
Research Article
Accurate Evaluation of Polynomials in Legendre Basis

Peibing Du,1 Hao Jiang,2 and Lizhi Cheng1

1 Department of Mathematics and Systems Science, College of Science, National University of Defense Technology,
Changsha 410073, China

2The State Key Laboratory for High Performance Computation, College of Computer Science,
National University of Defense Technology, Changsha 410073, China

Correspondence should be addressed to Peibing Du; duli 0211@foxmail.com

Received 22 April 2014; Accepted 2 July 2014; Published 23 July 2014

Academic Editor: Roberto Barrio

Copyright © 2014 Peibing Du et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper presents a compensated algorithm for accurate evaluation of a polynomial in Legendre basis. Since the coefficients
of the evaluated polynomial are fractions, we propose to store these coefficients in two floating point numbers, such as double-
double format, to reduce the effect of the coefficients’ perturbation. The proposed algorithm is obtained by applying error-free
transformation to improve the Clenshaw algorithm. It can yield a full working precision accuracy for the ill-conditioned polynomial
evaluation. Forward error analysis and numerical experiments illustrate the accuracy and efficiency of the algorithm.

1. Introduction

Legendre polynomial is often used in numerical analysis
[1–3], such as approximation theory and quadrature and
differential equations. Legendre polynomial satisfies 3-term
recurrence relation; that is, for Legendre polynomial 𝑝𝑘(𝑥),

𝑝0 (𝑥) = 1

𝑝1 (𝑥) = 𝑥

𝑝𝑘+1 (𝑥) =
2𝑘 + 1

𝑘 + 1
𝑥𝑝𝑘 (𝑥) −

𝑘

𝑘 + 1
𝑝𝑘−1 (𝑥) (𝑘 > 0) .

(1)

The polynomial represented in Legendre basis is 𝑝(𝑥) =

∑
𝑛

𝑗=0
𝑎𝑗𝑝𝑗(𝑥), where 𝑎𝑗 ∈ R and 𝑝𝑗(𝑥) is Legendre polyno-

mial.
The Clenshaw algorithm [4, 5] is usually used to evaluate

a linear combination of Chebyshev polynomials, but it can
apply to any class of functions that can be defined by
a three-term recurrence relation. Therefore the Clenshaw
algorithm can evaluate a polynomial in Legendre basis. The
error analysis of the Clenshaw algorithm was considered in

the literatures [6–10]. The relative accuracy bound of the
computed values 𝑝(𝑥) by the Clenshaw algorithm verifies

󵄨󵄨󵄨󵄨𝑝 (𝑥) − 𝑝 (𝑥)
󵄨󵄨󵄨󵄨

𝑝 (𝑥)
≤ cond (𝑝, 𝑥) × 𝑜 (𝑢) . (2)

For ill-conditioned problems, several researches applied
error-free transformations [11] to propose accurate com-
pensated algorithms [12–15] to evaluate the polynomials in
monomial, Bernstein, and Chebyshev bases with Horner,
de Casteljau, and Clenshaw algorithms, respectively. Some
recent applications of high-precision arithmetic were given
in [16].

Motivated by them, we apply error-free transformations
to analyze the effect of round-off errors and then compensate
them to the original result of the Clenshaw algorithm. Since
the coefficients of the Legendre polynomial are fractions,
the coefficient perturbations in the evaluation may exist
when the coefficients are truncated to floating point num-
bers. We store the coefficients which are not floating point
numbers in double-double format, with the double working
precision, to get the perturbation. We also compensate the
approximate perturbed errors to the original result of the
Clenshaw algorithm. Based on the above, we construct a
compensated Clenshaw algorithm for the evaluation of a
linear combination of Legendre polynomials, which can yield

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 742538, 13 pages
http://dx.doi.org/10.1155/2014/742538

http://dx.doi.org/10.1155/2014/742538


2 Journal of Applied Mathematics

a full working precision accuracy and its relative accuracy
bound satisfies

󵄨󵄨󵄨󵄨𝑝 (𝑥) − 𝑝 (𝑥)
󵄨󵄨󵄨󵄨

𝑝 (𝑥)
≤ 𝑜 (𝑢) + cond (𝑝, 𝑥) × 𝑜 (𝑢

2
) . (3)

The paper is organized as follows. Section 2 shows some
basic notations in error analysis, floating point arithmetic,
error-free transformations, compensated algorithm, Clen-
shaw algorithm, and condition number. Section 3 presents
the compensated algorithm and its error bound. Section 4
gives several numerical experiments to illustrate the effi-
ciency and accuracy of the compensated algorithm for poly-
nomial in Legendre basis.

2. Mathematical and Arithmetical
Preliminaries

2.1. Basic Notations and Definitions. Throughout this paper,
we assume to work with a floating point arithmetic adhering
to IEEE-754 floating point standard in rounding to nearest
and no overflow nor underflow occurs. Let 𝑜𝑝 ∈ {⊕, ⊖, ⊗, ⊘}

represent the floating point computation; then the computa-
tion obeys the model

𝑎 𝑜𝑝 𝑏 = (𝑎 ∘ 𝑏) (1 + 𝜀1) =
(𝑎 ∘ 𝑏)

(1 + 𝜀2)
, (4)

where ∘ ∈ {+, −, ×, ÷} and |𝜀1|, |𝜀2| ≤ 𝑢 (𝑢 is the round-off
unit). We also assume that the computed result of 𝑎 ∈ R

in floating point arithmetic is denoted by 𝑎 and the set of
all floating point numbers is denoted by F . The following
definition will be used in error analysis (see more details in
[17]).

Definition 1. One defines

⟨𝑛⟩ :=

𝑛

∏

𝑖=1

(1 + 𝛿𝑖)
𝜌𝑖

= 1 + 𝜃𝑛, (5)

where |𝛿𝑖| ≤ 𝑢, 𝜌𝑖 = ±1 with ∀𝑖 = 1, 2, . . . , 𝑛, |𝜃𝑛| ≤ 𝛾𝑛 :=

(𝑛𝑢/(1 − 𝑛𝑢)) = 𝑛𝑢 + 𝑂(𝑢
2
), and 𝑛𝑢 < 1.

There are three classic properties which will also be used
in error analysis:

(i) ⟨𝑘⟩⟨𝑗⟩ = ⟨𝑘 + 𝑗⟩;
(ii) 𝛾𝑘 < 𝛾𝑘+1;
(iii) 𝛾𝑘 + 𝛾𝑗 + 𝛾𝑘𝛾𝑗 ≤ 𝛾𝑘+𝑗.

2.2. Accurate Sum and Product. Let 𝑎, 𝑏 ∈ F , and no overflow
nor underflow occurs. The transformation (𝑎, 𝑏) → (𝑥, 𝑦)

is regarded as an error-free transformation (EFT) that causes
𝑦 ∈ F to exist such that 𝑎 ∘ 𝑏 = 𝑥 + 𝑦, 𝑥 = 𝑎 𝑜𝑝 𝑏.

Let us show the error-free transformations of the sum
and product of two floating point numbers in Algorithms 1-
3 which are the 𝑇𝑤𝑜𝑆𝑢𝑚 algorithm by Knuth [18] and the
𝑇𝑤𝑜𝑃𝑟𝑜𝑑 algorithm by Dekker [19], respectively.

Algorithms 1–3 satisfy the Theorem 2.

function [𝑥, 𝑦] = 𝑇𝑤𝑜𝑆𝑢𝑚(𝑎, 𝑏)

𝑥 = 𝑎 ⊕ 𝑏

𝑧 = 𝑥 ⊖ 𝑎

𝑦 = (𝑎 ⊖ (𝑥 ⊖ 𝑧)) ⊕ (𝑏 ⊖ 𝑧)

Algorithm 1: Sum of two floating point numbers.

function [𝑥, 𝑦] = 𝑆𝑝𝑙𝑖𝑡(𝑎)

𝑐 = 𝑓𝑎𝑐𝑡𝑜𝑟 ⊗ 𝑎 (in double precision factor = 2
27

+ 1)
𝑥 = 𝑐 ⊖ (𝑐 ⊖ 𝑎)

𝑦 = 𝑎 ⊖ 𝑥

Algorithm 2: Split of a floating point number into two parts.

function [𝑥, 𝑦] = 𝑇𝑤𝑜𝑃𝑟𝑜𝑑(𝑎, 𝑏)

𝑥 = 𝑎 ⊗ 𝑏

[𝑎ℎ, 𝑎𝑙] = 𝑆𝑝𝑙𝑖𝑡(𝑎)

[𝑏ℎ, 𝑏𝑙] = 𝑆𝑝𝑙𝑖𝑡(𝑏)

𝑦 = 𝑎𝑙 ⊗ 𝑏𝑙 ⊖ (((𝑥 ⊖ 𝑎ℎ ⊗ 𝑏ℎ) ⊖ 𝑎𝑙 ⊗ 𝑏ℎ) ⊖ 𝑎ℎ ⊗ 𝑏𝑙)

Algorithm 3: Product of two floating point numbers.

function [𝑥, 𝑦] = 𝑇ℎ𝑟𝑒𝑒𝑃𝑟𝑜𝑑(𝑎, 𝑏, 𝑐)

[𝑡, ℎ] = 𝑇𝑤𝑜𝑃𝑟𝑜𝑑(𝑎, 𝑏)

[𝑥, 𝑒] = 𝑇𝑤𝑜𝑃𝑟𝑜𝑑(𝑡, 𝑐)

𝑦 = 𝑐 ⊗ ℎ ⊕ 𝑒

Algorithm 4: Product of three floating point numbers.

Theorem 2 (see [11]). For 𝑎, 𝑏 ∈ F and 𝑥, 𝑦 ∈ F ,𝑇𝑤𝑜𝑆𝑢𝑚 and
𝑇𝑤𝑜𝑃𝑟𝑜𝑑 verify

[𝑥, 𝑦] = 𝑇𝑤𝑜𝑆𝑢𝑚 (𝑎, 𝑏) , 𝑥 + 𝑦 = 𝑎 + 𝑏,

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 ≤ min {𝑢 |𝑥| , 𝑢 |𝑎 + 𝑏|} ,

[𝑥, 𝑦] = 𝑇𝑤𝑜𝑃𝑟𝑜𝑑 (𝑎, 𝑏) , 𝑥 + 𝑦 = 𝑎𝑏,

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 ≤ min {𝑢 |𝑥| , 𝑢 |𝑎𝑏|} .

(6)

We present the compensated algorithm for the product of
three floating point numbers in Algorithm 4, which refers to
[20].

According to Theorem 2, we have |ℎ| ≤ 𝑢|𝑎𝑏| and 𝑡 + ℎ =

𝑎𝑏. Hence, |𝑒| ≤ 𝑢|(𝑎𝑏 − ℎ)𝑐| ≤ 𝑢|𝑎𝑏𝑐| + 𝑢|ℎ𝑐| ≤ 𝑢|𝑎𝑏𝑐| +

𝑢
2
|𝑎𝑏𝑐|; then |𝑐ℎ + 𝑒| ≤ |𝑐ℎ| + |𝑒| ≤ 2𝑢|𝑎𝑏𝑐| + 𝑢

2
|𝑎𝑏𝑐|.

According to Lemma 3.2 in [20], we can propose the error
bound of Algorithm 4 inTheorem 3.



Journal of Applied Mathematics 3

Theorem3. For 𝑎, 𝑏, 𝑐 ∈ F and 𝑥, 𝑦, 𝜏 ∈ F ,𝑇ℎ𝑟𝑒𝑒𝑃𝑟𝑜𝑑 verifies

[𝑥, 𝑦] = 𝑇ℎ𝑟𝑒𝑒𝑃𝑟𝑜𝑑 (𝑎, 𝑏, 𝑐) , 𝑥 + 𝑦 = 𝑎𝑏𝑐 − 𝜏,

|𝜏| ≤ 𝛾2𝛾6 |𝑎𝑏𝑐| ,
󵄨󵄨󵄨󵄨𝑦

󵄨󵄨󵄨󵄨 ≤ 2𝑢 |𝑎𝑏𝑐| + 14𝑢
2

|𝑎𝑏𝑐| .

(7)

Proof. According to Lemma 3.2 in [20], we have

|𝜏| ≤ 𝛾2𝛾6 |𝑎𝑏𝑐| . (8)

In Algorithm 4, 𝑦 + 𝜏 = 𝑐ℎ + 𝑒; then

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝑦 + 𝜏 − 𝜏
󵄨󵄨󵄨󵄨 ≤ |𝑐ℎ + 𝑒| + |𝜏|

≤ 2𝑢 |𝑎𝑏𝑐| + 𝑢
2

|𝑎𝑏𝑐| + 𝛾2𝛾6 |𝑎𝑏𝑐|

≤ 2𝑢 |𝑎𝑏𝑐| + 14𝑢
2

|𝑎𝑏𝑐| .

(9)

2.3. The Clenshaw Algorithm and Condition Number. The
standard general algorithm for the evaluation of polynomial
in Legendre basis 𝑝(𝑥) = ∑

𝑛

𝑗=0
𝑎𝑗𝑝𝑗(𝑥) is the Clenshaw

algorithm [5]. We recall it in Algorithm 5.
Barrio et al. [21] proposed a general polynomial condi-

tion number for any polynomial basis defined by a linear
recurrence and used this new condition number to give the
error bounds for the Clenshaw algorithm. Based on this
general condition number, we propose the absolute Legendre
polynomial, which is similar to the absolute polynomial
mentioned in [7, 21].

Definition 4. Let 𝑝𝑘(𝑥) be Legendre polynomial. We define
the absolute Legendre polynomial 𝑝𝑘(𝑥) which is associated
with 𝑝𝑘(𝑥) and satisfies

𝑝0 (𝑥) = 1

𝑝1 (𝑥) = 𝑥

𝑝𝑘 (𝑥) =
2𝑘 − 1

𝑘
𝑥𝑝𝑘−1 (𝑥) +

𝑘

𝑘 + 1
𝑝𝑘−2 (𝑥) (𝑘 ≥ 2) ,

(10)

where |𝑝𝑘(𝑥)| ≤ 𝑝𝑘(𝑥), ∀𝑥 ≥ 0.

The absolute Legendre polynomial satisfies the following
property.

Lemma 5. Let 𝑝𝑘(𝑥) be the absolute Legendre polynomial.
Then we have

𝑝𝑘 (𝑥) 𝑝𝑗 (𝑥) ≤ 𝑝𝑘+𝑗 (𝑥) . (11)

Proof . Let𝐴𝑘 = (2𝑘+1)/(𝑘+1) and 𝑘 ≥ 2. FromDefinition 4,
we have

𝑝𝑘 (𝑥) = 𝐴𝑘−1𝑥𝑝𝑘−1 (𝑥) +
𝑘

𝑘 + 1
𝑝𝑘−2 (𝑥)

= (

𝑘−1

∏

𝑖=0

𝐴 𝑖) 𝑥
𝑘

+ ⋅ ⋅ ⋅ ;

(12)

function 𝑝(𝑥) = 𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤(𝑝, 𝑥)

𝑏𝑛+2 = 𝑏𝑛+1 = 0

for 𝑗 = 𝑛 : −1 : 0

𝑏𝑗 =
2𝑗 + 1

𝑗 + 1
𝑥𝑏𝑗+1 −

𝑗 + 1

𝑗 + 2
𝑏𝑗+2 + 𝑎𝑗

end
𝑝(𝑥) = 𝑏0

Algorithm 5: The Clenshaw algorithm for finite Legendre series.

then

𝑝𝑘 (𝑥) 𝑝𝑗 (𝑥) = (

𝑘−1

∏

𝑖=0

𝐴 𝑖) (

𝑗−1

∏

𝑖=0

𝐴 𝑖) 𝑥
𝑘+𝑗

+ ⋅ ⋅ ⋅ . (13)

Thus the equivalent form of (11) is

(

𝑘−1

∏

𝑖=0

𝐴 𝑖) (

𝑗−1

∏

𝑖=0

𝐴 𝑖) ≤

𝑘+𝑗−1

∏

𝑖=0

𝐴 𝑖. (14)

Since 𝐴𝑘 is increasing with 𝑘, we obtain

𝑗−1

∏

𝑖=0

𝐴 𝑖 ≤

𝑘+𝑗−1

∏

𝑖=𝑘

𝐴 𝑖. (15)

So we finally obtain 𝑝𝑘(𝑥)𝑝𝑗(𝑥) ≤ 𝑝𝑘+𝑗(𝑥).

Following Definition 4, we introduce the condition num-
ber for the evaluation of polynomials in Legendre basis [21].

Definition 6. Let 𝑝(𝑥) = ∑
𝑛

𝑘=0
𝑎𝑘𝑝𝑘(𝑥), where 𝑝𝑘(𝑥) is

Legendre polynomial. Let 𝑝𝑘(𝑥) be the absolute Legendre
polynomial. Then the absolute condition number is

condabs (𝑝, 𝑥) = 𝑝 (|𝑥|) =

𝑛

∑

𝑘=0

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝑝𝑘 (|𝑥|) , (16)

and the relative condition number is

condrel (𝑝, 𝑥) =
𝑝 (|𝑥|)
󵄨󵄨󵄨󵄨𝑝 (𝑥)

󵄨󵄨󵄨󵄨

=
∑
𝑛

𝑘=0

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝑝𝑘 (|𝑥|)

󵄨󵄨󵄨󵄨𝑝 (𝑥)
󵄨󵄨󵄨󵄨

. (17)

3. Compensated Algorithm for
Evaluating Polynomials

In this section, we exhibit the exact round-off errors gener-
ated by the Clenshaw algorithm with EFT. We also analyze
the perturbations generated by truncating the fractions in
Algorithm 5.Wepropose a compensatedClenshaw algorithm
to evaluate finite Legendre series and present its error bound
in the following.

Firstly, in order to analyze the perturbations, we split each
coefficient into three parts as follows:

𝐴 = 𝐴
(ℎ)

+ 𝐴
(𝑙)

+ 𝐴
(𝑚)

, (18)



4 Journal of Applied Mathematics

where𝐴
(ℎ)

, 𝐴
(𝑙)

∈ F ,𝐴, 𝐴
(𝑚)

∈ R and |𝐴
(𝑙)

| ≤ 𝑢|𝐴
(ℎ)

|, |𝐴
(𝑚)

| ≤

𝑢|𝐴
(𝑙)

|. Let 𝐴𝑘 = (2𝑘 + 1)/(𝑘 + 1) and 𝐶𝑘 = −(𝑘/(𝑘 + 1)). Then
we describe the recurrence relation at 𝑗th step of Algorithm 5
for theoretical computation as

𝑏𝑗 = (A(ℎ)
𝑗

+ 𝐴
(𝑙)

𝑗
+ 𝐴
(𝑚)

𝑗
) 𝑥𝑏𝑗+1

+ (𝐶
(ℎ)

𝑗+1
+ 𝐶
(𝑙)

𝑗+1
+ 𝐶
(𝑚)

𝑗+1
) 𝑏𝑗+2

+ (𝑎
(ℎ)

𝑗
+ 𝑎
(𝑙)

𝑗
+ 𝑎
(𝑚)

𝑗
) .

(19)

For numerical computation associated with (19), it is

𝑏̂𝑗 = 𝐴
(ℎ)

𝑗
⊗ 𝑥 ⊗ 𝑏̂𝑗+1 ⊕ 𝐶

(ℎ)

𝑗+1
⊗ 𝑏̂𝑗+2 ⊕ 𝑎

(ℎ)

𝑗
. (20)

Remark 7. Let 𝐴 ∈ R. We split a coefficient 𝐴 like (18); then
the representation of splitting is unique and 𝐴 = 𝐴

(ℎ)
⊕ 𝐴
(𝑙),

𝐴 = 𝐴⟨1⟩.

Let 𝐴𝑗 = 𝐴
(ℎ)

𝑗
and 𝐶𝑗 = 𝐶

(ℎ)

𝑗
in Algorithm 5. Since every

elementary floating point operation in Algorithm 5 causes
round-off errors in numerical computation, we apply 𝐸𝐹𝑇

and the 𝑇ℎ𝑟𝑒𝑒𝑃𝑟𝑜𝑑 algorithms to take notes of all round-off
errors and obtain

[𝑟, 𝛼𝑗] = 𝑇ℎ𝑟𝑒𝑒𝑃𝑟𝑜𝑑 (𝐴
(ℎ)

𝑗
, 𝑥, 𝑏̂𝑗+1) ,

[𝑠, 𝛽𝑗] = 𝑇𝑤𝑜𝑃𝑟𝑜𝑑 (𝐶
(ℎ)

𝑗+1
, 𝑏̂𝑗+2) ,

[𝑡, 𝜂𝑗] = 𝑇𝑤𝑜𝑆𝑢𝑚 (𝑟, 𝑠) ,

[𝑏̂𝑗, 𝜉𝑗] = 𝑇𝑤𝑜𝑆𝑢𝑚 (𝑡, 𝑎
(ℎ)

𝑗
) .

(21)

The sum of the perturbation and the round-off errors of the
recurrence relation at 𝑗th step is

𝑤𝑗 = (𝐴
(𝑙)

𝑗
+ 𝐴
(𝑚)

𝑗
) 𝑥𝑏̂𝑗+1 + (𝐶

(𝑙)

𝑗+1
+ 𝐶
(𝑚)

𝑗+1
) 𝑏̂𝑗+2

+ (𝑎
(𝑙)

𝑗
+ 𝑎
(𝑚)

𝑗
) + 𝛼𝑗 + 𝜏𝑗 + 𝛽𝑗 + 𝜂𝑗 + 𝜉𝑗,

(22)

where 𝑟+𝛼𝑗+𝜏𝑗 = 𝐴
(ℎ)

𝑗
𝑥𝑏̂𝑗+1, 𝜏𝑗 is defined inTheorem 3.Then

we obtain the following theorem.

Theorem 8. Let 𝑝(𝑥) = ∑
𝑛

𝑗=0
𝑎𝑗𝑝𝑗(𝑥) be a Legendre series of

degree 𝑛, and let 𝑥 be a floating point value. One assumes that
𝐴𝑗 = 𝐴

(ℎ)

𝑗
and𝐶𝑗 = 𝐶

(ℎ)

𝑗
inAlgorithm 5 and 𝑏̂0 is the numerical

result; 𝑤𝑗 is described in (22) for 𝑗 = 0, 1, . . . , 𝑛 − 1. Then one
obtains

𝑛−1

∑

𝑗=0

𝑤𝑗𝑝𝑗 (𝑥) + 𝑏̂0 =

𝑛

∑

𝑗=0

𝑎𝑗𝑝𝑗 (𝑥) . (23)

Proof. The perturbation of Algorithm 5 is

(𝐴
(𝑙)

𝑗
+ 𝐴
(𝑚)

j ) 𝑥𝑏̂𝑗+1 + (𝐶
(𝑙)

𝑗+1
+ 𝐶
(𝑚)

𝑗+1
) 𝑏̂𝑗+2 + (𝑎

(𝑙)

𝑗
+ 𝑎
(𝑚)

𝑗
) .

(24)

Let 𝐴𝑗 = 𝐴
(ℎ)

𝑗
and 𝐶𝑗 = 𝐶

(ℎ)

𝑗
in Algorithm 5. FromTheorems

2–3 and (21), we can easily obtain

𝐴
(ℎ)

𝑗
𝑏̂𝑗+1𝑥 = 𝑟 + 𝛼𝑗 + 𝜏𝑗,

𝐶
(ℎ)

𝑗+1
𝑏̂𝑗+2 = 𝑠 + 𝛽𝑗,

𝑟 + 𝑠 = 𝑡 + 𝜂𝑗

𝑡 + 𝑎
(ℎ)

𝑗
= 𝑏̂𝑗 + 𝜉𝑗.

(25)

Let 𝑠𝑗 = 𝛼𝑗 + 𝜏𝑗 + 𝛽𝑗 + 𝜂𝑗 + 𝜉𝑗 for 𝑗 = 0, 1, . . . , 𝑛 − 1; then

𝑏̂𝑗 + 𝑠𝑗 = 𝐴
(ℎ)

𝑗
𝑏̂𝑗+1𝑥 + 𝐶

(ℎ)

𝑗+1
𝑏̂𝑗+2 + 𝑎

(ℎ)

𝑗
, 𝑗 = 0, 1, . . . , 𝑛 − 1.

(26)

From (18), (19), (22), and (24), we have

𝑏̂𝑗 + 𝑤𝑗 = 𝐴𝑗𝑏̂𝑗+1𝑥 + 𝐶𝑗+1𝑏̂𝑗+2 + 𝑎𝑗, 𝑗 = 0, 1, . . . , 𝑛 − 1.

(27)

Thus

𝑏̂0 =

𝑛

∑

𝑗=0

(𝑎𝑗 − 𝑤𝑗) 𝑝𝑗 (𝑥) ; (28)

then
𝑛−1

∑

𝑗=0

𝑤𝑗𝑝𝑗 (𝑥) + 𝑏̂0 =

𝑛

∑

𝑗=0

𝑎𝑗𝑝𝑗 (𝑥) . (29)

To devise a compensated algorithm of Algorithm 5 and
give its error bound, we need the following lemmas.

Lemma 9. Let 𝑝(𝑥) = ∑
𝑛

𝑗=0
𝑎𝑗𝑝𝑗(𝑥) be a Legendre series of

degree 𝑛, 𝑥 a floating point value, and 𝑏̂0 the numerical result
of Algorithm 5. Then

󵄨󵄨󵄨󵄨𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤 (𝑝, 𝑥) − 𝑝 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝛾5𝑛−1

𝑛

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨
𝑝𝑗 (|𝑥|) . (30)

Proof. Applying the standard model of floating point arith-
metic, from Algorithm 5 and Remark 7, we have

𝑏̂𝑛−1 = 𝐴𝑛−1𝑏̂𝑛𝑥 ⟨4⟩ + 𝑎𝑛−1 ⟨1⟩ ,

𝑏̂𝑛−2 = 𝐴𝑛−2𝑏̂𝑛−1𝑥 ⟨5⟩ + 𝐶𝑛−1𝑏̂𝑛 ⟨4⟩ + 𝑎𝑛−2 ⟨1⟩ ,

...

𝑏̂0 = 𝐴0𝑏̂1𝑥 ⟨5⟩ + 𝐶1𝑏̂2 ⟨4⟩ + 𝑎0 ⟨1⟩ .

(31)

Thus we obtain

𝑏̂0 = ⟨4 + 5 (𝑛 − 1)⟩ (

𝑛−1

∏

𝑖=0

𝐴 𝑖) 𝑥
𝑛
𝑎𝑛 + ⋅ ⋅ ⋅ + 𝑎0 ⟨1⟩

= ⟨5𝑛 − 1⟩ (

𝑛−1

∏

𝑖=0

𝐴 𝑖) 𝑥
𝑛
𝑎𝑛 + ⋅ ⋅ ⋅ + 𝑎0 ⟨1⟩ .

(32)



Journal of Applied Mathematics 5

function 𝑟𝑒𝑠 = 𝐶𝑜𝑚𝑝𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤(𝑝, 𝑥)

𝑏̂𝑛+2 = 𝑏̂𝑛+1 = 0

𝜖𝑏̂𝑛+2 = 𝜖𝑏̂𝑛+1 = 0

for 𝑗 = 𝑛 : −1 : 0

[𝐴
(ℎ)

𝑗
, 𝐴
(𝑙)

𝑗
] = 𝑑𝑖V 𝑑 𝑑(2𝑗 + 1, 𝑗 + 1)

[𝐶
(ℎ)

𝑗
, 𝐶
(𝑙)

𝑗
] = 𝑑𝑖V 𝑑 𝑑(−𝑗 − 1, 𝑗 + 2)

[𝑟, 𝛼𝑗] = 𝑇ℎ𝑟𝑒𝑒𝑃𝑟𝑜𝑑(𝐴
(ℎ)

𝑗
, 𝑏̂𝑗+1, 𝑥)

[𝑠, 𝛽𝑗] = 𝑇𝑤𝑜𝑃𝑟𝑜𝑑(𝐶
(ℎ)

𝑗+1
, 𝑏̂𝑗+2)

[𝑡, 𝜂𝑗] = 𝑇𝑤𝑜𝑆𝑢𝑚(𝑟, 𝑠)

[𝑏̂
𝑗
, 𝜉
𝑗
] = 𝑇𝑤𝑜𝑆𝑢𝑚(𝑡, 𝑎

𝑗
)

𝑠𝑗 = 𝛼𝑗 ⊕ 𝛽𝑗 ⊕ 𝜂𝑗 ⊕ 𝜉𝑗 ⊕ (𝐴
(𝑙)

𝑗
⊗ 𝑥 ⊗ 𝑏̂𝑗+1 ⊕ 𝐶

(𝑙)

𝑗+1
⊗ 𝑏̂𝑗+2 ⊕ 𝑎

(𝑙)

𝑗
)

𝜖𝑏̂𝑗 = 𝐴
(ℎ)

𝑗
⊗ 𝑥 ⊗ 𝜖𝑏̂𝑗+1 ⊕ 𝐶

(ℎ)

𝑗+1
⊗ 𝜖𝑏̂𝑗+2 ⊕ 𝑠𝑗

end
𝑟𝑒𝑠 = 𝑦 ⊕ 𝜖𝑏̂0

Algorithm 6: Compensated Clenshaw algorithm.

function 𝑏 = 𝐶𝑜𝑛V𝑒𝑟𝑡(𝑎)

𝑎, 𝑏 are the vectors of monomial polynomial and orthogonal polynomial’s coefficients, respectively
𝑏
(𝑛)

= 0,
𝑏
(𝑛)

0
= 𝑎𝑛,

for 𝑗 = 𝑛 − 1 : −1 : 0

for 𝑘 = 0 : 1 : 𝑛 − 𝑗

𝑏
(𝑗)

0
= 𝑎𝑗 −

𝐶1

𝐴1
𝑏
(𝑗+1)

1
(𝑘 = 0)

𝑏
(𝑗)

𝑘
=

1

𝐴𝑘−1
𝑏
(𝑗+1)

𝑘−1
−

𝐶𝑘+1

𝐴𝑘+1
𝑏
(𝑗+1)

𝑘+1
(𝑘 = 1, . . . , 𝑛 − 𝑗 − 2)

𝑏
(𝑗)

𝑘
=

1

𝐴𝑘−1
𝑏
(𝑗+1)

𝑘−1
(𝑘 ≥ 𝑛 − 𝑗 − 1)

end
end
𝑏 = 𝑏
(0)

Algorithm 7: The conversion algorithm from power basis to Legendre basis.

Then, from Definition 1, we get

󵄨󵄨󵄨󵄨󵄨
𝑏̂0 − 𝑝 (𝑥)

󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(

𝑛−1

∏

𝑖=0

𝐴 𝑖) 𝑥
𝑛
𝑎𝑛𝜃5𝑛−1 + ⋅ ⋅ ⋅ + 𝑎0𝜃1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝛾5𝑛−1((

𝑛−1

∏

𝑖=0

𝐴 𝑖) |𝑥|
𝑛 󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ +
󵄨󵄨󵄨󵄨𝑎0

󵄨󵄨󵄨󵄨)

= 𝛾5𝑛−1

𝑛

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨
𝑃̃𝑗 (|𝑥|) .

(33)

Lemma 10. Let 𝑝(𝑥) = ∑
𝑛

𝑗=0
𝑎𝑗𝑝𝑗(𝑥) be a Legendre series of

degree 𝑛 and 𝑥 a floating point value. We assume that 𝜎𝑗 ≤

𝜔𝑗(𝐴𝑗|𝑥||𝑏̂𝑗+1| + |𝐶𝑗+1||𝑏̂𝑗+2| + |𝑎𝑗|), where 𝜔𝑗 is real numbers;
then

𝑛−1

∑

𝑗=0

𝜎𝑗𝑝𝑗 (|𝑥|) ≤ 𝑛𝜔𝑗 (1 + 𝛾5(𝑛−1))

𝑛

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨
𝑝𝑗 (|𝑥|) . (34)

Proof. According to (31), we get

󵄨󵄨󵄨󵄨󵄨
𝑏̂𝑗

󵄨󵄨󵄨󵄨󵄨
≤ (1 + 𝛾5) (𝐴𝑗 |𝑥|

󵄨󵄨󵄨󵄨󵄨
𝑏̂𝑗+1

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝐶𝑗+1

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑏̂𝑗+2

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨
) . (35)

Since 𝜎𝑗 ≤ 𝜔𝑗(𝐴𝑗|𝑥||𝑏̂𝑗+1| + |𝐶𝑗+1||𝑏̂𝑗+2| + |𝑎𝑗|), from
Definition 1, we have

𝜎𝑗 ≤ 𝜔𝑗 (1 + 𝛾5(𝑛−𝑗−1)) Σ
𝑛

𝑘=𝑗

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝑝𝑘−𝑗 (|𝑥|) ; (36)



6 Journal of Applied Mathematics

function [𝑥, 𝑦] = 𝐹𝑎𝑠𝑡𝑇𝑤𝑜𝑆𝑢𝑚(𝑎, 𝑏)

𝑥 = 𝑎 ⊕ 𝑏

𝑦 = (𝑎 ⊖ 𝑥) ⊕ 𝑏

Algorithm 8: EFT of the sum of two floating point numbers (|𝑎| ≥

|𝑏|).

function [𝑟ℎ, 𝑟𝑙] = 𝑎𝑑𝑑 𝑑𝑑 𝑑(𝑎ℎ, 𝑎𝑙, 𝑏)

[𝑡ℎ, 𝑡𝑙] = 𝑇𝑤𝑜𝑆𝑢𝑚(𝑎ℎ, 𝑏)

𝑡𝑙 = 𝑎𝑙 ⊕ 𝑡𝑙

[𝑟ℎ, 𝑟𝑙] = 𝐹𝑎𝑠𝑡𝑇𝑤𝑜𝑆𝑢𝑚(𝑡ℎ, 𝑡𝑙)

Algorithm 9: Addition of a double-double number and a double
number.

function [𝑟ℎ, 𝑟𝑙] = 𝑎𝑑𝑑 𝑑𝑑 𝑑𝑑(𝑎ℎ, 𝑎𝑙, 𝑏ℎ, 𝑏𝑙)

[𝑠ℎ, 𝑠𝑙] = 𝑇𝑤𝑜𝑆𝑢𝑚(𝑎ℎ, 𝑏ℎ)

[𝑡ℎ, 𝑡𝑙] = 𝑇𝑤𝑜𝑆𝑢𝑚(𝑎𝑙, 𝑏𝑙)

𝑠𝑙 = 𝑠𝑙 ⊕ 𝑡ℎ

𝑡ℎ = 𝑠ℎ ⊕ 𝑠𝑙

𝑠𝑙 = 𝑠𝑙 ⊖ (𝑡ℎ ⊖ 𝑠ℎ)

𝑡𝑙 = 𝑡𝑙 ⊕ 𝑠𝑙

[𝑟ℎ, 𝑟𝑙] = 𝐹𝑎𝑠𝑡𝑇𝑤𝑜𝑆𝑢𝑚(𝑡ℎ, 𝑡𝑙)

Algorithm 10: Addition of a double-double number and a double-
double number.

function [𝑟ℎ, 𝑟𝑙] = 𝑝𝑟𝑜𝑑 𝑑𝑑 𝑑(𝑎ℎ, 𝑎𝑙, 𝑏)

[𝑡ℎ, 𝑡𝑙] = 𝑇𝑤𝑜𝑃𝑟𝑜𝑑(𝑎ℎ, 𝑏)

𝑡𝑙 = 𝑎𝑙 ⊗ 𝑏 ⊕ 𝑡𝑙

[𝑟ℎ, 𝑟𝑙] = 𝐹𝑎𝑠𝑡𝑇𝑤𝑜𝑆𝑢𝑚(𝑡ℎ, 𝑡𝑙)

Algorithm 11: Multiplication of a double-double number by a
double number.

then
𝑛−1

∑

𝑗=0

𝜎𝑗𝑝𝑗 (|𝑥|) ≤ 𝜔𝑗 (1 + 𝛾5(𝑛−1))

×

𝑛−1

∑

𝑗=0

(

𝑛

∑

𝑘=𝑗

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝑝𝑘−𝑗 (|𝑥|)) 𝑝𝑗 (|𝑥|) .

(37)

According to Lemma 5, we obtain

𝑛−1

∑

𝑗=0

𝜎𝑗𝑝𝑗 (|𝑥|) ≤ 𝜔𝑗 (1 + 𝛾5(𝑛−1))

𝑛−1

∑

𝑗=0

𝑛

∑

𝑘=𝑗

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 𝑝𝑘 (|𝑥|)

≤ 𝑛𝜔𝑗 (1 + 𝛾5(𝑛−1))

𝑛

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨
𝑝𝑗 (|𝑥|) .

(38)

Among the perturbed and round-off errors in
Algorithm 5, we deem that some errors do not influence the
numerical result in working precision. Now we can give the
perturbed error bounds and the round-off error bounds,
respectively. At first we analyze the perturbed error in (24).
Let 𝑔
(𝑙)

𝑗
= 𝐴
(𝑙)

𝑗
𝑥𝑏̂𝑗+1+𝐶

(𝑙)

𝑗+1
𝑏̂𝑗+2+𝑎

(𝑙)

𝑗
. According to𝐴

(𝑙)
≤ 𝑢𝐴
(ℎ)

and Remark 7, we obtain
󵄨󵄨󵄨󵄨󵄨
𝑔
(𝑙)

𝑗

󵄨󵄨󵄨󵄨󵄨
≤ 𝑢 (1 + 𝛾1) (𝐴𝑗 |𝑥|

󵄨󵄨󵄨󵄨󵄨
𝑏̂𝑗+1

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝐶𝑗+1

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑏̂𝑗+2

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨
) . (39)

Then let 𝜔𝑗 = 𝑢(1 + 𝛾1) and from Lemma 10, taking into
account that (𝑛+1)𝑢(1+𝛾5𝑛+1) ≤ (5𝑛+1)𝑢(1+𝛾5𝑛+1) = 𝛾5𝑛+1,
we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=0

𝑔
(𝑙)

𝑗
𝑝𝑗 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝛾5𝑛+1

𝑛

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨
𝑝𝑗 (|𝑥|) . (40)

𝛾5𝑛+1 is 𝑂(𝑢), so this coefficient perturbation may influ-
ence the accuracy; we need to consider it in our compensated
algorithm.

Similarly, we let 𝑔
(𝑚)

𝑗
= 𝐴
(𝑚)

𝑗
𝑥𝑏̂𝑗+1 + 𝐶

(𝑚)

𝑗+1
𝑏̂𝑗+2 + 𝑎

(𝑚)

𝑗
; then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=0

𝑔
(𝑚)

𝑗
𝑝𝑗 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑢𝛾5𝑛+1

𝑛

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨
𝑝𝑗 (|𝑥|) . (41)

𝑢𝛾5𝑛+1 is 𝑂(𝑢
2
), so this coefficient perturbation does not

influence the accuracy.

Remark 11. When 𝑗 = 𝑛, the 𝑛th step of Algorithm 5 is
𝑏̂𝑛 = 𝑎

(ℎ)

𝑛
, so that we only need to consider the perturbation

of coefficient 𝑎𝑛.

Next we deduce the round-off error bound. Let 𝑠𝑗 = 𝛼𝑗 +

𝛽𝑗 + 𝜂𝑗 + 𝜉𝑗. According to Theorems 2 and 3 and Remark 7,
we obtain

󵄨󵄨󵄨󵄨󵄨
𝛼𝑗

󵄨󵄨󵄨󵄨󵄨
≤ (2𝑢 + 14𝑢

2
)

󵄨󵄨󵄨󵄨󵄨
𝐴
(ℎ)

𝑗
𝑥𝑏̂𝑗+1

󵄨󵄨󵄨󵄨󵄨

≤ (2𝑢 + 14𝑢
2
) (1 + 𝛾1)

󵄨󵄨󵄨󵄨󵄨
𝐴𝑗𝑥𝑏̂𝑗+1

󵄨󵄨󵄨󵄨󵄨
;

󵄨󵄨󵄨󵄨󵄨
𝛽𝑗

󵄨󵄨󵄨󵄨󵄨
≤ 𝑢

󵄨󵄨󵄨󵄨󵄨
𝐶
(ℎ)

𝑗+1
𝑏̂𝑗+2

󵄨󵄨󵄨󵄨󵄨
≤ 𝑢 (1 + 𝛾1)

󵄨󵄨󵄨󵄨󵄨
𝐶𝑗+1𝑏̂𝑗+2

󵄨󵄨󵄨󵄨󵄨
;

󵄨󵄨󵄨󵄨󵄨
𝜂𝑗

󵄨󵄨󵄨󵄨󵄨
≤ 𝑢

󵄨󵄨󵄨󵄨󵄨
𝐴
(ℎ)

𝑗
𝑥𝑏̂𝑗+1 ⟨3⟩ + 𝐶

(ℎ)

𝑗+1
𝑏̂𝑗+2 ⟨2⟩

󵄨󵄨󵄨󵄨󵄨

≤ 𝑢 (1 + 𝛾3)
󵄨󵄨󵄨󵄨󵄨
𝐴𝑗𝑥𝑏̂𝑗+1 + 𝐶𝑗+1𝑏̂𝑗+2

󵄨󵄨󵄨󵄨󵄨
;

󵄨󵄨󵄨󵄨󵄨
𝜉𝑗

󵄨󵄨󵄨󵄨󵄨
≤ 𝑢

󵄨󵄨󵄨󵄨󵄨
𝐴
(ℎ)

𝑗
𝑥𝑏̂𝑗+1 ⟨4⟩ + 𝐶

(ℎ)

𝑗+1
𝑏̂𝑗+2 ⟨3⟩ + 𝑎𝑗 ⟨1⟩

󵄨󵄨󵄨󵄨󵄨

≤ 𝑢 (1 + 𝛾4)
󵄨󵄨󵄨󵄨󵄨
𝐴𝑗𝑥𝑏̂𝑗+1 + 𝐶𝑗+1𝑏̂𝑗+2 + 𝑎𝑗

󵄨󵄨󵄨󵄨󵄨
;

(42)

then
󵄨󵄨󵄨󵄨󵄨
𝛼𝑗

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝛽𝑗

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝜂𝑗

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝜉𝑗

󵄨󵄨󵄨󵄨󵄨

≤ (4𝑢 + 14𝑢
2
)

󵄨󵄨󵄨󵄨1 + 𝛾4
󵄨󵄨󵄨󵄨

× (𝐴𝑗 |𝑥|
󵄨󵄨󵄨󵄨󵄨
𝑏̂𝑗+1

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝐶𝑗+1

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑏̂𝑗+2

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨
) .

(43)



Journal of Applied Mathematics 7

function [𝑟ℎ, 𝑟𝑙] = 𝑝𝑟𝑜𝑑 𝑑𝑑 𝑑𝑑(𝑎ℎ, 𝑎𝑙, 𝑏ℎ, 𝑏𝑙)

[𝑡ℎ, 𝑡𝑙] = 𝑇𝑤𝑜𝑃𝑟𝑜𝑑(𝑎ℎ, 𝑏ℎ)

𝑡𝑙 = (𝑎ℎ ⊗ 𝑏𝑙) ⊕ (𝑎𝑙 ⊗ 𝑏ℎ) ⊕ 𝑡𝑙

[𝑟ℎ, 𝑟𝑙] = 𝐹𝑎𝑠𝑡𝑇𝑤𝑜𝑆𝑢𝑚(𝑡ℎ, 𝑡𝑙)

Algorithm 12: Multiplication of a double-double number by a
double-double number.

function [𝑟ℎ, 𝑟𝑙] = 𝑑𝑖V 𝑑 𝑑(𝑎, 𝑏)

𝑞ℎ = 𝑎 ⊘ 𝑏

[𝑡ℎ1, 𝑡𝑙1] = 𝑇𝑤𝑜𝑃𝑟𝑜𝑑(𝑞ℎ, 𝑏)

[𝑡ℎ2, 𝑡𝑙2] = 𝑇𝑤𝑜𝑆𝑢𝑚(𝑎, −𝑡ℎ1)

𝑞𝑙 = (𝑡ℎ2 ⊕ 𝑡𝑙2 ⊖ 𝑡𝑙1) ⊘ 𝑏

[𝑟ℎ, 𝑟𝑙] = 𝐹𝑎𝑠𝑡𝑇𝑤𝑜𝑆𝑢𝑚(𝑞ℎ, 𝑞𝑙)

Algorithm 13: Division of a double number by a double number.

Let 𝜔𝑗 = (4𝑢 + 14𝑢
2
)|1 + 𝛾4| and using it into Lemma 10,

from (4+14𝑢)𝑛𝑢(1+𝛾5𝑛−1) ≤ (5𝑛−1)𝑢(1+𝛾5𝑛−1) = 𝛾5𝑛−1 (𝑛 ≥

2), we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛−1

∑

𝑗=0

(
󵄨󵄨󵄨󵄨󵄨
𝛼𝑗

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝛽𝑗

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝜂𝑗

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝜉𝑗

󵄨󵄨󵄨󵄨󵄨
) 𝑝𝑗 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝛾5𝑛−1

𝑛

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨
𝑝𝑗 (|𝑥|) .

(44)

𝛾5𝑛−1 is 𝑂(𝑢), so this round-off error may influence the
accuracy, we also need to consider it in our compensated
algorithm.

From Theorem 3 we have known that round-off error
|𝜏𝑗| ≤ 𝛾2𝛾6|𝐴

(ℎ)

𝑗
𝑥𝑏̂𝑗+1| ≤ 𝛾2𝛾6(1 + 𝛾1)|𝐴𝑗𝑥𝑏̂𝑗+1|. According to

Lemma 10 we let 𝜔𝑗 = 𝛾2𝛾6(1 + 𝛾1), from 𝛾2 ≤ 2𝑢(1 + 𝛾1) and
2𝑛𝑢(1 + 𝛾5𝑛−3) ≤ 𝛾5𝑛−3, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛−1

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜏𝑗
󵄨󵄨󵄨󵄨󵄨
𝑝𝑗 (𝑥)

󵄨󵄨󵄨󵄨󵄨
≤ 𝛾6𝛾5𝑛−3

𝑛

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨
𝑝𝑗 (|𝑥|) . (45)

𝛾6𝛾5𝑛−3 is𝑂(𝑢
2
), so this round-off error does not influence

the accuracy.
Observing the error bounds we described above, the

perturbation generated by the third part of coefficients in
(18) does not influence the accuracy. Thanks to the 𝑑𝑖V 𝑑 𝑑

algorithm in Appendix B (see Algorithm 13), we only need to
split the coefficients into two floating point numbers.

Applying EFT, the 𝑇ℎ𝑟𝑒𝑒𝑃𝑟𝑜𝑑 algorithm and the 𝑑𝑖V 𝑑 𝑑

algorithm, considering all errors which may influence the
numerical result in working precision in Algorithm 5, we
obtain the compensated Clenshaw algorithm in Algorithm 6.

Here we give the error bound of Algorithm 6.

Theorem 12. Let 𝑝(𝑥) = ∑
𝑛

𝑗=0
𝑎𝑗𝑝𝑗(𝑥) be a Legendre series of

degree 𝑛 (𝑛 ≥ 2) and𝑥 a floating point value.The forward error
bound of the compensated Clenshaw algorithm is

󵄨󵄨󵄨󵄨𝐶𝑜𝑚𝑝𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤 (𝑝, 𝑥) − 𝑝 (𝑥)
󵄨󵄨󵄨󵄨

≤ 𝑢
󵄨󵄨󵄨󵄨𝑝 (𝑥)

󵄨󵄨󵄨󵄨 + 2𝛾
2

5𝑛−2

𝑛

∑

𝑗=0

𝑎𝑗𝑃𝑗 (𝑥) .
(46)

Proof. From Algorithm 6, we obtain

󵄨󵄨󵄨󵄨𝐶𝑜𝑚𝑝𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤 (𝑝, 𝑥) − 𝑝 (𝑥)
󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
(𝑏̂0 ⊕ 𝜖𝑏̂0) − 𝑝 (𝑥)

󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
(1 + 𝜖) (𝑏̂0 + 𝜖𝑏̂0) − 𝑝 (𝑥)

󵄨󵄨󵄨󵄨󵄨
,

(47)

where |𝜖| ≤ 𝑢.
According toTheorem 8, we have 𝑝(𝑥) = 𝑏̂𝑜 + 𝜖𝑏𝑜; then

󵄨󵄨󵄨󵄨𝐶𝑜𝑚𝑝𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤 (𝑝, 𝑥) − 𝑝 (𝑥)
󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
(1 + 𝜖) (𝑃 (𝑥) − 𝜖𝑏𝑜 + 𝜖𝑏̂0) − 𝑝 (𝑥)

󵄨󵄨󵄨󵄨󵄨

≤ 𝑢 |𝑃 (𝑥)| + (1 + 𝑢)
󵄨󵄨󵄨󵄨󵄨
𝜖𝑏𝑜 − 𝜖𝑏̂0

󵄨󵄨󵄨󵄨󵄨
.

(48)

Next we analyze the bound of |𝜖𝑏𝑜 − 𝜖𝑏̂0|.
Let 𝑔
(𝑙)

𝑗
= 𝐴
(𝑙)

𝑗
𝑥𝑏̂𝑗+1 + 𝐶

(𝑙)

𝑗+1
𝑏̂𝑗+2 + 𝑎

(𝑙)

𝑗
; then

𝑔
(𝑙)

𝑗
= 𝐴
(𝑙)

𝑗
𝑥𝑏̂𝑗+1 ⟨4⟩ + 𝐶

(𝑙)

𝑗+1
𝑏̂𝑗+2 ⟨3⟩ + 𝑎

(𝑙)

𝑗
⟨1⟩ . (49)

Thus we obtain

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=0

𝑔
(𝑙)

𝑗
𝑝𝑗 (𝑥) −

𝑛

∑

𝑗=0

𝑔
(𝑙)

𝑗
𝑝𝑗 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝛾4

𝑛

∑

𝑗=0

(𝐴
(𝑙)

𝑗
|𝑥|

󵄨󵄨󵄨󵄨󵄨
𝑏̂𝑗+1

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝐶
(𝑙)

𝑗+1

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑏̂𝑗+2

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝑎
(𝑙)

𝑗

󵄨󵄨󵄨󵄨󵄨
) 𝑝𝑗 (|𝑥|) .

(50)

According to Lemma 9, we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=0

𝑔
(𝑙)

𝑗
𝑝𝑗 (𝑥) − ⊕

𝑛

∑

𝑗=0

𝑔
(𝑙)

𝑗
⊗ 𝑝𝑗 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝛾5𝑛−1

𝑛

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝑔
(𝑙)

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑝𝑗 (|𝑥|)

≤ 𝛾5𝑛−1 (1 + 𝛾4)

×

𝑛

∑

𝑗=0

(𝐴
(𝑙)

𝑗
|𝑥|

󵄨󵄨󵄨󵄨󵄨
𝑏̂𝑗+1

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝐶
(𝑙)

𝑗+1

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑏̂𝑗+2

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
a(𝑙)
𝑗

󵄨󵄨󵄨󵄨󵄨
) 𝑝𝑗 (|𝑥|) .

(51)



8 Journal of Applied Mathematics

function [𝑟ℎ, 𝑟𝑙] = 𝑑𝑖V 𝑑𝑑 𝑑𝑑(𝑎ℎ, 𝑎𝑙, 𝑏ℎ, 𝑏𝑙)

𝑞1 = 𝑎ℎ ⊘ 𝑏ℎ

[𝑡ℎ1, 𝑡𝑙1] = 𝑝𝑟𝑜𝑑 𝑑𝑑 𝑑(𝑏ℎ, 𝑏𝑙, 𝑞1)

[𝑡ℎ2, 𝑡𝑙2] = 𝑎𝑑𝑑 𝑑𝑑 𝑑𝑑(𝑎ℎ, 𝑎𝑙, −𝑡ℎ1, −𝑡𝑙1)

𝑞2 = 𝑡ℎ2 ⊘ 𝑏ℎ

[𝑡ℎ1, 𝑡𝑙1] = 𝑝𝑟𝑜𝑑 𝑑𝑑 𝑑(𝑏ℎ, 𝑏𝑙, 𝑞2)

[𝑡ℎ2, 𝑡𝑙2] = 𝑎𝑑𝑑 𝑑𝑑 𝑑𝑑(𝑡ℎ2, 𝑡𝑙2, −𝑡ℎ1, −𝑡𝑙1)

𝑞3 = 𝑡ℎ2 ⊘ 𝑏ℎ

[𝑞1, 𝑞2] = 𝐹𝑎𝑠𝑡𝑇𝑤𝑜𝑆𝑢𝑚(𝑞1, 𝑞2)

[𝑟ℎ, 𝑟𝑙] = 𝑎𝑑𝑑 𝑑𝑑 𝑑(𝑞1, 𝑞2, 𝑞3)

Algorithm 14: Division of a double-double number by a double-
double number.

function 𝑟𝑒𝑠 = 𝐷𝐷𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤(𝑝, 𝑥)

𝑏𝑛+2 = 𝑏𝑛+1 = 0

for 𝑗 = 𝑛 : −1 : 0

[ℎ1, 𝑙1] = 𝑝𝑟𝑜𝑑 𝑑𝑑 𝑑(𝑏
(ℎ)

𝑗+1
, 𝑏
(𝑙)

𝑗+1
, 𝑥)

[ℎ2, 𝑙2] = 𝑝𝑟𝑜𝑑 𝑑𝑑 𝑑𝑑(ℎ1, 𝑙1, 𝐴
(ℎ)

𝑗
, 𝐴
(𝑙)

𝑗
)

[ℎ3, 𝑙3] = 𝑝𝑟𝑜𝑑 𝑑𝑑 𝑑𝑑(𝑏
(ℎ)

𝑗+2
, 𝑏
(𝑙)

𝑗+2
, 𝐶
(ℎ)

𝑗+1
, 𝐶
(𝑙)

𝑗+1
)

[ℎ4, 𝑙4] = 𝑎𝑑𝑑 𝑑𝑑 𝑑𝑑(ℎ2, 𝑙2, ℎ3, 𝑙3)

[𝑏
(ℎ)

𝑗
, 𝑏
(𝑙)

𝑗
] = 𝑎𝑑𝑑 𝑑𝑑 𝑑𝑑(ℎ4, 𝑙4, 𝑎

(ℎ)

𝑗
, 𝑎
(𝑙)

𝑗
)

end
𝑟𝑒𝑠 = [𝑏

(ℎ)

0
, 𝑏
(𝑙)

0
]

Algorithm 15: DDClenshaw algorithm of evaluating an Legendre
series in double-double arithmetic.

From (50), (51) and 𝛾5𝑛−1(1 + 𝛾4) + 𝛾4 ≤ 𝛾5𝑛+3, we derive

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=0

𝑔
(𝑙)

𝑗
𝑝𝑗 (𝑥) − ⊕

𝑛

∑

𝑗=0

𝑔
(𝑙)

𝑗
⊗ 𝑝𝑗 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=0

𝑔
(𝑙)

𝑗
𝑝𝑗 (𝑥) −

𝑛

∑

𝑗=0

𝑔
(𝑙)

𝑗
𝑝𝑗 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=0

𝑔
(𝑙)

𝑗
𝑝𝑗 (𝑥) − ⊕

𝑛

∑

𝑗=0

𝑔
(𝑙)

𝑗
⊗ 𝑝𝑗 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝛾5𝑛+3

𝑛

∑

𝑗=0

(𝐴
(𝑙)

𝑗
|𝑥|

󵄨󵄨󵄨󵄨󵄨
𝑏̂𝑗+1

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝐶
(𝑙)

𝑗+1

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑏̂𝑗+2

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝑎
(𝑙)

𝑗

󵄨󵄨󵄨󵄨󵄨
) 𝑝𝑗 (|𝑥|) .

(52)

According to 𝐴
(𝑙)

≤ 𝑢𝐴
(ℎ) and Remark 7, we obtain

𝐴
(𝑙)

𝑗
|𝑥|

󵄨󵄨󵄨󵄨󵄨
𝑏̂𝑗+1

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝐶
(𝑙)

𝑗+1

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑏̂𝑗+2

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝑎
(𝑙)

𝑗

󵄨󵄨󵄨󵄨󵄨

≤ 𝑢 (1 + 𝛾1) (𝐴𝑗 |𝑥|
󵄨󵄨󵄨󵄨󵄨
𝑏̂𝑗+1

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝐶𝑗+1

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑏̂𝑗+2

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨
) .

(53)

From (53) we use 𝜔𝑗 = 𝑢(1 + 𝛾1) into Lemma 10; taking into
account that 𝑛𝑢(1 + 𝛾5𝑛−4) ≤ (5𝑛 + 1)𝑢(1 + 𝛾5𝑛+1) = 𝛾5𝑛+1 and
𝛾5𝑛+1𝛾5𝑛+3 ≤ 𝛾

2

5𝑛+2
, according to (52), we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛−1

∑

𝑗=0

𝑔
(𝑙)

𝑗
𝑝𝑗 (𝑥) − ⊕

𝑛−1

∑

𝑗=0

𝑔
(𝑙)

𝑗
⊗ 𝑝𝑗 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝛾
2

5𝑛+2

𝑛

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨
𝑝𝑗 (|𝑥|) .

(54)

Next we let 𝑠𝑗 = 𝛼𝑗 + 𝛽𝑗 + 𝜂𝑗 + 𝜉𝑗; then

𝑠𝑗 ≤ (1 + 𝛾3) (
󵄨󵄨󵄨󵄨󵄨
𝛼𝑗

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝛽𝑗

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝜂𝑗

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝜉𝑗

󵄨󵄨󵄨󵄨󵄨
) ; (55)

thus
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛−1

∑

𝑗=0

𝑠𝑗𝑝𝑗 (𝑥) −

𝑛−1

∑

𝑗=0

𝑠𝑗𝑝𝑗 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝛾3

𝑛−1

∑

𝑗=0

(
󵄨󵄨󵄨󵄨󵄨
𝛼𝑗

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝛽𝑗

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝜂𝑗

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝜉𝑗

󵄨󵄨󵄨󵄨󵄨
) 𝑝𝑗 (|𝑥|) .

(56)

According to Lemma 9, we obtain
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛−1

∑

𝑗=0

𝑠𝑗𝑝𝑗 (𝑥) − ⊕

𝑛−1

∑

𝑗=0

𝑠𝑗 ⊗ 𝑝𝑗 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝛾5(𝑛−1)−1

𝑛−1

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝑠𝑗

󵄨󵄨󵄨󵄨󵄨
𝑝𝑗 (|𝑥|)

≤ 𝛾5(𝑛−1)−1 (1 + 𝛾3)

×

𝑛−1

∑

𝑗=0

(
󵄨󵄨󵄨󵄨󵄨
𝛼𝑗

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝛽𝑗

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝜂𝑗

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝜉𝑗

󵄨󵄨󵄨󵄨󵄨
) 𝑝𝑗 (|𝑥|) .

(57)

From (56), (57), and 𝛾5(𝑛−1)−1(1+𝛾3)+𝛾3 ≤ 𝛾5𝑛−3, we derive
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛−1

∑

𝑗=0

𝑠𝑗𝑝𝑗 (𝑥) − ⊕

𝑛−1

∑

𝑗=0

𝑠𝑗 ⊗ 𝑝𝑗 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛−1

∑

𝑗=0

𝑠𝑗𝑝𝑗 (𝑥) −

𝑛−1

∑

𝑗=0

𝑠𝑗𝑝𝑗 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛−1

∑

𝑗=0

𝑠𝑗𝑝𝑗 (𝑥) − ⊕

𝑛−1

∑

𝑗=0

𝑠𝑗 ⊗ 𝑝𝑗 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝛾5𝑛−3

𝑛−1

∑

𝑗=0

(
󵄨󵄨󵄨󵄨󵄨
𝛼𝑗

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝛽𝑗

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝜂𝑗

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝜉𝑗

󵄨󵄨󵄨󵄨󵄨
) 𝑝𝑗 (|𝑥|) .

(58)

From (43), we let 𝜔𝑗 = (4 + 14𝑢)𝑢|1 + 𝛾4| and using it into
Lemma 10, taking into account that (4 + 14𝑢)𝑛𝑢(1 + 𝛾5𝑛−1) ≤

(5𝑛 − 1)𝑢(1 + 𝛾5𝑛−1) = 𝛾5𝑛−1(𝑛 ≥ 2) and 𝛾5𝑛−3𝛾5𝑛−1 ≤ 𝛾
2

5𝑛−2
, we

have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛−1

∑

𝑗=0

𝑠𝑗𝑝𝑗 (𝑥) − ⊕

𝑛−1

∑

𝑗=0

𝑠𝑗 ⊗ 𝑝𝑗 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝛾
2

5𝑛−2

𝑛−1

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨
𝑝𝑗 (|𝑥|) . (59)



Journal of Applied Mathematics 9

function 𝑏 = 𝐷𝐷𝐶𝑜𝑛V𝑒𝑟𝑡(𝑎)

𝑎, 𝑏 are the vectors of monomial polynomial and orthogonal polynomial’s coefficients, respectively
𝑏
(𝑛)

= 0,
𝑏ℎ
(𝑛)

0
= 𝑎
(ℎ)

𝑛
,

for 𝑗 = 𝑛 − 1 : −1 : 0

for 𝑘 = 0 : 1 : 𝑛 − 𝑗

if 𝑘 = 0

[ℎ1, 𝑙1] = 𝑝𝑟𝑜𝑑 𝑑𝑑 𝑑𝑑(𝐶
(ℎ)

1
𝐶
(𝑙)

1
, 𝑏ℎ
(𝑗+1)

1
, 𝑏𝑙
(𝑗+1)

1
)

[ℎ2, 𝑙2] = 𝑑𝑖V 𝑑𝑑 𝑑𝑑(ℎ1, 𝑙1, 𝐴
(ℎ)

1
, 𝐴
(𝑙)

1
)

[𝑏ℎ
(𝑗)

0
, 𝑏𝑙
(𝑗)

0
] = 𝑎𝑑𝑑 𝑑𝑑 𝑑𝑑(−ℎ2, −𝑙2, 𝑎

(ℎ)

𝑗
, 𝑎
(𝑙)

𝑗
)

if 𝑘 = 1, 2, . . . , 𝑛 − 𝑗 − 2

[ℎ
1
, 𝑙
1
] = 𝑑𝑖V 𝑑𝑑 𝑑𝑑(𝑏ℎ

(𝑗+1)

𝑘−1
, 𝑏𝑙
(𝑗+1)

𝑘−1
, 𝐴
(ℎ)

𝑘−1
, 𝐴
(𝑙)

𝑘−1
)

[ℎ2, 𝑙2] = 𝑝𝑟𝑜𝑑 𝑑𝑑 𝑑𝑑(𝐶
(ℎ)

𝑘+1
, 𝐶
(𝑙)

𝑘+1
, 𝑏ℎ
(𝑗+1)

𝑘+1
, 𝑏𝑙
(𝑗+1)

𝑘+1
)

[ℎ3, 𝑙3] = 𝑑𝑖V 𝑑𝑑 𝑑𝑑(ℎ2, 𝑙2, 𝐴
(ℎ)

𝑘+1
, 𝐴
(𝑙)

𝑘+1
)

[𝑏ℎ
(𝑗)

𝑘
, 𝑏𝑙
(𝑗)

𝑘
] = 𝑎𝑑𝑑 𝑑𝑑 𝑑𝑑(ℎ1, 𝑙1, −ℎ3, −𝑙3))

if 𝑘 ≥ 𝑛 − 𝑗 − 1

[𝑏ℎ
(𝑗)

𝑘
, 𝑏𝑙
(𝑗)

𝑘
] = 𝑑𝑖V 𝑑𝑑 𝑑𝑑(𝑏ℎ

(𝑗+1)

𝑘−1
, 𝑏𝑙
(𝑗+1)

𝑘−1
, 𝐴
(ℎ)

𝑘−1
, 𝐴
(𝑙)

𝑘−1
)

end
end
𝑏 = [𝑏ℎ

(0)
, 𝑏𝑙
(0)

]

Algorithm 16: DDConvert algorithm for the polynomial from power basis to Legendre basis.

Combining (54) and (59), we get

󵄨󵄨󵄨󵄨󵄨
𝜖𝑏𝑜 − 𝜖𝑏̂0

󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛−1

∑

𝑗=0

𝑠𝑗𝑝𝑗 (𝑥) +

𝑛−1

∑

𝑗=0

𝑔
(𝑙)

𝑗
𝑝𝑗 (𝑥)

− ⊕

𝑛−1

∑

𝑗=0

𝑠𝑗 ⊗ 𝑝𝑗 (𝑥) − ⊕

𝑛−1

∑

𝑗=0

𝑔
(𝑙)

𝑗
⊗ 𝑝𝑗 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛−1

∑

𝑗=0

𝑠𝑗𝑝𝑗 (𝑥) − ⊕

𝑛−1

∑

𝑗=0

𝑠𝑗 ⊗ 𝑝𝑗 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛−1

∑

𝑗=0

𝑔
(𝑙)

𝑗
𝑝𝑗 (𝑥) − ⊕

𝑛−1

∑

𝑗=0

𝑔
(𝑙)

𝑗
⊗ 𝑝𝑗 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 2𝛾
2

5𝑛+2

𝑛−1

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝑎𝑗

󵄨󵄨󵄨󵄨󵄨
𝑝𝑗 (|𝑥|) .

(60)

From Definitions 4 and 6 and Theorem 12, we easily get
the following corollary.

Corollary 13. Let 𝑝(𝑥) = ∑
𝑛

𝑗=0
𝑎𝑗𝑝𝑗(𝑥) be a Legendre series of

degree 𝑛 and 𝑥 a floating point value. The relative error bound
of the compensated Clenshaw algorithm is
󵄨󵄨󵄨󵄨𝐶𝑜𝑚𝑝𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤 (𝑝, 𝑥) − 𝑝 (𝑥)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝑝 (𝑥)

󵄨󵄨󵄨󵄨

≤ 𝑢 + 2𝛾
2

5𝑛+2
condrel (𝑝, 𝑥) .

(61)

4. Numerical Results

All our experiments are performed using IEEE-754 dou-
ble precision as working precision. Here, we consider the

polynomials in Legendre basis with real coefficients and
floating point entry 𝑥. All the programs about accuracy
measurements have been written in MATLAB R2012b and
that about timing measurements have been written in C code
on a 2.53-GHz Intel Core i5 laptop.

4.1. Evaluation of the Polynomial in Legendre Basis. In order
to construct an ill-conditioned polynomial, we consider the
evaluation of the polynomial in Legendre basis 𝑝(𝑥) =

∑
17

𝑖=0
𝑎𝑖𝑝𝑖(𝑥) converted by the polynomials 𝑃(𝑥) = (𝑥 − 0.75)

7

(𝑥 − 1)
11 in the neighborhood of its multiple roots 0.75 and

1. We use the 𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤, 𝐶𝑜𝑚𝑝𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤 algorithms and the
Symbolic Toolbox to evaluate the polynomial in Legendre
basis. In order to observe the perturbation of polynomial
coefficients clearly, we propose the 𝐶𝑜𝑛V𝑒𝑟𝑡 algorithm in
Appendix A (see Algorithm 7) to obtain the coefficients of
the Legendre series. To decrease the perturbation of the
coefficients we also propose the 𝐷𝐷𝐶𝑜𝑛V𝑒𝑟𝑡 algorithm in
Appendix B (see Algorithm 16) to store the coefficients in
double-double format. That is, the coefficients of the polyno-
mial evaluated, which are obtained by the 𝐶𝑜𝑛V𝑒𝑟𝑡 algorithm
and 𝐷𝐷𝐶𝑜𝑛V𝑒𝑟𝑡 algorithm, are in double format and double-
double format, respectively. In this experiment we evaluate
the polynomials for 400 equally spaced points in the intervals
[0.68, 1.15], [0.7485, 0.7515], and [0.993, 1.007].

From Figures 1-2 we observe that the polynomial evalu-
ated by 𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤 algorithm (on the top figure) is oscillating,
and the compensated algorithm is more smooth drawing.
The polynomials we evaluated by Symbolic Toolbox (on the
bottom of Figures 1-2) are different because the perturbations
of coefficients obtained by the 𝐷𝐷𝐶𝑜𝑛V𝑒𝑟𝑡 algorithm are
smaller than those by the 𝐶𝑜𝑛V𝑒𝑟𝑡 algorithm. We can see
that the accuracy of the polynomials evaluated by the com-
pensated algorithm is the same with evaluated by Symbolic



10 Journal of Applied Mathematics

0.7 0.8 0.9 1 1.1

x

x x x

−5

0

5

×10−10

×10−10

x

0.749 0.75 0.751
−5

0

5
×10−12

×10−12

x

−5

0

5

0.995 1 1.005

×10−12

0.7 0.8 0.9 1 1.1

−0.5

0

0.5

0.749 0.75 0.751

−6

0.995 1 1.005
0.5

1

1.5
×10−13

−5.95

x x x

×10−10 ×10−12

0.7 0.8 0.9 1 1.1

−0.5

0

0.5

0.749 0.75 0.751

−6

0.995 1 1.005
0.5

1

1.5
×10−13

−5.95

Cl
en

sh
aw

Cl
en

sh
aw

Cl
en

sh
aw

Co
m
pC

len
sh
aw

Co
m
pC

len
sh
aw

Co
m
pC

len
sh
aw

Sy
m
Cl
en
sh
aw

Sy
m
Cl
en
sh
aw

Sy
m
Cl
en
sh
aw

Figure 1: Evaluation of polynomial converted from𝑝(𝑥) = (𝑥−0.75)
7
(𝑥−1)

11 by the𝐶𝑜𝑛V𝑒𝑟𝑡 algorithm in Legendre basis in the neighborhood
of its multiple roots, using the Clenshaw algorithm (up), the 𝐶𝑜𝑚𝑝𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤 algorithm (middle), and Symbolic Toolbox (down).

Toolbox in Figure 1. The polynomials in Legendre basis
evaluated by the compensated algorithm are much more
smooth drawing and just a little oscillation in the intervals
[0.7485, 0.7515] in Figure 2. In fact, if we use the Symbolic
Toolbox to get the polynomial coefficients, the oscillationwill
be smaller than it is in Figure 2. However, this method is
expensive. We just need to use the 𝐷𝐷𝐶𝑜𝑛V𝑒𝑟𝑡 algorithm to
get the coefficients; the result obtained by the𝐶𝑜𝑚𝑝𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤

algorithm is almost the same as that by using the Symbolic
Toolbox in working precision.

4.2. Accuracy of the Compensated Algorithm. The closer to
the root, the larger the condition number. Thus, in this
experiment, the evaluation is for 120 points near the root
0.75, that is, 𝑥 = 0.75 − 1.03

2𝑖−85, for 𝑖 = 1 : 40 and
𝑥 = 0.75 − 1.13

𝑖−85 for 𝑖 = 1 : 80. We compare the
compensated algorithmwithmultiple precision library. Since
the working precision is double precision, we choose the
double-double arithmetic [22] (see Appendix B) which is
the most efficient way to yield a full precision accuracy of
evaluating the polynomial in Legendre basis to compare with
the compensated algorithm. We evaluate the polynomials
by the 𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤, 𝐶𝑜𝑚𝑝𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤, and 𝐷𝐷𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤 algo-
rithms in Appendix B (see Algorithm 15) and the Symbolic
Toolbox, respectively, so that the relative forward errors can
be obtained by |𝑝res(𝑥) − 𝑝sym(𝑥)|/𝑝sym(𝑥) and the relative

error bounds are described from Corollaries 13 and A.2 in
Appendix A. Then we propose the relative forward errors of
evaluation of the polynomial in Legendre basis in Figure 3. As
we can see, the relative errors of the compensated algorithm
and double-double arithmetic are both smaller than 𝑢 (𝑢 ≈

1.16 × 10
−16) when the condition number is less than 10

17.
And the accuracy of both algorithms is decreasing linearly
for the condition number larger than 10

17. However, the
𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤 algorithm cannot yield the working precision; the
accuracy of which decreases linearly since the condition
number is less than 10

17.When the condition number is lager
than 10

17, the Clenshaw algorithm cannot obtain even one
significant bit.

4.3. Time Performances. We can easily know that the
𝑇𝑤𝑜𝑆𝑢𝑚, 𝑇𝑤𝑜𝑃𝑟𝑜𝑑, and 𝐹𝑎𝑠𝑡𝑇𝑤𝑜𝑆𝑢𝑚 algorithms in
Appendix B (Algorithm 8) require 6, 17, and 3 flops,
respectively. Then we obtain the computational cost of the
𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤, 𝐶𝑜𝑚𝑝𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤, and 𝐷𝐷𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤 algorithms:

(i) 𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤: 5n-2 flops;
(ii) 𝐶𝑜𝑚𝑝𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤: 79n-29 flops;
(iii) 𝐷𝐷𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤: 110n-44 flops.

Considering the previous comparison of the accuracy, we
observe that 𝐶𝑜𝑚𝑝𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤 is as accurate as 𝐷𝐷𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤

in double precision, but it only needs about 71.8% of flops



Journal of Applied Mathematics 11

0.7 0.8 0.9 1 1.1

0.7 0.8 0.9 1 1.1

−0.5

−5

0

0

0

0.5

−0.5

0.5

5

−5

0

5

0.749 0.75 0.751

0.749 0.75 0.751

0.995 1 1.005

x

x

x

x

0.749 0.75 0.751

x

x

0.995 1 1.005

x

×10−10

×10−10

×10−12 ×10−12

1

0.7 0.8 0.9 1 1.1

0

−0.5

0.5

0

−5

5

x

×10−10
1

0

1

0

2

−1 −2

0.995 1 1.005

x

0

2

−2

×10−27 ×10−22

×10−22×10−36

Cl
en

sh
aw

Cl
en

sh
aw

Cl
en

sh
aw

Co
m
pC

len
sh
aw

Sy
m
Cl
en
sh
aw

Co
m
pC

len
sh
aw

Sy
m
Cl
en
sh
aw

Co
m
pC

len
sh
aw

Sy
m
Cl
en
sh
aw

Figure 2: Evaluation of polynomial converted from 𝑝(𝑥) = (𝑥 − 0.75)
7
(𝑥 − 1)

11 by the 𝐷𝐷𝐶𝑜𝑛V𝑒𝑟𝑡 algorithm in Legendre basis in the
neighborhood of its multiple roots, using the Clenshaw algorithm (up), the 𝐶𝑜𝑚𝑝𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤 algorithm (middle), and Symbolic Toolbox
(down).

counting on average. We also implement 𝐶𝑜𝑚𝑝𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤

and 𝐷𝐷𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤 by using Microsoft Visual C++ 2008 on
Windows 7. Similar to the statement in [23], we assume that
the computing time of these algorithms does not depend
on the coefficients of polynomial in Legendre basis nor the
argument 𝑥. So we generate the tested polynomials with
random coefficients and arguments in the interval (−1, 1),
whose degrees vary from 20 to 10000 by the step 50. The
average measured computing time ratio of 𝐶𝑜𝑚𝑝𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤

to 𝐷𝐷𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤 in C code is 58.29%. The reason why the
measured computing time ratio is better than the theoretical
flop count one can be referred to the analysis in terms of
instruction level parallelism (ILP) described in [24, 25].

5. Conclusions

This paper introduces a compensated Clenshaw algo-
rithm for accurate evaluation of the finite Legendre series.
The 𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤 algorithm is not precise enough for an
ill-conditioned problem, especially evaluating a polynomial
in the neighborhood of a multiple root. However, this new
algorithm can yield a full precision accuracy in working pre-
cision, as the same as the original Clenshaw algorithm using
double-double arithmetic and rounding into the working
precision. Meanwhile this compensated Clenshaw algorithm

is more efficient which means that it is much more useful to
accurately evaluate the polynomials in Legendre basis for ill-
conditioned situations.

Appendices

A. The Coefficients Conversion Algorithm
from Polynomial in Power Basis to
Polynomial in Legendre Basis

In order to design ill-conditioned problem of the polynomial
evaluation, we evaluate a polynomial in the neighborhood of
a multiple root. Thus we need an algorithm for converting
a polynomial in power basis to the polynomial in Legendre
basis. Motivated by [26], the conversion algorithm can be
deduced as follows.

Let 𝑃(𝑥) = ∑
𝑛

𝑘=0
𝑎𝑘𝑥
𝑘 and 𝑝(𝑥) = ∑

𝑛

𝑘=0
𝑏
(0)

𝑘
𝑝𝑘 be the

polynomials in power basis and Legendre basis, respectively;
according to

𝑝𝑛+1 = 𝐴𝑛𝑥𝑝𝑛 + 𝐶𝑛𝑝𝑛−1

󳨐⇒ 𝑥𝑝𝑛 =
1

𝐴𝑛
𝑝𝑛+1 −

𝐶𝑛

𝐴𝑛
𝑝𝑛−1 (𝑛 > 1) ,

𝑝1 = 𝐴0𝑥𝑝0 󳨐⇒ 𝑥𝑝0 =
1

𝐴0
𝑝1,

(A.1)



12 Journal of Applied Mathematics

100

10−5

10−10

10−15

1010 1020 1030

Condition number

Re
lat

iv
e f

or
w

ar
d 

er
ro

r

𝛾4n(n+1)cond

Clenshaw

u + 2𝛾25n+2cond

CompClenshaw
DDClenshaw

Figure 3: Accuracy of evaluation of polynomial converted from
𝑝(𝑥) = (𝑥−0.75)

7
(𝑥−1)

11 by the𝐷𝐷𝐶𝑜𝑛V𝑒𝑟𝑡 algorithm in Legendre
basis with respect to the condition number.

we have

𝑝𝑛 =

𝑗−1

∑

𝑘=0

𝑎𝑘𝑥
𝑘

+ 𝑥
𝑗

𝑛−𝑗

∑

𝑘=0

𝑏
(𝑗)

𝑘
𝑝𝑘 (𝑥)

≡

𝑗

∑

𝑘=0

𝑎𝑘𝑥
𝑘

+ 𝑥
𝑗

𝑛−𝑗−1

∑

𝑘=1

𝑏
(𝑗+1)

𝑘
(

1

𝐴𝑘
𝑝𝑘+1 −

𝐶𝑘

𝐴𝑘
𝑝𝑘−1)

+ 𝑥
𝑗+1

𝑏
(𝑗+1)

0
𝑝0.

(A.2)

Thus we get Algorithm 7.

Theorem A.1. Let 𝑃(𝑥) = ∑
𝑛

𝑘=0
𝑎𝑘𝑥
𝑘 and 𝑝(𝑥) = ∑

𝑛

𝑘=0
𝑏
(0)

𝑘
𝑝𝑘

be the polynomials in power basis and Legendre basis, respec-
tively. The forward error bound of Algorithm 7 is

󵄨󵄨󵄨󵄨󵄨
𝑏̂
(0)

− 𝑏
(0)󵄨󵄨󵄨󵄨󵄨

≤ 𝛾4𝑛−1
󵄨󵄨󵄨󵄨󵄨
𝑏
(0)󵄨󵄨󵄨󵄨󵄨

. (A.3)

Proof. According to Definition 1 and Remark 7, we have

𝑏
(𝑗)

0
= 𝑎𝑗 ⟨1⟩ −

𝐶1

𝐴1
𝑏
(𝑗+1)

1
⟨5⟩ (𝑘 = 0) ,

𝑏
(𝑗)

𝑘
=

1

𝐴𝑘−1
𝑏
(𝑗+1)

𝑘−1
⟨3⟩ −

𝐶𝑘+1

𝐴𝑘+1
𝑏
(𝑗+1)

𝑘+1
⟨5⟩

(𝑘 = 1, . . . , 𝑛 − 𝑗 − 2) ,

𝑏
(𝑗)

𝑘
=

1

𝐴𝑘−1
𝑏
(𝑗+1)

𝑘−1
⟨2⟩ (𝑘 ≥ 𝑛 − 𝑗 − 1) .

(A.4)

When 𝑗 = 𝑛 − 1, we get that

𝑏
(𝑛−1)

0
= 𝑎𝑛−1,

𝑏
(𝑛−1)

1
=

𝑎𝑛

𝐴0
⟨2⟩ .

(A.5)

Hence we can obtain

𝑗 \ 𝑘 0 1 2 3 ⋅ ⋅ ⋅ 𝑛 − 2 𝑛 − 1

𝑛 − 1

𝑛 − 2

𝑛 − 3

𝑛 − 4

...
0

(
(
(

(

⟨7⟩

⟨7⟩

⟨15⟩

...
⟨8 [

𝑛

2
] − 1⟩

⟨2⟩

⟨2⟩

⟨10⟩

⟨10⟩

...
⟨8 [

𝑛 − 1

2
] + 2⟩

0

⟨4⟩

⟨4⟩

⟨13⟩

...
⟨8 [

𝑛

2
] − 3⟩

0

0

⟨6⟩

⟨6⟩

...
⟨8 [

𝑛 − 1

2
]⟩

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

⋅ ⋅ ⋅

0

0

0

0

...
⟨2𝑛 − 2⟩

0

0

0

0

...
⟨2𝑛⟩

)
)
)
)

)

. (A.6)

Then we have

󵄨󵄨󵄨󵄨󵄨
𝑏̂
(0)

− 𝑏
(0)󵄨󵄨󵄨󵄨󵄨

≤ 𝛾max{8[𝑛/2]−1,8[(𝑛−1)/2]+2}
󵄨󵄨󵄨󵄨󵄨
𝑏
(0)󵄨󵄨󵄨󵄨󵄨

. (A.7)

According to the properties of Definition 1, we obtain

𝛾max{8[𝑛/2]−1,8[(𝑛−1)/2]+2} ≤ 𝛾4𝑛−1; (A.8)

thus

󵄨󵄨󵄨󵄨󵄨
𝑏̂
(0)

− 𝑏
(0)󵄨󵄨󵄨󵄨󵄨

≤ 𝛾4𝑛−1. (A.9)

According to Theorem A.1 and Theorem 3.5 in [21], we
obtain the following corollary.



Journal of Applied Mathematics 13

Corollary A.2. Let 𝑃(𝑥) = ∑
𝑛

𝑘=0
𝑎𝑘𝑥
𝑘 and 𝑝(𝑥) = ∑

𝑛

𝑘=0
𝑏
(0)

𝑘
𝑝𝑘

be the polynomials in power basis and Legendre basis, respec-
tively. Then the relative error bound of Clenshaw algorithm by
using the 𝐶𝑜V𝑒𝑟𝑡 algorithm is

󵄨󵄨󵄨󵄨𝐶𝑙𝑒𝑛𝑠ℎ𝑎𝑤 (𝑝, x) − 𝑝 (𝑥)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑝 (𝑥)
󵄨󵄨󵄨󵄨

≤ 𝛾4𝑛(𝑛+1)condrel (𝑝, 𝑥) . (A.10)

B. Double-Double Library

The double-double arithmetic is based on Algorithms 8–14
[27]. Algorithms 15 and 16 are Algorithms 5 and 7 in double-
double arithmetic, respectively.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is partially supported by the Science Project of
National University of Defense Technology (JC120201) and
the National Natural Science Foundation of Hunan Province
in China (13JJ2001).

References

[1] J. C. Mason and D. C. Handscomb, Chebyshev Polynomials,
Chapman & Hall/CRC, Boca Raton, Fla, USA, 2003.

[2] D. Gottlieb and S. A. Orszag, Numerical Analysis of Spec-
tral Methods: Theory and Applications, vol. 26 of CBMS-NSF
Regional Conference Series in Applied Mathematics, Society for
Industrial and Applied Mathematics, Philadelphia, Pa, USA,
1977.

[3] L. N. Trefethen, Approximation Theory and Approximation
Practice, SIAM, Philadelphia, Pennsylvania, 2013.

[4] C.W.Clenshaw, “Anote on the summation ofChebyshev series,”
Mathematical Tables and Other Aids to Computation, vol. 9, pp.
118–120, 1955.

[5] R. Barrio, “A unified rounding error bound for polynomial
evaluation,” Advances in Computational Mathematics, vol. 19,
no. 4, pp. 385–399, 2003.

[6] J. Oliver, “Rounding error propagation in polynomial evalua-
tion schemes,” Journal of Computational andAppliedMathemat-
ics, vol. 5, no. 2, pp. 85–97, 1979.

[7] R. Barrio, “A matrix analysis of the stability of the Clenshaw
algorithm,”ExtractaMathematicae, vol. 13, no. 1, pp. 21–26, 1998.

[8] R. Barrio, “Rounding error bounds for the Clenshaw and
Forsythe algorithms for the evaluation of orthogonal polyno-
mial series,” Journal of Computational andAppliedMathematics,
vol. 138, no. 2, pp. 185–204, 2002.

[9] M. Skrzipek, “Polynomial evaluation and associated polynomi-
als,” Numerische Mathematik, vol. 79, no. 4, pp. 601–613, 1998.

[10] A. Smoktunowicz, “Backward stability of Clenshaw’s algo-
rithm,” BIT: Numerical Mathematics, vol. 42, no. 3, pp. 600–610,
2002.

[11] T. Ogita, S. M. Rump, and S. Oishi, “Accurate sum and dot
product,” SIAM Journal on Scientific Computing, vol. 26, no. 6,
pp. 1955–1988, 2005.

[12] S. Graillat, P. Langlois, and N. Louvet, “Compensated Horner
scheme,” Research Report RR2005-04, LP2A, University of
Perpignan, Perpignan, France, 2005.

[13] H. Jiang, S. Graillat, C. Hu et al., “Accurate evaluation of the
𝑘-th derivative of a polynomial and its application,” Journal of
Computational and Applied Mathematics, vol. 243, pp. 28–47,
2013.

[14] H. Jiang, S. Li, L. Cheng, and F. Su, “Accurate evaluation of a
polynomial and its derivative in Bernstein form,” Computers &
Mathematics with Applications, vol. 60, no. 3, pp. 744–755, 2010.

[15] H. Jiang, R. Barrio, H. Li, X. Liao, L. Cheng, and F. Su,
“Accurate evaluation of a polynomial in Chebyshev form,”
Applied Mathematics and Computation, vol. 217, no. 23, pp.
9702–9716, 2011.

[16] D. H. Bailey, R. Barrio, and J. M. Borwein, “High-precision
computation: mathematical physics and dynamics,” Applied
Mathematics and Computation, vol. 218, no. 20, pp. 10106–10121,
2012.

[17] N. J. Higham, Accuracy and Stability of Numerical Algorithm,
Society for Industrial and Applied Mathematics, Philadelphia,
Pa, USA, 2nd edition, 2002.

[18] D. E. Knuth,TheArt of Computer Programming: Seminumerical
Algorithms, Addison-Wesley, Reading, Mass, USA, 3rd edition,
1998.

[19] T. J. Dekker, “A floating-point technique for extending the
available precision,” Numerische Mathematik, vol. 18, pp. 224–
242, 1971.

[20] S. Graillat, “Accurate floating-point product and exponentia-
tion,” IEEE Transactions on Computers, vol. 58, no. 7, pp. 994–
1000, 2009.

[21] R. Barrio, H. Jiang, and S. Serrano, “A general condition number
for polynomials,” SIAM Journal on Numerical Analysis, vol. 51,
no. 2, pp. 1280–1294, 2013.

[22] X. Li, J.W.Demmel, D.H. Bailey et al., “Design, implementation
and testing of extended and mixed precision BLAS,” ACM
Transactions on Mathematical Software, vol. 28, no. 2, pp. 152–
205, 2002.

[23] S. Graillat, P. Langlois, and N. Louvet, “Algorithms for accurate,
validated and fast polynomial evaluation,” Japan Journal of
Industrial and AppliedMathematics, vol. 26, no. 2-3, pp. 191–214,
2009.

[24] N. Louvet, Compensated algorithms in floating point arithmetic:
accuracy, validation, performances [Ph.D. thesis], Universite’ de
Perpignan Via Domitia, 2007.

[25] P. Langlois and N. Louvet, “More instruction level parallelism
explains the actual efficiency of compensated algorithms,”
Tech. Rep. hal-00165020, DALI Research Team, University of
Perpignan, Perpignan, France, 2007.

[26] “Table of Contents for MATH77/mathc90,” chapter 11.3 from,
http://mathalacarte.com/c/math77 head.html.

[27] Y. Hida, X. S. Li, and D. H. Bailey, “Algorithms for quad-double
precision floating point arithmetic,” in Proceedings of the 15th
IEEE Symposium on Computer Arithmetic, pp. 155–162, Vail,
Colo, USA, June 2001.


