformly to 𝑢
∗ on 𝐽

and its error estimate is

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
∗󵄩󵄩󵄩󵄩 ≤ (

𝑘𝑇
𝛿
𝐸
𝛿,𝛿

(𝑀𝑇
𝛿
)

𝛿 (1 − 𝑎𝐸
𝛿
(𝑀𝑇𝛿))

)

𝑛

󵄩󵄩󵄩󵄩𝛼0 − 𝛽0
󵄩󵄩󵄩󵄩 .

(61)

Proof. It is easy to check that the conditions of Theorem 17
are satisfied. Then the boundary value problem (1) has
the maximal solution and the minimal solution which are
denoted by 𝛼

∗, 𝛽∗, respectively.
For 𝛽
0
≤ 𝜔
1
≤ 𝜔
2
≤ 𝛼
0
, 𝑡 ∈ 𝐽, we have

𝑃𝜔
2 (𝑡) − 𝑃𝜔

1 (𝑡)

= (𝑃𝜔
2 (0) − 𝑃𝜔

1 (0)) 𝐸𝛿 (𝑀𝑡
𝛿
)

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛿−1

𝐸
𝛿,𝛿

(𝑀(𝑡 − 𝑠)
𝛿
)

× (𝑓 (𝑠, 𝜔
2 (𝑠)) − 𝑓 (𝑠, 𝜔

1 (𝑠))) d𝑠,

(62)

and from (H3),

𝑃𝜔
2 (0) − 𝑃𝜔

1 (0)

= 𝑔 (𝑃𝜔
2 (𝑇)) − 𝑔 (𝑃𝜔

1 (𝑇))

= 𝑔
󸀠
(𝜏) (𝑃𝜔2 (𝑇) − 𝑃𝜔

1 (𝑇))

= 𝑔
󸀠
(𝜏) ((𝑃𝜔

2 (0) − 𝑃𝜔
1 (0)) 𝐸𝛿 (𝑀𝑇

𝛿
)

+ ∫

𝑇

0

(𝑇 − 𝑠)
𝛿−1

𝐸𝛿,𝛿 (𝑀(𝑇 − 𝑠)
𝛿
)

× (𝑓 (𝑠, 𝜔2 (𝑠)) − 𝑓 (𝑠, 𝜔
1 (𝑠))) d𝑠)

≤ 𝑎((𝑃𝜔
2 (0) − 𝑃𝜔

1 (0)) 𝐸𝛿 (𝑀𝑇
𝛿
)

+ ∫

𝑇

0

(𝑇 − 𝑠)
𝛿−1

𝐸𝛿,𝛿 (𝑀(𝑇 − 𝑠)
𝛿
)

× (𝑓 (𝑠, 𝜔
2 (𝑠)) − 𝑓 (𝑠, 𝜔

1 (𝑠))) d𝑠)

≤ 𝑎((𝑃𝜔
2 (0) − 𝑃𝜔

1 (0)) 𝐸𝛿 (𝑀𝑇
𝛿
)

+

𝑘𝑇
𝛿
𝐸
𝛿,𝛿

(𝑀𝑇
𝛿
)

𝛿

󵄩󵄩󵄩󵄩𝜔2 − 𝜔
1

󵄩󵄩󵄩󵄩) ,

(63)

where 𝜏 ∈ [𝜔
1
(𝑇), 𝜔

2
(𝑇)] ⊂ [𝛽

0
(𝑇), 𝛼

0
(𝑇)] and 𝑃 is defined

inTheorem 17.

It follows that 1 − 𝑎𝐸
𝛿
(𝑀𝑇
𝛿
) > 0 from 0 < 𝑔

󸀠
(𝑥) <

1/𝐸
𝛿
(𝑀𝑇
𝛿
) for 𝑥 ∈ R. Hence,

0 ≤ 𝑃𝜔
2 (0) − 𝑃𝜔

1 (0)

≤

𝑘𝑎𝑇
𝛿
𝐸
𝛿,𝛿

(𝑀𝑇
𝛿
)

𝛿 (1 − 𝑎𝐸
𝛿
(𝑀𝑇𝛿))

󵄩󵄩󵄩󵄩𝜔2 − 𝜔
1

󵄩󵄩󵄩󵄩 ,

0 ≤ 𝑃𝜔
2 (𝑡) − 𝑃𝜔

1 (𝑡)

≤

𝐸
𝛿
(𝑀𝑇
𝛿
) 𝑘𝑎𝑇

𝛿
𝐸
𝛿,𝛿

(𝑀𝑇
𝛿
)

𝛿 (1 − 𝑎𝐸
𝛿
(𝑀𝑇𝛿))

󵄩󵄩󵄩󵄩𝜔2 − 𝜔
1

󵄩󵄩󵄩󵄩

+

𝑘𝑇
𝛿
𝐸
𝛿,𝛿

(𝑀𝑇
𝛿
)

𝛿

󵄩󵄩󵄩󵄩𝜔2 − 𝜔1
󵄩󵄩󵄩󵄩 .

(64)

We can easily get

󵄩󵄩󵄩󵄩𝑃𝜔2 − 𝑃𝜔
1

󵄩󵄩󵄩󵄩 ≤

𝑘𝑇
𝛿
𝐸
𝛿,𝛿

(𝑀𝑇
𝛿
)

𝛿 (1 − 𝑎𝐸𝛿 (𝑀𝑇𝛿))

󵄩󵄩󵄩󵄩𝜔2 − 𝜔
1

󵄩󵄩󵄩󵄩 . (65)

Because 0 < 𝑘 < 𝛿(1 − 𝑎𝐸
𝛿
(𝑀𝑇
𝛿
))/𝑇
𝛿
𝐸
𝛿,𝛿

(𝑀𝑇
𝛿
), we have

0 <

𝑘𝑇
𝛿
𝐸𝛿,𝛿 (𝑀𝑇

𝛿
)

𝛿 (1 − 𝑎𝐸
𝛿
(𝑀𝑇𝛿))

< 1. (66)

It implies that 𝑃 is contraction mapping. By using the
contractionmapping principle, the𝑃has a unique fixedpoint.

Therefore, the boundary value problem (1) has a unique
solution; that is, 𝛼∗ = 𝛽

∗, and we denote it by 𝑢
∗.

For any 𝑢
0

∈ [𝛽
0
, 𝛼
0
], let the iterative sequence 𝑢

𝑛
=

𝑃𝑢𝑛−1, 𝑛 = 0, 1, 2, . . .. Similar to (65), we can get

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
∗󵄩󵄩󵄩󵄩 ≤

𝑘𝑇
𝛿
𝐸𝛿,𝛿 (𝑀𝑇

𝛿
)

𝛿 (1 − 𝑎𝐸
𝛿
(𝑀𝑇𝛿))

󵄩󵄩󵄩󵄩𝑃𝑢
𝑛−1

− 𝑢
∗󵄩󵄩󵄩󵄩

≤ ⋅ ⋅ ⋅

≤ (

𝑘𝑇
𝛿
𝐸
𝛿,𝛿

(𝑀𝑇
𝛿
)

𝛿 (1 − 𝑎𝐸𝛿 (𝑀𝑇𝛿))
)

𝑛

󵄩󵄩󵄩󵄩𝑢0 − 𝑢
∗󵄩󵄩󵄩󵄩 .

(67)

It follows that {𝑢
𝑛
} converging uniformly to𝑢

∗ on 𝐽 from (66).
Since 𝑢

0
, 𝑢
∗

∈ [𝛽
0
, 𝛼
0
], we can obtain that the error

estimate of {𝑢
𝑛
} is

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
∗󵄩󵄩󵄩󵄩 ≤ (

𝑘𝑇
𝛿
𝐸
𝛿,𝛿

(𝑀𝑇
𝛿
)

𝛿 (1 − 𝑎𝐸𝛿 (𝑀𝑇𝛿))
)

𝑛

󵄩󵄩󵄩󵄩𝛼0 − 𝛽
0

󵄩󵄩󵄩󵄩 . (68)

5. The Calculation Method of the Approximate
Analytical Solutions

In this section, we give the calculationmethod of the approxi-
mate analytical solutions for the boundary value problem (1).
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Theorem 19. Suppose (H0) and (H1) hold; there exist a lower
solution 𝛼

0
and an upper solution 𝛽

0
of the boundary value

problem (1) with 𝛽
0
(𝑡) ≤ 𝛼

0
(𝑡) for 𝑡 ∈ 𝐽. And there exists a

constant 𝜅 with 0 < 𝜅 < 𝛿(1 − 𝑏𝐸
𝛿
(𝑀𝑇
𝛿
))/𝑇
𝛿
𝐸
𝛿,𝛿

(𝑀𝑇
𝛿
),

where 𝑏 = sup
𝑢∈R𝑔
󸀠
(𝑢) < 1/𝐸𝛿(𝑀𝑇

𝛿
), such that 𝑓 satisfies

(H4) 0 ≤ 𝑓(𝑡, 𝑥
2
) − 𝑓(𝑡, 𝑥

1
) ≤ 𝜅(𝑥

2
− 𝑥
1
) for any 𝑥

1
≤ 𝑥
2
,

𝑡 ∈ 𝐽.

Then for any initial value 𝑦
0

∈ [𝛽
0
, 𝛼
0
], the sequence {𝑦

𝑛
} is

defined by

𝑦
𝑛 (𝑡) = 𝑔 (𝑦

𝑛−1 (𝑇)) 𝐸𝛿 (𝑀𝑡
𝛿
)

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛿−1

𝐸
𝛿,𝛿

(𝑀(𝑡 − 𝑠)
𝛿
) 𝑓 (𝑠, 𝑦

𝑛−1 (𝑠)) d𝑠,

(69)

converging uniformly to the unique solution 𝑢
∗ of the boundary

value problem (1) on the [𝛽
0
, 𝛼
0
]. Furthermore, the error

estimate is

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑢
∗󵄩󵄩󵄩󵄩 ≤

󰜚
𝑛

0
− 󰜚
𝑛+1

1

1 − 󰜚
1

󵄩󵄩󵄩󵄩𝛼0 − 𝛽0
󵄩󵄩󵄩󵄩 , (70)

where

󰜚
0 = 𝑏𝐸𝛿 (𝑀𝑇

𝛿
) +

𝜅𝑇
𝛿
𝐸
𝛿,𝛿

(𝑀𝑇
𝛿
)

𝛿
,

󰜚
1
=

𝜅𝑇
𝛿
𝐸
𝛿,𝛿

(𝑀𝑇
𝛿
)

𝛿 (1 − 𝑏𝐸𝛿 (𝑀𝑇𝛿))
.

(71)

Proof. Because 0 < 𝜅 < 𝛿(1 − 𝑏𝐸
𝛿(𝑀𝑇

𝛿
))/𝑇
𝛿
𝐸𝛿,𝛿(𝑀𝑇

𝛿
),

where 𝑏 = sup
𝑢∈R𝑔
󸀠
(𝑢) < 1/𝐸

𝛿
(𝑀𝑇
𝛿
), then 𝑏 ≥ 𝑎 and

𝜅 < 𝛿(1 − 𝑎𝐸
𝛿
(𝑀𝑇
𝛿
))/𝑇
𝛿
𝐸
𝛿,𝛿

(𝑀𝑇
𝛿
), where 𝑎 is defined by

Theorem 18.
Hence, the conditions ofTheorem 18 hold, and we can get

that the boundary value problem (1) has a unique solution 𝑢
∗

on [𝛽
0
, 𝛼
0
] and for any 𝑢

0
∈ [𝛽
0
, 𝛼
0
], the iterative sequence

𝑢
𝑛

= 𝑃𝑢
𝑛−1

, 𝑛 = 1, 2, . . ., converging uniformly to 𝑢
∗ on 𝐽.

That is,
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

∗󵄩󵄩󵄩󵄩 󳨀→ 0, as 𝑛 󳨀→ ∞. (72)

By Lemma 10 and the definition of operator 𝑃, we can easily
obtain that 𝑢

𝑛
= 𝑃𝑢
𝑛−1

is equivalent to

𝑢
𝑛 (𝑡) = 𝑢

𝑛 (0) 𝐸𝛿 (𝑀𝑡
𝛿
)

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛿−1

𝐸𝛿,𝛿 (𝑀(𝑡 − 𝑠)
𝛿
) 𝑓 (𝑠, 𝑢𝑛−1 (𝑠)) d𝑠,

(73)

and 𝑢
𝑛(0) = 𝑔(𝑢𝑛(𝑇)), 𝑛 = 0, 1, 2, . . ..

Let 𝑦0 = 𝑢0, 𝑛 = 1, 2, 3, . . .. By Lemma 10, the Cauchy
problem

𝐶
𝐷
𝛿

0+
𝑦𝑛 (𝑡) − 𝑀𝑦𝑛 (𝑡) = 𝑓 (𝑡, 𝑦𝑛−1 (𝑡)) ,

𝑦
󸀠

𝑛
(0) = 0, 𝑦

𝑛 (0) = 𝑔 (𝑦
𝑛−1 (𝑇)) ,

(74)

has a unique solution

𝑦
𝑛 (𝑡) = 𝑔 (𝑦

𝑛−1 (𝑇)) 𝐸𝛿 (𝑀𝑡
𝛿
)

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛿−1

𝐸
𝛿,𝛿

(𝑀(𝑡 − 𝑠)
𝛿
) 𝑓 (𝑠, 𝑦

𝑛−1 (𝑠)) d𝑠,

(75)

which is (69).
In the following, we prove 𝑦

𝑛
converging uniformly to 𝑢

∗

on 𝐽.
For 𝑡 ∈ 𝐽, we have

󵄨󵄨󵄨󵄨𝑦𝑛 (𝑡) − 𝑢
𝑛 (𝑡)

󵄨󵄨󵄨󵄨

≤ 𝐸
𝛿
(𝑀𝑇
𝛿
)
󵄨󵄨󵄨󵄨𝑔 (𝑦
𝑛−1 (𝑇)) − 𝑔 (𝑢

𝑛 (𝑇))
󵄨󵄨󵄨󵄨

+ ∫

𝑇

0

(𝑇 − 𝑠)
𝛿−1

𝐸𝛿,𝛿 (𝑀𝑇
𝛿
)

×
󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑦

𝑛−1 (𝑠)) − 𝑓 (𝑠, 𝑢𝑛−1 (𝑠))
󵄨󵄨󵄨󵄨 d𝑠

≤ 𝐸
𝛿
(𝑀𝑇
𝛿
) 𝑔
󸀠
(𝜉
𝑛
)
󵄨󵄨󵄨󵄨𝑦𝑛−1 (𝑇) − 𝑢

𝑛 (𝑇)
󵄨󵄨󵄨󵄨

+

𝜅𝑇
𝛿
𝐸𝛿,𝛿 (𝑀𝑇

𝛿
)

𝛿

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝑢
𝑛−1

󵄩󵄩󵄩󵄩

≤ 𝑏𝐸
𝛿
(𝑀𝑇
𝛿
) (

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
𝑛−1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝑢

𝑛−1

󵄩󵄩󵄩󵄩)

+

𝜅𝑇
𝛿
𝐸𝛿,𝛿 (𝑀𝑇

𝛿
)

𝛿

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝑢
𝑛−1

󵄩󵄩󵄩󵄩

≤ 𝑏𝐸
𝛿
(𝑀𝑇
𝛿
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

𝑛−1

󵄩󵄩󵄩󵄩

+ (𝑏𝐸
𝛿
(𝑀𝑇
𝛿
) +

𝜅𝑇
𝛿
𝐸
𝛿,𝛿

(𝑀𝑇
𝛿
)

𝛿
)

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝑢
𝑛−1

󵄩󵄩󵄩󵄩 ,

(76)

where 𝜉
𝑛
is between 𝑢

𝑛
(𝑇) and 𝑦

𝑛−1
(𝑇).

Therefore,

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩 ≤ 𝑏𝐸

𝛿 (𝑀𝑇
𝛿
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑛−1

󵄩󵄩󵄩󵄩 + 󰜚
0

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝑢𝑛−1
󵄩󵄩󵄩󵄩 .

(77)

Because 0 < 𝜅 < 𝛿(1 − 𝑏𝐸
𝛿(𝑀𝑇

𝛿
))/𝑇
𝛿
𝐸𝛿,𝛿(𝑀𝑇

𝛿
), we can

show

0 < 󰜚
0
= 𝑏𝐸
𝛿
(𝑀𝑇
𝛿
) +

𝜅𝑇
𝛿
𝐸𝛿,𝛿 (𝑀𝑇

𝛿
)

𝛿
< 1. (78)
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On the other hand, by (73), we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
𝑛−1

󵄩󵄩󵄩󵄩

= max
𝑡∈𝐽

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑢
𝑛 (0) − 𝑢𝑛−1 (0)) 𝐸𝛿 (𝑀𝑡

𝛿
)

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛿−1

𝐸𝛿,𝛿 (𝑀(𝑡 − 𝑠)
𝛿
)

× (𝑓 (𝑠, 𝑢
𝑛−1 (𝑠)) − 𝑓 (𝑠, 𝑢

𝑛−2 (𝑠))) d𝑠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐸
𝛿
(𝑀𝑇
𝛿
) 𝑔
󸀠
(𝜂
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

𝑛−1

󵄩󵄩󵄩󵄩

+ ∫

𝑇

0

(𝑇 − 𝑠)
𝛿−1

𝐸
𝛿,𝛿

(𝑀𝑇
𝛿
)

×
󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢

𝑛−1 (𝑠)) − 𝑓 (𝑠, 𝑢
𝑛−2 (𝑠))

󵄨󵄨󵄨󵄨 d𝑠

≤ 𝑏𝐸
𝛿 (𝑀𝑇

𝛿
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑛−1

󵄩󵄩󵄩󵄩

+

𝜅𝑇
𝛿
𝐸
𝛿,𝛿

(𝑀𝑇
𝛿
)

𝛿

󵄩󵄩󵄩󵄩𝑢𝑛−1 − 𝑢𝑛−2
󵄩󵄩󵄩󵄩 ,

(79)

where 𝜂
𝑛
is between 𝑢

𝑛
(0) and 𝑢

𝑛−1
(0).

In view of 𝑏 < 1/𝐸
𝛿(𝑀𝑇

𝛿
), we can get

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢𝑛−1
󵄩󵄩󵄩󵄩 ≤

𝜅𝑇
𝛿
𝐸
𝛿,𝛿

(𝑀𝑇
𝛿
)

𝛿 (1 − 𝑏𝐸
𝛿
(𝑀𝑇𝛿))

󵄩󵄩󵄩󵄩𝑢𝑛−1 − 𝑢𝑛−2
󵄩󵄩󵄩󵄩

= 󰜚
1

󵄩󵄩󵄩󵄩𝑢𝑛−1 − 𝑢
𝑛−2

󵄩󵄩󵄩󵄩 .

(80)

It follows that 0 < 𝜅 < 𝛿(1 − 𝑏𝐸
𝛿(𝑀𝑇

𝛿
))/𝑇
𝛿
𝐸𝛿,𝛿(𝑀𝑇

𝛿
) from

0 < 󰜚1 < 1.
By (80), we can easily get

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
𝑛−1

󵄩󵄩󵄩󵄩 ≤ 󰜚
1

󵄩󵄩󵄩󵄩𝑢𝑛−1 − 𝑢
𝑛−2

󵄩󵄩󵄩󵄩

≤ 󰜚
2

1

󵄩󵄩󵄩󵄩𝑢𝑛−2 − 𝑢
𝑛−2

󵄩󵄩󵄩󵄩 ≤ ⋅ ⋅ ⋅ ≤ 󰜚
𝑛−1

1

󵄩󵄩󵄩󵄩𝑢1 − 𝑢
0

󵄩󵄩󵄩󵄩 .

(81)

Substituting (81) into (77), we have

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑢
𝑛

󵄩󵄩󵄩󵄩

≤ 𝑏𝐸
𝛿 (𝑀𝑇

𝛿
) 󰜚
𝑛−1

1

󵄩󵄩󵄩󵄩𝑢1 − 𝑢0
󵄩󵄩󵄩󵄩 + 󰜚
0

󵄩󵄩󵄩󵄩𝑦𝑛−1 − 𝑢𝑛−1
󵄩󵄩󵄩󵄩 .

(82)

It is easy to show that
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 ≤ 𝑏𝐸
𝛿 (𝑀𝑇

𝛿
) (󰜚
𝑛−1

1
+ 󰜚0󰜚
𝑛−2

1
)
󵄩󵄩󵄩󵄩𝑢1 − 𝑢0

󵄩󵄩󵄩󵄩

+ 󰜚
2

0

󵄩󵄩󵄩󵄩𝑦𝑛−2 − 𝑢𝑛−2
󵄩󵄩󵄩󵄩

≤ 𝑏𝐸
𝛿 (𝑀𝑇

𝛿
) (󰜚
𝑛−1

1
+ 󰜚0󰜚
𝑛−2

1
+ 󰜚
2

0
󰜚
𝑛−3

1
)
󵄩󵄩󵄩󵄩𝑢1 − 𝑢0

󵄩󵄩󵄩󵄩

+ 󰜚
3

0

󵄩󵄩󵄩󵄩𝑦𝑛−3 − 𝑢
𝑛−3

󵄩󵄩󵄩󵄩

≤ ⋅ ⋅ ⋅

≤ 𝑏𝐸
𝛿 (𝑀𝑇

𝛿
) (󰜚
𝑛−1

1
+ 󰜚0󰜚
𝑛−2

1
+ 󰜚
2

0
󰜚
𝑛−3

1
+ ⋅ ⋅ ⋅ + 󰜚

𝑛−1

0
)

×
󵄩󵄩󵄩󵄩𝑢1 − 𝑢0

󵄩󵄩󵄩󵄩 + 󰜚
𝑛

0

󵄩󵄩󵄩󵄩𝑦0 − 𝑢0
󵄩󵄩󵄩󵄩

= 𝑏𝐸
𝛿
(𝑀𝑇
𝛿
) (󰜚
𝑛−1

1
+ 󰜚
0
󰜚
𝑛−2

1
+ 󰜚
2

0
󰜚
𝑛−3

1
+ ⋅ ⋅ ⋅ + 󰜚

𝑛−1

0
)

×
󵄩󵄩󵄩󵄩𝑢1 − 𝑢0

󵄩󵄩󵄩󵄩 .

(83)

We claim 󰜚
0 > 󰜚1 from (71).

If 󰜚0 ≤ 󰜚
1
, we have

𝑏𝐸
𝛿
(𝑀𝑇
𝛿
) +

𝜅𝑇
𝛿
𝐸
𝛿,𝛿

(𝑀𝑇
𝛿
)

𝛿
≤

𝜅𝑇
𝛿
𝐸
𝛿,𝛿

(𝑀𝑇
𝛿
)

𝛿 (1 − 𝑏𝐸𝛿 (𝑀𝑇𝛿))
.

(84)

So

𝜅 ≥

𝛿 (1 − 𝑏𝐸
𝛿
(𝑀𝑇
𝛿
))

𝑇𝛿𝐸𝛿,𝛿 (𝑀𝑇𝛿)
, (85)

which is a contradiction to the hypothesis of the theorem.
Therefore, it follows from (78) that

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩

≤

𝑏𝐸
𝛿 (𝑀𝑇

𝛿
) (󰜚
𝑛

0
− 󰜚
𝑛

1
)

󰜚0 − 󰜚1

󵄩󵄩󵄩󵄩𝑢1 − 𝑢
0

󵄩󵄩󵄩󵄩 󳨀→ 0, as 𝑛 󳨀→ ∞.

(86)

By (72) and (86), we can show that
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑢

∗󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑢𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢

∗󵄩󵄩󵄩󵄩 󳨀→ 0, as 𝑛 󳨀→ ∞.

(87)

Then for any initial value 𝑢
0

∈ [𝛽
0
, 𝛼
0
], the sequence {𝑦

𝑛
} is

defined by (69) converging uniformly to the unique solution
𝑢
∗ of the boundary value problem (1) on the [𝛽

0
, 𝛼
0
].

In view of (61), we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑢
∗󵄩󵄩󵄩󵄩 ≤ (

𝜅𝑇
𝛿
𝐸
𝛿,𝛿

(𝑀𝑇
𝛿
)

𝛿 (1 − 𝑎𝐸𝛿 (𝑀𝑇𝛿))
)

𝑛

󵄩󵄩󵄩󵄩𝛼0 − 𝛽
0

󵄩󵄩󵄩󵄩

= 󰜚
𝑛

1

󵄩󵄩󵄩󵄩𝛼0 − 𝛽
0

󵄩󵄩󵄩󵄩 .

(88)

According to (86), we can show

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑢𝑛
󵄩󵄩󵄩󵄩 ≤

𝑏𝐸
𝛿
(𝑀𝑇
𝛿
) (󰜚
𝑛

0
− 󰜚
𝑛

1
)

󰜚
0
− 󰜚
1

󵄩󵄩󵄩󵄩𝛼0 − 𝛽0
󵄩󵄩󵄩󵄩 . (89)
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It is easy to see that

󰜚
0
− 󰜚
1
= 𝑏𝐸
𝛿
(𝑀𝑇
𝛿
) (1 − 󰜚

1
) . (90)

By (88) and (89), we can obtain
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑢

∗󵄩󵄩󵄩󵄩 ≤ 󰜚
𝑛

1

󵄩󵄩󵄩󵄩𝛼0 − 𝛽0
󵄩󵄩󵄩󵄩

+

𝑏𝐸
𝛿 (𝑀𝑇

𝛿
) (󰜚
𝑛

0
− 󰜚
𝑛

1
)

󰜚0 − 󰜚1

󵄩󵄩󵄩󵄩𝛼0 − 𝛽
0

󵄩󵄩󵄩󵄩

= (󰜚
𝑛

1
+

󰜚
𝑛

0
− 󰜚
𝑛

1

1 − 󰜚
1

)
󵄩󵄩󵄩󵄩𝛼0 − 𝛽

0

󵄩󵄩󵄩󵄩

=
󰜚
𝑛

0
− 󰜚
𝑛+1

1

1 − 󰜚
1

󵄩󵄩󵄩󵄩𝛼0 − 𝛽
0

󵄩󵄩󵄩󵄩 .

(91)

Hence, the error estimate of {𝑦
𝑛
} is

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑢
∗󵄩󵄩󵄩󵄩 ≤

󰜚
𝑛

0
− 󰜚
𝑛+1

1

1 − 󰜚
1

󵄩󵄩󵄩󵄩𝛼0 − 𝛽0
󵄩󵄩󵄩󵄩 . (92)

6. Example

We consider the boundary value problem

𝐶
𝐷
3/2

0+
𝑢 (𝑡) −

1

4
𝑢 (𝑡) =

𝑡

10
arctan 𝑢 (𝑡) +

𝑡
2

10
,

𝑢
󸀠
(0) = 0, 𝑢 (0) =

1

5
arctan 𝑢 (1) .

(93)

Let 𝑓(𝑡, 𝑢) = (𝑡/10) arctan 𝑢 + 𝑡
2
/10 and 𝑔(𝑢) =

(1/5) arctan 𝑢.
It is obvious that 𝑀 = 1/4, 𝑇 = 1, 𝛿 = 3/2, and 𝑏 =

sup
𝑢∈R𝑔
󸀠
(𝑢) = 1/5 < 1/𝐸

𝛿
(𝑀𝑇
𝛿
) (≈0.834179). Then (H1)

holds.
We take 𝛽(𝑡) = 0 for 𝑡 ∈ 𝐽.
Hence, 𝛽(0) = 0, 𝑔(𝛽(1)) = 0, and 𝑏

𝛽
(𝑡) = 0. 𝐶𝐷𝛿

0+
𝛽(𝑡) =

0, 𝑓(𝑡, 𝛽(𝑡)) = 0, and then 𝛽(𝑡) is an upper solution of the
boundary value problem (93).

Let 𝛼(𝑡) = 5𝑡
3/2

/6√𝜋 + 5𝑡/8√𝜋 + 35/48√𝜋 ≤ 35/16√𝜋

for 𝑡 ∈ 𝐽.
We have 𝛼

󸀠
(0) = 5/8√𝜋, 𝛼(0) = 35/48√𝜋 ≈ 0.411388,

𝑔(𝛼(1)) = (1/5) arctan(35/16√𝜋) ≈ 0.177966, and 𝑎
𝛼
(𝑡) = 0.

Consider

𝐶
𝐷
𝛿

0+
𝛼 (𝑡) −

1

4
𝛼 (𝑡)

≥
5

8
−

35

4 × 16√𝜋
≈ 0.316459

> 0.188983 ≈ 𝑓(1,
35

16√𝜋
)

≥ 𝑓 (𝑡, 𝛼 (𝑡)) ,

(94)

for 𝑡 ∈ 𝐽. Then 𝛼(𝑡) is a lower solution of the boundary value
problem (93). And 𝛽(𝑡) ≤ 𝛼(𝑡).

It is easy to verify that the (H2) holds. By using
Theorem 17, we know the problem (93) has minimal and
maximal solutions in [𝛽, 𝛼].

Let 𝜅 = 1/10; we know 𝜅 < 𝛿(1 − 𝑏𝐸
𝛿
(𝑀𝑇
𝛿
))/

𝑇
𝛿
𝐸𝛿,𝛿(𝑀𝑇

𝛿
) ≈ 0.905853.

By calculating, we have

󰜚
0
≈ 0.323682, 󰜚

1
≈ 0.110393. (95)

It is obvious that

0 ≤ 𝑓 (𝑡, 𝑥
2
) − 𝑓 (𝑡, 𝑥

1
) ≤

1

10
(𝑥
2
− 𝑥
1
) = 𝜅 (𝑥

2
− 𝑥
1
) ,

for any 𝑥
1
≤ 𝑥
2
, 𝑡 ∈ 𝐽.

(96)

By Theorem 19, we can get the problem (93) has a unique
solution on the [𝛽

0
, 𝛼
0
].

For any initial value 𝑢
0

∈ [𝛽
0
, 𝛼
0
], the sequence {𝑦

𝑛
}

defined by

𝑦
𝑛 (𝑡) =

1

5
arctan (𝑦

𝑛−1 (1)) 𝐸3/2 (
1

4
𝑡
3/2

)

+ ∫

𝑡

0

(𝑡 − 𝑠)
1/2

𝐸
3/2,3/2

(
1

4
(𝑡 − 𝑠)

3/2
)

× (
𝑠

10
arctan𝑦

𝑛−1 (𝑠) +
𝑠
2

10
) d𝑠,

(97)

converging uniformly to the unique solution 𝑢
∗ of the

boundary value problem (93) on the [𝛽
0
, 𝛼
0
], and its error

estimate is

󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑢
∗󵄩󵄩󵄩󵄩 ≤

󰜚
𝑛

0
− 󰜚
𝑛+1

1

1 − 󰜚
1

󵄩󵄩󵄩󵄩𝛼0 − 𝛽0
󵄩󵄩󵄩󵄩 =

35 (󰜚
𝑛

0
− 󰜚
𝑛+1

1
)

16√𝜋 (1 − 󰜚1)
,

(98)

where 𝑦
0
= 𝑢
0
.

We take 𝑢0 = 0. For 𝑛 = 3, its error is not more than
0.046841; for 𝑛 = 5, its error is not more than 0.00492662; for
𝑛 = 8, its error is not more than 0.000167155; for 𝑛 = 10, its
error is not more than 0.0000175132.
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