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We consider a class of two-dimensional nonlinear dynamic system with a forced term on a time scale T and obtain sufficient
conditions for all solutions of the system to be oscillatory. Our results not only unify the oscillation of two-dimensional differential
systems and difference systems but also improve the oscillation results that have been established by Saker, 2005, since our results
are not restricted to the case where 𝑏(𝑡) ̸= 0 for all 𝑡 ∈ T and 𝑔(𝑢) = 𝑢. Some examples are given to illustrate the results.

1. Introduction

Let T be a time scale, that is, a nonempty closed subset of R,
which is unbounded above. This paper is concerned with the
two-dimensional dynamic system

𝑥
Δ
(𝑡) = 𝑏 (𝑡) 𝑔 (𝑦 (𝑡)) ,

𝑦
Δ
(𝑡) = −𝑎 (𝑡) 𝑓 (𝑥

𝜎
(𝑡)) + 𝑟 (𝑡) ,

(1)

on T . We assume that 𝑡
0
∈ T and it is convenient to let 𝑡

0
> 0

and define the time scale interval 𝑡 ∈ [𝑡
0
,∞)T . For system (1),

we assume the following.

(H
1
) 𝑎(𝑡) ∈ 𝐶rd([𝑡0,∞)T ,R), 𝑏(𝑡) ∈ 𝐶rd([𝑡0,∞)T , [0,∞)),
and ∫

∞

𝑡0

𝑏(𝜏)Δ𝜏 = ∞.

(H
2
) 𝑓, 𝑔 ∈ 𝐶(R,R) are nondecreasing functions with sign
property 𝑢𝑓(𝑢) > 0 and 𝑢𝑔(𝑢) > 0, for all 𝑢 ̸= 0.

(H
3
) ∫
∞

𝑡0

|𝑟(𝑠)|Δ𝑠 < ∞.

The problem of oscillation and nonoscillation of second-
order dynamic equations on time scales has become an
important research field due to its tremendous potential for
various applications. We refer the reader to the recent papers
[1–3] and the references therein. It is an interesting problem
to extend oscillation criteria for second-order dynamic equa-
tions to the case of two-dimensional dynamic systems.

The system (1) includes two-dimensional linear and
nonlinear differential and difference systems, which were
investigated in the literature; see, for example, [4, 5] and the
references therein. As a special case of (1), when 𝑟(𝑡) = 0,
system (1) can be reduced to

𝑥
Δ
(𝑡) = 𝑏 (𝑡) 𝑔 (𝑦 (𝑡)) ,

𝑦
Δ
(𝑡) = −𝑎 (𝑡) 𝑓 (𝑥

𝜎
(𝑡)) ,

(2)

whose oscillation and nonoscillation results have been
obtained by some authors; see, for example, [6–8] and the
references therein. When 𝑏(𝑡) ̸= 0, for all 𝑡 ∈ T and 𝑔(𝑢) = 𝑢,
system (1) can be reduced to a single dynamic equation

(
1

𝑏 (𝑡)
𝑥
Δ
(𝑡))

Δ

+ 𝑎 (𝑡) 𝑓 (𝑥
𝜎
(𝑡)) = 𝑟 (𝑡) , (3)

whose oscillatory behavior has been investigated; see, for
example, [9, 10] and the references cited therein.

However, to the best of our knowledge, there are few
results dealing with the oscillation of the solutions of forced
dynamic systems on time scales up to now. Motivated by
[4, 5, 11], we will consider the oscillation property of system
(1) and establish some oscillation criteria for system (1) in
this paper. Our results not only unify the oscillation of two-
dimensional differential systems and difference systems but
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also improve the oscillation results that had been established
by Saker [9], since our results are not restricted to the case
where 𝑏(𝑡) ̸= 0, for all 𝑡 ∈ T and 𝑔(𝑢) = 𝑢.

The remainder of this paper is organized as follows.
Section 2 contains some basic definitions and the necessary
results about time scales. In Section 3, we present some
useful lemmas. In Section 4, we present and prove the main
results. Examples are given to illustrate the applicability of the
obtained results.

2. Preliminary

For completeness, we recall the following concepts and results
concerning time scales that will be used in the sequel. More
details can be found in [12–14].

The forward and backward jump operators are defined by

𝜎 (𝑡) := inf {𝑠 ∈ T : 𝑠 > 𝑡} , 𝜌 (𝑡) := sup {𝑠 ∈ T : 𝑠 < 𝑡} ,

(4)

where inf 0 := sup T and sup 0 := inf T , where 0 denotes
the empty set. A point 𝑡 ∈ T is called left-dense if 𝑡 > inf T
and 𝜌(𝑡) = 𝑡, right-dense if 𝑡 < sup T and 𝜎(𝑡) = 𝑡, left-
scattered if 𝜌(𝑡) < 𝑡, and right-scattered if𝜎(𝑡) > 𝑡. A function
𝑔 : T → R is said to be rd-continuous if it is continuous
at every right-dense point and if the left-sided limit exists
at every left-dense point. The set of all such rd-continuous
functions is denoted by 𝐶rd(T). The graininess function 𝜇 for
a time scale T is defined by 𝜇(𝑡) := 𝜎(𝑡) − 𝑡, and, for any
function 𝑓(𝑡) : T → R, the notation 𝑓

𝜎
(𝑡) denotes 𝑓(𝜎(𝑡)).

Let

T
𝑘
= {

T \ (𝜌 (sup T) , T] , if sup T < ∞,

T , otherwise.
(5)

Lemma 1. Assume that 𝑓, 𝑔 : T → R are differentiable at
𝑡 ∈ T𝑘 and 𝑓(𝑡)𝑓

𝜎
(𝑡) ̸= 0. Then, 𝑔/𝑓 is differentiable at 𝑡 and

(
𝑔

𝑓
)

Δ

(𝑡) =
𝑓 (𝑡) 𝑔

Δ
(𝑡) − 𝑓

Δ
(𝑡) 𝑔
𝜎
(𝑡)

𝑓 (𝑡) 𝑓𝜎 (𝑡)
. (6)

Lemma 2. If 𝑓, 𝑔 ∈ 𝐶rd and 𝑎, 𝑏 ∈ T , then

∫

𝑏

𝑎

𝑓 (𝑡) 𝑔
Δ
(𝑡) Δ𝑡 = (𝑓𝑔) (𝑏) − (𝑓𝑔) (𝑎) − ∫

𝑏

𝑎

𝑓
Δ
(𝑡) 𝑔
𝜎
(𝑡) Δ𝑡.

(7)

Lemma 3 (chain rule). Assume that 𝑔 : T → R is contin-
uously differentiable and 𝑓 : T → R is delta differentiable;
then 𝑔 ∘ 𝑓 : T → R is differentiable and

(𝑔 ∘ 𝑓)
Δ
(𝑡) = ∫

1

0

𝑔
󸀠
(𝑓 (𝑡) + ℎ𝜇 (𝑡) 𝑓

Δ
(𝑡)) 𝑑ℎ𝑓

Δ
(𝑡) . (8)

3. Some Basic Lemmas

A solution (𝑥(𝑡), 𝑦(𝑡)) of (1) is said to be continuable
if it exists on the entire interval [𝑡

0
,∞)T . A continuable

nontrivial solution is said to be oscillatory if 𝑥(𝑡), 𝑦(𝑡) are
both oscillatory. A component 𝑥(𝑡) (or 𝑦(𝑡)) of a solution
(𝑥(𝑡), 𝑦(𝑡)) is said to be oscillatory if and only if 𝑥(𝑡) (or 𝑦(𝑡))
is neither eventually positive nor eventually negative. Notice
that if 𝑏(𝑡) ≥ 0, the oscillation of 𝑦 follows from that of
𝑥. Furthermore, we observe that the substitutions 𝑢 = −𝑥,
V = −𝑦 transform (1) into the system

𝑢
Δ
(𝑡) = 𝑏 (𝑡) 𝑔1 (V (𝑡)) ,

VΔ (𝑡) = −𝑎 (𝑡) 𝑓1 (𝑢
𝜎
(𝑡)) + 𝑟 (𝑡) ,

(9)

where 𝑓
1
(𝑢(𝑡)) = −𝑓(−𝑢(𝑡)), 𝑢 ∈ R, and 𝑔

1
(V(𝑡)) =

−𝑔(−V(𝑡)), V ∈ R. The functions 𝑓
1
and 𝑔

1
are subject to the

conditions imposed on 𝑓 and 𝑔. Therefore, we restrict our
discussion only to the case where 𝑥(𝑡) is positive. In order to
prove our results, we need the following lemmas.

Lemma 4. Suppose that (H
1
) and (H

2
) hold. If (𝑥(𝑡), 𝑦(𝑡)) is a

nonoscillatory solution of system (1), then the component 𝑥(𝑡)
is also nonoscillatory.

Proof. Assume that (𝑥(𝑡), 𝑦(𝑡)) is a solution of (1) and 𝑥(𝑡)

is oscillatory, but 𝑦(𝑡) is nonoscillatory. Without loss of
generality, we let 𝑦(𝑡) > 0 on [𝑡

0
,∞)T . In view of the first

equation of system (1) and (H
1
) and (H

2
), we have 𝑥Δ(𝑡) ≥ 0

on [𝑡
0
,∞)T . Thus, 𝑥(𝑡) > 0 or 𝑥(𝑡) < 0 for all large 𝑡 on

[𝑡
0
,∞)T , which leads to a contradiction.

Lemma 5. Suppose that conditions (H
1
) and (H

2
) hold, and

let (𝑥(𝑡), 𝑦(𝑡)) denote a nonoscillatory solution of the system
(1) on interval [𝜏,∞)T , 𝜏 ≥ 𝑡

0
, with 𝑥(𝑡) > 0 for all 𝑡 ≥ 𝜏;

moreover, let 𝜏∗ ≥ 𝜏. If there exists a positive constant 𝐿 such
that

𝐺 (𝑡) ≥ 𝐿, 𝑡 ≥ 𝜏
∗
, (10)

where the function 𝐺(𝑡) = 𝐺(𝑥(𝑡), 𝑦(𝑡)) is defined as

𝐺 (𝑡) := −
𝑦 (𝜏)

𝑓 (𝑥 (𝜏))
+ ∫

𝑡

𝜏

[𝑎 (𝑠) −
𝑟 (𝑠)

𝑓 (𝑥𝜎 (𝑠))
] Δ𝑠

+ ∫

𝜏
∗

𝜏

𝑦 (𝑠) 𝑥
Δ
(𝑠) ∫
1

0
𝑓
󸀠
[𝑥 (𝑠) + ℎ𝜇 (𝑠) 𝑥

Δ
(𝑠)] 𝑑ℎ

𝑓 (𝑥 (𝑠)) 𝑓 (𝑥𝜎 (𝑠))
Δ𝑠,

(11)

then

𝑦 (𝑡) ≤ −𝐿𝑓 (𝑥 (𝜏
∗
)) , 𝑡 ≥ 𝜏

∗
∈ T . (12)
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Proof. From the second equation of (1) and Lemma 3, we
obtain

∫

𝑡

𝜏

𝑎 (𝑠) Δ𝑠

= −∫

𝑡

𝜏

𝑦
Δ
(𝑠) − 𝑟 (𝑠)

𝑓 (𝑥𝜎 (𝑠))
Δ𝑠

= −∫

𝑡

𝜏

𝑦
Δ
(𝑠)

𝑓 (𝑥𝜎 (𝑠))
Δ𝑠 + ∫

𝑡

𝜏

𝑟 (𝑠)

𝑓 (𝑥𝜎 (𝑠))
Δ𝑠

=
𝑦 (𝜏)

𝑓 (𝑥 (𝜏))
−

𝑦 (𝑡)

𝑓 (𝑥 (𝑡))
+ ∫

𝑡

𝜏

𝑟 (𝑠)

𝑓 (𝑥𝜎 (𝑠))
Δ𝑠

− ∫

𝑡

𝜏

((𝑦
𝜎
(𝑠) 𝑥
Δ
(𝑠) ∫

1

0

𝑓
󸀠
[𝑥 (𝑠) + ℎ𝜇 (𝑠) 𝑥

Δ
(𝑠)] 𝑑ℎ)

× (𝑓 (𝑥 (𝑠)) 𝑓 (𝑥
𝜎
(𝑠)))
−1
)Δ𝑠.

(13)

By (10) and (11), we have

−
𝑦 (𝑡)

𝑓 (𝑥 (𝑡))

= 𝐺 (𝑡) + ∫

𝑡

𝜏
∗

((𝑦
𝜎
(𝑠) 𝑥
Δ
(𝑠)∫

1

0

𝑓
󸀠
[𝑥(𝑠) + ℎ𝜇(𝑠) 𝑥

Δ
(𝑠)]𝑑ℎ)

× (𝑓 (𝑥 (𝑠)) 𝑓 (𝑥
𝜎
(𝑠)))
−1
)Δ𝑠

≥ 𝐿 + ∫

𝑡

𝜏
∗

((𝑦
𝜎
(𝑠) 𝑥
Δ
(𝑠) ∫

1

0

𝑓
󸀠
[𝑥 (𝑠) + ℎ𝜇 (𝑠) 𝑥

Δ
(𝑠)] 𝑑ℎ)

× (𝑓 (𝑥 (𝑠)) 𝑓 (𝑥
𝜎
(𝑠)))
−1
)Δ𝑠, 𝑡 ≥ 𝜏

∗
.

(14)

Since

𝑦 (𝑠) 𝑥
Δ
(𝑠) = 𝑏 (𝑠) 𝑦 (𝑠) 𝑔 (𝑦 (𝑠)) ≥ 0, (15)

it follows from (H
2
) that 𝑦(𝑡) ≤ 0 and 𝑥

Δ
(𝑡) ≤ 0, for all 𝑡 ≥ 𝜏

∗.
Putting

−
V (𝑡)

𝑓 (𝑥 (𝑡))

= 𝐿 + ∫

𝑡

𝜏
∗

((𝑦
𝜎
(𝑠) 𝑥
Δ
(𝑠) ∫

1

0

𝑓
󸀠
[𝑥 (𝑠) + ℎ𝜇 (𝑠) 𝑥

Δ
(𝑠)] 𝑑ℎ)

× (𝑓 (𝑥 (𝑠)) 𝑓 (𝑥
𝜎
(𝑠)))
−1
)Δ𝑠,

(16)

then

(−
V (𝑡)

𝑓 (𝑥 (𝑡))
)

Δ

(𝑡)

=
𝑦
𝜎
(𝑡) 𝑥
Δ
(𝑡) ∫
1

0
𝑓
󸀠
[𝑥 (𝑡) + ℎ𝜇 (𝑡) 𝑥

Δ
(𝑡)] 𝑑ℎ

𝑓 (𝑥 (𝑡)) 𝑓 (𝑥𝜎 (𝑡))

≥ 0.

(17)

In view of 𝑓(𝑥(𝑡)) ≥ 0, we have

𝑦 (𝑡) ≤ V (𝑡) < 0, (18)

which implies that

(−
V (𝑡)

𝑓 (𝑥 (𝑡))
)

Δ

(𝑡)

≥
V𝜎 (𝑡) 𝑥Δ (𝑡) ∫

1

0
𝑓
󸀠
[𝑥 (𝑡) + ℎ𝜇 (𝑡) 𝑥

Δ
(𝑡)] 𝑑ℎ

𝑓 (𝑥 (𝑡)) 𝑓 (𝑥𝜎 (𝑡))
≥ 0,

(19)

since

−
V (𝜏∗)

𝑓 (𝑥 (𝜏∗))
= 𝐿 =

𝑤 (𝜏
∗
)

𝑓 (𝑥 (𝜏∗))
, (20)

where 𝑤(𝑡) satisfies
𝑤 (𝑡)

𝑓 (𝑥 (𝑡))

= 𝐿 − ∫

𝑡

𝜏
∗

((𝑤
𝜎
(𝑠) 𝑥
Δ
(𝑠) ∫

1

0

𝑓
󸀠
[𝑥 (𝑠) + ℎ𝜇 (𝑠) 𝑥

Δ
(𝑠)] 𝑑ℎ)

× (𝑓 (𝑥 (𝑠)) 𝑓 (𝑥
𝜎
(𝑠)))
−1
)Δ𝑠.

(21)

Using nonlinear version of comparison theorem on time
scales [13, Corollary 6.12], we have

V (𝑡) ≤ −𝑤 (𝑡) , 𝑡 ≥ 𝜏
∗
. (22)

Therefore,

𝑦 (𝑡) ≤ −𝑤 (𝑡) , 𝑡 ≥ 𝜏
∗
. (23)

By Lemmas 1 and 3, we obtain

(
𝑤 (𝑡)

𝑓 (𝑥 (𝑡))
)

Δ

(𝑡)

=
𝑤
Δ
(𝑡) 𝑓 (𝑥 (𝑡)) − 𝑓

Δ
(𝑥 (𝑡)) 𝑤

𝜎
(𝑡)

𝑓 (𝑥 (𝑡)) 𝑓 (𝑥𝜎 (𝑡))
=

𝑤
Δ
(𝑡)

𝑓 (𝑥𝜎 (𝑡))

−
𝑤
𝜎
(𝑡) 𝑥
Δ
(𝑡) ∫
1

0
𝑓
󸀠
[𝑥 (𝑡) + ℎ𝜇 (𝑡) 𝑥

Δ
(𝑡)] 𝑑ℎ

𝑓 (𝑥 (𝑡)) 𝑓 (𝑥𝜎(𝑡))

= −
𝑤
𝜎
(𝑡) 𝑥
Δ
(𝑡) ∫
1

0
𝑓
󸀠
[𝑥 (𝑡) + ℎ𝜇 (𝑡) 𝑥

Δ
(𝑡)] 𝑑ℎ

𝑓 (𝑥 (𝑡)) 𝑓 (𝑥𝜎 (𝑡))
.

(24)
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Then, we get 𝑤Δ = 0, 𝑤(𝑡) = 𝑤(𝜏
∗
) = 𝐿𝑓(𝑥(𝜏

∗
)). Hence,

𝑦 (𝑡) ≤ −𝐿𝑓 (𝑥 (𝜏
∗
)) , 𝑡 ≥ 𝜏

∗
. (25)

The proof is completed.

4. Main Results

For simplicity, we list the conditions used in the main results
as

𝑓 ∈ 𝐶
1
(R,R) , (26)

∫

∞

𝑡0

𝑎 (𝑠) Δ𝑠 = ∞, (27)

−∞ < ∫

∞

𝑡0

𝑎 (𝑠) Δ𝑠 < ∞. (28)

For every V > 0 and sufficiently small 𝑢,

𝑔 (𝑢) 𝑔 (V) ≤ 𝑔 (𝑢V) ≤ 𝑔 (𝑢) (−𝑔 (−V)) . (29)

Theorem 6. Suppose that (H
1
)–(H
3
), (26), and (27) hold.

Then, every solution (𝑥(𝑡), 𝑦(𝑡)) of system (1) oscillates on
[𝑡
0
,∞)T .

Proof. Suppose that system (1) has a nonoscillatory solution
(𝑥(𝑡), 𝑦(𝑡)) on [𝑡

0
,∞)T . By Lemma 4, we know that 𝑥(𝑡) is

nonoscillatory on [𝑡
0
,∞)T .Without loss of generality, wemay

assume that 𝑥(𝑡) > 0, for all 𝑡 ∈ [𝑡
0
,∞)T . In view of (H

2
) and

(26), there exist 𝜏 ≥ 𝑡
0
and 𝐶

1
> 0, such that |𝑓(𝑥(𝑡))| ≥ 𝐶

1
,

for 𝑡 ≥ 𝜏. By (H
3
), we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝑡

𝜏

𝑟 (𝑠)

𝑓 (𝑥 (𝑠))
Δ𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∫

𝑡

𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑟 (𝑠)

𝑓 (𝑥 (𝑠))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Δ𝑠 ≤

1

𝐶
1

∫

𝑡

𝜏

|𝑟 (𝑠)| Δ𝑠 ≤ 𝐶
2
,

(30)

where𝐶
2
is a finite positive constant. In view of (27) and (30),

there exists a 𝜏∗ ≥ 𝜏 sufficiently large, such that (10) is satisfied
for all 𝑡 ≥ 𝜏

∗. Applying Lemma 5, we obtain

𝑦 (𝑡) ≤ −𝐿𝑓 (𝑥 (𝜏
∗
)) < 0, 𝑡 ≥ 𝜏

∗
. (31)

Since 𝑔(𝑡) is nondecreasing, we have

𝑥
Δ
(𝑡) = 𝑏 (𝑡) 𝑔 (𝑦 (𝑡)) ≤ 𝑏 (𝑡) 𝑔 (−𝐿𝑓 (𝑥 (𝜏

∗
))) < 0, 𝑡 ≥ 𝜏

∗
.

(32)

Integrating the above inequality from 𝜏 to 𝑡, we get 𝑥(𝑡) →

−∞ as 𝑡 → ∞, which is a contradiction. The proof is
complete.

Example 7. Consider the system

𝑥
Δ
(𝑡) = (2𝑡 + 3) 𝑦 (𝑡) ,

𝑦
Δ
(𝑡) = −

1

𝑡 + 6
𝑥
𝜎
(𝑡) + (−1)

𝑡 1

𝑡 (𝑡 + 3)
,

(33)

where T = 3N = {3𝑛 | 𝑛 ∈ N}.

Let 𝑏(𝑡) = 2𝑡 + 3, 𝑎(𝑡) = 1/(𝑡 + 6), 𝑓(𝑥) = 𝑔(𝑥) = 𝑥, and
𝑟(𝑡) = (−1)

𝑡
/𝑡(𝑡 + 3). Since

∫

∞

3

𝑎 (𝑠) Δ𝑠 =

∞

∑

𝑖=1

1

3𝑖 + 6
= ∞,

∫

∞

3

|𝑟 (𝑠)| Δ𝑠 =

∞

∑

𝑖=1

1

3𝑖 (3𝑖 + 3)
< ∞.

(34)

The system is oscillatory byTheorem 6. In fact,

𝑥 (𝑡) =
(−1)
𝑡

𝑡
, 𝑦 (𝑡) =

(−1)
𝑡+1

𝑡 (𝑡 + 3)
(35)

is such an oscillatory solution.

Theorem 8. Suppose that (H
1
)–(H
3
), (26), (28), and (29)

hold. Suppose further that

0 < ∫

∞

𝜀

𝑑𝑢

𝑔 (𝑓 (𝑢))
, ∫

−∞

−𝜀

𝑑𝑢

𝑔 (𝑓 (𝑢))
< ∞, (36)

for every 𝜀 > 0. Then, system (1) is oscillatory on [𝑡
0
,∞)T , if

∫

∞

𝑡0

𝑏 (𝑡) 𝑔 (∫

∞

𝑡

𝑎 (𝑠) Δ𝑠 − 𝑙 ∫

∞

𝑡

|𝑟 (𝑠)| Δ𝑠)Δ𝑡 = ∞, (37)

for some 𝑙 > 0.

Proof. Suppose that system (1) has a nonoscillatory solution
(𝑥(𝑡), 𝑦(𝑡)) on [𝑡

0
,∞)T . By Lemma 4, we know that 𝑥(𝑡) is

nonoscillatory on [𝑡
0
,∞)T .Without loss of generality, wemay

assume that 𝑥(𝑡) > 0 for all 𝑡 ∈ [𝑡
0
,∞)T . In view of (H

2
) and

(26), there exist 𝜏 ≥ 𝑡
0
and 𝐶

1
> 0 such that 𝑓(𝑥(𝑡)) ≥ 𝐶

1
, for

𝑡 ≥ 𝜏.
As seen in the proof of Lemma 5, we have

𝑦 (𝑡)

𝑓 (𝑥 (𝑡))

=
𝑦 (𝜏)

𝑓 (𝑥 (𝜏))
− ∫

𝑡

𝜏

(𝑎 (𝑠) −
𝑟 (𝑠)

𝑓 (𝑥𝜎 (𝑠))
)Δ𝑠

− ∫

𝑡

𝜏

𝑦 (𝑠) 𝑥
Δ
(𝑠) ∫
1

0
𝑓
󸀠
[𝑥 (𝑠) + ℎ𝜇 (𝑠) 𝑥

Δ
(𝑠)] 𝑑ℎ

𝑓 (𝑥 (𝑠)) 𝑓 (𝑥𝜎 (𝑠))
Δ𝑠.

(38)

Note that

∫

∞

𝜏

𝑦 (𝑠) 𝑥
Δ
(𝑠) ∫
1

0
𝑓
󸀠
[𝑥 (𝑠) + ℎ𝜇 (𝑠) 𝑥

Δ
(𝑠)] 𝑑ℎ

𝑓 (𝑥 (𝑠)) 𝑓 (𝑥𝜎 (𝑠))
Δ𝑠 < ∞.

(39)

Otherwise, (11) is valid for some positive number 𝜏
∗

∈ T .
Then, by Lemma 5, we have 𝑦(𝑡) ≤ −𝐿𝑓(𝑥(𝜏

∗
)), for all 𝑡 ≥ 𝜏

∗.
Hence,

𝑥
Δ
(𝑡) = 𝑏 (𝑡) 𝑔 [𝑦 (𝑡)] ≤ 𝑏 (𝑡) 𝑔 [−𝐿𝑓 (𝑥 (𝜏

∗
))] (40)
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holds, and its subsequent contradiction holds as before. It
now follows

𝑦 (𝑡)

𝑓 (𝑥 (𝑡))

=
𝑦 (𝜏)

𝑓 (𝑥 (𝜏))
− ∫

𝑡

𝜏

(𝑎 (𝑠) −
𝑟 (𝑠)

𝑓 (𝑥𝜎 (𝑠))
)Δ𝑠

− ∫

𝑡

𝜏

𝑦 (𝑠) 𝑥
Δ
(𝑠) ∫
1

0
𝑓
󸀠
[𝑥 (𝑠) + ℎ𝜇 (𝑠) 𝑥

Δ
(𝑠)] 𝑑ℎ

𝑓 (𝑥 (𝑠)) 𝑓 (𝑥𝜎 (𝑠))
Δ𝑠

= 𝛽 + ∫

∞

𝑡

(𝑎 (𝑠) −
𝑟 (𝑠)

𝑓 (𝑥𝜎 (𝑠))
)Δ𝑠

+ ∫

∞

𝑡

𝑦 (𝑠) 𝑥
Δ
(𝑠) ∫
1

0
𝑓
󸀠
[𝑥 (𝑠) + ℎ𝜇 (𝑠) 𝑥

Δ
(𝑠)] 𝑑ℎ

𝑓 (𝑥 (𝑠)) 𝑓 (𝑥𝜎 (𝑠))
Δ𝑠,

(41)

where

𝛽 =
𝑦 (𝜏)

𝑓 (𝑥 (𝜏))
− ∫

∞

𝜏

(𝑎 (𝑠) −
𝑟 (𝑠)

𝑓 (𝑥𝜎 (𝑠))
)Δ𝑠

− ∫

∞

𝜏

𝑦 (𝑠) 𝑥
Δ
(𝑠) ∫
1

0
𝑓
󸀠
[𝑥 (𝑠) + ℎ𝜇 (𝑠) 𝑥

Δ
(𝑠)] 𝑑ℎ

𝑓 (𝑥 (𝑠)) 𝑓 (𝑥𝜎 (𝑠))
Δ𝑠.

(42)

We now show that 𝛽 ≥ 0. Indeed, if 𝛽 < 0, then (28), (30),
and (39), respectively, imply that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

∞

𝑡

𝑎 (𝑠) Δ𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ −

𝛽

4
, 𝑡 ≥ 𝜏

∗
, (43)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

∞

𝑡

𝑟 (𝑠)

𝑓 (𝑥𝜎 (𝑠))
Δ𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ −

𝛽

4
, 𝑡 ≥ 𝜏

∗
, (44)

∫

∞

𝜏
∗

𝑦 (𝑠) 𝑥
Δ
(𝑠) ∫
1

0
𝑓
󸀠
[𝑥 (𝑠) + ℎ𝜇 (𝑠) 𝑥

Δ
(𝑠)] 𝑑ℎ

𝑓 (𝑥 (𝑠)) 𝑓 (𝑥𝜎 (𝑠))
Δ𝑠 ≤ −

𝛽

4
.

(45)

By (43), (44), and (45), we have

𝐺 (𝑡) = −
𝑦 (𝜏)

𝑓 (𝑥 (𝜏))
+ ∫

𝑡

𝜏

[𝑎 (𝑠) −
𝑟 (𝑠)

𝑓 (𝑥𝜎 (𝑠))
] Δ𝑠

+ ∫

𝜏
∗

𝜏

𝑦 (𝑠) 𝑥
Δ
(𝑠) ∫
1

0
𝑓
󸀠
[𝑥 (𝑠) + ℎ𝜇 (𝑠) 𝑥

Δ
(𝑠)] 𝑑ℎ

𝑓 (𝑥 (𝑠)) 𝑓 (𝑥𝜎 (𝑠))
Δ𝑠

= −𝛽 − ∫

∞

𝑡

[𝑎 (𝑠) −
𝑟 (𝑠)

𝑓 (𝑥𝜎 (𝑠))
] Δ𝑠

− ∫

∞

𝜏
∗

𝑦 (𝑠) 𝑥
Δ
(𝑠) ∫
1

0
𝑓
󸀠
[𝑥 (𝑠) + ℎ𝜇 (𝑠) 𝑥

Δ
(𝑠)] 𝑑ℎ

𝑓 (𝑥 (𝑠)) 𝑓 (𝑥𝜎 (𝑠))
Δ𝑠

≥ −𝛽 +
𝛽

4
+

𝛽

4
+

𝛽

4
= −

3𝛽

4
> 0.

(46)

Then, by Lemma 5, let 𝐿 = −(3𝛽/4); we have 𝑦(𝑡) ≤

−𝐿𝑓(𝑥(𝜏
∗
)), for all 𝑡 ≥ 𝜏

∗. Hence,

𝑥
Δ
(𝑡) = 𝑏 (𝑡) 𝑔 (𝑦 (𝑡)) ≤ 𝑏 (𝑡) 𝑔 (−𝐿𝑓 (𝑥 (𝜏

∗
))) (47)

holds, and its subsequent contradiction holds as before. In
view of (41) and 𝛽 ≥ 0, we have

𝑦 (𝑡) ≥ 𝑓 (𝑥 (𝑡)) ∫

∞

𝑡

[𝑎 (𝑠) −
𝑟 (𝑠)

𝑓 (𝑥𝜎 (𝑠))
] Δ𝑠

≥ 𝑓 (𝑥 (𝑡)) [∫

∞

𝑡

𝑎 (𝑠) Δ𝑠 − ∫

∞

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑟 (𝑠)

𝑓 (𝑥 (𝑠))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Δ𝑠]

≥ 𝑓 (𝑥 (𝑡)) [∫

∞

𝑡

𝑎 (𝑠) Δ𝑠 −
1

𝐶
1

∫

∞

𝑡

|𝑟 (𝑠)| Δ𝑠]

= 𝑓 (𝑥 (𝑡)) [∫

∞

𝑡

𝑎 (𝑠) Δ𝑠 − 𝑙 ∫

∞

𝑡

|𝑟 (𝑠)| Δ𝑠] ,

(48)

for all large 𝑡, where 𝑙 = 1/𝐶
1
. For the sake of convenience, let

𝐴 (𝑡) = ∫

∞

𝑡

𝑎 (𝑠) Δ𝑠 − 𝑙 ∫

∞

𝑡

|𝑟 (𝑠)| Δ𝑠 (49)

for all large 𝑡; then lim
𝑡→∞

𝐴(𝑡) = 0 and, in view of (29),

𝑥
Δ
(𝑡) = 𝑏 (𝑡) 𝑔 (𝑦 (𝑡)) ≥ 𝑏 (𝑡) 𝑔 (𝑓 (𝑥 (𝑡)) 𝐴 (𝑡))

≥ 𝑏 (𝑡) 𝑔 (𝑓 (𝑥 (𝑡))) 𝑔 (𝐴 (𝑡)) .

(50)

Thus, by (36), we have

∫

𝑡

𝑇1

𝑏 (𝑠) 𝑔 (𝐴 (𝑠)) Δ𝑠 ≤ ∫

𝑡

𝑇1

𝑥
Δ
(𝑠)

𝑔 (𝑓 (𝑥 (𝑠)))
Δ𝑠; (51)

however,

∫

𝑡

𝑇1

𝑥
Δ
(𝑠)

𝑔 (𝑓 (𝑥 (𝑠)))
Δ𝑠 ≤ ∫

∞

𝑥(𝑇1)

𝑑𝑢

𝑔 (𝑓 (𝑢))
< ∞, (52)

which is contrary to (37). The proof is completed.

Remark 9. Theorems 6 and 8 extend and improve some
results of [2–5, 9].

Example 10. Consider the system

𝑥
Δ
(𝑡) = 𝑦 (𝑡) ,

𝑦
Δ
(𝑡) = −

1

𝑡𝜎 (𝑡)
𝑥
𝜎
(𝑡) [1 + (𝑥

𝜎
(𝑡))
2
] +

1

𝑡𝜎 (𝑡)
,

(53)

for 𝑡 ∈ [𝑡
0
,∞)T .
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Here, 𝑏(𝑡) = 1, 𝑎(𝑡) = 1/𝑡𝜎(𝑡),𝑓(𝑢) = 𝑢(1 + 𝑢
2
), 𝑔(𝑢) = 𝑢,

and 𝑟(𝑡) = 1/𝑡𝜎(𝑡). It is easy to see that 𝑓(𝑢), 𝑔(𝑢) satisfy the
conditions of Theorem 8, and

∫

∞

𝑡0

𝑏 (𝑠) Δ𝑠 = ∞,

∫

∞

𝑡0

𝑎 (𝑠) Δ𝑠 = ∫

∞

𝑡0

𝑟 (𝑠) Δ𝑠 = ∫

∞

𝑡0

1

𝑠𝜎 (𝑠)
Δ𝑠 =

1

𝑡
0

< ∞,

0 < ∫

∞

𝜀

𝑑𝑢

𝑔 (𝑓 (𝑢))
= ∫

−∞

−𝜀

𝑑𝑢

𝑔 (𝑓 (𝑢))
< ∞,

∫

∞

𝑡0

𝑏 (𝑡) 𝑔 (∫

∞

𝑡

𝑎 (𝑠) Δ𝑠 − 𝑙 ∫

∞

𝑡

|𝑟 (𝑠)| Δ𝑠)Δ𝑡

= ∫

∞

𝑡0

(1 − 𝑙) [∫

∞

𝑡

1

𝑠𝜎 (𝑠)
Δ𝑠]Δ𝑡 = ∞.

(54)

Hence, it follows fromTheorem 8 that system (1) is oscillatory
on [𝑡
0
,∞)T .
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