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We first define an accuracy function of hesitant fuzzy elements (HFEs) and develop a new method to compare two HFEs. Then,
based on Einstein operators, we give some new operational laws on HFEs and some desirable properties of these operations. We
also develop several new hesitant fuzzy aggregation operators, including the hesitant fuzzy Einstein weighted geometric (HFEWG

𝜀
)

operator and the hesitant fuzzy Einstein ordered weighted geometric (HFEWG
𝜀
) operator, which are the extensions of the

weighted geometric operator and the ordered weighted geometric (OWG) operator with hesitant fuzzy information, respectively.
Furthermore, we establish the connections between the proposed and the existing hesitant fuzzy aggregation operators and discuss
various properties of the proposed operators. Finally, we apply the HFEWG

𝜀
operator to solve the hesitant fuzzy decision making

problems.

1. Introduction

Atanassov [1, 2] introduced the concept of intuitionistic fuzzy
set (IFS) characterized by a membership function and a non-
membership function. It is more suitable to deal with fuzzi-
ness and uncertainty than the ordinary fuzzy set proposed
by Zadeh [3] characterized by one membership function.
Information aggregation is an important research topic in
many applications such as fuzzy logic systems and multiat-
tribute decisionmaking as discussed byChen andHwang [4].
Research on aggregation operators with intuitionistic fuzzy
information has received increasing attention as shown in
the literature. Xu [5] developed some basic arithmetic aggre-
gation operators based on intuitionistic fuzzy values (IFVs),
such as the intuitionistic fuzzy weighted averaging operator
and intuitionistic fuzzy ordered weighted averaging operator,
while Xu and Yager [6] presented some basic geometric
aggregation operators for aggregating IFVs, including the
intuitionistic fuzzy weighted geometric operator and intu-
itionistic fuzzy ordered weighted geometric operator. Based
on these basic aggregation operators proposed in [6] and [5],

many generalized intuitionistic fuzzy aggregation operators
have been investigated [5–30]. Recently, Torra and Narukawa
[31] and Torra [32] proposed the hesitant fuzzy set (HFS),
which is another generalization form of fuzzy set. The char-
acteristic of HFS is that it allows membership degree to have
a set of possible values.Therefore, HFS is a very useful tool in
the situationswhere there are somedifficulties in determining
the membership of an element to a set. Lately, research on
aggregation methods and multiple attribute decision making
theories under hesitant fuzzy environment is very active,
and a lot of results have been obtained for hesitant fuzzy
information [33–43]. For example, Xia et al. [38] developed
some confidence induced aggregation operators for hesitant
fuzzy information. Xia et al. [37] gave several series of hesitant
fuzzy aggregation operators with the help of quasiarithmetic
means. Wei [35] explored several hesitant fuzzy prioritized
aggregation operators and applied them to hesitant fuzzy
decision making problems. Zhu et al. [43] investigated the
geometric Bonferroni mean combining the Bonferroni mean
and the geometric mean under hesitant fuzzy environment.
Xia and Xu [36] presented some hesitant fuzzy operational
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laws based on the relationship between the HFEs and the
IFVs. They also proposed a series of aggregation operators,
such as hesitant fuzzy weighted geometric (HFWG) operator
and hesitant fuzzy ordered weighted geometric (HFOWG)
operator. Furthermore, they applied the proposed aggrega-
tion operators to solve the multiple attribute decisionmaking
problems.

Note that all aggregation operators introduced previously
are based on the algebraic product and algebraic sum of IFVs
(orHFEs) to carry out the combination process. However, the
algebraic operations include algebraic product and algebraic
sum, which are not the unique operations that can be used to
perform the intersection and union.There aremany instances
of various t-norms and t-conorms families which can be
chosen tomodel the corresponding intersections and unions,
among which Einstein product and Einstein sum are good
alternatives for they typically give the same smooth approxi-
mation as algebraic product and algebraic sum, respectively.
For intuitionistic fuzzy information,Wang and Liu [10, 11, 44]
and Wei and Zhao [30] developed some new intuitionistic
fuzzy aggregation operators with the help of Einstein oper-
ations. For hesitant fuzzy information, however, it seems that
in the literature there is little investigation on aggregation
techniques using the Einstein operations to aggregate hesitant
fuzzy information. Therefore, it is necessary to develop some
hesitant fuzzy information aggregation operators based on
Einstein operations.

The remainder of this paper is structured as follows.
In Section 2, we briefly review some basic concepts and
operations related to IFS andHFS. we also define an accuracy
function of HFEs to distinguish the two HFEs having the
same score values, based on which we give the new com-
parison laws on HFEs. In Section 3, we present some new
operations for HFEs and discuss some basic properties of the
proposed operations. In Section 4, we develop some novel
hesitant fuzzy geometric aggregation operators with the help
of Einstein operations, such as theHFEWG

𝜀
operator and the

HFEOWG
𝜀
operator, and we further study various properties

of these operators. Section 5 gives an approach to solve the
multiple attribute hesitant fuzzy decision making problems
based on the HFEOWG

𝜀
operator. Finally, Section 6 con-

cludes the paper.

2. Preliminaries

In this section, we briefly introduce Einstein operations and
some notions of IFS and HFS. Meantime, we define an
accuracy function of HFEs and redefine the comparison laws
between two HFEs.

2.1. Einstein Operations. Since the appearance of fuzzy set
theory, the set theoretical operators have played an important
role and received more and more attention. It is well known
that the t-norms and t-conorms are the general concepts
including all types of the specific operators, and they satisfy
the requirements of the conjunction and disjunction opera-
tors, respectively. There are various t-norms and t-conorms
families that can be used to perform the corresponding inter-
sections and unions. Einstein sum ⊕

𝜀
and Einstein product

⊗
𝜀
are examples of t-conorms and t-norms, respectively.They

are called Einstein operations and defined as [45]

𝑥⊗
𝜀
𝑦 =

𝑥 ⋅ 𝑦

1 + (1 − 𝑥) ⋅ (1 − 𝑦)
, 𝑥⊗

𝜀
𝑦 =

𝑥 + 𝑦

1 + 𝑥 ⋅ 𝑦
,

∀𝑥, 𝑦 ∈ [0, 1] .

(1)

2.2. Intuitionistic Fuzzy Set. Atanassov [1, 2] generalized
the concept of fuzzy set [3] and defined the concept of
intuitionistic fuzzy set (IFS) as follows.

Definition 1. Let 𝑈 be fixed an IFS𝐴 on 𝑈 is given by;

𝐴 = {⟨𝑥, 𝜇
𝐴
(𝑥) , ]

𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑈} , (2)

where 𝜇
𝐴

: 𝑈 → [0, 1] and ]
𝐴

: 𝑈 → [0, 1], with the
condition 0 ≤ 𝜇

𝐴
(𝑥) + ]

𝐴
(𝑥) ≤ 1 for all 𝑥 ∈ 𝑈. Xu [5] called

𝑎 = (𝜇
𝑎
, ]
𝑎
) an IFV.

For IFVs, Wang and Liu [11] introduced some operations
as follows.

Let 𝜆 > 0, 𝑎
1
= (𝜇
𝑎
1

, ]
𝑎
1

) and 𝑎
2
= (𝜇
𝑎
2

, ]
𝑎
2

) be two IFVs;
then

(1) 𝑎
1
⊗
𝜀
𝑎
2
= (

𝜇
𝑎
1

+ 𝜇
𝑎
2

1 + 𝜇
𝑎
1

𝜇
𝑎
2

,
]
𝑎
1

]
𝑎
2

1 + (1 − ]
𝑎
1

) (1 − ]
𝑎
2

)
)

(2) 𝑎
1
⊗
𝜀
𝑎
2
= (

𝜇
𝑎
1

𝜇
𝑎
2

1 + (1 − 𝜇
𝑎
1

) (1 − 𝜇
𝑎
2

)
,
]
𝑎
1

+ ]
𝑎
2

1 + ]
𝑎
1

]
𝑎
2

)

(3) 𝑎
∧
𝜀
𝜆

1
= (

2]𝜆
𝑎
1

(2 − ]
𝑎
1

)
𝜆

+ ]𝜆
𝑎
1

,
(1 + 𝜇

𝑎
1

)
𝜆

− (1 − 𝜇
𝑎
1

)
𝜆

(1 + 𝜇
𝑎
1

)
𝜆

+ (1 − 𝜇
𝑎
1

)
𝜆

) .

(3)

2.3. Hesitant Fuzzy Set. As another generalization of fuzzy
set, HFS was first introduced by Torra and Narukawa [31, 32].

Definition 2. Let𝑋 be a reference set; anHFS on𝑋 is in terms
of a function that when applied to𝑋 returns a subset of [0, 1].

To be easily understood, Xia and Xu use the following
mathematical symbol to express the HFS:

𝐻 = {
ℎ
𝐻
(𝑥)

𝑥
| 𝑥 ∈ 𝑋} , (4)

where ℎ
𝐻
(𝑥) is a set of some values in [0, 1], denoting the

possible membership degrees of the element 𝑥 ∈ 𝑋 to the set
𝐻. For convenience, Xu and Xia [40] called ℎ

𝐻
(𝑥) a hesitant

fuzzy element (HFE).
Let ℎ be an HFE, ℎ− = min{𝛾 | 𝛾 ∈ ℎ}, and ℎ+ = max{𝛾 |

𝛾 ∈ ℎ}. Torra and Narukawa [31, 32] define the IFV 𝐴env(ℎ)
as the envelope of ℎ, where 𝐴env(ℎ) = (ℎ−, 1 − ℎ+).
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Let𝛼 > 0, ℎ
1
and ℎ
2
be twoHFEs. Xia andXu [36] defined

some operations as follows:

(4) ℎ
1
⨁ℎ
2
= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{𝛾
1
+ 𝛾
2
− 𝛾
1
𝛾
2
}

(5) ℎ
1
⨂ℎ
2
= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{𝛾
1
𝛾
2
}

(6) 𝛼ℎ = ⋃
𝛾∈ℎ

{𝛾
𝛼

}

(7) ℎ
𝛼

= ⋃
𝛾∈ℎ

{1 − (1 − 𝛾)
𝛼

} .

(5)

In [36], Xia and Xu defined the score function of an
HFE ℎ to compare the HFEs and gave the comparison laws.

Definition 3. Let ℎ be anHFE; 𝑠(ℎ) = (1/𝑛(ℎ))∑
𝛾∈ℎ

𝛾 is called
the score function of ℎ, where 𝑛(ℎ) is the number of values of
ℎ. For two HFEs ℎ

1
and ℎ

2
, if 𝑠(ℎ

1
) > 𝑠(ℎ

2
), then ℎ

1
> ℎ
2
; if

𝑠(ℎ
1
) = 𝑠(ℎ

2
), then ℎ

1
= ℎ
2
.

From Definition 3, it can be seen that all HFEs are
regarded as the same if their score values are equal. In hesitant
fuzzy decision making process, however, we usually need to
compare two HFEs for reordering or ranking. In the case
where two HFEs have the same score values, they can not
be distinguished by Definition 3. Therefore, it is necessary to
develop a new method to overcome the difficulty.

For an IFV, Hong and Choi [46] showed that the relation
between the score function and the accuracy function is sim-
ilar to the relation between mean and variance in statistics.
From Definition 3, we know that the score value of HFE ℎ is
just themean of the values in ℎ.Motivated by the idea ofHong
and Choi [46], we can define the accuracy function of HFE ℎ

by using the variance of the values in ℎ.

Definition 4. Let ℎ be an HFE; 𝑘(ℎ) = 1 −

√(1/𝑛(ℎ))∑
𝛾∈ℎ

(𝛾 − 𝑠(ℎ))
2 is called the accuracy function of

ℎ, where 𝑛(ℎ) is the number of values in ℎ and 𝑠(ℎ) is the
score function of ℎ.

It is well known that an efficient estimator is a measure
of the variance of an estimate’s sampling distribution in
statistics: the smaller the variance, the better the performance
of the estimator. Motivated by this idea, it is meaningful and
appropriate to stipulate that the higher the accuracy degree
of HFE, the better the HFE. Therefore, in the following, we
develop a new method to compare two HFEs, which is based
on the score function and the accuracy function, defined as
follows.

Definition 5. Let ℎ
1
and ℎ

2
be two HFEs and let 𝑠(⋅) and

𝑘(⋅) be the score function and accuracy function of HFEs,
respectively. Then

(1) if 𝑠(ℎ
1
) < 𝑠(ℎ

2
), then ℎ

1
is smaller than ℎ

2
, denoted by

ℎ
1
≺ ℎ
2
;

(2) if 𝑠(ℎ
1
) = 𝑠(ℎ

2
), then

(i) if 𝑘(ℎ
1
) < 𝑘(ℎ

2
), then ℎ

1
is smaller than ℎ

2
,

denoted by ℎ
1
≺ ℎ
2
;

(ii) if 𝑘(ℎ
1
) = 𝑘(ℎ

2
), then ℎ

1
and ℎ

2
represent

the same information, denoted by ℎ
1
≐ ℎ
2
. In

particular, if 𝛾
1
= 𝛾
2
for any 𝛾

1
∈ ℎ
1
and 𝛾
2
∈ ℎ
2
,

then ℎ
1
is equal to ℎ

2
, denoted by ℎ

1
= ℎ
2
.

Example 6. Let ℎ
1
= {0.5}, ℎ

2
= {0.1, 0.9}, ℎ

3
= {0.3, 0.7},

ℎ
4

= {0.1, 0.3, 0.7, 0.9}, ℎ
5

= {0.2, 0.4, 0.6, 0.8}, and ℎ
6

=

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}; then 𝑠(ℎ
1
) = 𝑠(ℎ

2
) =

𝑠(ℎ
3
) = 𝑠(ℎ

4
) = 𝑠(ℎ

5
) = 𝑠(ℎ

6
) = 0.5, 𝑘(ℎ

1
) = 1, 𝑘(ℎ

2
) = 0.6,

𝑘(ℎ
3
) = 0.8, 𝑘(ℎ

4
) = 0.6838, 𝑘(ℎ

5
) = 0.7764, and 𝑘(ℎ

6
) =

0.7418. By Definition 5, we have ℎ
1
≻ ℎ
3
≻ ℎ
5
≻ ℎ
6
≻ ℎ
4
≻ ℎ
2
.

3. Einstein Operations of Hesitant Fuzzy Sets

In this section, we will introduce the Einstein operations
on HFEs and analyze some desirable properties of these
operations.Motivated by the operational laws (1)–(3) on IFVs
and based on the interconnection between HFEs and IFVs,
we give some new operations of HFEs as follows.

Let 𝛼 > 0, ℎ, ℎ
1
, and ℎ

2
be three HFEs; then

(8) ℎ
1
⊗
𝜀
ℎ
2
= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{
𝛾
1
+ 𝛾
2

1 + 𝛾
1
𝛾
2

} ,

(9) ℎ
1
⊗
𝜀
ℎ
2
= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{
𝛾
1
𝛾
2

1 + (1 − 𝛾
1
) (1 − 𝛾

2
)
} ,

(10) ℎ
∧
𝜀
𝛼

= ⋃
𝛾∈ℎ

{
2𝛾𝛼

(2 − 𝛾)
𝛼

+ 𝛾𝛼
} .

(6)

Proposition 7. Let 𝛼 > 0, 𝛼
1
> 0, 𝛼

2
> 0, ℎ, ℎ

1
and ℎ
2
be three

HFEs; then

(1) ℎ
1
⊗
𝜀
ℎ
2
= ℎ
2
⊗
𝜀
ℎ
1
,

(2) (ℎ
1
⊗
𝜀
ℎ
2
)⊗
𝜀
ℎ
3
= ℎ
1
⊗
𝜀
(ℎ
2
⊗
𝜀
ℎ
3
),

(3) (ℎ
1
⊗
𝜀
ℎ
2
)
∧
𝜀
𝛼

= ℎ
∧
𝜀
𝛼

1
⊗
𝜀
ℎ
∧
𝜀
𝛼

2
,

(4) (ℎ∧𝜀𝛼1)∧𝜀𝛼2 = ℎ∧𝜀(𝛼1𝛼2);

(5) 𝐴 env(ℎ
∧
𝜀
𝛼) = (𝐴 env(ℎ))

∧
𝜀
𝛼,

(6) 𝐴 env(ℎ1⊗𝜀ℎ2) = 𝐴 env(ℎ1)⊗𝜀𝐴 env(ℎ2).

Proof. (1) It is trivial.
(2) By the operational law (9), we have

(ℎ
1
⊗
𝜀
ℎ
2
) ⊗
𝜀
ℎ
3

= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2
,𝛾
3
∈ℎ
3

{ ((𝛾
1
𝛾
2
/ (1 + (1 − 𝛾

1
) (1 − 𝛾

2
))) 𝛾
3
)

× (1 + (1 − (𝛾
1
𝛾
2
/ (1 + (1 − 𝛾

1
) (1 − 𝛾

2
))))

× (1 − 𝛾
3
))
−1

}
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= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2
,𝛾
3
∈ℎ
3

{ (𝛾
1
𝛾
2
𝛾
3
) × (1 + (1 − 𝛾

1
) (1 − 𝛾

2
)

+ (1 − 𝛾
1
) (1 − 𝛾

3
) + (1 − 𝛾

2
)

× (1 − 𝛾
3
))
−1

}

= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2
,𝛾
3
∈ℎ
3

{ (𝛾
1
(𝛾
2
𝛾
3
/ (1 + (1 − 𝛾

2
) (1 − 𝛾

3
))))

× (1 + (1 − 𝛾
1
)

× (1 − (𝛾
2
𝛾
3
/ (1 + (1 − 𝛾

2
) (1 − 𝛾

3
)))))
−1

}

= ℎ
1
⊗
𝜀
(ℎ
2
⊗
𝜀
ℎ
3
) .

(7)

(3) Let ℎ = ℎ
1
⊗
𝜀
ℎ
2
; then ℎ = ℎ

1
⊗
𝜀
ℎ
2

=

⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{𝛾
1
𝛾
2
/(1 + (1 − 𝛾

1
)(1 − 𝛾

2
))}

(ℎ
1
⊗
𝜀
ℎ
2
)
∧
𝜀
𝛼

= ℎ
∧
𝜀
𝛼

= ⋃
𝛾∈ℎ

{
2𝛾𝛼

(2 − 𝛾)
𝛼

+ 𝛾𝛼
}

= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{ (2(𝛾
1
𝛾
2
/ (1 + (1 − 𝛾

1
) (1 − 𝛾

2
)))
𝛼

)

× ((2 − (𝛾
1
𝛾
2
/ (1 + (1 − 𝛾

1
) (1 − 𝛾

2
))))
𝛼

+ (𝛾
1
𝛾
2
/ (1 + (1 − 𝛾

1
) (1 − 𝛾

2
)))
𝛼

)
−1

}

= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{
2(𝛾
1
𝛾
2
)
𝛼

(4 − 2𝛾
1
− 2𝛾
2
+ 𝛾
1
𝛾
2
)
𝛼

+ (𝛾
1
𝛾
2
)
𝛼
} ,

= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{
2(𝛾
1
𝛾
2
)
𝛼

(2 − 𝛾
1
)
𝛼

(2 − 𝛾
2
)
𝛼

+ (𝛾
1
𝛾
2
)
𝛼
} .

(8)

Since ℎ
∧
𝜀
𝛼

1
= ⋃

𝛾
1
∈ℎ
{2𝛾𝛼
1
/((2 − 𝛾

1
)
𝛼

+ 𝛾𝛼
1
)} and ℎ

∧
𝜀
𝛼

2
=

⋃
𝛾
2
∈ℎ
{2𝛾
𝛼

2
/((2 − 𝛾

2
)
𝛼

+ 𝛾
𝛼

2
)}, then

ℎ
∧
𝜀
𝛼

1
⊗
𝜀
ℎ
∧
𝜀
𝛼

2

= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{ ((2𝛾
𝛼

1
/ ((2 − 𝛾

1
)
𝛼

+ 𝛾
𝛼

1
))

⋅ (2𝛾
𝛼

2
/ ((2 − 𝛾

2
)
𝛼

+ 𝛾
𝛼

2
)))

× (1 + (1 − (2𝛾
𝛼

1
/ ((2 − 𝛾

1
)
𝛼

+ 𝛾
𝛼

1
)))

× (1 − (2𝛾
𝛼

2
/ ((2 − 𝛾

2
)
𝛼

+ 𝛾
𝛼

2
))))
−1

}

= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{
2(𝛾
1
𝛾
2
)
𝛼

(2 − 𝛾
1
)
𝛼

(2 − 𝛾
2
)
𝛼

+ (𝛾
1
𝛾
2
)
𝛼
} .

(9)

Thus (ℎ
1
⊗
𝜀
ℎ
2
)
∧
𝜀
𝛼

= ℎ
∧
𝜀
𝛼

1
⊗
𝜀
ℎ
∧
𝜀
𝛼

2
.

(4) Since ℎ∧𝜀𝛼1 = ⋃
𝛾∈ℎ

{2𝛾𝛼1/((2 − 𝛾)
𝛼
1 + 𝛾𝛼1)}, then

(ℎ∧𝜀𝛼1)
∧
𝜀
𝛼
2

= ⋃
𝛾∈ℎ

{ (2(2𝛾
𝛼
1/ ((2 − 𝛾)

𝛼
1 + 𝛾
𝛼
1))
𝛼
2

)

× ((2 − (2𝛾𝛼1/ ((2 − 𝛾)
𝛼
1 + 𝛾𝛼1)))

𝛼2

+ (2𝛾𝛼1/ ((2 − 𝛾)
𝛼
1 + 𝛾𝛼1))

𝛼
2

)
−1

}

= ⋃
𝛾∈ℎ

{
2𝛾(𝛼1𝛼2)

(2 − 𝛾)
(𝛼
1
𝛼
2
)

+ 𝛾(𝛼1𝛼2)
}

= ℎ∧𝜀(𝛼1𝛼2).

(10)

(5) By the definition of the envelope of an HFE and the
operation laws (3) and (10), we have

(𝐴env (ℎ))
∧
𝜀
𝛼

= (ℎ
−

, 1 − ℎ
+

)
∧
𝜀
𝛼

= (
2(ℎ−)

𝛼

(2 − ℎ−)
𝛼

+ (ℎ−)
𝛼
,
[1 + (1 − ℎ+)]

𝛼

− [1 − (1 − ℎ+)]
𝛼

[1 + (1 − ℎ+)]
𝛼

+ [1 − (1 − ℎ+)]
𝛼
)

= (
2(ℎ−)

𝛼

(2 − ℎ−)
𝛼

+ (ℎ−)
𝛼
,
(2 − ℎ+)

𝛼

− (ℎ+)
𝛼

(2 − ℎ+)
𝛼

+ (ℎ+)
𝛼
) .

𝐴env (ℎ
∧
𝜀
𝛼

)

= 𝐴env (⋃
𝛾∈ℎ

{
2𝛾𝛼

(2 − 𝛾)
𝛼

+ 𝛾𝛼
})

= (
2(ℎ−)

𝛼

(2 − ℎ−)
𝛼

+ (ℎ−)
𝛼
, 1 −

2(ℎ+)
𝛼

(2 − ℎ+)
𝛼

+ (ℎ+)
𝛼
)

= (
2(ℎ−)

𝛼

(2 − ℎ−)
𝛼

+ (ℎ−)
𝛼
,
(2 − ℎ+)

𝛼

− (ℎ+)
𝛼

(2 − ℎ+)
𝛼

+ (ℎ+)
𝛼
) .

(11)

Thus, 𝐴env(ℎ
∧
𝜀
𝛼

) = (𝐴env(ℎ))
∧
𝜀
𝛼.

(6) By the definition of the envelope of an HFE and the
operation laws (2) and (9), we have

𝐴env (ℎ1) ⊗𝜀𝐴env (ℎ2)

= (ℎ
−

1
, 1 − ℎ

+

1
) ⊗
𝜀
(ℎ
−

2
, 1 − ℎ

+

2
)

= (
ℎ−
1
ℎ−
2

1 + (1 − ℎ−
1
) (1 − ℎ−

2
)
,
(1 − ℎ+

1
) + (1 − ℎ+

2
)

1 + (1 − ℎ+
1
) (1 − ℎ+

2
)
)
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𝐴env (ℎ1⊗𝜀ℎ2)

= 𝐴env ( ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{
𝛾
1
𝛾
2

1 + (1 − 𝛾
1
) (1 − 𝛾

2
)
})

= (
ℎ−
1
ℎ−
2

1 + (1 − ℎ−
1
) (1 − ℎ−

2
)
, 1 −

ℎ+
1
ℎ+
2

1 + (1 − ℎ+
1
) (1 − ℎ+

2
)
)

= (
ℎ−
1
ℎ−
2

1 + (1 − ℎ−
1
) (1 − ℎ−

2
)
,
(1 − ℎ+

1
) + (1 − ℎ+

2
)

1 + (1 − ℎ+
1
) (1 − ℎ+

2
)
) .

(12)

Thus, 𝐴env(ℎ1⊗𝜀ℎ2) = 𝐴env(ℎ1)⊗𝜀𝐴env(ℎ2).

Remark 8. Let 𝛼
1
> 0, 𝛼

2
> 0, and ℎ be an HFE. It is worth

noting that ℎ∧𝜀𝛼1⊗
𝜀
ℎ∧𝜀𝛼2 ≐ ℎ∧𝜀(𝛼1+𝛼2) does not hold necessarily

in general. To illustrate that, an example is given as follows.

Example 9. Let ℎ = (0.3, 0.5), 𝛼
1

= 𝛼
2

= 1; then
ℎ∧𝜀𝛼1⊗

𝜀
ℎ∧𝜀𝛼2 = ℎ⊗

𝜀
ℎ = ⋃

𝛾
𝑖
∈ℎ,𝛾
𝑗
∈ℎ,(𝑖,𝑗=1,2)

{𝛾
𝑖
𝛾
𝑗
/(1 + (1 −

𝛾
𝑖
)(1 − 𝛾

𝑗
))} = (0.0604, 0.1111, 0.2), and ℎ∧𝜀(𝛼1+𝛼2) =

ℎ∧𝜀2 = ⋃
𝛾∈ℎ

{2𝛾2/((2 − 𝛾)
2

+ 𝛾2)} = (0.0604, 0.2). Clearly,
𝑠(ℎ∧𝜀𝛼1⊗

𝜀
ℎ∧𝜀𝛼2) = 0.1238 < 0.1302 = 𝑠(ℎ∧𝜀(𝛼1+𝛼2)). Thus

ℎ∧𝜀𝛼1⊗
𝜀
ℎ∧𝜀𝛼1 ≺ ℎ∧𝜀(𝛼1+𝛼2).

However, if the number of the values in ℎ is only one, that
is, HFE ℎ is reduced to a fuzzy value, then the above result
holds.

Proposition 10. Let 𝛼
1
> 0, 𝛼

2
> 0, and ℎ be an HFE, in

which the number of the values is only one, that is, ℎ = {𝛾};
then ℎ∧𝜀𝛼1⊗

𝜀
ℎ∧𝜀𝛼2 = ℎ∧𝜀(𝛼1+𝛼2).

Proof. Since ℎ∧𝜀𝛼1 = ⋃
𝛾∈ℎ

{2𝛾𝛼1/((2 − 𝛾)
𝛼
1 + 𝛾𝛼1)} and ℎ∧𝜀𝛼2 =

⋃
𝛾∈ℎ

{2𝛾𝛼2/((2 − 𝛾)
𝛼
2 + 𝛾𝛼2)}, then

ℎ
∧
𝜀
𝛼
1⊗
𝜀
ℎ
∧
𝜀
𝛼
1

= ⋃
𝛾∈ℎ

{ ((2𝛾
𝛼
1/ ((2 − 𝛾)

𝛼
1 + 𝛾
𝛼
1))

⋅ (2𝛾
𝛼
2/ ((2 − 𝛾)

𝛼
2 + 𝛾
𝛼
2)))

× (1 + (1 − (2𝛾
𝛼
1/ ((2 − 𝛾)

𝛼
1 + 𝛾
𝛼
1)))

× (1 − (2𝛾
𝛼
2/ ((2 − 𝛾)

𝛼
2 + 𝛾
𝛼
2))))
−1

}

= ⋃
𝛾∈ℎ

{ (2𝛾
𝛼
1 ⋅ 2𝛾
𝛼
2) × ([(2 − 𝛾)

𝛼
1 + 𝛾
𝛼
1] ⋅ [(2 − 𝛾)

𝛼
2 + 𝛾
𝛼
2]

+ [(2 − 𝛾)
𝛼
1 − 𝛾
𝛼
1]

⋅ [(2 − 𝛾)
𝛼
2 − 𝛾
𝛼
2])
−1

}

= ⋃
𝛾∈ℎ

{
2𝛾𝛼1+𝛼2

(2 − 𝛾)
𝛼
1
+𝛼
2 + 𝛾𝛼1+𝛼2

}

= ℎ
∧
𝜀
(𝛼
1
+𝛼
2
)

.

(13)

Proposition 10 shows that it is consistent with the result
(iii) in Theorem 2 in the literature [11].

4. Hesitant Fuzzy Einstein Geometric
Aggregation Operators

The weighted geometric operator [47] and the ordered
weighted geometric operator [48] are two of the most com-
mon and basic aggregation operators. Since their appearance,
they have received more and more attention. In this section,
we extend them to aggregate hesitant fuzzy information using
Einstein operations.

4.1. Hesitant Fuzzy Einstein Geometric Weighted Aggregation
Operator. Based on the operational laws (5) and (7) onHFEs,
Xia and Xu [36] developed some hesitant fuzzy aggregation
operators as listed below.

Let ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFEs; then.

(1) the hesitant fuzzy weighted geometric (HFWG) oper-
ator

HFWG (ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) =

𝑛

⨂
𝑗=1

ℎ
𝑗

𝜔
𝑗

= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2
,...,𝛾
𝑛
∈ℎ
𝑛

{

{

{

𝑛

∏
𝑗=1

𝛾
𝑗

𝜔
𝑗

}

}

}

,

(14)

where 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 is the weight vector of ℎ

𝑗
(𝑗 =

1, 2, . . . , 𝑛) with 𝜔
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝜔
𝑗
= 1.

(2) the hesitant fuzzy ordered weighted geometric
(HFOWG) operator

HFOWG (ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

=

𝑛

⨂
𝑗=1

𝑤
𝑗

ℎ
𝜎(𝑗)

= ⋃
𝛾
𝜎(1)
∈ℎ
𝜎(1)
,𝛾
𝜎(2)
∈ℎ
𝜎(2)
,...,𝛾
𝜎(𝑛)
∈ℎ
𝜎(𝑛)

{

{

{

𝑛

∏
𝑗=1

𝛾
𝑤
𝑗

𝜎(𝑗)

}

}

}

,

(15)

where 𝜎(1), 𝜎(2), . . . , 𝜎(𝑛) is a permutation of 1, 2, . . . , 𝑛,
such that ℎ

𝜎(𝑗−1)
> ℎ
𝜎(𝑗)

for all 𝑗 = 2, . . . , 𝑛 and 𝑤 =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is aggregation-associated vector with 𝑤

𝑗
∈

[0, 1] and ∑𝑛
𝑗=1

𝑤
𝑗
= 1.

For convenience, let𝐻 be the set of all HFEs. Based on the
proposed Einstein operations onHFEs, we develop some new
aggregation operators for HFEs and discuss their desirable
properties.
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Definition 11. Let ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFEs.

A hesitant fuzzy Einstein weighted geometric (HFEWG
𝜀
)

operator of dimension 𝑛 is a mapping HFEWG
𝜀
: 𝐻𝑛 → 𝐻

defined as follows:

HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

=

𝑛

⨂
𝜀

𝑗=1

ℎ
∧
𝜀
𝜔
𝑗

𝑗

= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2
,...,𝛾
𝑛
∈ℎ
𝑛

{

{

{

2∏
𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑗

∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑗

}

}

}

,

(16)

where 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is the weight vector of ℎ

𝑗
(𝑗 =

1, 2, . . . , 𝑛) and 𝑤
𝑗
> 0,∑𝑛

𝑗=1
𝑤
𝑗
= 1. In particular, when 𝑤

𝑗
=

1/𝑛, 𝑗 = 1, 2, . . . , 𝑛, the HFEWG
𝜀
operator is reduced to the

hesitant fuzzy Einstein geometric (HFEG
𝜀
) operator:

HFEG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2
,...,𝛾
𝑛
∈ℎ
𝑛

{

{

{

2∏
𝑛

𝑗=1
𝛾
1/𝑛

𝑗

∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)
1/𝑛

+∏
𝑛

𝑗=1
𝛾
1/𝑛

𝑗

}

}

}

.
(17)

From Proposition 10, we easily get the following result.

Corollary 12. If all ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) are equal and the

number of values in ℎ
𝑗
is only one, that is, ℎ

𝑗
= ℎ = {𝛾} for

all 𝑗 = 1, 2, . . . , 𝑛, then

HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) = ℎ. (18)

Note that the HFEWG
𝜀
operator is not idempotent in

general; we give the following example to illustrate this case.

Example 13. Let ℎ
1

= ℎ
2

= ℎ
3

= ℎ = (0.3, 0.7), 𝑤 =

(0.4, 0.25, 0.35)
𝑇; then HFEWG

𝜀
(ℎ
1
, ℎ
2
, ℎ
3
) = {0.3, 0.4137,

0.3782, 0.5126, 0.4323, 0.579, 0.5342, 0.7}. ByDefinition 3, we
have 𝑠(HFEWG

𝜀
(ℎ
1
, ℎ
2
, ℎ
3
)) = 0.4812 < 0.5 = 𝑠(ℎ). Hence

HFEWG
𝜀
(ℎ
1
, ℎ
2
, ℎ
3
) ≺ ℎ.

Lemma 14 (see [18, 49]). Let 𝛾
𝑗
> 0, 𝑤

𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑛,

and ∑𝑛
𝑗=1

𝑤
𝑗
= 1. Then

𝑛

∏
𝑗=1

𝛾
𝑤
𝑗

𝑗
≤

𝑛

∑
𝑗=1

𝑤
𝑗
𝛾
𝑗 (19)

with equality if and only if 𝛾
1
= 𝛾
2
= ⋅ ⋅ ⋅ = 𝛾

𝑛
.

Theorem 15. Let ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFEs

and 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 the weight vector of ℎ

𝑗
(𝑗 =

1, 2, . . . , 𝑛) with 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝑤
𝑗
= 1. Then

HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ⪰ HFWG (ℎ

1
, ℎ
2
, . . . , ℎ

𝑛
) , (20)

where the equality holds if only if all ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) are

equal and the number of values in ℎ
𝑗
is only one.

Proof. For any 𝛾
𝑗
∈ ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛), by Lemma 14, we have

𝑛

∏
𝑗=1

(2 − 𝛾
𝑗
)
𝑤
𝑗

+

𝑛

∏
𝑗=1

𝛾
𝑤
𝑗

𝑗
≤

𝑛

∑
𝑗=1

𝑤
𝑗
(2 − 𝛾

𝑗
) +

𝑛

∑
𝑗=1

𝑤
𝑗
𝛾
𝑗
= 2. (21)

Then

2∏
𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑗

∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑗

≥

𝑛

∏
𝑗=1

𝛾
𝜔
𝑗

𝑗
. (22)

It follows that 𝑠(⊗
𝜀

𝑛

𝑗=1
ℎ
∧
𝜀
𝜔
𝑗

𝑗
) ≥ 𝑠(⊗

𝜀

𝑛

𝑗=1
ℎ
𝜔
𝑗

𝑗
), which completes

the proof of Theorem 15.

Theorem 15 tells us the result that the HFEWG
𝜀
operator

shows the decision maker’s more optimistic attitude than the
HFWA operator proposed by Xia and Xu [36] (i.e., (15)) in
aggregation process. To illustrate that, we give an example
adopted from Example 1 in [36] as follows.

Example 16. Let ℎ
1
= (0.2, 0.3, 0.5), ℎ

2
= (0.4, 0.6) be two

HFEs, and let 𝑤 = (0.7, 0.3)
𝑇 be the weight vector of ℎ

𝑗
(𝑗 =

1, 2); then by Definition 11, we have

HFEWG
𝜀
(ℎ
1
, ℎ
2
) = ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{

{

{

2∏
2

𝑗=1
𝛾
𝜔
𝑗

𝑗

∏
2

𝑗=1
(2 − 𝛾

𝑗
)
𝜔
𝑗

+∏
2

𝑗=1
𝛾
𝜔
𝑗

𝑗

}

}

}

= {0.2482, 0.2856, 0.3276, 0.3744,

0.4683, 0.5288} .

(23)

However, Xia and Xu [36] used the HFWG operator to
aggregate the ℎ

𝑗
(𝑗 = 1, 2) and got

HFEG (ℎ
1
, ℎ
2
)

= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2

{

{

{

2

∏
𝑗=1

𝛾
𝑤
𝑗

𝑗

}

}

}

= {0.2462, 0.2781, 0.3270, 0.3693, 0.4676, 0.5281} .

(24)

It is clear that 𝑠(HFEWG
𝜀
(ℎ
1
, ℎ
2
)) = 0.3722 > 0.3694 =

𝑠(HFEG(ℎ
1
, ℎ
2
)). Thus HFEWG

𝜀
(ℎ
1
, ℎ
2
) ≻ HFEG(ℎ

1
, ℎ
2
).

Based onDefinition 11 and the proposed operational laws,
we can obtain the following properties onHFEWG

𝜀
operator.

Theorem 17. Let 𝛼 > 0, ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛), be a collection of

HFEs and 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 the weight vector of ℎ

𝑗
(𝑗 =

1, 2, . . . , 𝑛) with 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑖=1
𝑤
𝑗
= 1. Then

HFEWG
𝜀
(ℎ
∧
𝜀
𝛼

1
, ℎ
∧
𝜀
𝛼

2
, . . . , ℎ

∧
𝜀
𝛼

𝑛
)

= (HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
))
∧
𝜀
𝛼

.

(25)



Journal of Applied Mathematics 7

Proof. Since ℎ∧𝜀𝛼
𝑗

= ⋃
𝛾∈ℎ
𝑗

{2𝛾𝛼
𝑗
/((2 − 𝛾

𝑗
)
𝛼

+ 𝛾𝛼
𝑗
)} for all 𝑗 =

1, 2, . . . , 𝑛, by the definition of HFEWG
𝜀
, we have

HFEWG
𝜀
(ℎ
∧
𝜀
𝛼

1
, ℎ
∧
𝜀
𝛼

2
, . . . , ℎ

∧
𝜀
𝛼

𝑛
)

= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2
,...,𝛾
𝑛
∈ℎ
𝑛

{

{

{

(2

𝑛

∏
𝑗=1

(2𝛾
𝛼

𝑗
/ ((2 − 𝛾

𝑗
)
𝛼

+ 𝛾
𝛼

𝑗
))
𝜔
𝑗

)

× (

𝑛

∏
𝑗=1

(2 − (2𝛾
𝛼

𝑗
/ ((2 − 𝛾

𝑗
)
𝛼

+ 𝛾
𝛼

𝑗
)))
𝜔
𝑗

+

𝑛

∏
𝑗=1

(2𝛾
𝛼

𝑗
/ ((2 − 𝛾

𝑗
)
𝛼

+ 𝛾
𝛼

𝑗
))
𝜔
𝑗

)

−1

}

}

}

= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2
,...,𝛾
𝑛
∈ℎ
𝑛

{

{

{

2∏
𝑛

𝑗=1
𝛾
𝛼𝜔
𝑗

𝑗

∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)
𝛼𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾
𝛼𝜔
𝑗

𝑗

}

}

}

.

(26)

Since HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) =

⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2
,...,𝛾
𝑛
∈ℎ
𝑛

{2∏
𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑗
/(∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)
𝜔
𝑗 + ∏

𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑗
)},

then

(HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
))
∧
𝜀
𝛼

= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2
,...,𝛾
𝑛
∈ℎ
𝑛

{

{

{

(2(2

𝑛

∏
𝑗=1

𝛾
𝜔
𝑗

𝑗
/(

𝑛

∏
𝑗=1

(2 − 𝛾
𝑗
)
𝜔
𝑗

+

𝑛

∏
𝑗=1

𝛾
𝜔
𝑗

𝑗
))

𝛼

)

× ((2 − (2

𝑛

∏
𝑗=1

𝛾
𝜔
𝑗

𝑗
/(

𝑛

∏
𝑗=1

(2 − 𝛾
𝑗
)
𝜔
𝑗

+

𝑛

∏
𝑗=1

𝛾
𝜔
𝑗

𝑗
)))

𝛼

+ (2

𝑛

∏
𝑗=1

𝛾
𝜔
𝑗

𝑗
/(

𝑛

∏
𝑗=1

(2 − 𝛾
𝑗
)
𝜔
𝑗

+

𝑛

∏
𝑗=1

𝛾
𝜔
𝑗

𝑗
))

𝛼

)

−1

}

}

}

= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2
,...,𝛾
𝑛
∈ℎ
𝑛

{

{

{

2(∏
𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑗
)
𝛼

(∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)
𝜔
𝑗

)
𝛼

+ (∏
𝑛

𝑗=1
𝛾
𝛼𝜔
𝑗

𝑗
)
𝛼

}

}

}

= ⋃
𝛾
1
∈ℎ
1
,𝛾
2
∈ℎ
2
,...,𝛾
𝑛
∈ℎ
𝑛

{

{

{

2∏
𝑛

𝑗=1
𝛾
𝛼𝜔
𝑗

𝑗

∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)
𝛼𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾
𝛼𝜔
𝑗

𝑗

}

}

}

.

(27)

Theorem 18. Let ℎ be an𝐻𝐹𝐸, ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) a collection

of HFEs, and 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 the weight vector of ℎ

𝑗

(𝑗 = 1, 2, . . . , 𝑛) with 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑖=1
𝑤
𝑗
= 1. Then

HFEWG
𝜀
(ℎ
1
⊗
𝜀
ℎ, ℎ
2
⊗
𝜀
ℎ, . . . , ℎ

𝑛
⊗
𝜀
ℎ)

= HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ⊗
𝜀
ℎ.

(28)

Proof. By the definition of HFEWG
𝜀
and Einstein product

operator of HFEs, we have

HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ⊗
𝜀
ℎ

= ⋃
𝛾∈ℎ,𝛾

𝑗
∈ℎ
𝑗
,𝑗=1,...,𝑛

{

{

{

(2∏
𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑗
/ (∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑗
)) ⋅ 𝛾

1 + (1 − (2∏
𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑗
/ (∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑗
))) (1 − 𝛾)

}

}

}

= ⋃
𝛾∈ℎ,𝛾

𝑗
∈ℎ
𝑗
,𝑗=1,...,𝑛

{

{

{

2𝛾∏
𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑗

(2 − 𝛾)∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)
𝜔
𝑗

+ 𝛾∏
𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑗

}

}

}

.

(29)

Since ℎ
𝑗
⊗
𝜀
ℎ = ⋃

𝛾
𝑗
∈ℎ
𝑗
,𝛾∈ℎ

{𝛾
𝑗
𝛾/(1 + (1 − 𝛾

𝑗
)(1 − 𝛾))} for all 𝑗 =

1, 2, . . . , 𝑛, by the definition of HFEWG
𝜀
, we have

HFEWG
𝜀
(ℎ
1
⊗
𝜀
ℎ, ℎ
2
⊗
𝜀
ℎ, . . . , ℎ

𝑛
⊕
𝜀
ℎ)

= ⋃
𝛾∈ℎ,𝛾

𝑗
∈ℎ
𝑗
,𝑗=1,...,𝑛

{

{

{

(2

𝑛

∏
𝑗=1

(𝛾
𝑗
𝛾/ (1 + (1 − 𝛾

𝑗
) (1 − 𝛾)))

𝜔
𝑗

)

× (

𝑛

∏
𝑗=1

(2 − (𝛾
𝑗
𝛾/ (1 + (1 − 𝛾

𝑗
)

× (1 − 𝛾))))
𝜔
𝑗

+

𝑛

∏
𝑗=1

(𝛾
𝑗
𝛾/ (1 + (1 − 𝛾

𝑗
)

× (1 − 𝛾)))
𝑤
𝑗)

−1

}

}

}

= ⋃
𝛾∈ℎ,𝛾

𝑗
∈ℎ
𝑗
,𝑗=1,...,𝑛

{

{

{

2∏
𝑛

𝑗=1
(𝛾
𝑗
𝛾)
𝜔
𝑗

∏
𝑛

𝑗=1
((2 − 𝛾

𝑗
) (2 − 𝛾))

𝜔
𝑗

+∏
𝑛

𝑗=1
(𝛾
𝑗
𝛾)
𝜔
𝑗

}

}

}
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= ⋃
𝛾∈ℎ,𝛾

𝑗
∈ℎ
𝑗
,𝑗=1,...,𝑛

{

{

{

(2

𝑛

∏
𝑗=1

𝛾
𝜔
𝑗 ⋅

𝑛

∏
𝑗=1

𝛾
𝜔
𝑗

𝑗
)

× (

𝑛

∏
𝑗=1

(2 − 𝛾)
𝜔
𝑗 ⋅

𝑛

∏
𝑗=1

(2 − 𝛾
𝑗
)
𝜔
𝑗

+

𝑛

∏
𝑗=1

𝛾
𝜔
𝑗

⋅

𝑛

∏
𝑗=1

𝛾
𝜔
𝑗

𝑗
)

−1

}

}

}

= ⋃
𝛾∈ℎ,𝛾

𝑗
∈ℎ
𝑗
,𝑗=1,...,𝑛

{

{

{

(2𝛾
∑
𝑛

𝑗=1
𝜔
𝑗 ⋅

𝑛

∏
𝑗=1

𝛾
𝜔
𝑗

𝑗
)

× ((2 − 𝛾)
∑
𝑛

𝑗=1
𝜔
𝑗 ⋅

𝑛

∏
𝑗=1

(2 − 𝛾
𝑗
)
𝜔
𝑗

+ 𝛾
∑
𝑛

𝑗=1
𝜔
𝑗 ⋅

𝑛

∏
𝑗=1

𝛾
𝜔
𝑗

𝑗
)

−1

}

}

}

= ⋃
𝛾∈ℎ,𝛾

𝑗
∈ℎ
𝑗
,𝑗=1,...,𝑛

{

{

{

2𝛾∏
𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑗

(2 − 𝛾)∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)
𝜔
𝑗

+ 𝛾∏
𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑗

}

}

}

.

(30)

Based onTheorems 17 and 18, the following property can
be obtained easily.

Theorem 19. Let 𝛼 > 0, ℎ be an HFE, let ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛)

be a collection of HFEs, and let 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be the

weight vector of ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) with 𝑤

𝑗
∈ [0, 1] and

∑
𝑛

𝑖=1
𝑤
𝑗
= 1. Then

HFEWG
𝜀
(ℎ
∧
𝜀
𝛼

1
⊗
𝜀
ℎ, ℎ
∧
𝜀
𝛼

1
⊗
𝜀
ℎ, . . . , ℎ

∧
𝜀
𝛼

𝑛
⊗
𝜀
ℎ)

= (HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ⊗
𝜀
ℎ)
∧
𝜀
𝛼

.

(31)

Theorem 20. Let ℎ
𝑗
and ℎ󸀠
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be two collections

of HFEs and𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 the weight vector of ℎ

𝑗
(𝑗 =

1, 2, . . . , 𝑛) with 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑖=1
𝑤
𝑗
= 1. Then

HFEWG
𝜀
(ℎ
1
⊗
𝜀
ℎ
󸀠

1
, ℎ
2
⊗
𝜀
ℎ
󸀠

2
, . . . , ℎ

𝑛
⊗
𝜀
ℎ
󸀠

𝑛
)

= HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ⊗
𝜀
HFEWG

𝜀
(ℎ
󸀠

1
, ℎ
󸀠

2
, . . . , ℎ

󸀠

𝑛
) .

(32)

Proof. By the definition of HFEWG
𝜀
and Einstein product

operator of HFEs, we have

HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ⊗
𝜀
HFEWG

𝜀
(ℎ
󸀠

1
, ℎ
󸀠

2
, . . . , ℎ

󸀠

𝑛
)

= ⋃

𝛾
𝑗
∈ℎ
𝑗
,𝛾
󸀠

𝑗
∈ℎ
󸀠

𝑗
,𝑗=1,...,𝑛

{

{

{

(2∏
𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑗
/ (∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑗
)) ⋅ (2∏

𝑛

𝑗=1
𝛾󸀠
𝑗

𝜔
𝑗

/ (∏
𝑛

𝑗=1
(2 − 𝛾󸀠

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾󸀠
𝑗

𝜔
𝑗

))

1 + (1 − (2∏
𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑗
/ (∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑗
))) (1 − (2∏

𝑛

𝑗=1
𝛾󸀠
𝑗

𝜔
𝑗/ (∏

𝑛

𝑗=1
(2 − 𝛾󸀠

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾󸀠
𝑗

𝜔
𝑗)))

}

}

}

= ⋃

𝛾
𝑗
∈ℎ
𝑗
,𝛾
󸀠

𝑗
∈ℎ
󸀠

𝑗
,𝑗=1,...,𝑛

{

{

{

2∏
𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑗
⋅ ∏
𝑛

𝑗=1
𝛾󸀠
𝑗

𝜔
𝑗

∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)
𝜔
𝑗

⋅ ∏
𝑛

𝑗=1
(2 − 𝛾󸀠

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑗
⋅ ∏
𝑛

𝑗=1
𝛾󸀠
𝑗

𝜔
𝑗

}

}

}

.

(33)

Since ℎ
𝑗
⊗
𝜀
ℎ󸀠
𝑗
= ⋃
𝛾
𝑗
∈ℎ
𝑗
,𝛾
󸀠

𝑗
∈ℎ
󸀠

𝑗

{𝛾
𝑗
𝛾󸀠
𝑗
/(1 + (1 − 𝛾

𝑗
)(1 − 𝛾󸀠

𝑗
))} for all

𝑗 = 1, 2, . . . , 𝑛, by the definition of HFEWG
𝜀
, we have

HFEWG
𝜀
(ℎ
1
⨂
𝜀

ℎ
󸀠

1
, ℎ
2
⨂
𝜀

ℎ
󸀠

2
, . . . , ℎ

𝑛
⨂
𝜀

ℎ
󸀠

𝑛
)

= ⋃

𝛾
𝑗
∈ℎ
𝑗
,𝛾
󸀠

𝑗
∈ℎ
󸀠

𝑗
,𝑗=1,...,𝑛

{

{

{

(2

𝑛

∏
𝑗=1

(𝛾
𝑗
𝛾
󸀠

𝑗
/ (1 + (1 − 𝛾

𝑗
) (1 − 𝛾

󸀠

𝑗
)))
𝜔
𝑗

)

× (

𝑛

∏
𝑗=1

(2 − (𝛾
𝑗
𝛾
󸀠

𝑗
/ (1 + (1 − 𝛾

𝑗
)

× (1 − 𝛾
󸀠

𝑗
))))
𝜔
𝑗

+

𝑛

∏
𝑗=1

(𝛾
𝑗
𝛾
󸀠

𝑗
/ (1 + (1 − 𝛾

𝑗
)

× (1 − 𝛾
󸀠

𝑗
)))
𝜔
𝑗

)

−1

}

}

}

= ⋃

𝛾
𝑗
∈ℎ
𝑗
,𝛾
󸀠

𝑗
∈ℎ
󸀠

𝑗
,𝑗=1,...,𝑛

{

{

{

(2

𝑛

∏
𝑗=1

(𝛾
𝑗
𝛾
󸀠

𝑗
)
𝜔
𝑗

)

× (

𝑛

∏
𝑗=1

[(2 − 𝛾
𝑗
) (2 − 𝛾

󸀠

𝑗
)]
𝜔
𝑗

+

𝑛

∏
𝑗=1

(𝛾
𝑗
𝛾
󸀠

𝑗
)
𝜔
𝑗

)

−1

}

}

}

= ⋃

𝛾
𝑗
∈ℎ
𝑗
,𝛾
󸀠

𝑗
∈ℎ
󸀠

𝑗
,𝑗=1,...,𝑛

{

{

{

(2

𝑛

∏
𝑗=1

𝛾
𝜔
𝑗

𝑗
⋅

𝑛

∏
𝑗=1

𝛾
󸀠

𝑗

𝜔
𝑗

)
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× (

𝑛

∏
𝑗=1

(2 − 𝛾
𝑗
)
𝜔
𝑗

⋅

𝑛

∏
𝑗=1

(2 − 𝛾
󸀠

𝑗
)
𝜔
𝑗

+

𝑛

∏
𝑗=1

𝛾
𝜔
𝑗

𝑗
⋅

𝑛

∏
𝑗=1

𝛾
󸀠

𝑗

𝜔
𝑗

)

−1

}

}

}

.

(34)

Theorem 21. Let ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFEs,

ℎ−min = min
𝑗
{ℎ−
𝑗
| ℎ−
𝑗
= min{𝛾

𝑗
∈ ℎ
𝑗
}}, and ℎ+max = max

𝑗
{ℎ+
𝑗
|

ℎ+
𝑗
= max{𝛾

𝑗
∈ ℎ
𝑗
}}, and let 𝑤 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be the

weight vector of ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) with 𝑤

𝑗
∈ [0, 1] and

∑
𝑛

𝑖=1
𝑤
𝑗
= 1. Then

ℎ
−

min ⪯ HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ⪯ ℎ
+

max, (35)

where the equality holds if only if all ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) are

equal and the number of values in ℎ
𝑗
is only one.

Proof. Let 𝑓(𝑡) = (2 − 𝑡)/𝑡, 𝑡 ∈ [0, 1]. Then 𝑓󸀠(𝑡) = −2/𝑡2 < 0.
Hence 𝑓(𝑡) is a decreasing function. Since ℎ−min ≤ ℎ−

𝑗
≤ 𝛾
𝑗
≤

ℎ+
𝑗
≤ ℎ+max for any 𝛾𝑗 ∈ ℎ

𝑗
(𝑗 = 1, 2, . . . , 𝑛), then 𝑓(ℎ+max) ≤

𝑓(𝛾
𝑗
) ≤ 𝑓(ℎ−min); that is, (2 − ℎ+max)/ℎ

+

max ≤ (2 − 𝛾
𝑗
)/𝛾
𝑗
≤

(2−ℎ−min)/ℎ
−

min. Then for any 𝛾
𝑗
∈ ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛), we have

𝑛

∏
𝑗=1

(
2 − ℎ+max
ℎ+max

)

𝑤
𝑗

≤

𝑛

∏
𝑗=1

(
2 − 𝛾
𝑗

𝛾
𝑗

)

𝑤
𝑗

≤

𝑛

∏
𝑗=1

(
1 − ℎ−min
1 + ℎ−min

)

𝑤
𝑗

⇐⇒ (
2 − ℎ+max
ℎ+max

)

∑
𝑛

𝑗=1
𝑤
𝑗

≤

𝑛

∏
𝑗=1

(
2 − 𝛾
𝑗

𝛾
𝑗

)

𝑤
𝑗

≤ (
1 − ℎ−min
1 + ℎ−min

)

∑
𝑛

𝑗=1
𝑤
𝑗

⇐⇒ (
2 − ℎ+max
ℎ+max

)

≤

𝑛

∏
𝑗=1

(
2 − 𝛾
𝑗

𝛾
𝑗

)

𝑤
𝑗

≤ (
1 − ℎ−min
1 + ℎ−min

) ⇐⇒
2

ℎ+max

≤

𝑛

∏
𝑗=1

(
2 − 𝛾
𝑗

𝛾
𝑗

)

𝑤
𝑗

+ 1 ≤
2

ℎ−min
⇐⇒

ℎ
−

min
2

≤
1

∏
𝑛

𝑗=1
((2 − 𝛾

𝑗
) /𝛾
𝑗
)
𝑤
𝑗

+ 1
≤ (

ℎ+max
2

) ⇐⇒ ℎ
−

min

≤
2

∏
𝑛

𝑗=1
((2 − 𝛾

𝑗
) /𝛾
𝑗
)
𝑤
𝑗

+ 1
≤ ℎ
+

max ⇐⇒ ℎ
−

min

≤
2∏
𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑗

∏
𝑛

𝑗=1
(2 − 𝛾

𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑗

≤ ℎ
+

max.

(36)

It follows that ℎ−min ≤ 𝑠(HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)) ≤ ℎ+max.

Thus we have ℎ−min ⪯ HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ⪯ ℎ+max.

Remark 22. Let ℎ
𝑗
and ℎ󸀠

𝑗
(𝑗 = 1, 2, . . . , 𝑛) be two collections

ofHFEs, and ℎ
𝑗
≺ ℎ
󸀠

𝑗
for all 𝑗; thenHFEWG

𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ≺

HFEWG
𝜀
(ℎ󸀠
1
, ℎ󸀠
2
, . . . , ℎ󸀠

𝑛
) does not hold necessarily in general.

To illustrate that, an example is given as follows.

Example 23. Let ℎ
1

= (0.45, 0.6), ℎ
2

= (0.6, 0.7), ℎ
3

=

(0.5, 0.6), ℎ󸀠
1
= (0.2, 0.9), ℎ󸀠

2
= (0.45, 0.95), ℎ󸀠

3
= (0.35, 0.8),

and 𝑤 = (0.5, 0.3, 0.2)
𝑇; then HFEWG

𝜀
(ℎ
1
, ℎ
2
, ℎ
3
) = {0.5024,

0.5215, 0.5286, 0.5483, 0.5791, 0.6, 0.6077, 0.6291} and
HFEWG

𝜀
(ℎ󸀠
1
, ℎ󸀠
2
, ℎ󸀠
3
) = {0.2778, 0.3372, 0.3835, 0.4595,

0.6088, 0.7099, 0.7833, 0.8947}. By Definition 3, we have
𝑠(HFEWG

𝜀
(ℎ
1
, ℎ
2
, ℎ
3
)) = 0.5646 and 𝑠(HFEWG

𝜀
(ℎ󸀠
1
, ℎ󸀠
2
,

ℎ󸀠
3
)) = 0.5568. It follows that HFEWG

𝜀
(ℎ
1
, ℎ
2
, ℎ
3
) ≻

HFEWG
𝜀
(ℎ󸀠
1
, ℎ󸀠
2
, ℎ󸀠
3
). Clearly, ℎ

𝑗
≺ ℎ󸀠
𝑗
for 𝑗 = 1, 2, 3, but

HFEWG
𝜀
(ℎ
1
, ℎ
2
, ℎ
3
) ≻ HFEWG

𝜀
(ℎ
󸀠

1
, ℎ
󸀠

2
, ℎ
󸀠

3
).

4.2. Hesitant Fuzzy Einstein Ordered Weighted Averaging
Operator. Similar to the HFOWG operator introduced by
Xia and Xu [36] (i.e., (15)), in what follows, we develop
an (HFEOWG

𝜀
) operator, which is an extension of OWA

operator proposed by Yager [50].

Definition 24. For a collection of the HFEs ℎ
𝑗
(𝑗 =

1, 2, . . . , 𝑛), a hesitant fuzzy Einstein ordered weighted aver-
aging (HFEOWG

𝜀
) operator is a mapping HFEWG

𝜀
: 𝐻
𝑛

→

𝐻 such that

HFEOWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

=

𝑛

⨂
𝜀

𝑗=1

ℎ
∧
𝜀
𝑤
𝑗

𝜎(𝑗)

= ⋃
𝛾
𝜎(1)
∈ℎ
𝜎(1)
,𝛾
𝜎(2)
∈ℎ
𝜎(2)
,...,𝛾
𝜎(𝑛)
∈ℎ
𝜎(𝑛)

{

{

{

(2

𝑛

∏
𝑗=1

𝛾
𝑤
𝑗

𝜎(𝑗)
)

× (

𝑛

∏
𝑗=1

(2 − 𝛾
𝜎(𝑗)

)
𝑤
𝑗

+

𝑛

∏
𝑗=1

𝛾
𝑤
𝑗

𝜎(𝑗)
)

−1

}

}

}

,

(37)

where (𝜎(1), 𝜎(2), . . . , 𝜎(𝑛)) is a permutation of (1, 2, . . . , 𝑛),
such that ℎ

𝜎(𝑗−1)
≻ ℎ

𝜎(𝑗)
for all 𝑗 = 2, . . . , 𝑛 and

𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is aggregation-associated vector with

𝑤
𝑗

∈ [0, 1] and ∑
𝑛

𝑗=1
𝑤
𝑗

= 1. In particular, if 𝑤 =

(1/𝑛, 1/𝑛, . . . , 1/𝑛)
𝑇, then the HFEOWG

𝜀
operator is reduced

to the HFEA
𝜀
operator of dimension 𝑛 (i.e., (17)).
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Note that the HFEOWG
𝜀
weights can be obtained similar

to the OWA weights. Several methods have been introduced
to determine the OWA weights in [20, 21, 50–53].

Similar to the HFEWG
𝜀
operator, the HFEOWG

𝜀
opera-

tor has the following properties.

Theorem 25. Let ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFEs

and 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 the weight vector of ℎ

𝑗
(𝑗 =

1, 2, . . . , 𝑛) with 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝑤
𝑗
= 1. Then

HFEOWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ⪰ HFOWG (ℎ

1
, ℎ
2
, . . . , ℎ

𝑛
) ,

(38)

where the equality holds if only if all ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) are

equal and the number of values in ℎ
𝑗
is only one.

From Theorem 25, we can conclude that the values
obtained by the HFEOWG

𝜀
operator are not less than the

ones obtained by the HFOWA operator proposed by Xia
and Xu [36]. To illustrate that, let us consider the following
example.

Example 26. Let ℎ
1

= (0.1, 0.4, 0.7), ℎ
2

= (0.3, 0.5), and
ℎ
3

= (0.2, 0.6) be three HFEs and suppose that 𝑤 =

(0.2, 0.45, 0.35)
𝑇 is the associated vector of the aggregation

operator.
By Definitions 3 and 4, we calculate the score values and

the accuracy values of ℎ
1
, ℎ
2
, and ℎ

3
as follows, respectively:

𝑠(ℎ
1
) = 𝑠(ℎ

2
) = 𝑠(ℎ

3
) = 0.5, 𝑘(ℎ

1
) = 0.7551, 𝑘(ℎ

2
) = 0.9,

𝑘(ℎ
3
) = 0.8.
According to Definition 5, we have ℎ

2
≺ ℎ
3
≺ ℎ
1
. Then

ℎ
𝜎(1)

= ℎ
2
, ℎ
𝜎(2)

= ℎ
3
, ℎ
𝜎(3)

= ℎ
1
.

By the definition of HFEOWG
𝜀
, we have

HFEOWG
𝜀
(ℎ
1
, ℎ
2
, ℎ
3
)

=

3

⨂
𝜀

𝑗=1

ℎ
∧
𝜀
𝑤
𝑗

𝜎(𝑗)

= ⋃
𝛾
𝜎(1)
∈ℎ
𝜎(1)
,𝛾
𝜎(2)
∈ℎ
𝜎(2)
,𝛾
𝜎(3)
∈ℎ
𝜎(3)

{{

{{

{

2∏
3

𝑗=1
𝛾
𝑤
𝑗

𝜎(𝑗)

∏
3

𝑗=1
(2 − 𝛾

𝜎(𝑗)
)
𝑤
𝑗

+∏
3

𝑗=1
𝛾
𝑤
𝑗

𝜎(𝑗)

}}

}}

}

= {0.1716, 0.2787, 0.3495, 0.2939, 0.4582, 0.5598, 0.1926,

0.3106, 0.3877, 0.3272, 0.5047, 0.6125} .

(39)

If we use the HFOWA operator, which was given by Xia and
Xu [36] (i.e., (15)), to aggregate the HFEs ℎ

𝑗
(𝑖 = 1, 2, 3), then

we have

HFOWG (ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)

=

3

⨂
𝑗=1

ℎ
𝑤
𝑗

𝜎(𝑗)
= ⋃
𝛾
𝜎(1)
∈ℎ
𝜎(1)
,𝛾
𝜎(2)
∈ℎ
𝜎(2)
,𝛾
𝜎(3)
∈ℎ
𝜎(3)

{

{

{

3

∏
𝑗=1

𝛾
𝑤
𝑗

𝜎(𝑗)

}

}

}

= {0.1702, 0.2764, 0.3363, 0.2790, 0.4532, 0.5513,

0.1885, 0.3062, 0.3724, 0.3090, 0.5020, 0.6106} .

(40)

Clearly, 𝑠(HFEOWG
𝜀
(ℎ
1
, ℎ
2
, ℎ
3
)) = 0.3706 > 0.3629 =

𝑠(HFOWG(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)). By Definition 3, we have

HFEOWG
𝜀
(ℎ
1
, ℎ
2
, ℎ
3
) ≻ HFOWG(ℎ

1
, ℎ
2
, ℎ
3
).

Theorem 27. Let 𝛼 > 0, ℎ be an HFE, let ℎ
𝑗
and ℎ󸀠

𝑗

(𝑗 = 1, 2, . . . , 𝑛) be two collection of HFEs, and let 𝑤 =

(𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be an aggregation-associated vector with

𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝑤
𝑗
= 1. Then

(1) HFEWG
𝜀
(ℎ
∧
𝜀
𝛼

1
, ℎ
∧
𝜀
𝛼

2
, . . . , ℎ∧𝜀𝛼

𝑛
) =

(HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
))
∧
𝜀
𝛼,

(2) HFEWG
𝜀
(ℎ
1
⊗
𝜀
ℎ, ℎ
2
⊗
𝜀
ℎ, . . . , ℎ

𝑛
⊗
𝜀
ℎ) = HFEWG

𝜀
(ℎ
1
,

ℎ
2
, . . . , ℎ

𝑛
)⊗
𝜀
ℎ,

(3) HFEWG
𝜀
(ℎ
∧
𝜀
𝛼

1
⊗
𝜀
ℎ, ℎ
∧
𝜀
𝛼

1
⊗
𝜀
ℎ, . . . , ℎ∧𝜀𝛼

𝑛
⊗
𝜀
ℎ) =

(HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)⊗
𝜀
ℎ)
∧
𝜀
𝛼,

(4) HFEWG
𝜀
(ℎ
1
⊗
𝜀
ℎ󸀠
1
, ℎ
2
⊗
𝜀
ℎ󸀠
2
, . . . , ℎ

𝑛
⊗
𝜀
ℎ󸀠
𝑛
) =

HFEWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)⊗
𝜀
HFEWG

𝜀
(ℎ󸀠
1
, ℎ󸀠
2
, . . . , ℎ󸀠

𝑛
).

Theorem 28. Let ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFEs

and let 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be an aggregation-associated

vector with 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝑤
𝑗
= 1. Then

ℎ
−

min ⪯ HFEOWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) ⪯ ℎ
+

max, (41)

where ℎ−min = min
𝑗
{ℎ−
𝑗
| ℎ−
𝑗
= min{𝛾

𝑗
∈ ℎ
𝑗
}} and ℎ+max =

max
𝑗
{ℎ+
𝑗
| ℎ+
𝑗
= max{𝛾

𝑗
∈ ℎ
𝑗
}}.

Besides the above properties, we can get the following
desirable results on the HFOWG

𝜀
operator.

Theorem 29. Let ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFEs,

and let 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be an aggregation-associated

vector with 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝑤
𝑗
= 1. Then

HFEOWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) = HFEOWG

𝜀
(ℎ
󸀠

1
, ℎ
󸀠

2
, . . . , ℎ

󸀠

𝑛
) ,

(42)

where (ℎ󸀠
1
, ℎ󸀠
2
, . . . , ℎ󸀠

𝑛
) is any permutation of (ℎ

1
, ℎ
2
, . . . , ℎ

𝑛
).

Proof. Let HFEOWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) = ⊗

𝜀

𝑛

𝑗=1
ℎ
∧
𝜀
𝑤
𝑗

𝜎(𝑗)

and HFEOWG
𝜀
(ℎ󸀠
1
, ℎ󸀠
2
, . . . , ℎ󸀠

𝑛
) = ⊗

𝜀

𝑛

𝑗=1
ℎ󸀠
𝜎(𝑗)

∧
𝜀
𝑤
𝑗 . Since

(ℎ󸀠
1
, ℎ󸀠
2
, . . . , ℎ󸀠

𝑛
) is any permutation of (ℎ

1
, ℎ
2
, . . . , ℎ

𝑛
),

then we have ℎ
𝜎(𝑗)

= ℎ󸀠
𝜎(𝑗)

(𝑗 = 1, 2, . . . , 𝑛). Thus
HFEOWG

𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
) = HFEOWG

𝜀
(ℎ󸀠
1
, ℎ󸀠
2
, . . . , ℎ󸀠

𝑛
).

Theorem 30. Let ℎ
𝑗
(𝑗 = 1, 2, . . . , 𝑛) be a collection of HFEs,

and let 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 be an aggregation-associated

vector with 𝑤
𝑗
∈ [0, 1] and ∑𝑛

𝑗=1
𝑤
𝑗
= 1. Then

(1) if 𝑤 = (0, 0, . . . , 1), then HFOWG
𝜀
(ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
)=

min{ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
};
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(2) if 𝑤 = (1, 0, . . . , 0), then HFOWG
𝜀
(ℎ
1
, ℎ
2
, . . .,

ℎ
𝑛
)=max{ℎ

1
, ℎ
2
, . . . , ℎ

𝑛
};

(3) if 𝑤
𝑗
= 1 and 𝑤

𝑖
= 0 (𝑖 ̸= 𝑗), then HFOWG

𝜀
(ℎ
1
, ℎ
2
, . . .,

ℎ
𝑛
) = ℎ

𝜎(𝑗)
, where ℎ

𝜎(𝑗)
is the 𝑗th largest of ℎ

𝑖
(𝑖 =

1, 2, . . . , 𝑛).

5. An Application in Hesitant
Fuzzy Decision Making

In this section, we apply the HFEWG
𝜀
and HFEOWG

𝜀

operators to multiple attribute decision making with hesitant
fuzzy information.

For hesitant fuzzy multiple attribute decision making
problems, let 𝑌 = {𝑌

1
, 𝑌
2
, . . . , 𝑌

𝑚
} be a discrete set of

alternatives, let 𝐴 = {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
} be a collection of

attributes, and let 𝜔 = (𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑛
)
𝑇 be the weight vector

of 𝐴
𝑗
(𝑗 = 1, 2, . . . , 𝑛) with 𝜔

𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑛, and

∑
𝑛

𝑗=1
𝜔
𝑗
= 1. If the decision makers provide several values for

the alternative 𝑌
𝑖
(𝑖 = 1, 2, . . . , 𝑚) under the attribute 𝐴

𝑗
(𝑗 =

1, 2, . . . , 𝑛)with anonymity, these values can be considered as
an HFE ℎ

𝑖𝑗
. In the case where two decision makers provide

the same value, the value emerges only once in ℎ
𝑖𝑗
. Suppose

that the decision matrix 𝐻 = (ℎ
𝑖𝑗
)
𝑚×𝑛

is the hesitant fuzzy
decision matrix, where ℎ

𝑖𝑗
(𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛) are

in the form of HFEs.
To get the best alternative, we can utilize the HFEWG

𝜀

operator or the HFEOWG
𝜀
operator; that is,

ℎ
𝑖
= HFEWG

𝜀
(ℎ
𝑖1
, ℎ
𝑖2
, . . . , ℎ

𝑖𝑛
)

= ⋃
𝛾
𝑖1
∈ℎ
𝑖1
,𝛾
𝑖2
∈ℎ
𝑖2
,...,𝛾
𝑖𝑛
∈ℎ
𝑖𝑛

{

{

{

2∏
𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑖𝑗

∏
𝑛

𝑗=1
(2 − 𝛾

𝑖𝑗
)
𝜔
𝑗

+∏
𝑛

𝑗=1
𝛾
𝜔
𝑗

𝑖𝑗

}

}

}

(43)

or

ℎ
𝑖
= HFEOWG

𝜀
(ℎ
𝑖1
, ℎ
𝑖2
, . . . , ℎ

𝑖𝑛
)

= ⋃
𝛾
𝑖𝜎(𝑗)
∈ℎ
𝑖𝜎(𝑗)
,𝑗=1,2,...,𝑛

{{

{{

{

2∏
𝑛

𝑗=1
𝛾
𝑤
𝑗

𝑖𝜎(𝑗)

∏
𝑛

𝑗=1
(2 − 𝛾

𝑖𝜎(𝑗)
)
𝑤
𝑗

+∏
𝑛

𝑗=1
𝛾
𝑤
𝑗

𝑖𝜎(𝑗)

}}

}}

}
(44)

to derive the overall value ℎ
𝑖
of the alternatives 𝑌

𝑖
(𝑖 =

1, 2, . . . , 𝑚), where𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 is the weight vector

related to the HFEOWA
𝜀
operator, such that 𝑤

𝑗
≥ 0, 𝑗 =

1, 2, . . . , 𝑛, and ∑
𝑛

𝑗=1
𝑤
𝑗
= 1, which can be obtained by the

normal distribution based method [20].
Then by Definition 3, we compute the scores 𝑠(ℎ

𝑖
) (𝑖 =

1, 2, . . . , 𝑚) of the overall values ℎ
𝑖
(𝑖 = 1, 2, . . . , 𝑚) and use

the scores 𝑠(ℎ
𝑖
) (𝑖 = 1, 2, . . . , 𝑚) to rank the alternatives

𝑌 = {𝑌
1
, 𝑌
2
, . . . , 𝑌

𝑚
} and then select the best one (note that

if there is no difference between the two scores ℎ
𝑖
and ℎ

𝑗
,

thenwe need to compute the accuracy degrees 𝑘(ℎ
𝑖
) and 𝑘(ℎ

𝑗
)

of the overall values ℎ
𝑖
and ℎ

𝑗
by Definition 4, respectively,

and then rank the alternatives 𝑌
𝑖
and 𝑌

𝑗
in accordance with

Definition 5).
In the following, an example on multiple attribute deci-

sion making problem involving a customer buying a car,

which is adopted from Herrera and Martinez [54], is given
to illustrate the proposed method using the HFEOWG

𝜀

operator.

Example 31. Consider that a customer wants to buy a car,
which will be chosen from five types 𝑌

𝑖
(𝑖 = 1, 2, . . . , 5).

In the process of choosing one of the cars, four factors are
considered:𝐴

1
is the consumption petrol,𝐴

2
is the price,𝐴

3

is the degree of comfort, and 𝐴
4
is the safety factor. Suppose

that the characteristic information of the alternatives 𝑌
𝑖
(𝑖 =

1, 2, . . . , 5) can be represented by HFEs ℎ
𝑖𝑗
(𝑖 = 1, 2, . . . , 5; 𝑗 =

1, 2, . . . , 4), and the hesitant fuzzy decision matrix is given in
Table 1.

To use HFEOWG
𝜀
operator, we first reorder the ℎ

𝑖𝑗
(𝑗 =

1, 2, . . . , 4) for each alternative 𝑌
𝑖
(𝑖 = 1, 2, . . . , 5). According

to Definitions 3 and 4, we compute the score values and
accuracy degrees of 𝑠(ℎ

𝑖𝑗
) (𝑖 = 1, 2, . . . , 5; 𝑗 = 1, 2, . . . , 4) as

follows:

𝑠 (ℎ
11
) = 0.45, 𝑠 (ℎ

12
) = 0.75, 𝑠 (ℎ

13
) = 0.3,

𝑠 (ℎ
14
) = 0.3, 𝑘 (ℎ

13
) = 0.9184, 𝑘 (ℎ

14
) = 0.9;

𝑠 (ℎ
21
) = 0.5, 𝑠 (ℎ

22
) = 0.7, 𝑠 (ℎ

23
) = 0.7,

𝑠 (ℎ
24
) = 0.5, 𝑘 (ℎ

21
) = 0.7551, 𝑘 (ℎ

24
) = 0.8129,

𝑘 (ℎ
22
) = 0.8367, 𝑘 (ℎ

23
) = 0.9;

𝑠 (ℎ
31
) = 0.85, 𝑠 (ℎ

32
) = 0.4, 𝑠 (ℎ

33
) = 0.35,

𝑠 (ℎ
34
) = 0.4, 𝑘 (ℎ

32
) = 0.8367, 𝑘 (ℎ

34
) = 0.7764;

𝑠 (ℎ
41
) = 0.6, 𝑠 (ℎ

42
) = 0.6, 𝑠 (ℎ

43
) = 0.3,

𝑠 (ℎ
44
) = 0.4, 𝑘 (ℎ

41
) = 0.772, 𝑘 (ℎ

42
) = 0.8367;

𝑠 (ℎ
51
) = 0.5, 𝑠 (ℎ

52
) = 0.3, 𝑠 (ℎ

53
) = 0.5,

𝑠 (ℎ
54
) = 0.35, 𝑘 (ℎ

51
) = 0.8367, 𝑘 (ℎ

53
) = 0.8129.

(45)

Then by Definition 5, we have

ℎ
1𝜎(1)

= ℎ
12
, ℎ
1𝜎(2)

= ℎ
11
, ℎ
1𝜎(3)

= ℎ
13
, ℎ
1𝜎(4)

= ℎ
14
;

ℎ
2𝜎(1)

= ℎ
23
, ℎ
2𝜎(2)

= ℎ
22
, ℎ
2𝜎(3)

= ℎ
24
, ℎ
2𝜎(4)

= ℎ
21
;

ℎ
3𝜎(1)

= ℎ
31
, ℎ
3𝜎(2)

= ℎ
32
, ℎ
3𝜎(3)

= ℎ
34
, ℎ
3𝜎(4)

= ℎ
33
;

ℎ
4𝜎(1)

= ℎ
42
, ℎ
4𝜎(2)

= ℎ
41
, ℎ
4𝜎(3)

= ℎ
44
, ℎ
4𝜎(4)

= ℎ
43
;

ℎ
5𝜎(1)

= ℎ
51
, ℎ
5𝜎(2)

= ℎ
53
, ℎ
5𝜎(3)

= ℎ
54
, ℎ
5𝜎(4)

= ℎ
52
.

(46)

Suppose that 𝑤 = (0.1835, 0.3165, 0.3165, 0.1835)
𝑇 is the

weighted vector related to the HFEOWA
𝜀
operator and it

is derived by the normal distribution based method [20].
Thenwe utilize theHFEOWA

𝜀
operator to obtain the hesitant
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Table 1: Hesitant fuzzy decision making matrix.

𝐴
1

𝐴
2

𝐴
3

𝐴
4

𝑌
1

{0.4, 0.5} {0.7, 0.8} {0.2, 0.3, 0.4} {0.2, 0.4}

𝑌
2

{0.2, 0.5, 0.8} {0.5, 0.7, 0.9} {0.6, 0.8} {0.2, 0.5, 0.6, 0.7}

𝑌
3

{0.8, 0.9} {0.2, 0.4, 0.6} {0.2, 0.3, 0.4, 0.5} {0.1, 0.3, 0.5, 0.7}

𝑌
4

{0.3, 0.4, 0.6, 0.8, 0.9} {0.4, 0.6, 0.8} {0.1, 0.2, 0.4, 0.5} {0.2, 0.3, 0.5, 0.6}

𝑌
5

{0.3, 0.5, 0.7} {0.2, 0.3, 0.4} {0.2, 0.5, 0.6, 0.7} {0.1, 0.3, 0.4, 0.6}

fuzzy elements ℎ
𝑖
(𝑖 = 1, 2, 3, 4, 5) for the alternatives 𝑋

𝑖

(𝑖 = 1, 2, 3, 4, 5). Take alternative𝑋
1
for an example; we have

ℎ
1
= HFEOWG

𝜀
(ℎ
11
, ℎ
12
, . . . , ℎ

14
)

= ⋃
𝛾
1𝜎(𝑗)
∈ℎ
1𝜎(𝑗)
,𝑗=1,2,3,4

{{

{{

{

2∏
4

𝑗=1
𝛾
𝑤
𝑗

1𝜎(𝑗)

∏
4

𝑗=1
(2 − 𝛾

1𝜎(𝑗)
)
𝑤
𝑗

+∏
4

𝑗=1
𝛾
𝑤
𝑗

1𝜎(𝑗)

}}

}}

}

= {0.3220, 0.3642, 0.3635, 0.4099, 0.3974, 0.4470,

0.3473, 0.3921, 0.3914, 0.4403, 0.4272, 0.4794,

0.3327, 0.3760, 0.3753, 0.4228, 0.4101, 0.4607,

0.3587, 0.4046, 0.4039, 0.4539, 0.4405, 0.4938} .

(47)

The results can be obtained similarly for the other alterna-
tives; here we will not list them for vast amounts of data. By
Definition 3, the score values 𝑠(ℎ

𝑖
) of ℎ
𝑖
(𝑖 = 1, 2, 3, 4, 5) can

be computed as follows:

𝑠 (ℎ
1
) = 0.4048, 𝑠 (ℎ

2
) = 0.5758, 𝑠 (ℎ

3
) = 0.4311,

𝑠 (ℎ
4
) = 0.4479, 𝑠 (ℎ

5
) = 0.3620.

(48)

According to the scores 𝑠(ℎ
𝑖
) of the overall hesitant fuzzy

values ℎ
𝑖
(𝑖 = 1, 2, 3, 4, 5), we can rank all the alternatives 𝑋

𝑖
:

𝑋
2
≻ 𝑋
4
≻ 𝑋
3
≻ 𝑋
1
≻ 𝑋
5
. Thus the optimal alternative is

𝑋
2
.
If we use the HFWG operator introduced by Xia and Xu

[36] to aggregate the hesitant fuzzy values, then

𝑠 (ℎ
1
) = 0.3960, 𝑠 (ℎ

2
) = 0.5630, 𝑠 (ℎ

3
) = 0.4164,

𝑠 (ℎ
4
) = 0.4344, 𝑠 (ℎ

5
) = 0.3548.

(49)

By Definition 5, we have𝑋
2
≻ 𝑋
4
≻ 𝑋
3
≻ 𝑋
1
≻ 𝑋
5
.

Note that the rankings are the same in such two cases, but
the overall values of alternatives by the HFEOWG

𝜀
operator

are not smaller than the ones by the HFOWG operator.
It shows that the attitude of the decision maker using the
proposed HFEOWG

𝜀
operator is more optimistic than the

one using the HFOWG operator introduced by Xia and
Xu [36] in aggregation process. Therefore, according to the
decision makers’ optimistic (or pessimistic) attitudes, the
different hesitant fuzzy aggregation operators can be used to
aggregate the hesitant fuzzy information in decision making
process.

6. Conclusions

The purpose of multicriteria decision making is to select the
optimal alternative from several alternatives or to get their
ranking by aggregating the performances of each alternative
under some attributes, which is the pervasive phenomenon
in modern life. Hesitancy is the most common problem
in decision making, for which hesitant fuzzy set can be
considered as a suitable means allowing several possible
degrees for an element to a set. Therefore, the hesitant fuzzy
multiple attribute decision making problems have received
more and more attention. In this paper, an accuracy function
of HFEs has been defined for distinguishing between the
two HFEs having the same score values, and a new order
relation between two HFEs has been provided. Some Ein-
stein operations on HFEs and their basic properties have
been presented. With the help of the proposed operations,
several new hesitant fuzzy aggregation operators including
the HFEWG

𝜀
operator and HFEOWG

𝜀
operator have been

developed, which are extensions of the weighted geometric
operator and the OWGoperator with hesitant fuzzy informa-
tion, respectively. Moreover, some desirable properties of the
proposed operators have been discussed and the relationships
between the proposed operators and the existing hesitant
fuzzy aggregation operators introduced by Xia and Xu [36]
have been established. Finally, based on the HFEOWG

𝜀

operator, an approach of hesitant fuzzy decision making has
been given and a practical example has been presented to
demonstrate its practicality and effectiveness.
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