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For constrained minimization problem of maximum eigenvalue functions, since the objective function is nonsmooth, we can use
the approximate inexact accelerated proximal gradient (AIAPG) method (Wang et al., 2013) to solve its smooth approximation
minimization problem. When we take the function 𝑔(𝑋) = 𝛿

Ω
(𝑋) (Ω := {𝑋 ∈ 𝑆

𝑛
: F(𝑋) = 𝑏,𝑋 ⪰ 0}) in the problem

min{𝜆max(𝑋) + 𝑔(𝑋) : 𝑋 ∈ 𝑆
𝑛
}, where 𝜆max(𝑋) is the maximum eigenvalue function, 𝑔(𝑋) is a proper lower semicontinuous

convex function (possibly nonsmooth) and 𝛿
Ω
(𝑋) denotes the indicator function. But the approximate minimizer generated by

AIAPG method must be contained in Ω otherwise the method will be invalid. In this paper, we will consider the case where the
approximate minimizer cannot be guaranteed in Ω. Thus we will propose two different strategies, respectively, constructing the
feasible solution and designing a new method named relax inexact accelerated proximal gradient (RIAPG) method. It is worth
mentioning that one advantage when compared to the former is that the latter strategy can overcome the drawback. The drawback
is that the required conditions are too strict. Furthermore, the RIAPGmethod inherits the global iteration complexity and attractive
computational advantage of AIAPG method.

1. Introduction

The minimization problem of maximum eigenvalue func-
tions in nonsmooth optimization presents a fascinating
mathematical challenge. Such problems arise in many differ-
ent areas of applied mathematics, especially in engineering
design [1], and also play important roles in enriching blend
of classical mathematical techniques and contemporary opti-
mization theory. The constrained minimization problem of
maximum eigenvalue functions can be transformed into
the minimization problem of the sum of two convex func-
tions. Various methods have been proposed to deal with
such problems, such as in [2], a forward-backward splitting
algorithm was used to solve the minimization problem of
two proper lower semicontinuous convex functions. Besides,
several fixed point algorithms based on proximity operator
were introduced in [3] for ROF denoising model which
is actually the minimization problem of the sum of two
convex functions. More recently, the AIAPG method which
is based on accelerated proximal gradient (APG) method [4]

was introduced in [5] for solving the minimization problem
of the sum of maximum eigenvalue function and proper
lower semicontinuous convex function. If the approximate
minimizer is infeasible, that is, the approximate minimizer
is not strictly contained in the feasible set Ω, the AIAPG
method will not be available. Hence, we design the RIAPG
method which is based on AIAPG method to solve the
smooth approximation problemof constrainedminimization
problem of maximum eigenvalue functions.

We consider the following constrained minimization
problem of the maximum eigenvalue function:

min 𝜆max (𝑋)

s.t. F (𝑋) = 𝑏

𝑋 ⪰ 0,

(𝑃)

where 𝜆max(𝑋) is the maximum eigenvalue function, F :

𝑆
𝑛
→ 𝑅

𝑚 is a linear map, 𝑏 ∈ 𝑅
𝑚, and 𝑋 ⪰ 0 means

𝑋 is a positive semidefinite matrix. 𝑆𝑛 is the space of 𝑛 × 𝑛
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real symmetric matrices.The problem (𝑃) is equivalent to the
following form:

min {𝜆max (𝑋) + 𝛿Ω (𝑋) : 𝑋 ∈ 𝑆
𝑛
} , (𝑃

1
)

where Ω = {𝑋 ∈ 𝑆
𝑛
: F(𝑋) = 𝑏,𝑋 ⪰ 0}, 𝛿

Ω
(𝑋)

denotes the indicator function.Then we consider the smooth
approximation (ℎ

𝜀
∘ 𝜆)(𝑋) [6] to the maximum eigenvalue

function 𝜆max(𝑋) which is a proper, lower semicontinuous,
convex function and∇(ℎ

𝜀
∘𝜆)(𝑋) is Lipschitz continuous.This

thought for dealingwith the problem resembles the technique
used in [7]. Hence, the approximation form of (𝑃

1
) is given by

min {(ℎ
𝜀
∘ 𝜆) (𝑋) : 𝑋 ∈ Ω} . (𝑃

2
)

Problem (𝑃
2
) can be solved by AIAPG method in feasible

case. In infeasible case, we will propose two strategies. On
the one hand, we use infeasible approximate minimizer to
construct feasible solution which satisfies the conditions
required by AIAPG method. On the other hand, we enlarge
the feasible setΩ suitably and present RIAPGmethod to solve
problem (𝑃

2
).

The rest of paper is organized as follows. Section 2
introduces the constructive technique of feasible approx-
imate minimizer that satisfies the requirement of AIAPG
method. Due to the drawback of AIAPG method is that
the required conditions are strict. It makes challenge to
the efficiency of practical performance and the accuracy
of calculation. Hence, the relax inexact accelerated proxi-
mal gradient method will be addressed more formally in
Section 3. Section 4 is devoted to a series of lemmas and
theorems to show the convergence analysis of the method.
Finally, we have a conclusion section.

Notation. For any𝑋,𝑌 in 𝑆𝑛, ⟨𝑋, 𝑌⟩ denotes stand trace inner
product, ‖ ⋅ ‖ and ‖ ⋅ ‖

2
, respectively, stand for Frobenius

norm and spectral norm. F∗ : 𝑅𝑚 → 𝑆
𝑛 is the adjoint

operator of linear operatorF such that ⟨F∗𝑋,𝑌⟩ = ⟨𝑋,F𝑌⟩
for all (𝑋, 𝑌) ∈ 𝑅𝑚 × 𝑆𝑛. To facilitate the latter specification,
we have also given the following notations. Let N

𝑘
be a

self-adjoint positive definite operator that is chosen by the
user. In addition, {𝜁

𝑘
}, {𝜌
𝑘
}, {𝜃
𝑘
} are all the given convergent

sequences of nonnegative numbers such that ∑∞
𝑘=1
𝜁
𝑘
< ∞,

∑
∞

𝑘=1
𝜌
𝑘
< ∞, ∑∞

𝑘=1
𝜃
𝑘
< ∞.

2. Construction of Feasible Solution

Problem (𝑃
2
) can be solved by AIAPG method [5], but

note that the approximate minimizer 𝑋
𝑘
generated by above

method must be feasible; that is, F(𝑋
𝑘
) = 𝑏 and 𝑋

𝑘
⪰ 0.

At the same time, given 𝑌
𝑘
in [5], the approximate solution

(𝑋
𝑘
, 𝑃
𝑘
, 𝑍
𝑘
) should satisfy the KKT optimality conditions.

More precisely

∇ (ℎ
𝜀
∘ 𝜆) (𝑌

𝑘
) +N

𝑘
(𝑋
𝑘
− 𝑌
𝑘
) −F

∗
𝑃
𝑘
− 𝑍
𝑘
=: 𝛿
𝑘
≈ 0,

F (𝑋
𝑘
) = 𝑏,

⟨𝑋
𝑘
, 𝑍
𝑘
⟩ =: 𝜀
𝑘
≈ 0,

𝑋
𝑘
⪰ 0, 𝑍

𝑘
⪰ 0.

(1)

In practice, the positive semidefiniteness of approximate
solution𝑋

𝑘
is easy to stipulate by performing projection onto

𝑆
𝑛

+
, but the vector 𝑅

𝑘
:= F(𝑋

𝑘
) − 𝑏 is usually not exactly

equal to 0. Hence, we present a strategy that uses infeasible
solution 𝑋

𝑘
to construct 𝑋

𝑘
which is a feasible solution

such that (𝑋
𝑘
, 𝑃
𝑘
, 𝑍
𝑘
) satisfies corresponding KKT optimality

conditions.
Suppose (𝑋

𝑘
, 𝑃
𝑘
, 𝑍
𝑘
) satisfies the conditions 𝑋

𝑘
⪰ 0,

𝑍
𝑘
⪰ 0, ‖N−1/2

𝑘
𝛿
𝑘
‖ ≤ 𝜌

𝑘
/√2𝑡
𝑘
, and 𝜀

𝑘
≤ 𝜁
𝑘
/(2𝑡
2

𝑘
), and there

exists 𝑋 ≻ 0 such that F(𝑋) = 𝑏, where 𝑡
1
= 1, 𝑡

𝑘+1
=

(1/2)(1 + √1 + 4𝑡2
𝑘
), F is surjective. Then the constructive

form of feasible solution is given as follows:

𝑋
𝑘
= 𝜆 (𝑋

𝑘
+𝑊
𝑘
) + (1 − 𝜆)𝑋, (2)

where 𝜆 ∈ [0, 1] and𝑊
𝑘
= −F∗(FF∗)

−1
(𝑅
𝑘
).

In the following paragraph, we will show that 𝑋
𝑘
is fea-

sible and satisfies corresponding KKT optimality conditions
for above construction. By the definition of 𝑋

𝑘
,𝑊
𝑘
, and 𝑅

𝑘
,

we have

F (𝑋
𝑘
) = F [𝜆 (𝑋

𝑘
+𝑊
𝑘
) + (1 − 𝜆)𝑋]

= 𝜆F (𝑋
𝑘
+𝑊
𝑘
) + (1 − 𝜆)F (𝑋)

= 𝜆 [F (𝑋
𝑘
) − 𝑅
𝑘
] + (1 − 𝜆) 𝑏 = 𝑏.

(3)

It is easy to get ‖𝑊
𝑘
‖
2
≤ ‖𝑅
𝑘
‖/𝜎min(F) and𝑋𝑘 will be positive

semidefinite whenever 𝜆 = 1 − (‖𝑊
𝑘
‖
2
/(‖𝑊
𝑘
‖
2
+ 𝜆min(𝑋))).

In addition, for𝑋
𝑘
the following results are also valid

0 ≤ ⟨𝑋
𝑘
, 𝑍
𝑘
⟩ ≤ 2𝜀

𝑘
,

󵄩󵄩󵄩󵄩󵄩
N
−1/2

𝑘
𝛿
𝑘

󵄩󵄩󵄩󵄩󵄩
≤

𝜌
𝑘

√2𝑡
𝑘

,

∇ (ℎ
𝜀
∘ 𝜆) (𝑌

𝑘
) +N

𝑘
(𝑋
𝑘
− 𝑌
𝑘
) −F

∗
𝑃
𝑘
− 𝑍
𝑘

= 𝛿
𝑘
+N
𝑘
(𝑋
𝑘
− 𝑋
𝑘
) =: 𝛿

𝑘
.

(4)

But above results were established on the condition of the
requirement of𝑊

𝑘
, that is,

󵄩󵄩󵄩󵄩𝑊𝑘
󵄩󵄩󵄩󵄩2

≤ min
{

{

{

𝜁
𝑘

4𝑡2
𝑘
√𝑛

󵄩󵄩󵄩󵄩𝑍𝑘
󵄩󵄩󵄩󵄩

(1 +
𝜆max (𝑋)

𝜆min (𝑋)
)

−1

,

𝜌
𝑘

2√2𝑛𝑡
𝑘

(𝜆max (N1))
−1/2

(1 +

󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

𝑘

󵄩󵄩󵄩󵄩󵄩2

𝜆min (𝑋)
)

−1

}

}

}

.

(5)

Theproof of above conclusions is similar as in [8] andwe omit
it here.

Though we have succeeded in constructing a feasible
solution 𝑋

𝑘
∈ Ω, the requirement of 𝑊

𝑘
is too stringent

to be difficult for computational efficiency. To overcome
the drawbacks above we propose RIAPG method to solve
problem (𝑃

2
) for which the iterate points 𝑋

𝑘
generated by

method need not be strictly contained inΩ.
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3. A Relax Inexact Accelerated Proximal
Gradient Method

The RIAPG algorithm for solving the problem (𝑃
2
) is

described as follows.
Given a tolerance 𝜀 > 0. Input 𝑌

1
= 𝑋
0
∈ dom(𝛿

Ω
(𝑋)),

𝑡
1
= 1. Set 𝑘 = 1. Iterate the following steps.

Step 1. Find an approximate minimizer

𝑋
𝑘
≈ argmin { (ℎ

𝜀
∘ 𝜆) (𝑌

𝑘
) + ⟨∇ (ℎ

𝜀
∘ 𝜆) (𝑌

𝑘
) , 𝑋 − 𝑌

𝑘
⟩

+
1

2
⟨𝑋 − 𝑌

𝑘
,N
𝑘
(𝑋 − 𝑌

𝑘
)⟩ : 𝑋 ∈ Ω} ,

(6)

where𝑋
𝑘
is allowed to be contained in a suitable enlargement

Ω
𝑘
:= {𝑋 ∈ 𝑆

𝑛
: ‖F(𝑋) − 𝑏‖ ≤ 𝜃

𝑘
/𝑡
2

𝑘
, 𝑋 ⪰ 0} of Ω, and the

sequence {𝜃
𝑘
/𝑡
2

𝑘
} is monotonically decreasing. Consider

∇ (ℎ
𝜀
∘ 𝜆) (𝑌

𝑘
) = 𝑄Diag [∇ℎ

𝜀 (𝜆)] 𝑄
⊤
= 𝑄Diag [𝛼 (𝜀, 𝜆)] 𝑄⊤,

𝛼
𝑖 (𝜀, 𝜆) =

𝑒
𝜆𝑖/𝜀

∑
𝑛

𝑗=1
𝑒
𝜆𝑗/𝜀

=
𝑒
(𝜆𝑖−𝜆1)/𝜀

∑
𝑛

𝑗=1
𝑒
(𝜆𝑗−𝜆1)/𝜀

,

where 𝑖 = 1, . . . , 𝑛.
(7)

Step 2. Compute 𝑡
𝑘+1

= (1/2)(1 + √1 + 4𝑡2
𝑘
).

Step 3. Compute 𝑌
𝑘+1

= 𝑋
𝑘
+ ((𝑡
𝑘
− 1)/𝑡

𝑘+1
)(𝑋
𝑘
− 𝑋
𝑘−1
).

Let 𝑙
𝑘
(𝑋) = (ℎ

𝜀
∘𝜆)(𝑌
𝑘
)+⟨∇(ℎ

𝜀
∘𝜆)(𝑌
𝑘
), 𝑋−𝑌

𝑘
⟩+(1/2)⟨𝑋−

𝑌
𝑘
,N
𝑘
(𝑋 − 𝑌

𝑘
)⟩. WhenΩ

𝑘
= Ω the dual of (6) is given by

max {𝑙
𝑘 (𝑋) − ⟨∇𝑙𝑘 (𝑋) , 𝑋⟩ + ⟨𝑏, 𝑃⟩ : ∇𝑙𝑘 (𝑋)

−F
∗
𝑃 − 𝑍 = 0, 𝑍 ⪰ 0,𝑋 ⪰ 0} .

(8)

We assume that the approximate minimizer 𝑋
𝑘
in (6) and

its corresponding dual variables (𝑃
𝑘
, 𝑍
𝑘
) satisfy the following

conditions:

(ℎ
𝜀
∘ 𝜆) (𝑋

𝑘
) ≤ 𝑙
𝑘
(𝑋
𝑘
) +

𝜁
𝑘

(2𝑡2
𝑘
)

󵄨󵄨󵄨󵄨⟨𝑙𝑘 (𝑋𝑘) , 𝑋𝑘⟩ + ⟨𝑏, 𝑃𝑘⟩
󵄨󵄨󵄨󵄨 ≤ Δ,

∇𝑙
𝑘
(𝑋
𝑘
) −F

∗
𝑃
𝑘
− 𝑍
𝑘
= 𝛿
𝑘

with 󵄩󵄩󵄩󵄩󵄩N
−1/2

𝑘
𝛿
𝑘

󵄩󵄩󵄩󵄩󵄩
≤

𝜌
𝑘

√2𝑡
𝑘

,

⟨𝑋
𝑘
, 𝑍
𝑘
⟩ ≤

𝜁
𝑘

(2𝑡2
𝑘
)
,

󵄩󵄩󵄩󵄩𝑅𝑘
󵄩󵄩󵄩󵄩 ≤

𝜃
𝑘

𝑡2
𝑘

, 𝑋
𝑘
⪰ 0, 𝑍

𝑘
⪰ 0,

(9)

where Δ is a given positive number and we also assume that
the sequence {𝜌

𝑘
/𝑡
𝑘
} is monotonically decreasing.

Let 𝑋
∗
be the optimal solution of (𝑃

2
), and the dual of

(𝑃
2
) is given as follows:

max {(ℎ
𝜀
∘ 𝜆) (𝑋) − ⟨∇ (ℎ𝜀 ∘ 𝜆) (𝑋) , 𝑋⟩

+ ⟨𝑏, 𝑃⟩ : ∇ (ℎ𝜀 ∘ 𝜆) (𝑋) −F
∗
𝑃 − 𝑍

= 0, 𝑍 ⪰ 0,𝑋 ⪰ 0} .

(10)

Let (𝑋
∗
, 𝑃
∗
, 𝑍
∗
) be the optimal solution of above dual

problem.
To facilitate the later proof, we define the following quan-

tities:

V
𝑘
= (ℎ
𝜀
∘ 𝜆) (𝑋

𝑘
) − (ℎ

𝜀
∘ 𝜆) (𝑋

∗
) ,

𝑢
𝑘
= 𝑡
𝑘
𝑋
𝑘
− (𝑡
𝑘
− 1)𝑋

𝑘−1
− 𝑋
∗
,

𝑎
𝑘
= 𝑡
2

𝑘
V
𝑘
, 𝑏

𝑘
=
1

2
⟨𝑢
𝑘
,N
𝑘
(𝑢
𝑘
)⟩ ≥ 0,

𝑒
𝑘
= 𝑡
𝑘
⟨𝛿
𝑘
, 𝑢
𝑘
⟩ ,

𝜂
𝑘
= ⟨𝑃
𝑘
, 𝑡
2

𝑘
𝑅
𝑘
− 𝑡
2

𝑘−1
𝑅
𝑘−1
⟩ , 𝜂

1
= ⟨𝑃
1
, 𝑅
1
⟩ ,

𝜒
𝑘
=
󵄩󵄩󵄩󵄩𝑃𝑘−1 − 𝑃𝑘

󵄩󵄩󵄩󵄩 𝜃𝑘, 𝜒
1
= 0,

𝜏 =
1

2
⟨𝑋
0
− 𝑋
∗
,N
1
(𝑋
0
− 𝑋
∗
)⟩ , 𝜌

𝑘
=

𝑘

∑

𝑗=1

𝜌
𝑗
,

𝜁
𝑘
=

𝑘

∑

𝑗=1

(𝜁
𝑗
+ 𝜌
2

𝑗
) .

(11)

It should be noted that comparing to the quantities of
AIAPGmethod, 𝑎

𝑘
and V
𝑘
heremay be negative since the lack

of the feasibility of𝑋
𝑘
.

4. Convergence Analysis

In the following paragraphs, a series of lemmas and theorems
will be given to specify the convergence analysis of the RIAPG
method. We should mention that the lack of the feasibility of
𝑋
𝑘
introduces nontrivial technical difficulties in the proof of

the convergence.

Lemma 1. Given𝑌
𝑘
∈ 𝑆
𝑛 and a positive definite linear operator

N
𝑘
on 𝑆𝑛 such that the conditions in (9) hold, then for all 𝑋 ∈

𝑆
𝑛

+
, we have

(ℎ
𝜀
∘ 𝜆) (𝑋) − (ℎ𝜀 ∘ 𝜆) (𝑋𝑘)

≥
1

2
⟨𝑋
𝑘
− 𝑌
𝑘
,N
𝑘
(𝑋
𝑘
− 𝑌
𝑘
)⟩

+ ⟨𝑌
𝑘
− 𝑋,N

𝑘
(𝑋
𝑘
− 𝑌
𝑘
)⟩

+ ⟨𝛿
𝑘
+F
∗
𝑃
𝑘
, 𝑋 − 𝑋

𝑘
⟩ −

𝜁
𝑘

𝑡2
𝑘

.

(12)
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Proof. Noting the first inequality of (9), we have

(ℎ
𝜀
∘ 𝜆) (𝑋) − (ℎ𝜀 ∘ 𝜆) (𝑋𝑘)

≥ (ℎ
𝜀
∘ 𝜆) (𝑋) − 𝑙𝑘 (𝑋𝑘) −

𝜁
𝑘

2𝑡2
𝑘

= (ℎ
𝜀
∘ 𝜆) (𝑋) − (ℎ𝜀 ∘ 𝜆) (𝑌𝑘)

− ⟨∇ (ℎ
𝜀
∘ 𝜆) (𝑌

𝑘
) , 𝑋
𝑘
− 𝑌
𝑘
⟩

−
1

2
⟨𝑋
𝑘
− 𝑌
𝑘
,N
𝑘
(𝑋
𝑘
− 𝑌
𝑘
)⟩ −

𝜁
𝑘

2𝑡2
𝑘

.

(13)

By the convexity of (ℎ
𝜀
∘ 𝜆)(𝑋), we have

(ℎ
𝜀
∘ 𝜆) (𝑋) − (ℎ𝜀 ∘ 𝜆) (𝑌𝑘) ≥ ⟨∇ (ℎ𝜀 ∘ 𝜆) (𝑌𝑘) , 𝑋 − 𝑌𝑘⟩ .

(14)

Then,

(ℎ
𝜀
∘ 𝜆) (𝑋) − (ℎ𝜀 ∘ 𝜆) (𝑋𝑘)

≥ ⟨∇ (ℎ
𝜀
∘ 𝜆) (𝑌

𝑘
) , 𝑋 − 𝑋

𝑘
⟩

−
1

2
⟨𝑋
𝑘
− 𝑌
𝑘
,N
𝑘
(𝑋
𝑘
− 𝑌
𝑘
)⟩ −

𝜁
𝑘

2𝑡2
𝑘

.

(15)

Since ∇𝑙
𝑘
(𝑋
𝑘
) = ∇(ℎ

𝜀
∘ 𝜆)(𝑌

𝑘
) +N

𝑘
(𝑋
𝑘
− 𝑌
𝑘
) and the third

inequality of (9), we have

(ℎ
𝜀
∘ 𝜆) (𝑋) − (ℎ𝜀 ∘ 𝜆) (𝑋𝑘)

≥ ⟨𝛿
𝑘
+F
∗
𝑃
𝑘
+ 𝑍
𝑘
−N
𝑘
(𝑋
𝑘
− 𝑌
𝑘
) , 𝑋 − 𝑋

𝑘
⟩

−
1

2
⟨𝑋
𝑘
− 𝑌
𝑘
,N
𝑘
(𝑋
𝑘
− 𝑌
𝑘
)⟩ −

𝜁
𝑘

2𝑡2
𝑘

= ⟨𝛿
𝑘
+F
∗
𝑃
𝑘
, 𝑋 − 𝑋

𝑘
⟩ + ⟨𝑍

𝑘
, 𝑋⟩

− ⟨N
𝑘
(𝑋
𝑘
− 𝑌
𝑘
) , 𝑋 − 𝑋

𝑘
⟩

−
1

2
⟨𝑋
𝑘
− 𝑌
𝑘
,N
𝑘
(𝑋
𝑘
− 𝑌
𝑘
)⟩ −

𝜁
𝑘

2𝑡2
𝑘

− ⟨𝑍
𝑘
, 𝑋
𝑘
⟩ .

(16)

Then the required result is proved by considering the fact that
⟨𝑍
𝑘
, 𝑋⟩ ≥ 0 and ⟨𝑋

𝑘
, 𝑍
𝑘
⟩ ≤ 𝜁
𝑘
/(2𝑡
2

𝑘
).

Lemma 2. Suppose thatN
𝑘−1

⪰N
𝑘
≻ 0, for all 𝑘. Then

(i) 𝑎
𝑘−1

+ 𝑏
𝑘−1

≥ 𝑎
𝑘
+ 𝑏
𝑘
− 𝑒
𝑘
− 𝜁
𝑘
− 𝜂
𝑘
;

(ii) in addition, the conditions in (9) are satisfied for all 𝑘.
Then

𝑎
𝑘
+ 𝑏
𝑘
≤ (√𝜏 + 𝜌

𝑘
)
2

+
󵄩󵄩󵄩󵄩𝑃𝑘
󵄩󵄩󵄩󵄩 𝜃𝑘 + 2 (𝜁𝑘 + 𝜒𝑘 + 𝐽𝑘) ,

(17)

where 𝐽
𝑘
= ∑
𝑘

𝑗=1
𝜌
𝑗√𝐴𝑗,𝐴𝑗 = ‖𝑃𝑗‖𝜃𝑗 + 𝑎∗𝑗 , 𝑎

∗

𝑗
= max{0, −𝑎

𝑗
}.

Proof. (i) According to Lemma 1, taking𝑋 = 𝑋
𝑘−1

in (12), we
have

V
𝑘−1

− V
𝑘
≥
1

2
⟨𝑋
𝑘
− 𝑌
𝑘
,N
𝑘
(𝑋
𝑘
− 𝑌
𝑘
)⟩

+ ⟨𝑌
𝑘
− 𝑋
𝑘−1
,N
𝑘
(𝑋
𝑘
− 𝑌
𝑘
)⟩

+ ⟨𝛿
𝑘
+F
∗
𝑃
𝑘
, 𝑋
𝑘−1

− 𝑋
𝑘
⟩ −

𝜁
𝑘

𝑡2
𝑘

.

(18)

Similarly, taking𝑋 = 𝑋
∗
in (12), we have

−V
𝑘
≥
1

2
⟨𝑋
𝑘
− 𝑌
𝑘
,N
𝑘
(𝑋
𝑘
− 𝑌
𝑘
)⟩

+ ⟨𝑌
𝑘
− 𝑋
∗
,N
𝑘
(𝑋
𝑘
− 𝑌
𝑘
)⟩

+ ⟨𝛿
𝑘
+F
∗
𝑃
𝑘
, 𝑋
∗
− 𝑋
𝑘
⟩ −

𝜁
𝑘

𝑡2
𝑘

.

(19)

By multiplying (18) throughout by 𝑡
𝑘
− 1 and adding that to

(19), we have
(𝑡
𝑘
− 1) V

𝑘−1
− 𝑡
𝑘
V
𝑘

≥
𝑡
𝑘

2
⟨𝑋
𝑘
− 𝑌
𝑘
,N
𝑘
(𝑋
𝑘
− 𝑌
𝑘
)⟩

+ ⟨𝑡
𝑘
𝑌
𝑘
− (𝑡
𝑘
− 1)𝑋

𝑘−1
− 𝑋
∗
,N
𝑘
(𝑋
𝑘
− 𝑌
𝑘
)⟩

− ⟨𝛿
𝑘
+F
∗
𝑃
𝑘
, 𝑡
𝑘
𝑋
𝑘
− (𝑡
𝑘
− 1)𝑋

𝑘−1
− 𝑋
∗
⟩ −

𝜁
𝑘

𝑡
𝑘

.

(20)

In addition, by multiplying (20) throughout by 𝑡
𝑘
, and using

𝑡
2

𝑘−1
= 𝑡
2

𝑘
− 𝑡
𝑘
, we have

𝑎
𝑘−1

− 𝑎
𝑘

≥
𝑡
2

𝑘

2
⟨𝑋
𝑘
− 𝑌
𝑘
,N
𝑘
(𝑋
𝑘
− 𝑌
𝑘
)⟩

+ 𝑡
𝑘
⟨𝑡
𝑘
𝑌
𝑘
− (𝑡
𝑘
− 1)𝑋

𝑘−1
− 𝑋
∗
,N
𝑘
(𝑋
𝑘
− 𝑌
𝑘
)⟩

− ⟨𝛿
𝑘
+F
∗
𝑃
𝑘
, 𝑡
2

𝑘
𝑋
𝑘
− 𝑡
2

𝑘−1
𝑋
𝑘−1

− 𝑡
𝑘
𝑋
∗
⟩ − 𝜁
𝑘

≥
1

2
⟨𝑢
𝑘
,N
𝑘
𝑢
𝑘
⟩ −

1

2
⟨𝑢
𝑘−1
,N
𝑘
𝑢
𝑘−1
⟩

− ⟨𝛿
𝑘
+F
∗
𝑃
𝑘
, 𝑡
𝑘
𝑢
𝑘
⟩ − 𝜁
𝑘

≥ 𝑏
𝑘
− 𝑏
𝑘−1

− 𝑒
𝑘
− ⟨F
∗
𝑃
𝑘
, 𝑡
𝑘
𝑢
𝑘
⟩ − 𝜁
𝑘
.

(21)

Note that the second inequality above follows the fact that
the definition of 𝑌

𝑘
and 𝑡2
𝑘
𝑋
𝑘
− 𝑡
2

𝑘−1
𝑋
𝑘−1
− 𝑡
𝑘
𝑋
∗
= 𝑡
𝑘
𝑢
𝑘
. Since

N
𝑘−1

⪰N
𝑘
≻ 0, 𝑡2
𝑘−1

= 𝑡
2

𝑘
− 𝑡
𝑘
and (11), we have

⟨F
∗
𝑃
𝑘
, 𝑡
𝑘
𝑢
𝑘
⟩

= ⟨𝑃
𝑘
,F (𝑡
𝑘
𝑢
𝑘
)⟩

= ⟨𝑃
𝑘
, 𝑡
2

𝑘
(F (𝑋

𝑘
) − 𝑏) − 𝑡

2

𝑘−1
(F (𝑋

𝑘−1
) − 𝑏)⟩

= ⟨𝑃
𝑘
, 𝑡
2

𝑘
𝑅
𝑘
− 𝑡
2

𝑘−1
𝑅
𝑘−1
⟩ = 𝜂
𝑘
.

(22)

Then the result (i) is proved.
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(ii) We have |𝑒
𝑘
| = |𝑡
𝑘
⟨𝛿
𝑘
, 𝑢
𝑘
⟩| ≤ ‖N

−1/2

𝑘
𝛿
𝑘
‖‖N
1/2

𝑘
𝑢
𝑘
‖𝑡
𝑘
≤

𝜌
𝑘
‖𝐻
1/2

𝑘
𝑢
𝑘
‖/√2 = 𝜌

𝑘
√𝑏
𝑘
.

First, we show that 𝑎
1
+𝑏
1
≤ 𝜏+ |⟨𝑃

1
, 𝑅
1
⟩|+𝜌
1
√𝑏
1
+𝜁
1
. As

𝑎
1
= (ℎ
𝜀
∘𝜆)(𝑋

1
)−(ℎ
𝜀
∘𝜆)(𝑋

∗
), 𝑏
1
= (1/2)⟨𝑋

1
−𝑋
∗
,N
1
(𝑋
1
−

𝑋
∗
)⟩, 𝑌
1
= 𝑋
0
, 𝑡
1
= 1. By applying the Lemma 1, taking𝑋 =

𝑋
∗
we have

−𝑎
1
= (ℎ
𝜀
∘ 𝜆) (𝑋

∗
) − (ℎ

𝜀
∘ 𝜆) (𝑋

1
)

≥
1

2
⟨𝑋
1
− 𝑌
1
,N
1
(𝑋
1
− 𝑌
1
)⟩

+ ⟨𝑌
1
− 𝑋
∗
,N
1
(𝑋
1
− 𝑌
1
)⟩

+ ⟨𝛿
1
+F
∗
𝑃
1
, 𝑋
∗
− 𝑋
1
⟩ −

𝜁
1

𝑡2
1

=
1

2
⟨𝑋
1
− 𝑋
∗
,N
1
(𝑋
1
− 𝑋
∗
)⟩

−
1

2
⟨𝑌
1
− 𝑋
∗
,N
1
(𝑌
1
− 𝑋
∗
)⟩

+ ⟨𝛿
1
+F
∗
𝑃
1
, 𝑋
∗
− 𝑋
1
⟩ − 𝜁
1

= 𝑏
1
− 𝜏 + ⟨𝛿

1
, 𝑋
∗
− 𝑋
1
⟩ + ⟨F

∗
𝑃
1
, 𝑋
∗
− 𝑋
1
⟩ − 𝜁
1
.

(23)

Since ‖N−1/2
1

𝛿
1
‖ ≤ 𝜌
1
/√2 and 𝑒

1
= ⟨𝛿
1
, 𝑋
1
− 𝑋
∗
⟩, we have

𝑎
1
+ 𝑏
1
≤ 𝜏 − 𝑒

1
+ ⟨𝑃
1
,F (𝑋

∗
− 𝑋
1
)⟩ + 𝜁

1

≤ 𝜏 +
󵄨󵄨󵄨󵄨⟨𝑃1, 𝑅1⟩

󵄨󵄨󵄨󵄨 + 𝜌1
√𝑏
1
+ 𝜁
1
.

(24)

Next we will show

𝑎
𝑘
+ 𝑏
𝑘
≤ 𝜏 +

󵄨󵄨󵄨󵄨󵄨
⟨𝑃
𝑘
, 𝑡
2

𝑘
𝑅
𝑘
⟩
󵄨󵄨󵄨󵄨󵄨
+ 𝑠
𝑘
, (25)

where 𝑠
𝑘
= ∑
𝑘

𝑗=1
𝜌
𝑗√𝑏𝑗 + ∑

𝑘

𝑗=1
𝜁
𝑗
+ ∑
𝑘

𝑗=1
𝜒
𝑗
. By (i), we can get

𝜏 ≥ 𝑎
1
+ 𝑏
1
− 𝜌
1
√𝑏
1
− 𝜁
1
− 𝜂
1

≥ 𝑎
2
+ 𝑏
2
− 𝑒
2
− 𝜁
2
− 𝜂
2
− 𝜌
1
√𝑏
1
− 𝜁
1
− 𝜂
1

≥ 𝑎
2
+ 𝑏
2
− 𝜌
2
√𝑏
2
− 𝜌
1
√𝑏
1
− 𝜁
1
− 𝜁
2
− 𝜂
1
− 𝜂
2

≥ 𝑎
𝑘
+ 𝑏
𝑘
−

𝑘

∑

𝑗=1

𝜌
𝑗
√𝑏
𝑗
−

𝑘

∑

𝑗=1

𝜁
𝑗
−

𝑘

∑

𝑗=1

𝜂
𝑗
.

(26)

We use the fact that
𝑘

∑

𝑗=1

𝜂
𝑗
= ⟨𝑃
𝑘
, 𝑡
2

𝑘
𝑅
𝑘
⟩ +

𝑘−1

∑

𝑗=1

⟨𝑃
𝑗
− 𝑃
𝑗+1
, 𝑡
2

𝑗
𝑅
𝑗
⟩

≤
󵄨󵄨󵄨󵄨󵄨
⟨𝑃
𝑘
, 𝑡
2

𝑘
𝑅
𝑘
⟩
󵄨󵄨󵄨󵄨󵄨
+

𝑘−1

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑃
𝑗
− 𝑃
𝑗+1

󵄩󵄩󵄩󵄩󵄩
𝑡
2

𝑗

⋅
𝜃
𝑘

𝑡2
𝑗

=
󵄨󵄨󵄨󵄨󵄨
⟨𝑃
𝑘
, 𝑡
2

𝑘
𝑅
𝑘
⟩
󵄨󵄨󵄨󵄨󵄨
+

𝑘

∑

𝑗=1

𝜒
𝑗
;

(27)

consequently, (25) holds. Hence

𝑏
𝑘
≤ 𝜏
𝑘
+ 𝑠
𝑘
,

where 𝜏
𝑘
:= 𝜏 +

󵄨󵄨󵄨󵄨󵄨
⟨𝑃
𝑘
, 𝑡
2

𝑘
𝑅
𝑘
⟩
󵄨󵄨󵄨󵄨󵄨
− 𝑎
𝑘
≤ 𝜏 + 𝐴

𝑘
.

(28)

Then we can get

𝑠
𝑘
= 𝑠
𝑘−1

+ 𝜌
𝑘
√𝑏
𝑘
+ 𝜁
𝑘
+ 𝜒
𝑘

≤ 𝑠
𝑘−1

+ 𝜌
𝑘√𝜏𝑘 + 𝑠𝑘 + 𝜁𝑘 + 𝜒𝑘.

(29)

According to (28), we have 𝜏
1
≥ 𝑏
1
− 𝜌
1
√𝑏
1
− 𝜁
1
; this implies

√𝑏
1
≤
1

2
(𝜌
1
+ √𝜌2
1
+ 4 (𝜏

1
+ 𝜁
1
)) ≤ 𝜌

1
+ √𝜏
1
+ 𝜁
1
, (30)

and then

𝑠
1
= 𝜌
1
√𝑏
1
+ 𝜁
1
≤ 𝜌
1
(𝜌
1
+ √𝜏
1
+ 𝜁
1
) + 𝜁
1

≤ 𝜌
2

1
+ 𝜁
1
+ 𝜌
1
(√𝜏1 + √𝜁1) .

(31)

Adding 𝜏
𝑘
to both sides of (29) and moving the terms, we get

(𝜏
𝑘
+ 𝑠
𝑘
) − 𝜌
𝑘√𝜏𝑘 + 𝑠𝑘 − (𝜏𝑘 + 𝑠𝑘−1 + 𝜁𝑘 + 𝜒𝑘) ≤ 0; (32)

this implies

√𝜏𝑘 + 𝑠𝑘 ≤
1

2
[𝜌
𝑘
+ √𝜌2
𝑘
+ 4 (𝜏

𝑘
+ 𝑠
𝑘−1

+ 𝜁
𝑘
+ 𝜒
𝑘
)] ; (33)

thus,

𝑠
𝑘
≤ 𝑠
𝑘−1

+
1

2
𝜌
𝑘
[𝜌
𝑘
+ √𝜌2
𝑘
+ 4 (𝜏

𝑘
+ 𝑠
𝑘−1

+ 𝜁
𝑘
+ 𝜒
𝑘
)]

+ 𝜁
𝑘
+ 𝜒
𝑘

≤ 𝑠
𝑘−1

+
1

2
𝜌
2

𝑘
+
1

2
𝜌
𝑘
√𝜌2
𝑘
+ 4 (𝜏 + 𝐴

𝑘
+ 𝑠
𝑘−1

+ 𝜁
𝑘
+ 𝜒
𝑘
)

+ 𝜁
𝑘
+ 𝜒
𝑘

≤ 𝑠
𝑘−1

+ (𝜌
2

𝑘
+ 𝜁
𝑘
) + 𝜒
𝑘
+ 𝜌
𝑘
√𝜏 + 𝐴

𝑘

+ 𝜌
𝑘
√𝑠
𝑘−1

+ 𝜁
𝑘
+ 𝜒
𝑘

≤ 𝑠
1
+

𝑘

∑

𝑗=2

(𝜌
2

𝑗
+ 𝜁
𝑗
) +

𝑘

∑

𝑗=2

𝜒
𝑗

+

𝑘

∑

𝑗=2

𝜌
𝑗√𝜏 + 𝐴𝑗 +

𝑘

∑

𝑗=2

𝜌
𝑗
√𝑠
𝑗−1
+ 𝜁
𝑗
+ 𝜒
𝑗

≤

𝑘

∑

𝑗=1

(𝜌
2

𝑗
+ 𝜁
𝑗
) +

𝑘

∑

𝑗=1

𝜒
𝑗
+

𝑘

∑

𝑗=1

𝜌
𝑗
√𝜏

+

𝑘

∑

𝑗=1

𝜌
𝑗√𝐴𝑗 +

𝑘

∑

𝑗=1

𝜌
𝑗√𝑠𝑗

≤ 𝜁
𝑘
+ 𝜒
𝑘
+ 𝜌
𝑘
√𝜏 + 𝐽

𝑘
+ 𝜌
𝑘
√𝑠𝑘.

(34)
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In the last two inequalities, we use the fact that 𝑠
𝑗−1
+𝜁
𝑗
+𝜒
𝑗
≤

𝑠
𝑗
and 0 ≤ 𝑠

1
≤ 𝑠
2
≤ ⋅ ⋅ ⋅ ≤ 𝑠

𝑘
.

Let 𝜔
𝑘
:= 𝜁
𝑘
+ 𝜒
𝑘
+ 𝐽
𝑘
+ 𝜌
𝑘
√𝜏; then we have √𝑠

𝑘
≤

(1/2)(𝜌
𝑘
+ √𝜌
2

𝑘
+ 4𝜔
𝑘
) which implies

𝑠
𝑘
≤ 𝜌
2

𝑘
+ 𝜔
𝑘
. (35)

The result (ii) follows from (35), (25), and the fact that
|⟨𝑃
𝑘
, 𝑡
2

𝑘
𝑅
𝑘
⟩| ≤ ‖𝑃

𝑘
‖𝜃
𝑘
.

Lemma 3. (i) Suppose that there exists (𝑋󸀠, 𝑃󸀠, 𝑍󸀠) such that

F (𝑋
󸀠
) = 𝑏, 𝑋

󸀠
⪰ 0,

∇ (ℎ
𝜀
∘ 𝜆) (𝑋

󸀠
) = F

∗
𝑃
󸀠
+ 𝑍
󸀠
, 𝑍
󸀠
≻ 0.

(36)

If the sequence {(ℎ
𝜀
∘ 𝜆)(𝑋

𝑘
)} is bounded from above, then the

sequence {𝑋
𝑘
} is bounded.

(ii) Suppose thatN
𝑘−1

⪰N
𝑘
≻ 0 for all 𝑘, {𝑋

𝑘
} is bounded,

and there exists𝑋 such that

F (𝑋) = 𝑏, 𝑋 ⪰ 0. (37)

Then the sequence {𝑍
𝑘
} is bounded. In addition, the sequence

{𝑃
𝑘
} is also bounded.

Proof. (i) By using the convexity of (ℎ
𝜀
∘ 𝜆)(⋅), 𝑋

𝑘
∈ Ω
𝑘
, and

monotonicity of the sequence of {𝜃
𝑘
/𝑡
2

𝑘
}, we have

(ℎ
𝜀
∘ 𝜆) (𝑋

󸀠
) − (ℎ

𝜀
∘ 𝜆) (𝑋

𝑘
)

≤ ⟨∇ (ℎ
𝜀
∘ 𝜆) (𝑋

󸀠
) , 𝑋
󸀠
− 𝑋
𝑘
⟩ = ⟨F

∗
𝑃
󸀠
+ 𝑍
󸀠
, 𝑋
󸀠
− 𝑋
𝑘
⟩

= ⟨𝑃
󸀠
,F (𝑋

󸀠
) −F (𝑋

𝑘
)⟩ + ⟨𝑍

󸀠
, 𝑋
󸀠
⟩ − ⟨𝑍

󸀠
, 𝑋
𝑘
⟩

≤
󵄩󵄩󵄩󵄩󵄩
𝑃
󸀠󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑏 −F (𝑋
𝑘
)
󵄩󵄩󵄩󵄩 + ⟨𝑍

󸀠
, 𝑋
󸀠
⟩ − ⟨𝑍

󸀠
, 𝑋
𝑘
⟩

≤
󵄩󵄩󵄩󵄩󵄩
𝑃
󸀠󵄩󵄩󵄩󵄩󵄩
𝜃
1
+ ⟨𝑍
󸀠
, 𝑋
󸀠
⟩ − ⟨𝑍

󸀠
, 𝑋
𝑘
⟩ .

(38)

Thus

𝜆min (𝑍
󸀠
) 𝑇
𝑟
(𝑋
𝑘
)

≤ ⟨𝑋
𝑘
, 𝑍
󸀠
⟩

≤
󵄩󵄩󵄩󵄩󵄩
𝑃
󸀠󵄩󵄩󵄩󵄩󵄩
𝜃
1
+ ⟨𝑍
󸀠
, 𝑋
󸀠
⟩ − (ℎ

𝜀
∘ 𝜆) (𝑋

󸀠
) + (ℎ

𝜀
∘ 𝜆) (𝑋

𝑘
) .

(39)

Then the required result is proved.

(ii) Noting (9) and monotonicity of the sequence of
{𝜌
𝑘
/𝑡
𝑘
}, we have

𝜆min (𝑋)𝑇𝑟 (𝑍𝑘)

≤ ⟨𝑋, 𝑍
𝑘
⟩

= ⟨𝑋, ∇𝑙
𝑘
(𝑋
𝑘
) −F

∗
𝑃
𝑘
− 𝛿
𝑘
⟩

= (⟨𝑋
𝑘
, ∇𝑙
𝑘
(𝑋
𝑘
)⟩ − ⟨𝑏, 𝑃

𝑘
⟩)

+ ⟨𝑋 − 𝑋
𝑘
, ∇𝑙
𝑘
(𝑋
𝑘
)⟩ − ⟨𝑋, 𝛿

𝑘
⟩

≤ Δ + ⟨𝑋 − 𝑋
𝑘
, ∇ (ℎ
𝜀
∘ 𝜆) (𝑌

𝑘
) +N

𝑘
(𝑋
𝑘
− 𝑌
𝑘
)⟩

+ ⟨N
1/2

𝑘
𝑋,N
−1/2

𝑘
𝛿
𝑘
⟩

≤ Δ +
󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

𝑘

󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩∇ (ℎ𝜀 ∘ 𝜆) (𝑌𝑘) +N
𝑘
(𝑋
𝑘
− 𝑌
𝑘
)
󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩󵄩
N
1/2

𝑘
𝑋
󵄩󵄩󵄩󵄩󵄩
𝜌
1

√2
.

(40)

Then that the sequence {𝑌
𝑘
} is bounded follows from the fact

that {𝑋
𝑘
} is bounded. By the continuity of ∇((ℎ

𝜀
∘ 𝜆)) and the

fact thatN
1
⪰N
𝑘
≻ 0, the sequence {‖∇(ℎ

𝜀
∘𝜆)(𝑌
𝑘
)+N
𝑘
(𝑋
𝑘
−

𝑌
𝑘
)‖} is also bounded.
Next, we will show that {𝑃

𝑘
} is bounded. Take F∘ =

(FF∗)
−1
F and we can get 𝑃

𝑘
= F∘(∇𝑙

𝑘
(𝑋
𝑘
) −𝑍
𝑘
−𝛿
𝑘
) from

(9). Hence

󵄩󵄩󵄩󵄩𝑃𝑘
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩F
∘󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩∇𝑙𝑘 (𝑋𝑘) − 𝑍𝑘 − 𝛿𝑘

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩F
∘󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩∇ (ℎ𝜀 ∘ 𝜆) (𝑌𝑘) +N

𝑘
(𝑋
𝑘
− 𝑌
𝑘
)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑍𝑘
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝛿𝑘
󵄩󵄩󵄩󵄩) .

(41)

So we have ‖𝛿
𝑘
‖ ≤ √𝜆max(N1)‖N

−1/2

𝑘
𝛿
𝑘
‖ ≤ √𝜆max(N)1𝜌1/

√2 directly from 𝜆max(N1)𝐼 ⪰ N
1
⪰ N

𝑘
. Then the

boundedness of {𝑃
𝑘
} is proved by using the fact that the

sequence {‖∇(ℎ
𝜀
∘ 𝜆)(𝑌

𝑘
) + N

𝑘
(𝑋
𝑘
− 𝑌
𝑘
)‖} and {𝑍

𝑘
} are

bounded.

Lemma 4. For all 𝑘 ≥ 1, we have

0 ≤ (ℎ
𝜀
∘ 𝜆) (𝑋

∗
) − (ℎ

𝜀
∘ 𝜆) (𝑋

𝑘

∗
) ≤

󵄩󵄩󵄩󵄩𝑃∗
󵄩󵄩󵄩󵄩 𝜃𝑘

𝑡2
𝑘

, (42)

where 𝑋𝑘
∗
is an optimal solution of the problem min{(ℎ

𝜀
∘

𝜆)(𝑋) : 𝑋 ∈ Ω
𝑘
}.

Proof. By the convexity of (ℎ
𝜀
∘ 𝜆)(𝑋) and the fact that

F(𝑋
∗
) = 𝑏, ⟨𝑋

∗
, 𝑍
∗
⟩ = 0, ⟨𝑍

∗
, 𝑋
𝑘

∗
⟩ ≥ 0, we have

0 ≤ (ℎ
𝜀
∘ 𝜆) (𝑋

∗
) − (ℎ

𝜀
∘ 𝜆) (𝑋

𝑘

∗
)

≤ ⟨∇ (ℎ
𝜀
∘ 𝜆) (𝑋

∗
) , 𝑋
∗
− 𝑋
𝑘

∗
⟩ = ⟨F

∗
𝑃
∗
+ 𝑍
∗
, 𝑋
∗
− 𝑋
𝑘

∗
⟩



Journal of Applied Mathematics 7

= ⟨𝑃
∗
,F (𝑋

∗
) −F (𝑋

𝑘

∗
)⟩ + ⟨𝑍

∗
, 𝑋
∗
⟩ − ⟨𝑍

∗
, 𝑋
𝑘

∗
⟩

≤
󵄩󵄩󵄩󵄩𝑃∗

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑏 −F (𝑋

𝑘

∗
)
󵄩󵄩󵄩󵄩󵄩
≤

󵄩󵄩󵄩󵄩𝑃∗
󵄩󵄩󵄩󵄩 𝜃𝑘

𝑡2
𝑘

.

(43)

Theorem 5. Suppose that N
𝑘−1

⪰ N
𝑘
≻ 0 for all 𝑘. Taking

𝑀
𝑘
:= max

1≤𝑗≤𝑘
{√(‖𝑃∗‖ + ‖𝑃𝑗‖)𝜃𝑗}, we have

−
4
󵄩󵄩󵄩󵄩𝑃∗

󵄩󵄩󵄩󵄩 𝜃𝑘

(𝑘 + 1)
2

≤ (ℎ
𝜀
∘ 𝜆) (𝑋

𝑘
) − (ℎ

𝜀
∘ 𝜆) (𝑋

∗
)

≤
4

(𝑘 + 1)
2

× ((√𝜏 + 𝜌
𝑘
)
2

+ 2𝜌
𝑘
𝑀
𝑘
+ 2 (𝜁

𝑘
+ 𝜒
𝑘
) +

󵄩󵄩󵄩󵄩𝑃𝑘
󵄩󵄩󵄩󵄩 𝜃𝑘) .

(44)

Proof. Taking the problem min{(ℎ
𝜀
∘ 𝜆)(𝑋) : 𝑋 ∈ Ω

𝑘
} into

account, 𝑋𝑘
∗
is an optimal solution of it. Since 𝑋

∗
, 𝑋
𝑘
∈ Ω
𝑘
,

we have

(ℎ
𝜀
∘ 𝜆) (𝑋

𝑘

∗
) − (ℎ

𝜀
∘ 𝜆) (𝑋

∗
)

≤ (ℎ
𝜀
∘ 𝜆) (𝑋

𝑘
) − (ℎ

𝜀
∘ 𝜆) (𝑋

∗
) .

(45)

Then the inequality on the left side of (44) follows from
Lemma 4, (45) and the fact that 𝑡

𝑘
≥ (𝑘 + 1)/2.

Next, we will show the inequality on the right side of (44).
By Lemma 2(ii) and using 𝑏

𝑘
≥ 0, we have

𝑡
2

𝑘
V
𝑘
= 𝑡
2

𝑘
((ℎ
𝜀
∘ 𝜆) (𝑋

𝑘
) − (ℎ

𝜀
∘ 𝜆) (𝑋

∗
))

= 𝑎
𝑘
≤ (√𝜏 + 𝜌

𝑘
)
2

+
󵄩󵄩󵄩󵄩𝑃𝑘
󵄩󵄩󵄩󵄩 𝜃𝑘 + 2 (𝜁𝑘 + 𝜒𝑘 + 𝐽𝑘) .

(46)

Since −𝑎
𝑗
= 𝑡
2

𝑗
((ℎ
𝜀
∘ 𝜆)(𝑋

∗
) − (ℎ
𝜀
∘ 𝜆)(𝑋

𝑗
)) ≤ 𝑡
2

𝑗
((ℎ
𝜀
∘ 𝜆)(𝑋

∗
) −

(ℎ
𝜀
∘ 𝜆)(𝑋

𝑗

∗
)) ≤ ‖𝑃

∗
‖𝜃
𝑗
. Then we have

𝑎
∗

𝑗
≤
󵄩󵄩󵄩󵄩𝑃∗

󵄩󵄩󵄩󵄩 𝜃𝑗,

𝐽
𝑘
≤

𝑘

∑

𝑗=1

𝜌
𝑗
√(
󵄩󵄩󵄩󵄩󵄩
𝑃
𝑗

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩𝑃∗

󵄩󵄩󵄩󵄩) 𝜃𝑗 ≤ 𝑀𝑘𝜌𝑘.

(47)

Using 𝑡
𝑘
≥ (𝑘 + 1)/2 again, the required result is proved.

From the assumption on the sequences of {𝜁
𝑘
}, {𝜃
𝑘
}, {𝜌
𝑘
},

we can get the result that the sequences {𝜌
𝑘
} and {𝜃

𝑘
} are

bounded.Moreover, by using Lemma 3, we note the sequence
{‖𝑃
𝑘
‖} is also bounded; at the same time, we can also get the

boundedness of {𝑀
𝑘
} and {𝜒

𝑘
}. Then the convergence of the

RIAPG method with the convergent rate 𝑂(1/𝑘2) is proved.

5. Conclusion

The principal result given here is that we have presented
the implementable and globally convergent method (RIAPG
method) for solving the constrained minimization problem
of maximum eigenvalue functions. RIAPG method, being
an extension of AIAPG method, is especially suited for the
case where the approximate minimizer generated by AIAPG
method may not be in the feasible set. Though this method
is based on some assumptions, it enriches the way to deal
with the constrained minimization problem of maximum
eigenvalue functions.
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