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The problem of synchronization for a class of complex networks with probabilistic time-varying coupling delay and distributed
time-varying coupling delay (mixed probabilistic time-varying coupling delays) using pinning control is investigated in this paper.
The coupling configuration matrices are not assumed to be symmetric or irreducible. By adding adaptive feedback controllers to a
small fraction of network nodes, a low-dimensional pinning sufficient condition is obtained, which can guarantee that the network
asymptotically synchronizes to a homogenous trajectory inmean square sense. Simultaneously, two simple pinning synchronization
criteria are derived from the proposed condition. Numerical simulation is provided to verify the effectiveness of the theoretical
results.

1. Introduction

During the past few decades, synchronization in complex
networks has gained increasing research attention [1–7].
There are many different kinds of methods in the study of
network synchronization behavior such as adaptive feedback
control [8–10], impulsive control [11, 12], passive method [13,
14], intermittent control [15, 16], and sampled-data control
[17–19].

As we know, since the real-world complex networks
usually have a large number of nodes, it is impossible
to realize network synchronization by adding controllers
to all nodes. To reduce the number of controlled nodes,
pinning control, in which some local feedback controllers
are only applied to a fraction of network nodes, has been
introduced in many works [20–29]. Pinning control is an
effective synchronization strategy because it is easily realized
in practice. In [20], the authors found that one can pin
the linearly coupled networks by introducing fewer locally
negative feedback controllers. They also found out that the
pinning strategy based on highest connection degree has bet-
ter performance than totally randomly pinning. Chen et al. in
[21] pinned a complex network to a homogenous solution by
a single controller under a large enough coupling strength.
By using adaptive pinning control method, the authors in

[22] investigated local and global pinning synchronization
of complex networks and presented some low-dimensional
pinning synchronization criteria. In [23], Yu et al. showed
that the nodes with low degrees should be pinned first when
the coupling strength is small, which is different from the
traditional results.The authors in [24] considered the pinning
synchronization of a complex network with nonderivative
and derivative coupling. Song andCao in [25] presented some
low-dimensional pinning schemes for global synchronization
of both directed and undirected complex networks and
proposed specifically pinning schemes to select pinned nodes
by investigating the relationship among pinning synchroniza-
tion, network topology, and the coupling strength. Further-
more, Song et al. in [26] investigated the pinning controlled
synchronization of a general complex dynamical network
with discrete-delay coupling and distributed-delay coupling.
Some sufficient conditions for the synchronization to require
the minimum number of pinning nodes were derived in
[27], and the method for calculating the number of pinning
nodes was given by using the decreasing law of maximum
eigenvalues of the principal submatrixes. Recently, the pin-
ning sampled-data synchronization problem was addressed
in [28].

Time delay is ubiquitous in many physical systems due
to the finite switching speed of amplifiers, finite signal
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propagation time in biological networks, memory effects,
and so on. In order to give a more precise description
of dynamical network, time delay should be considered
inevitably. Therefore, much effort has been devoted to the
study of the synchronization of complex networks with
coupling delays. It is worth pointing out that, among most
existing results, the network synchronization problem has
been predominantly studied for complex networks with
deterministic delays. However, as reported in [30], the proba-
bility distribution of time delay in an interval is an important
characteristic in networked control systems [30]. The prob-
ability of the delay appearing in lower interval is large and
long delay happens with a low probability, which will lead
to some conservatism if only the information of variation
range of time delay is considered. Thus, coupling delay in
complex networks may exist in a random form and take
values according to probability in different interval ranges
[31]. In addition, it is noted that time delays can be generally
categorized as discrete ones and distributed ones.Moreover, it
has been observed that they usually have a spatial nature due
to the presence of a number of parallel pathways of a variety
of axon sizes and lengths in a network. To the best of the
authors’ knowledge, up to now, little attention has been paid
to the study of pinning synchronization problem for complex
networks with probabilistic time-varying coupling delay and
distributed time-varying coupling delay, whichmotivates our
investigation.

In this paper, we are concerned with the synchronization
problem in an array of hybrid-coupled complex networks
with mixed probabilistic time-varying coupling delays by
pinning control scheme.The coupling configurationmatrices
are not assumed to be symmetric or irreducible. Under
a low-dimensional condition, the network can be asymp-
totically pinned to a homogenous state in mean square
sense by applying adaptive feedback control actions to a
small fraction of nodes. Also, two pinning synchronization
criteria are obtained for simple cases. A numerical example
is given to demonstrate the effectiveness of the proposed
results.

The rest of this paper is organized as follows. In Section 2,
the model of complex dynamical network with mixed
probabilistic time-varying coupling delays is presented and
some preliminaries are also provided. Pinning adaptive syn-
chronization criterion is discussed in Section 3. Numerical
simulations are given in Section 4. Finally, a conclusion is
presented in Section 5.

Notations. 𝑅𝑛 and 𝑅𝑚×𝑛 denote the 𝑛-dimensional Euclidean
space and the set of all 𝑚 × 𝑛 real matrices, respec-
tively. The superscript “𝑇” represents the transpose, and “𝐼”
denotes the identity matrix with appropriate dimensions.
diag{𝑙

1
, 𝑙
2
, . . . , 𝑙
𝑛
} stands for a block diagonal matrix. The

notation 𝐴⊗ 𝐵 represents the Kronecker product of matrices
𝐴 and 𝐵. 𝜆min(𝐴) and 𝜆max(𝐴) are the minimum and the
maximal eigenvalue of symmetric matrix 𝐴, respectively. 𝐺

𝑙

denotes the minor matrix of 𝐺 by removing its first 𝑙 row-
column pairs. 𝐸{⋅} is the mathematical expectation.

2. Preliminaries and Model Description

Consider a complex dynamical network consisting of 𝑁
identical nodes, which is characterized by

𝑥̇
𝑖
(𝑡) = 𝑓 (𝑥

𝑖
(𝑡)) + 𝑐

1

𝑁

∑

𝑗=1

𝑔
𝑖𝑗
Γ𝑥
𝑗
(𝑡)

+ 𝑐
2

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑥
𝑗
(𝑡 − 𝜏 (𝑡))

+ 𝑐
3

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ∫

𝑡

𝑡−𝑟(𝑡)

𝑥
𝑗
(𝜉) 𝑑𝜉 + 𝑢

𝑖
, 𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝑥
𝑖
= (𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑛
) ∈ 𝑅

𝑛 and 𝑢
𝑖
(𝑡) ∈ 𝑅

𝑛 are,
respectively, the state variable and the control input of the 𝑖th
node. 𝑓 : 𝑅

𝑛

→ 𝑅
𝑛 is a continuous vector-valued function.

The positive constants 𝑐
𝑖
(𝑖 = 1, 2, 3) are the strengths for the

constant and delayed coupling, respectively. 𝜏(𝑡) ∈ [0, 𝜏
2
]

and 𝑟(𝑡) ∈ [0, 𝑟] are the discrete delay and distributed delay,
respectively. Γ > 0 is the inner coupling matrix between
nodes. 𝐺 = (𝑔

𝑖𝑗
) ∈ 𝑅
𝑁×𝑁, 𝐴 = (𝑎

𝑖𝑗
) ∈ 𝑅
𝑁×𝑁, and 𝐵 = (𝑏

𝑖𝑗
) ∈

𝑅
𝑁×𝑁 are the coupling configuration matrices. If there is a

connection between node 𝑖 and node 𝑗 (𝑖 ̸= 𝑗), then 𝑔
𝑖𝑗
> 0,

𝑎
𝑖𝑗

> 0, and 𝑏
𝑖𝑗

> 0; otherwise, 𝑔
𝑖𝑗

= 0, 𝑎
𝑖𝑗

= 0, and
𝑏
𝑖𝑗
= 0. The diagonal elements of matrices 𝐺, 𝐴, and 𝐵 are

defined as 𝑔
𝑖𝑖
= −∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
𝑔
𝑖𝑗
, 𝑎
𝑖𝑖
= −∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
𝑎
𝑖𝑗
, and 𝑏

𝑖𝑖
=

−∑
𝑁

𝑗=1,𝑗 ̸= 𝑖
𝑏
𝑖𝑗
, respectively. Clearly, in this paper, the coupling

configuration matrices 𝐺, 𝐴, and 𝐵 may be different from
each other. Furthermore, 𝐺, 𝐴, and 𝐵 are not assumed to be
symmetric or irreducible.

To describe the complex network model more precisely,
the probability distribution of the coupling delay should be
employed. Consider the information of probability distribu-
tion of the coupling time delay 𝜏(𝑡); two sets and functions
are defined:

Ω
1
= {𝑡 : 𝜏 (𝑡) ∈ [0, 𝜏

1
)} ,

Ω
2
= {𝑡 : 𝜏 (𝑡) ∈ [𝜏

1
, 𝜏
2
]} ,

𝜏
1
(𝑡) = {

𝜏 (𝑡) , for 𝑡 ∈ Ω
1
,

𝜏
1
, for 𝑡 ∈ Ω

2
,

𝜏
2
(𝑡) = {

𝜏 (𝑡) , for 𝑡 ∈ Ω
2
,

𝜏
2
, for 𝑡 ∈ Ω

1
,

(2)

where 𝜏
1
∈ [0, 𝜏

2
], 𝜏
1
∈ [0, 𝜏

1
), and 𝜏

2
∈ [𝜏
1
, 𝜏
2
]. It is obvious

that Θ
1
∪ Θ
2
= 𝑅
+ and Θ

1
∩ Θ
2
= 0. Furthermore, from the

definitions of Ω
1
and Ω

2
, it can be seen that 𝑡 ∈ Ω

1
means

that the event 𝜏(𝑡) ∈ [0, 𝜏
1
) happens, and 𝑡 ∈ Ω

2
means that

the event 𝜏(𝑡) ∈ [𝜏
1
, 𝜏
2
] happens. Then, a stochastic random

variable 𝛽(𝑡) can be defined as

𝛽 (𝑡) = {
1, 𝑡 ∈ Ω

1

0, 𝑡 ∈ Ω
2
.

(3)
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Assumption 1. 𝛽(𝑡) is a Bernoulli distributed sequence with

Prob {𝛽 (𝑡) = 1} = 𝐸 {𝛽 (𝑡)} = 𝛽
0

Prob {𝛽 (𝑡) = 0} = 1 − 𝐸 {𝛽 (𝑡)} = 1 − 𝛽
0
,

(4)

where 0 ≤ 𝛽
0
≤ 1 is a constant and 𝐸{𝛽(𝑡)} is the expectation

of 𝛽(𝑡).

Remark 2. The Bernoulli distributed sequence 𝛽(𝑡) is used to
describe the randomly varying delay. From Assumption 1, it
can be shown that 𝐸{𝛽2(𝑡)} = 𝛽

0
, 𝐸{(1 − 𝛽(𝑡))2} = 1 − 𝛽

0
, and

𝐸{𝛽(𝑡)(1 − 𝛽(𝑡))} = 0.
By using the new functions 𝜏

1
(𝑡), 𝜏
2
(𝑡), and 𝛽(𝑡), the

system (1) can be written as

𝑥̇
𝑖
= 𝑓 (𝑥

𝑖
(𝑡)) + 𝑐

1

𝑁

∑

𝑗=1

𝑔
𝑖𝑗
Γ𝑥
𝑗
(𝑡)

+ 𝛽 (𝑡) 𝑐
2

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑥
𝑗
(𝑡 − 𝜏
1
(𝑡))

+ (1 − 𝛽 (𝑡)) 𝑐
2

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑥
𝑗
(𝑡 − 𝜏
2
(𝑡))

+ 𝑐
3

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ∫

𝑡

𝑡−𝑟(𝑡)

𝑥
𝑗
(𝜉) 𝑑𝜉 + 𝑢

𝑖
, 𝑖 = 1, 2, . . . , 𝑁.

(5)

The isolated node of network (1) is given by the following
node dynamics:

̇𝑠 (𝑡) = 𝑓 (𝑠 (𝑡)) . (6)

Here, 𝑠(𝑡) may be an equilibrium point, a periodic orbit, or
even a chaotic orbit.

To reduce the number of controllers, we adopt the
pinning control approach to synchronize network (5), which
means that the control actions are only added to a small
fraction 𝛿 (0 < 𝛿 ≪ 1) of the total network nodes and most
of network nodes are not directly controlled. Suppose that the
nodes 𝑖

1
, 𝑖
2
, . . . , 𝑖

𝑙
are selected to be pinned, where 𝑙 = ⌊𝛿𝑁⌋

represents the integer part of the real number 𝛿𝑁. Without
loss of generality, rearrange the order of nodes and let the first
𝑙 nodes be controlled. Then we have the following pinning
controlled network:

𝑥̇
𝑖
= 𝑓 (𝑥

𝑖
(𝑡)) + 𝑐

1

𝑁

∑

𝑗=1

𝑔
𝑖𝑗
Γ𝑥
𝑗
(𝑡)

+ 𝛽 (𝑡) 𝑐
2

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑥
𝑗
(𝑡 − 𝜏
1
(𝑡))

+ (1 − 𝛽 (𝑡)) 𝑐
2

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑥
𝑗
(𝑡 − 𝜏
2
(𝑡))

+ 𝑐
3

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ∫

𝑡

𝑡−𝑟(𝑡)

𝑥
𝑗
(𝜉) 𝑑𝜉 + 𝑢

𝑖
, 𝑖 = 1, 2, . . . , 𝑙,

𝑥̇
𝑖
= 𝑓 (𝑥

𝑖
(𝑡)) + 𝑐

1

𝑁

∑

𝑗=1

𝑔
𝑖𝑗
Γ𝑥
𝑗
(𝑡)

+ 𝛽 (𝑡) 𝑐
2

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑥
𝑗
(𝑡 − 𝜏
1
(𝑡))

+ (1 − 𝛽 (𝑡)) 𝑐
2

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑥
𝑗
(𝑡 − 𝜏
2
(𝑡))

+ 𝑐
3

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ∫

𝑡

𝑡−𝑟(𝑡)

𝑥
𝑗
(𝜉) 𝑑𝜉, 𝑖 = 𝑙 + 1, 𝑙 + 2, . . . , 𝑁,

(7)

where 𝑢
𝑖
= −𝑐
1
𝑑
𝑖
Γ(𝑥
𝑖
(𝑡) − 𝑠(𝑡)), ̇𝑑

𝑖
= 𝑞
𝑖
(𝑥
𝑖
(𝑡) − 𝑠(𝑡))

𝑇

Γ(𝑥
𝑖
(𝑡) −

𝑠(𝑡)), 𝑞
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑙.

Let 𝑒
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑠(𝑡) be the synchronization error. It is

easy to obtain the following error dynamics:

̇𝑒
𝑖
= 𝑓 (𝑥

𝑖
(𝑡)) − 𝑓 (𝑠 (𝑡)) + 𝑐

1

𝑁

∑

𝑗=1

𝑔
𝑖𝑗
Γ𝑒
𝑗
(𝑡)

+ 𝛽 (𝑡) 𝑐
2

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑒
𝑗
(𝑡 − 𝜏
1
(𝑡))

+ (1 − 𝛽 (𝑡)) 𝑐
2

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑒
𝑗
(𝑡 − 𝜏
2
(𝑡))

+ 𝑐
3

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ∫

𝑡

𝑡−𝑟(𝑡)

𝑒
𝑗
(𝜉) 𝑑𝜉 − 𝑐

1
𝑑
𝑖
Γ𝑒
𝑖
(𝑡) ,

𝑖 = 1, 2, . . . , 𝑙,

̇𝑒
𝑖
= 𝑓 (𝑥

𝑖
(𝑡)) − 𝑓 (𝑠 (𝑡)) + 𝑐

1

𝑁

∑

𝑗=1

𝑔
𝑖𝑗
Γ𝑒
𝑗
(𝑡)

+ 𝛽 (𝑡) 𝑐
2

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑒
𝑗
(𝑡 − 𝜏
1
(𝑡))

+ (1 − 𝛽 (𝑡)) 𝑐
2

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑒
𝑗
(𝑡 − 𝜏
2
(𝑡))

+ 𝑐
3

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ∫

𝑡

𝑡−𝑟(𝑡)

𝑒
𝑗
(𝜉) 𝑑𝜉, 𝑖 = 𝑙 + 1, 𝑙 + 2, . . . , 𝑁.

(8)

We are now in a position to introduce the notion of
synchronization in mean square sense for network (5).

Definition 3. The complex network (5) is said to be globally
synchronized inmean square sense if lim

𝑡→∞
𝐸{‖𝑒
𝑖
(𝑡)‖
2

} = 0,
𝑖 = 1, 2, . . . , 𝑁, holds for any initial values.

Before ending this section, some assumptions and lem-
mas are given as follows.
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Assumption 4. There exist constants 𝜇
1
and 𝜇

2
such that 0 ≤

̇𝜏
1
(𝑡) ≤ 𝜇

1
< 1 and 0 ≤ ̇𝜏

2
(𝑡) ≤ 𝜇

2
< 1.

Assumption 5 (see [25]). There exists a constant 𝜃 > 0, such
that the nonlinear function 𝑓 in (1) satisfies

(𝑥 − 𝑦)
𝑇

(𝑓 (𝑥) − 𝑓 (𝑦)) ≤ 𝜃(𝑥 − 𝑦)
𝑇

Γ (𝑥 − 𝑦) ,

∀𝑥, 𝑦 ∈ 𝑅
𝑛

,

(9)

where Γ is the same as inner coupling matrix in network (1).

Lemma 6 (see [25] (Schur complement)). The linear matrix
inequality

[
𝑄 (𝑥) 𝑆 (𝑥)

𝑆(𝑥)
𝑇

𝑅 (𝑥)
] < 0, (10)

where 𝑄(𝑥) = 𝑄(𝑥)
𝑇 and 𝑅(𝑥) = 𝑅(𝑥)

𝑇, is equivalent to one
of the following conditions:

(I) 𝑄(𝑥) < 0, 𝑅(𝑥) − 𝑆(𝑥)
𝑇

𝑄(𝑥)
−1

𝑆(𝑥) < 0;

(II) 𝑅(𝑥) < 0, 𝑄(𝑥) − 𝑆(𝑥)𝑅(𝑥)
−1

𝑆(𝑥)
𝑇

< 0.

Lemma 7 (see [25]). Assume that𝐴, 𝐵 are𝑁 by𝑁Hermitian
matrices. Let 𝛼

1
≥ 𝛼
2
≥ ⋅ ⋅ ⋅ ≥ 𝛼

𝑁
, 𝛽
1
≥ 𝛽
2
≥ ⋅ ⋅ ⋅ ≥ 𝛽

𝑁
,

and 𝛾
1
≥ 𝛾
2
≥ ⋅ ⋅ ⋅ ≥ 𝛾

𝑁
be eigenvalues of 𝐴, 𝐵, and 𝐴 + 𝐵,

respectively. Then, one has 𝛼
𝑖
+ 𝛽
𝑁

≤ 𝛾
𝑖
≤ 𝛼
𝑖
+ 𝛽
1
, 𝑖 =

1, 2, . . . , 𝑁.

Lemma 8 (see [32]). For any positive symmetric constant
matrix 𝑍 = 𝑍

𝑇

> 0, scalar 𝛾 > 0, and vector function
𝜔 : [0, 𝛾] → 𝑅

𝑛 such that the integrations in the following
are well defined, then one has

𝛾∫

𝛾

0

𝜔
𝑇

(𝑠) 𝑍𝜔 (𝑠) 𝑑𝑠 ≥ (∫

𝛾

0

𝜔 (𝑠) 𝑑𝑠)

𝑇

𝑍(∫

𝛾

0

𝜔 (𝑠) 𝑑𝑠) .

(11)

3. Main Results

In this section, we will investigate the stability criteria for
the pinning controlled error system in mean square sense
and give some low-dimensional conditions to guarantee that
the network can achieve synchronization under the pinning
scheme. Before giving the main results, for the sake of
presentation simplicity, we denote

𝜌 = 𝜃

+ (
1

2
𝑐
2
(

𝛽
0

(1 − 𝜇
1
)
+
(1 − 𝛽

0
)

(1 − 𝜇
2
)
) +

1

2
𝑐
2
𝜆max (𝑃)

+
1

2
𝑐
3
𝜆max (𝑄) +

𝑐
3

2
𝑟
2

)

× (𝜆min (Γ))
−1

,

(12)

𝜌
1
= 𝜃

+ (
1

2 (1 − 𝜇
1
)
𝑐
2
+
1

2
𝑐
2
𝜆max (𝑃) +

1

2
𝑐
3
𝜆max (𝑄) +

𝑐
3

2
𝑟
2

)

× (𝜆min (Γ))
−1

,

(13)

𝜌
2
= 𝜃

+ (
1

2
𝑐
2
(

𝛽
0

(1 − 𝜇
1
)
+
(1 − 𝛽

0
)

(1 − 𝜇
2
)
) +

1

2
𝑐
2
𝜆max (𝑃))

× (𝜆min (Γ))
−1

,

(14)

where 𝑃 = (𝐴𝐴
𝑇

) ⊗ (ΓΓ
𝑇

) and 𝑄 = (𝐵𝐵
𝑇

) ⊗ (ΓΓ
𝑇

).

Theorem 9. Suppose that Assumptions 1–5 hold; the pinning
controlled network (7) globally asymptotically synchronizes to
trajectory (6) in mean square sense if

𝜆max ((
1

2
(𝐺 + 𝐺

𝑇

))
𝑙

) < −
𝜌

𝑐
1

. (15)

Proof. Construct the following Lyapunov functional candi-
date:

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) + 𝑉

3
(𝑡) , (16)

where

𝑉
1
(𝑡) =

1

2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒
𝑖
(𝑡) +

𝑙

∑

𝑖=1

𝑐
1

2𝑞
𝑖

(𝑑
𝑖
− 𝑑
∗

𝑖
)
2 (17)

in which 𝑑∗
𝑖
> 0 are constants to be determined below, and

𝑉
2
(𝑡) =

𝑐
2
𝛽
0

2 (1 − 𝜇
1
)

𝑁

∑

𝑖=1

∫

𝑡

𝑡−𝜏
1
(𝑡)

𝑒
𝑇

𝑖
(𝜃) 𝑒
𝑖
(𝜃) 𝑑𝜃

+
𝑐
2
(1 − 𝛽

0
)

2 (1 − 𝜇
2
)

𝑁

∑

𝑖=1

∫

𝑡

𝑡−𝜏
2
(𝑡)

𝑒
𝑇

𝑖
(𝜃) 𝑒
𝑖
(𝜃) 𝑑𝜃,

𝑉
3
(𝑡) =

1

2
𝑐
3
𝑟

𝑁

∑

𝑖=1

∫

0

−𝑟

∫

𝑡

𝑡+𝜃

𝑒
𝑇

𝑖
(𝜉) 𝑒
𝑖
(𝜉) 𝑑𝜉 𝑑𝜃.

(18)

Let 𝐿 be the weak infinitesimal generator of the random
process along system (8). Then, we have

𝐸 {𝐿𝑉
1
(𝑡)} =

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) [

[

𝑔 (𝑒
𝑖
(𝑡)) + 𝑐

1

𝑁

∑

𝑗=1

𝑔
𝑖𝑗
Γ𝑒
𝑗
(𝑡)

+ 𝑐
3

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ∫

𝑡

𝑡−𝑟(𝑡)

𝑒
𝑗
(𝜉) 𝑑𝜉

+ 𝛽
0
𝑐
2

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
Γ𝑒
𝑗
(𝑡 − 𝜏
1
(𝑡))

+ (1 − 𝛽
0
) 𝑐
2

×

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
Γ𝑒
𝑗
(𝑡 − 𝜏
2
(𝑡))]

]
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−

𝑙

∑

𝑖=1

𝑐
1
𝑑
𝑖
𝑒
𝑇

𝑖
(𝑡) Γ𝑒
𝑖
(𝑡)

+

𝑙

∑

𝑖=1

𝑐
1
(𝑑
𝑖
− 𝑑
∗

𝑖
) 𝑒
𝑇

𝑖
(𝑡) Γ𝑒
𝑖
(𝑡) ,

𝐸 {𝐿𝑉
2
(𝑡)} =

𝑐
2
𝛽
0

2 (1 − 𝜇
1
)

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒
𝑖
(𝑡)

+
𝑐
2
(1 − 𝛽

0
)

2 (1 − 𝜇
2
)

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒
𝑖
(𝑡)

−
𝑐
2
𝛽
0
(1 − ̇𝜏

1
(𝑡))

2 (1 − 𝜇
1
)

×

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡 − 𝜏
1
(𝑡)) 𝑒
𝑖
(𝑡 − 𝜏
1
(𝑡))

−
𝑐
2
(1 − 𝛽

0
) (1 − ̇𝜏

2
(𝑡))

2 (1 − 𝜇
2
)

×

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡 − 𝜏
2
(𝑡)) 𝑒
𝑖
(𝑡 − 𝜏
2
(𝑡))

𝐸 {𝐿𝑉
3
(𝑡)} =

1

2
𝑐
3
𝑟
2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) Γ𝑒
𝑖
(𝑡)

−
1

2
𝑐
3
𝑟

𝑁

∑

𝑖=1

∫

𝑡

𝑡−𝑟

𝑒
𝑇

𝑖
(𝜉) 𝑒
𝑖
(𝜉) 𝑑𝜉.

(19)

Define 𝑒(𝑡) = (𝑒
𝑇

1
(𝑡), 𝑒
𝑇

2
(𝑡), . . . , 𝑒

𝑇

𝑁
(𝑡))
𝑇, 𝐷 = diag(𝑑∗

1
, . . . ,

𝑑
∗

𝑙
, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑁−𝑙

). Note the fact that the inequality 2𝑥𝑇𝑦 ≤ 𝑥
𝑇

𝑀𝑥+

𝑦
𝑇

𝑀
−1

𝑦 holds for arbitrary 𝑥, 𝑦 ∈ 𝑅
𝑛𝑁 and a positive definite

matrix𝑀 ∈ 𝑅
𝑛𝑁×𝑛𝑁. Then, recalling Assumption 5 and using

Kronecker product technique, one has

𝐸 {𝐿𝑉
1
(𝑡)}

≤ 𝑒
𝑇

(𝑡) (𝜃𝐼
𝑁
⊗ Γ) 𝑒 (𝑡) + 𝑐

1
𝑒
𝑇

(𝑡) (𝐺 ⊗ Γ) 𝑒 (𝑡)

− 𝑐
1
𝑒
𝑇

(𝑡) (𝐷 ⊗ Γ) 𝑒 (𝑡)

+ 𝑐
3
𝑒
𝑇

(𝑡) (𝐵 ⊗ Γ) ∫

𝑡

𝑡−𝑟(𝑡)

𝑒 (𝜉) 𝑑𝜉

+ 𝛽
0
𝑐
2
𝑒
𝑇

(𝑡) (𝐴 ⊗ Γ) 𝑒 (𝑡 − 𝜏
1
(𝑡))

+ (1 − 𝛽
0
) 𝑐
2
𝑒
𝑇

(𝑡) (𝐴 ⊗ Γ) 𝑒 (𝑡 − 𝜏
2
(𝑡))

≤ 𝑒
𝑇

(𝑡) (𝜃𝐼
𝑁
⊗ Γ) 𝑒 (𝑡) + 𝑐

1
𝑒
𝑇

(𝑡) (𝐺 ⊗ Γ) 𝑒 (𝑡)

− 𝑐
1
𝑒
𝑇

(𝑡) (𝐷 ⊗ Γ) 𝑒 (𝑡)

+
1

2
𝑐
2
𝑒
𝑇

(𝑡) 𝑃𝑒 (𝑡) +
1

2
𝛽
0
𝑐
2
𝑒
𝑇

(𝑡 − 𝜏
1
(𝑡)) 𝑒 (𝑡 − 𝜏

1
(𝑡))

+
1

2
(1 − 𝛽

0
) 𝑐
2
𝑒
𝑇

(𝑡 − 𝜏
2
(𝑡)) 𝑒 (𝑡 − 𝜏

2
(𝑡))

+
1

2
𝑐
3
𝑒
𝑇

(𝑡) 𝑄𝑒 (𝑡)

+
1

2
𝑐
3
(∫

𝑡

𝑡−𝑟(𝑡)

𝑒 (𝜉) 𝑑𝜉)

𝑇

(∫

𝑡

𝑡−𝑟(𝑡)

𝑒 (𝜉) 𝑑𝜉) .

(20)

In view of Assumption 4, we get

𝐸 {𝐿𝑉
2
(𝑡)} ≤ (

𝑐
2
𝛽
0

2 (1 − 𝜇
1
)
+
𝑐
2
(1 − 𝛽

0
)

2 (1 − 𝜇
2
)
) 𝑒
𝑇

(𝑡) 𝑒 (𝑡)

−
𝑐
2
𝛽
0

2
𝑒
𝑇

(𝑡 − 𝜏
1
(𝑡)) 𝑒 (𝑡 − 𝜏

1
(𝑡))

−
𝑐
2
(1 − 𝛽

0
)

2
𝑒
𝑇

(𝑡 − 𝜏
2
(𝑡)) 𝑒 (𝑡 − 𝜏

2
(𝑡)) .

(21)

By using Lemma 8, we obtain

𝐸 {𝐿𝑉
3
(𝑡)} =

1

2
𝑐
3
𝑟
2

𝑒
𝑇

(𝑡) 𝑒 (𝑡)

−
1

2
𝑐
3
𝑟 ∫

𝑡

𝑡−𝑟

𝑒
𝑇

(𝜉) 𝑒 (𝜉) 𝑑𝜉

≤
1

2
𝑐
3
𝑟
2

𝑒
𝑇

(𝑡) 𝑒 (𝑡) −
1

2
𝑐
3
𝑟 ∫

𝑡

𝑡−𝑟(𝑡)

𝑒
𝑇

(𝜉) 𝑒 (𝜉) 𝑑𝜉

≤
1

2
𝑐
3
𝑟
2

𝑒
𝑇

(𝑡) 𝑒 (𝑡)

−
1

2
𝑐
3
(∫

𝑡

𝑡−𝑟(𝑡)

𝑒 (𝜉) 𝑑𝜉)

𝑇

(∫

𝑡

𝑡−𝑟(𝑡)

𝑒 (𝜉) 𝑑𝜉) .

(22)

According to (19)–(22), we have

𝐸 {𝐿𝑉 (𝑡)}

≤ 𝑒
𝑇

(𝑡) (𝜃𝐼
𝑁
⊗ Γ) 𝑒 (𝑡) + 𝑐

1
𝑒
𝑇

(𝑡) (𝐺 ⊗ Γ) 𝑒 (𝑡)

− 𝑐
1
𝑒
𝑇

(𝑡) (𝐷 ⊗ Γ) 𝑒 (𝑡) +
1

2
𝑐
2
𝑒
𝑇

(𝑡) 𝑃𝑒 (𝑡)

+
1

2
𝑐
32
𝑒
𝑇

(𝑡) 𝑄𝑒 (𝑡)

+ (
𝑐
2
𝛽
0

2 (1 − 𝜇
1
)
+
𝑐
2
(1 − 𝛽

0
)

2 (1 − 𝜇
2
)
) 𝑒
𝑇

(𝑡) 𝑒 (𝑡)

+
1

2
𝑐
3
𝑟
2

𝑒
𝑇

(𝑡) 𝑒 (𝑡) .

(23)
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It is easy to see that 𝑃 and 𝑄 are symmetric, so we
have 𝑒

𝑇

(𝑡)𝑃𝑒(𝑡) ≤ 𝜆max(𝑃)𝑒
𝑇

(𝑡)𝑒(𝑡) and 𝑒
𝑇

(𝑡)𝑄𝑒(𝑡) ≤

𝜆max(𝑄)𝑒
𝑇

(𝑡)𝑒(𝑡). Therefore, we get

𝐸 {𝐿𝑉 (𝑡, 𝑒 (𝑡))} ≤ 𝑒
𝑇

(𝑡) ((𝑀 − 𝑐
1
𝐷) ⊗ Γ) 𝑒 (𝑡) , (24)

where 𝑀 = 𝜌𝐼
𝑁

+ (1/2)𝑐
1
(𝐺 + 𝐺

𝑇

). It is obvious that
matrix 𝑀 is symmetric. By using the matrix decomposition
technique, we have 𝑀 − 𝑐

1
𝐷 = [

𝑀
1
−𝑐
1
𝐷
∗
𝑀
2

𝑀
𝑇

2
𝑀
𝑙

], where 𝑀
1

and 𝑀
2
are matrices with appropriate dimensions, 𝐷∗ =

diag(𝑑∗
1
, . . . , 𝑑

∗

𝑙
), and 𝑀

𝑙
= (𝜌𝐼

𝑁
+ 𝑐
1
((1/2)(𝐺 + 𝐺

𝑇

)))
𝑙
is

the minor matrix of 𝑀 by removing its first 𝑙 row-column
pairs. In view of (15) and Lemma 7, we have 𝜆max(𝑀𝑙) ≤

𝜌 + 𝑐
1
𝜆max(((1/2)(𝐺 + 𝐺

𝑇

))
𝑙
) < 0, which implies that𝑀

𝑙
< 0.

Here, if we choose some suitable positive constants 𝑑∗
𝑖

>

(𝜆max(𝑀1 − 𝑀
2
𝑀
−1

𝑙
𝑀
𝑇

2
))/𝑐
1
, it follows from Lemma 6 that

𝑀−𝑐
1
𝐷 < 0. In addition, since Γ is a positive definite matrix,

it is easy to see that (𝑀 − 𝑐
1
𝐷) ⊗ Γ < 0. It is clear that

𝐸{𝐿𝑉(𝑡)} ≤ 0, which implies that lim
𝑡→∞

𝐸{‖𝑒
𝑖
(𝑡)‖
2

} = 0.
It follows from Definition 3 that the complex network (5) is
synchronizedwith the isolated node (6) inmean square sense.
This completes the proof.

Remark 10. Theorem 9 gives a low-dimensional sufficient
condition to ensure pinning synchronization for complex
network (5) with mixed probabilistic time-varying coupling
delays. From Theorem 9, we can see that the network syn-
chronization depends on seven basic elements: node dynam-
ics (𝜃), coupling strength (𝑐

1
, 𝑐
2
, and 𝑐

3
), network structure

(𝐺, 𝐴, and 𝐵), inner coupling matrix (Γ), the probability
distribution of coupling delay (𝛽

0
), the upper bound of

distributed time delay (𝑟), and the derivative information
of delay (𝜇

1
, 𝜇
2
). If the derived condition in Theorem 9 is

satisfied, the synchronization can be achieved by pinning
control small nodes.

Remark 11. Condition in (15) provides a criterion to deter-
mine the least number 𝑙

0
of pinned nodes for ensuring

the network synchronization with fixed network structure,
coupling strength, and pinning scheme. From (13), we have
𝑐
1
> −𝜌/𝜆max(((1/2)(𝐺 + 𝐺

𝑇

))
𝑙
), which gives a way to choose

the appropriate coupling strength for network with fixed
structure and pinning scheme. However, the theoretical value
of 𝑐
1
is often much larger than that needed in practice. If 𝑐

1

is not large enough, it is not guaranteed that we can find a
small fraction of network nodes such that pinning condition
(15) holds. To achieve synchronization, we prefer to adopt
the adaptive control approach to adjust the coupling strength,
which can refer to [23].

Remark 12. It is worth pointing out that the consideredmodel
in (5) is different from the existing ones [26, 27], where only
the deterministic coupling time delay was considered.Thus it
is difficult to give some comparison with the existing results.
In the next section, the effectiveness of the proposed method
will be verified by some numerical examples.
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Figure 1: Random coupling delay 𝜏(𝑡).
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Figure 2: Orbits of 𝜆max(((1/2)(𝐺 + 𝐺
𝑇

))
𝑙
) as functions of the

number of pinned nodes by high-degree, low-degree, and random
pinning schemes.

As a special case, when 𝛽
0
= 1 or 𝛽

0
= 0, the probabilistic

coupling delay becomes the deterministic delay.Thuswe have
the following pinning controlled complex network model:

𝑥̇
𝑖
= 𝑓 (𝑥

𝑖
(𝑡)) + 𝑐

1

𝑁

∑

𝑗=1

𝑔
𝑖𝑗
Γ𝑥
𝑗
(𝑡)

+ 𝑐
2

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑥
𝑗
(𝑡 − 𝜏 (𝑡))

+ 𝑐
3

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ∫

𝑡

𝑡−𝑟(𝑡)

𝑥
𝑗
(𝜉) 𝑑𝜉

− 𝑐
1
𝑑
𝑖
Γ (𝑥
𝑖
(𝑡) − 𝑠 (𝑡)) ,

(25)



Journal of Applied Mathematics 7

0 0.5 1 1.5 2

0

5

10

15

20

25

30
e i
1

Time t

−5

(a) 𝑒
𝑖1
(1 ≤ 𝑖 ≤ 100)
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(b) 𝑒
𝑖2
(1 ≤ 𝑖 ≤ 100)
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(c) 𝑒
𝑖3
(1 ≤ 𝑖 ≤ 100)

Figure 3: Synchronization errors 𝑒
𝑖𝑗
of the controlled network (5).

where ̇𝑑
𝑖
= 𝑞
𝑖
(𝑥
𝑖
(𝑡)−𝑠(𝑡))

𝑇

Γ(𝑥
𝑖
(𝑡)−𝑠(𝑡)), 𝑞

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑙,

and 𝑑
𝑖
= 0, 𝑖 = 𝑙 + 1, . . . , 𝑁. According to Theorem 9, the

following result is easily derived.

Corollary 13. Suppose Assumption 5 holds; the pinning con-
trolled network (25) globally asymptotically synchronizes to
trajectory (6) if

𝜆max ((
1

2
(𝐺 + 𝐺

𝑇

))
𝑙

) < −
𝜌
1

𝑐
1

. (26)

On the other hand, if there is no distributed coupling term
in network model (1), that is, 𝐵 = 0, we have the following
pinning controlled network model:

𝑥̇
𝑖
= 𝑓 (𝑥

𝑖
(𝑡)) + 𝑐

1

𝑁

∑

𝑗=1

𝑔
𝑖𝑗
Γ𝑥
𝑗
(𝑡)

+ 𝛽 (𝑡) 𝑐
2

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑥
𝑗
(𝑡 − 𝜏
1
(𝑡))

+ (1 − 𝛽 (𝑡)) 𝑐
2

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
Γ𝑥
𝑗
(𝑡 − 𝜏
2
(𝑡))

− 𝑐
1
𝑑
𝑖
Γ (𝑥
𝑖
(𝑡) − 𝑠 (𝑡)) ,

(27)

where ̇𝑑
𝑖
= 𝑞
𝑖
(𝑥
𝑖
(𝑡)−𝑠(𝑡))

𝑇

Γ(𝑥
𝑖
(𝑡)−𝑠(𝑡)), 𝑞

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑙,

and 𝑑
𝑖
= 0, 𝑖 = 𝑙 + 1, . . . , 𝑁. Based on Theorem 9, we have the

following result.

Corollary 14. Suppose Assumption 5 holds; the pinning con-
trolled network (27) globally asymptotically synchronizes to
trajectory (6) in mean square sense if

𝜆max ((
1

2
(𝐺 + 𝐺

𝑇

))
𝑙

) < −
𝜌
2

𝑐
1

. (28)

Remark 15. It should be noted that the main result obtained
in this paper can be extended to more general complex
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Figure 4: Evolution of adaptive feedback gains 𝑑
𝑖
with 1 ≤ 𝑖 ≤ 15.

dynamical networks with delayed nodes, such as hybrid-
coupled delayed neural networks with mixed probabilistic
time-varying delays.

4. Numerical Examples

In this section, a numerical example is used to verify the effec-
tiveness of the proposed pinning synchronization criterion.

Here, we assume that the controlled network consists of
100 identical Chua systems. The dynamics at every node is
described by

𝑓 (𝑥
𝑖
(𝑡)) =

{{

{{

{

𝛼 (𝑥
𝑖2
(𝑡) − 𝑥

𝑖1
(𝑡) − 𝜙 (𝑥

𝑖1
(𝑡)))

𝑥
𝑖1
(𝑡) − 𝑥

𝑖2
(𝑡) + 𝑥

𝑖3
(𝑡)

−𝛽𝑥
𝑖2
(𝑡) ,

(29)

where 𝜙(𝑥
1
(𝑡)) = 𝑏𝑥

1
(𝑡)+ (1/2)(𝑎−𝑏)(|𝑥

1
(𝑡)+1|− |𝑥

1
(𝑡)−1|)

and 𝑎 = −1.27, 𝑏 = −0.68, 𝛼 = 10, and 𝛽 = 14.87.
In addition, we assume that the coupling matrices 𝐺 and

𝐴 obey the scale-free distribution of the BA network with
𝑚
0
= 𝑚 = 3, 𝑁 = 100, and the small-world model with

the link probability 𝑃 = 0.1, 𝑚 = 2, 𝑁 = 100, respectively,
and 𝐵 = 0.5𝐴. For simplicity, we set Γ = diag{2, 2, 2}, 𝑐

1
= 50,

𝑐
2
= 1, 𝑐

3
= 1, and 𝛽

0
= 0.8. Let 𝜏

1
(𝑡) = 0.2 + 0.2 sin(𝑡) and

𝜏
1
(𝑡) = 0.81 + 0.4 sin(𝑡); then we get 𝜇

1
= 0.2 and 𝜇

2
= 0.4.

Figure 1 depicts the random delay.
According to [29], we have 𝜃 = 5.4263. Then by some

calculation, one has 𝜌 = −1.4270. Here, the orbits of
𝜆max(((1/2)(𝐺 + 𝐺

𝑇

))
𝑙
) as functions of the number of pinned

nodes by high-degree, low-degree, and random pinning
schemes are shown in Figure 2. It is obvious that the orbits
decrease with the increase of pinning controlled nodes. We
observe that one only needs 39, 33, and 22 nodes of network
(5) to realize synchronization by using low-degree, random,
and high-degree pinning schemes, respectively. Hence, it is
better to use the high-degree pinning scheme in this case.

Now, we apply adaptive feedback control to the first 22
most highly connected nodes. In the numerical simulation,

the initial values are given as follows: 𝑑
𝑖
(0) = 2 + 𝑖 and

𝑞
𝑖
= 2 for 1 ≤ 𝑖 ≤ 15, 𝑥

𝑖
(0) = (4 + 0.3𝑖, 5 + 0.3𝑖, 6 + 0.3𝑖)

𝑇,
where 1 ≤ 𝑖 ≤ 100, and 𝑠(0) = (4, 5, 6)

𝑇. The evolutions
of the synchronization error and the pinning feedback gain
are illustrated in Figures 3 and 4, respectively. Clearly, the
synchronization for complex network (5) with probabilistic
time delay and distributed time delay is achieved under the
pinning scheme with 𝑙 = 22.

5. Conclusion

In this paper, the pinning synchronization problem has
been investigated for a hybrid-coupled complex network
with mixed probabilistic time-varying delays. The coupling
configuration matrices are more general and not assumed
to be symmetric or irreducible. A low-dimensional sufficient
condition for the network synchronization by adding adap-
tive feedback controllers to a fraction of network nodes is pre-
sented. Finally, numerical simulation shows the effectiveness
of the theoretical result.
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