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Computing the matrix elements of the linear operator, which transforms the spherical basis of 𝑆𝑂(3, 1)-representation space into
the hyperbolic basis, very recently, Shilin and Choi (2013) presented an integral formula involving the product of two Legendre
functions of the first kind expressed in terms of

4
𝐹
3
-hypergeometric function and, using the general Mehler-Fock transform,

another integral formula for the Legendre function of the first kind. In the sequel, we investigate the pairwise connections between
the spherical, hyperbolic, and parabolic bases. Using the above connections, we give an interesting series involving the Gauss
hypergeometric functions expressed in terms of the Macdonald function.

1. Introduction and Preliminaries

For completeness and an easier reference, we begin by just
recalling some parts of [1, Section 1]. LetΛ be the cone in the
Euclidean space R4 defined by

Λ := {(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
) ∈ R
4
| 𝑥
2

1
− 𝑥
2

2
− 𝑥
2

3
− 𝑥
2

4
= 0} , (1)

where R denotes the set of real numbers. Let 𝑆𝑂(3, 1) be a
multiplicative group consisting of all 4 × 4 matrices 𝑔 in R

which satisfies the following two properties:

det𝑔 = 1, 𝑔
𝑇
𝐼
1,3
𝑔 = 𝐼
1,3
, (2)

where 𝑔𝑇 denotes (as usual) the transpose of thematrix 𝑔 and
𝐼
1,3

is a 4 × 4 matrix given by

𝐼
1,3
:= (

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

) . (3)

Remark 1. 𝑆𝑂(3, 1) is called the special pseudoorthogonal
group. 𝑆𝑂(3, 1) is a group of linear operators preserving the
quadratic form 𝑥

2

1
− 𝑥
2

2
− 𝑥
2

3
− 𝑥
2

4
, that is, the special classical

Lorentz group. Similarly, for the group 𝑆𝑂(2, 1), see [2–4].

For a 𝜎 ∈ C where C is the set of complex numbers,
D
𝜎
denotes the linear space consisting of infinitely differen-

tiable 𝜎-homogeneous functions on Λ. The representation of
𝑆𝑂(3, 1) in D

𝜎
is a homomorphism 𝑔 󳨃→ 𝑇

𝜎
(𝑔), where the

operator 𝑇
𝜎
(𝑔) acts as 𝑓(𝑥) 󳨃→ 𝑓(𝑔

−1
𝑥) in the spaceD

𝜎
.

Let 𝛾
1
be the intersection ofΛ and the hyperplane 𝑥

1
= 1,

𝛾
2
the intersection of Λ and the pair of hyperplanes 𝑥

4
= ±1,

and 𝛾
3
the intersection of Λ and the hyperplane 𝑥

1
+ 𝑥
4
= 0.

In other words, 𝛾
1
is a sphere with radius √2, 𝛾

2
is a two-

sheet hyperboloid, and 𝛾
3
is a paraboloid. It is seen that, for

𝑖 ∈ {1, 2, 3}, 𝛾
𝑖
are two-parameter manifolds on Λ explicitly

given by

𝛾
1
= {(1, sin𝛼

1
sin𝛽
1
, sin𝛼

1
cos𝛽
1
, cos𝛼

1
) | 𝛼
1
∈ [0, 𝜋] ,

𝛽
1
∈ [0, 2𝜋)} ,
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𝛾
2
= {(cosh𝛼

2
, sinh𝛼

2
sin𝛽
2
, sinh𝛼

2
cos𝛽
2
, ±1) | 𝛼

2
> 0,

𝛽
2
∈ [0, 2𝜋)} ,

𝛾
3
= {(

1 + 𝛼
2

3

2
, 𝛼
3
sin𝛽
3
, 𝛼
3
cos𝛽
3
,
1 − 𝛼
2

3

2
) | 𝛼
3
> 0,

𝛽
3
∈ [0, 2𝜋] } .

(4)

Let 𝐻
𝑖
denote subgroups acting transitively on 𝛾

𝑖
(𝑖 =

1, 2, 3). It is noted, in particular, that 𝐻
1
≃ 𝑆𝑂(3) and

𝐻
2
≃ 𝑆𝑂(2, 1), where 𝑆𝑂(𝑛) is the group of rotations of

𝑛-dimensional Euclidean space R𝑛 (for more details of this
group, see [5, Chapter IX]). In order to describe the group
𝐻
3
, in detail, on the linear space of all diagonal matrices

𝑎 := diag(𝑎
1
, 𝑎
2
), we introduce a scalar product as 𝑎 ⋅ 𝑏 :=

tr(𝑎𝑏𝑇). Then 𝛾
3
is a homogeneous space of the subgroup𝐻

3

consisting of all matrices

(

(

1+
1

2
|𝑎|
2

𝑎
1

2
|𝑎|
2

𝑎
𝑇 diag (1, 1) 𝑎

𝑇

−
1

2
|𝑎|
2

−𝑎 1 −
1

2
|𝑎|
2

)

)

, (5)

where |𝑎|2 denotes the square of the length of the matrix 𝑎.
The𝐻

1
-invariant measure on 𝛾

1
can be written as

(d𝑥)
𝛾
1

=
d𝑥
𝜏(2)

d𝑥
𝜏(3)

󵄨󵄨󵄨󵄨𝑥𝜏(4)
󵄨󵄨󵄨󵄨

, (6)

where 𝜏 is an arbitrary permutation of the set {2, 3, 4}. The
𝐻
2
-invariant measure on 𝛾

2
is

(d𝑥)
𝛾
2

=
d𝑥
𝜏(1)

d𝑥
𝜏(2)

󵄨󵄨󵄨󵄨𝑥𝜏(3)
󵄨󵄨󵄨󵄨

(𝜏 ∈ S
3
) , (7)

where S
3
is the symmetric group. The 𝐻

3
-invariant measure

on 𝛾
3
is

(d𝑥)
𝛾
3

= d𝑥
2
d𝑥
3
. (8)

We define the bilinear functionals F
𝑗
: D
𝜎
× D
𝜎
→

C (𝑗 = 1, 2, 3) given by

(𝑢, V) 󳨃󳨀→ ∫
𝛾
𝑗

𝑢 (𝑥) V (𝑥) (d𝑥)
𝛾
𝑗

. (9)

Then we observe the invariant property for the function-
als F
𝑗
asserted by the following lemma.

Lemma 2. If 𝜎̂ = −𝜎 − 2, then, for any 𝑖, 𝑗 ∈ {1, 2, 3}, F
𝑖
= F
𝑗
.

Proof. Choose 𝜏 = id in (6) and 𝜏 = (1 2 3) in (7) and write
themeasures (d𝑥)

𝛾
𝑗

(𝑗 ∈ {1, 2}) in (𝛼
𝑗
, 𝛽
𝑗
)-coordinate system,

respectively:

(d𝑥)
𝛾
1

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕 (𝑥
2
, 𝑥
3
)

𝜕 (𝛼
1
, 𝛽
1
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

d𝛼
1
d𝛽
1

󵄨󵄨󵄨󵄨𝑥4
󵄨󵄨󵄨󵄨

= sin𝛼
1
d𝛼
1
d𝛽
1
,

(d𝑥)
𝛾
2

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕 (𝑥
2
, 𝑥
3
)

𝜕 (𝛼
2
, 𝛽
2
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

d𝛼
2
d𝛽
2

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨

= sinh𝛼
2
d𝛼
2
d𝛽
2
.

(10)

Here id and 𝜕(𝑥
2
, 𝑥
3
)/𝜕(𝛼
𝑗
, 𝛽
𝑗
), respectively, denote the iden-

tical permutation and the corresponding Jacobian determi-
nant.

Let 𝑢 ∈ D
𝜎
and V ∈ D

−𝜎−2
. Then

F
2
(𝑢, V)

= ∫
𝛾
2

[sech𝛼
2
]
2

𝑢 (1, tanh𝛼
2
sin𝛽
2
, tanh𝛼

2
cos𝛽
2
, ± sech𝛼

2
)

⋅ V (1, tanh𝛼
2
sin𝛽
2
, tanh𝛼

2
cos𝛽
2
, ± sech𝛼

2
)

× sinh𝛼
2
d𝛼
2
d𝛽
2
.

(11)

Setting cos𝜑 := ± sech𝛼
2
, we obtain d𝛼

2
= ± cosh𝛼

2
d𝜑 and

sinh𝛼
2
= (1/2) sin 2𝜑. We therefore find that

F
2
(𝑢, V)

= ∫
𝛾
1

𝑢 (1, sin𝜑 sin𝛽
2
, sin𝜑 cos𝛽

2
, cos𝜑)

⋅ V (1, sin𝜑 sin𝛽
2
, sin𝜑 cos𝛽

2
, cos𝜑) sin𝜑d𝜑d𝛽

2
,

(12)

which implies F
2
= F
1
.

In the same way,

F
3
(𝑢, V)

= 4∫
𝛾
3

(1 + 𝛼
2

3
)
−2

𝑢(1,
2𝛼
3
sin𝛽
3

1 + 𝛼
2

3

,
2𝛼
3
cos𝛽
3

1 + 𝛼
2

3

,
1 − 𝛼
2

3

1 + 𝛼
2

3

)

⋅ V(1,
2𝛼
3
sin𝛽
3

1 + 𝛼
2

3

,
2𝛼
3
cos𝛽
3

1 + 𝛼
2

3

,
1 − 𝛼
2

3

1 + 𝛼
2

3

)𝛼
3
d𝛼
3
d𝛽
3
.

(13)

Setting here cos𝜑 := (1 − 𝛼
2

3
)/(1 + 𝛼

2

3
), we obtain sin𝜑 =

2𝛼
2

3
/(1 + 𝛼

2

3
) and d𝛼

3
= ((1 + 𝛼

2

3
)d𝜑)/2. It means that

F
3
(𝑢, V)

= ∫
𝛾
1

𝑢 (1, sin𝜑 sin𝛽
3
, sin𝜑 cos𝛽

3
, cos𝜑)

⋅ V (1, sin𝜑 sin𝛽
3
, sin𝜑 cos𝛽

3
, cos𝜑) sin𝜑d𝜑d𝛽

3
.

(14)

We thus see that F
1
= F
3
.

Since the relation = defined on the set {F
1
, F
2
, F
3
} is

transitive, we have F
2
= F
3
. The proof is complete.
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In [5, Chapter IX], Vilenkin constructed the canonical
basis Ξ𝑙

𝐾
on a sphere. Here, continuing this canonical basis

from the sphere 𝛾
1
to the cone Λ via 𝜎-homogeneity, we

obtain the basis consisting of 𝑓
𝑝
1
,𝑞
1

:

𝑓
𝑝
1
,𝑞
1
(𝑥)

= 𝑥
𝜎−|𝑞
1
|

1
𝐶
|𝑞
1
|+(1/2)

𝑝
1
−|𝑞
1
|
(
𝑥
4

𝑥
1

) (𝑥
3
+ i𝑥
2
sign 𝑞

1
)
|𝑞
1
|

(i = √−1; 𝑝
1
, 𝑞
1
∈ Z; 𝑝

1
≥ 0,

󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨 ≤ 𝑝1) ,

(15)

where Z denotes the set of integers and 𝐶
𝑝

𝑚
(𝑡) are the

Gegenbauer polynomials (see, e.g., [6, Chapter 17]; see also
[5, page 458, Equation (3)]).We will call it the spherical basis.
Similarly, the hyperbolic basis consists of functions of the
following forms:

𝑓
∗

𝑝
2
,𝑞
2
,±
(𝑥)

= (𝑥
4
)
𝜎

±
(𝑥
2

2
+ 𝑥
2

3
)
−|𝑞
2
|/2

𝑃
−|𝑞
2
|

−(1/2)+i𝑝2
(

𝑥
1

(𝑥
4
)
±

)

× (𝑥
3
+ i𝑥
2
sign 𝑞

2
)
|𝑞
2
|

(𝑝
2
> 0, 𝑞

2
∈ Z) ,

(16)

where 𝑃𝜇] (𝑧) are the Legendre functions of the first kind (see,
e.g., [7, pages 194–228]; see also [8, 9]) and

(𝑥)
𝜇

±
= {

0, if sign 𝑥 = ∓1 or 𝑥 = 0,
|𝑥|
𝜇
, if sign 𝑥 = ±1.

(17)

About the nonhomogeneous hyperbolic part of the hyperbolic
basis, see, for instance, [5, Chapter X]. Finally, the parabolic
basis consists of the functions

𝑓
∗∗

𝑝
3
,𝑞
3

(𝑥)

:= (𝑥
1
+ 𝑥
4
)
𝜎

(𝑥
2

2
+ 𝑥
2

3
)
−|𝑞
3
|/2

𝐽
|𝑞
3
|
(

√𝑥
2

2
+ 𝑥
2

3
𝑝
3

𝑥
1
+ 𝑥
4

)

× (𝑥
2
+ i𝑥
2
sign 𝑞

3
)
|𝑞
3
|

,

(18)

where 𝑝
3
≥ 0, 𝑞

3
∈ Z, and 𝐽](𝑧) are the Bessel functions. The

main idea of this basis is described in [5, Chapters IV andXI];
the multiplier (𝑥

1
+ 𝑥
4
)
𝜎 is its 𝜎-homogeneous part.

Computing the matrix elements of the linear oper-
ator, which transforms the spherical basis of 𝑆𝑂(3, 1)-
representation space into the hyperbolic basis, very recently,
Shilin and Choi [1] presented an integral formula involving
the product of two Legendre functions of the first kind
expressed in terms of

4𝐹3-hypergeometric function and,
using the general Mehler-Fock transform (see, e.g., [10, 11]),
another integral formula for the Legendre function of the
first kind. In the sequel, using the matrix elements of the
linear operators, which transform the spherical basis into the
parabolic basis and the hyperbolic basis into the parabolic
basis, respectively, here, in this paper, we also give certain
connections between the spherical and parabolic bases on

the cone and an interesting series involving the Gauss
hypergeometric functions, both expressed in terms of the
Macdonald function.

2. Description of the Connection between
the Spherical and Hyperbolic Bases in terms
of
4
𝐹
3

Function

Using

∫

2𝜋

0

exp (i (𝑝 + 𝑞) 𝑧) d𝑧 = 2𝜋𝛿
𝑝,−𝑞

(19)

and the orthogonality relation (see, e.g., [6, page 281, Equa-
tions (27) and (28)]; see also [5, page 462, Equations (4) and
(5)])

∫

1

−1

𝐶
𝑞

𝑝
(𝑧) 𝐶
𝑞

𝑝
(𝑧) (1 − 𝑧

2
)
𝑞−(1/2)

d𝑧

=
𝜋Γ (2𝑞 + 𝑝) 𝛿

𝑝,𝑝

22𝑞−1𝑝! (𝑝 + 𝑞) [Γ (𝑞)]
2
,

(20)

where 𝛿
𝑖,𝑗
is the Kronecker symbol, we find from the decom-

position

𝑓
∗

𝑝
2
,𝑞
2
,±
(𝑥) =

∞

∑

𝑝
1
=0

|𝑝
1
|

∑

𝑙=−|𝑝
1
|

𝑐
(𝑝
2
,𝑞
2
,+),(𝑝

1
,𝑙)
𝑓
𝑝
1
,𝑙
(𝑥) (21)

that

𝑐
(𝑝
2
,𝑞
2
,±),(𝑝

1
,𝑙)

=
2
2𝑙−1

(𝑝
1
− 𝑙)! (𝑝

1
+ (1/2)) [Γ (𝑙 + (1/2))]

2

𝜋2Γ (2𝑙 + 1)

× F
𝑗
(𝑓
∗

𝑝
2
,𝑞
2
,+
, 𝑓
𝑝
1
,−𝑙
) ,

(22)

where Γ is the familiar Gamma function (see, e.g., [12, Section
1.1]). Shilin and Choi [1] then observed that the numbers
F
𝑗
(𝑓
∗

𝑝
2
,𝑞
2
,±
, 𝑓
𝑝
1
,𝑞
1

) give a relationship between the spherical
and hyperbolic bases asserted by the following theorem.

Theorem 3. Each of the following formulas holds true:

F
2
(𝑓
∗

𝑝
2
,𝑞
2
,+
, 𝑓
𝑝
1
,𝑞
1

) = 0 (𝑞
1
̸= − 𝑞
2
) (23)

and, forR(𝜎) < −(1/2),
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F
2
(𝑓
∗

𝑝2 ,−𝑞1 ,+
, 𝑓
𝑝1 ,𝑞1

) = 2
𝑝1−|𝑞1 |−𝜎−1√𝜋

⋅
Γ ((1/2) + 𝑝

1
) Γ (((𝑝

1
−
󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨 − 𝜎 + i𝑝

2
) /2) − (1/4)) Γ (((𝑝

1
−
󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨 − 𝜎 − i𝑝

2
) /2) − (1/4))

Γ (1 + 𝑝
1
−
󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨) Γ (𝑝1 − 𝜎) Γ ((1/2) +

󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨)

⋅
4
𝐹
3

[
[
[
[

[

󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨 − 𝑝1

2
,
1 +

󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨 − 𝑝1

2
,
1 + 𝜎 − 𝑝

1

2
, 1 −

𝜎 + 𝑝
1

2
;

1

2
− 𝑝
1
,
5

4
+
𝜎 +

󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨 − 𝑝1 + i𝑝

2

2
,
5

4
+
𝜎 +

󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨 − 𝑝1 − i𝑝

2

2
;

4

]
]
]
]

]

,

(24)

provided that one of the numerator parameters in
4𝐹3 is zero or

a negative integer, and
𝑝
𝐹
𝑞
are the generalized hypergeometric

functions (see, e.g., [12, Section 1.5]).

Here we provide a more general result than the one in
Theorem 3 for all matrix elements 𝑐

(𝑝
2
,𝑞
2
,±),(𝑝

1
,𝑞
1
)
instead of

𝑐
(𝑝
2
,𝑞
2
,+),(𝑝

1
,𝑞
1
)
.We omit the corresponding proof ofTheorem 3

to reformulate Theorem 3 for a general case asserted by
Theorem 1

∗.

Theorem 1∗. Let

Ψ
𝜄,𝑝
1
,𝑞
1

:= {
1, 𝑖𝑓 𝜄 = + 𝑜𝑟 𝑝

1
−
󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨 𝑖𝑠 𝑒V𝑒𝑛,

−1, 𝑖𝑓 𝜄 = −, 𝑝
1
−
󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨 𝑖𝑠 𝑜𝑑𝑑.

(25)

Then each of the following formulas holds true:

F
2
(𝑓
∗

𝑝
2
,𝑞
2
,±
, 𝑓
𝑝
1
,𝑞
1

) = 0 (𝑞
1
̸= − 𝑞
2
) (26)

and, for R(𝜎) < −(1/2),

F
2
(𝑓
∗

𝑝2 ,−𝑞1 ,𝜄
, 𝑓
𝑝1 ,𝑞1

) = Ψ
𝜄,𝑝1 ,𝑞1

2
𝑝1−|𝑞1 |−𝜎−1√𝜋

⋅
Γ ((1/2) + 𝑝

1
) Γ (((𝑝

1
−
󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨 − 𝜎 + i𝑝

2
) /2) − (1/4)) Γ (((𝑝

1
−
󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨 − 𝜎 − i𝑝

2
) /2) − (1/4))

Γ (1 + 𝑝
1
−
󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨) Γ (𝑝1 − 𝜎) Γ ((1/2) +

󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨)

⋅
4
𝐹
3

[
[
[
[

[

󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨 − 𝑝1

2
,
1 +

󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨 − 𝑝1

2
,
1 + 𝜎 − 𝑝

1

2
, 1 −

𝜎 + 𝑝
1

2
;

1

2
− 𝑝
1
,
5

4
+
𝜎 +

󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨 − 𝑝1 + i𝑝

2

2
,
5

4
+
𝜎 +

󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨 − 𝑝1 − i𝑝

2

2
;

4

]
]
]
]

]

,

(27)

provided that one of the numerator parameters in
4𝐹3 is zero or

a negative integer, and
𝑝
𝐹
𝑞
are the generalized hypergeometric

functions (see, e.g., [12, Section 1.5]).

3. Description of the Connection between
the Spherical and Parabolic Bases in terms
of the Macdonald Function

Using the same method used in Section 2, from the decom-
position

𝑓
∗∗

𝑝
3
,𝑞
3

(𝑥) =

∞

∑

𝑝
1
=0

|𝑝
1
|

∑

𝑞
1
=−|𝑝
1
|

𝑑
(𝑝
3
,𝑞
3
),(𝑝
1
,𝑞
1
)
𝑓
𝑝
1
,𝑞
1
(𝑥) , (28)

we derive
𝑑
(𝑝
3
,𝑞
3
),(𝑝
1
,𝑞
1
)

=
2
2|𝑞
1
|−1
(𝑝
1
−
󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨)! (𝑝1 + (1/2)) [Γ (

󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨 + (1/2))]

2

𝜋2Γ (2
󵄨󵄨󵄨󵄨𝑞1
󵄨󵄨󵄨󵄨 + 1)

× F
𝑗
(𝑓
∗∗

𝑝
3
,𝑞
3

, 𝑓
𝑝
1
,−|𝑞
1
|
) .

(29)

Theorem 4. The following formula holds true: for R(𝜎) <

−(1/4),

F
3
(𝑓
∗∗

𝑝
3
,𝑞
3

, 𝑓
|𝑞
3
|,−𝑞
3

)

= 4𝜋𝑝
|𝑞
3
|−𝜎−1

3
[Γ (

󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨 − 𝜎)]

−1

𝐾
𝜎+1

(𝑝
3
) ,

(30)

where𝐾
𝜎+1
(𝑝
3
) is theMacdonald function (the modified Bessel

function of the second kind) (see, e.g., [13, page 675]).

Proof. We have

F
3
(𝑓
∗∗

𝑝
3
,𝑞
3

, 𝑓
𝑝
1
,−𝑞
3

)

= 2
|𝑞
3
|−𝜎+1

𝜋

⋅ ∫

+∞

0

𝛼
|𝑞
3
|+1

3
(1 + 𝛼

2

3
)
𝜎−|𝑞
3
|

𝐽
|𝑞
3
|
(𝑝
3
𝛼
3
)

× 𝐶
|𝑞
3
|+(1/2)

𝑝
1
−|𝑞
3
|
(
1 − 𝛼
2

3

1 + 𝛼
2

3

) d𝛼
3
.

(31)
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Using the explicit representation (see, e.g., [14, page 175,
Equation (18)])

𝐶
]
𝑛
(𝑥) =

1

Γ (])

[𝑛/2]

∑

𝑗=0

(−1)
𝑗
Γ (𝑛 + ] − 𝑗)

𝑗! (𝑛 − 2𝑗)!
(2𝑥)
𝑛−2𝑗

, (32)

[𝑢] being the greatest integer less than or equal to 𝑢, we obtain

F
3
(𝑓
∗∗

𝑝
3
,𝑞
3

, 𝑓
𝑝
1
,−𝑞
3

)

= 2
𝑝
1
𝜎+1
𝜋[Γ (

󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨 +

1

2
)]

−1

×

[(𝑝
1
−|𝑞
3
|)/2]

∑

𝑗=0

(−1)
𝑗
2
−2𝑗
Γ (𝑝
1
− 𝑗 + (1/2))

𝑗! (𝑝
1
−
󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨 − 2𝑗)!

⋅ ∫

+∞

0

𝛼
|𝑞
3
|+1

3
(1 + 𝛼

2

3
)
𝜎−𝑝
1
+2𝑗

× (1 − 𝛼
2

3
)
𝑝
1
−|𝑞
3
|−2𝑗

𝐽
|𝑞
3
|
(𝑝
3
𝛼
3
) d𝛼
3
.

(33)

In case of 𝑝
1
= |𝑞
3
|, we can use the following known formula

(see [15, page 179, Entry 2.12.4-28]):

∫

+∞

0

𝑥
]+1

(𝑥2 + 𝑧2)
𝜌
𝐽] (𝑐𝑥) d𝑥 =

𝑐
𝜌−1
𝑧
]−𝜌+1

2𝜌−1Γ (𝜌)
𝐾]−𝜌+1, (34)

which holds for 𝑐 > 0,R(𝑧) > 0, and −1 < R(]) < 2R(𝜌) −
(1/2).

Corollary 5. The following formula holds true: for R(𝜎) <
−(1/4),

𝑑
(𝑝
3
,𝑞
3
),(|𝑞
3
|,−𝑞
3
)

= ((2
2|𝑞
3
|+1
𝑝
|𝑞
3
|−𝜎−1

3
(
󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨 +

1

2
) [Γ (|𝑞

3
| +

1

2
)]

2

)

× (𝜋Γ(|𝑞
3
| − 𝜎)Γ(2|𝑞

3
| + 1))

−1

)

× 𝐾
𝜎+1

(𝑝
3
) .

(35)

Further we will deal only with the matrix elements
𝑑
(𝑝
3
,𝑞
3
),(𝑝
1
,−𝑞
3
)
in case of 𝑝

1
= |𝑞
3
|, but let us pay attention to

general case. LetR(𝜎) < −(1/4). As

𝑝
1
− 2𝑗 −

󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨

2
− 𝑘 −

1

4

= (𝑝
1
−
󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨 − 2𝑗 − 𝑘) +

󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨

2
−
1

4
≥ −

1

4
,

(36)

by using the binomial theorem for the factor (1 − 𝛼2
3
)
𝑝
1
−|𝑞
3
|−2𝑗

in (33) and formula (34), apparently, we can represent
numbers F

3
(𝑓
∗∗

𝑝
3
,𝑞
3

, 𝑓
𝑝
1
,−𝑞
3

) as a sum whose terms contain
a product of the Macdonald function and the generalized
hypergeometric function. Without loss of generality, we

demonstrate it, for example, under condition 𝑝
1
− |𝑞
3
| = 4.

In this case,

F
3
(𝑓
∗∗

𝑝
3
,𝑞
3

, 𝑓
𝑝
1
,−𝑞
3

) =
4𝜋𝑝
𝑝
1
−𝜎−1

3

Γ (
󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨 + (1/2))

[(𝑝
1
−|𝑞
3
|)/2]

∑

𝑗=0

Ξ
𝑗
⋅ Θ
𝑗
,

(37)

where

Ξ
𝑗
=

(−1)
𝑗
𝑝
−2𝑗

3
Γ (𝑝
1
− 𝑗 + (1/2))

𝑗! (𝑝
1
−
󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨 − 2𝑗)!Γ (𝑝1 − 𝜎 − 2𝑗)

,

Θ
𝑗
=

𝑝
1
−|𝑞
3
|−2𝑗

∑

𝑘=1

(−1)
𝑘
(
𝑝
1
−
󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨 − 2𝑗

𝑘
) 𝐾
𝜎−(4−2𝑗)+2𝑘+1

(𝑝
3
) .

(38)

As

Γ (𝑝
1
− 𝑗 + (1/2)) =

(−1)
𝑗
Γ (𝑝
1
+ (1/2))

((1/2) − 𝑝
1
)
𝑗

,

Γ (𝑝
1
− 𝜎 − 2𝑗)

=
2
−2𝑗

Γ (𝑝
1
− 𝜎)

((1 + 𝜎 − 𝑝
1
) /2)
𝑗
(1 − ((𝜎 + 𝑝

1
) /2))
𝑗

,

𝑛

∑

𝑘=0

(
𝑛

𝑘
) 𝐾]±2𝑘 (𝑧) = (−2)

𝑛
𝐾]±𝑛 (𝑧)

(39)

(regarding the last formula see, e.g., [15, Entry 4.2.4-2]), we
have

Θ
0
= 𝐾
𝜎+1

(𝑝
3
) + 8 (𝐾

𝜎−1
(𝑝
3
) + 𝐾
𝜎+3

(𝑝
3
))

= 17𝐾
𝜎+1

(𝑝
3
) +

2𝜎

𝑝
3

(𝐾
𝜎+2

(𝑝
3
) − 𝐾
𝜎
(𝑝
3
))

+
4

𝑝
3

𝐾
𝜎+2

(𝑝
3
)

= (17 +
4𝜎 (𝜎 + 1)

𝑝
2

3

)𝐾
𝜎+1

(𝑝
3
) +

4

𝑝
3

𝐾
𝜎+2

(𝑝
3
) ,

Θ
1
=
2 (𝜎 + 2)

𝑝
3

𝐾
𝜎+2

(𝑝
3
) −

2𝜎

𝑝
3

𝐾
𝜎
(𝑝
3
)

=
4𝜎 (𝜎 + 1)

𝑝
2

3

𝐾
𝜎+1

(𝑝
3
) +

4

𝑝
3

𝐾
𝜎+2

(𝑝
3
) ,

Θ
2
= 𝐾
𝜎+1

(𝑝
3
) ,

(40)
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and, therefore,

F
3
(𝑓
∗∗

𝑝
3
,𝑞
3

, 𝑓
𝑝
1
,−𝑞
3

)

=
4𝜋𝑝
𝑝
1
−𝜎−1

3

Γ (
󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨 + (1/2))

⋅ (
17Γ ((1/2) + 𝑝

1
)

Γ (1 + 𝑝
1
−
󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨) Γ (𝑝1 − 𝜎)

× 𝐾
𝜎+1

(𝑝
3
)

∞

∑

𝑗=0

(−1)
𝑗
Ξ
𝑗

+
4𝜎 (𝜎 + 1) Γ ((1/2) + 𝑝

1
)

𝑝
2

3
Γ (1 + 𝑝

1
−
󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨) Γ (𝑝1 − 𝜎)

× 𝐾
𝜎+1

(𝑝
3
)

∞

∑

𝑗=0

(−2)
𝑗

(1)
𝑗

Ξ
𝑗

+
Γ (𝑝
1
− (3/2))

𝑝
4

3
Γ (𝑝
1
−
󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨 − 3) Γ (𝑝1 − 𝜎 − 4)

× 𝐾
𝜎+1

(𝑝
3
)

∞

∑

𝑗=2

Ξ
𝑗

+
4 Γ ((1/2) + 𝑝

1
)

𝑝
3
Γ (1 + 𝑝

1
−
󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨) Γ (𝑝1 − 𝜎)

×𝐾
𝜎+2

(𝑝
3
)

∞

∑

𝑗=0

(−2)
𝑗

(1)
𝑗

Ξ
𝑗
) .

(41)

It means that

F
3
(𝑓
∗∗

𝑝
3
,𝑞
3

, 𝑓
𝑝
1
,−𝑞
3

) =
4𝜋 𝑝
𝑝
1
−𝜎−1

3

Γ (
󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨 +

1

2
)

⋅ (
17Γ ((1/2) + 𝑝

1
)

Γ (1 + 𝑝
1
−
󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨) Γ (𝑝1 − 𝜎)

𝐾
𝜎+1

(𝑝
3
)

⋅
5𝐹1(

󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨 − 𝑝1

2
,
1 +

󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨 − 𝑝1

2
,
1 + 𝜎 − 𝑝

1

2
, 1 −

𝜎 + 𝑝
1

2
, −1

1

2
− 𝑝
1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

4

𝑝
2

3

)

+
4𝜎 (𝜎 + 1) Γ ((1/2) + 𝑝

1
)

𝑝
2

3
Γ (1 + 𝑝

1
−
󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨) Γ (𝑝1 − 𝜎)

𝐾
𝜎+1

(𝑝
3
)

⋅
5𝐹2(

󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨 − 𝑝1

2
,
1 +

󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨 − 𝑝1

2
,
1 + 𝜎 − 𝑝

1

2
, 1 −

𝜎 + 𝑝
1

2
, −2

1

2
− 𝑝
1
, 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

4

𝑝
2

3

)

+
Γ (𝑝
1
− (3/2))

𝑝
4

3
Γ (𝑝
1
−
󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨 − 3) Γ (𝑝1 − 𝜎 − 4)

𝐾
𝜎+1

(𝑝
3
)

⋅
5𝐹2(

2 +

󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨 − 𝑝1

2
,
5 +

󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨 − 𝑝1

2
,
5 + 𝜎 − 𝑝

1

2
, 3 −

𝜎 + 𝑝
1

2
, −1

1

2
− 𝑝
1
, 2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

4

𝑝
2

3

)

+
4 Γ ((1/2) + 𝑝

1
)

𝑝
3
Γ (1 + 𝑝

1
−
󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨) Γ (𝑝1 − 𝜎)

𝐾
𝜎+2

(𝑝
3
)

⋅
5𝐹2(

󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨 − 𝑝1

2
,
1 +

󵄨󵄨󵄨󵄨𝑞3
󵄨󵄨󵄨󵄨 − 𝑝1

2
,
1 + 𝜎 − 𝑝

1

2
, 1 −

𝜎 + 𝑝
1

2
, −2

1

2
− 𝑝
1
, 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

4

𝑝
2

3

)).

(42)
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It should be remarked in passing that the same reasoning
can be applied to any values of 𝑝

1
− |𝑞
3
|.

4. Composition of Basis Transformations and
a Representation of the Macdonald Function

Let 𝑘
(𝑝
3
,𝑞
3
),(𝑝
2
,𝑞
2
,±)

be thematrix element of the linear operator
acting in D

𝜎
and mapping the hyperbolic basis into the

parabolic basis; that is,

𝑓
∗∗

𝑝
3
,𝑞
3

(𝑥) = ∑

𝑞
2
∈Z

∫

+∞

0

𝑘
(𝑝
3
,𝑞
3
),(𝑝
2
,𝑞
2
,±)
𝑓
∗

𝑝
2
,𝑞
2
,±
(𝑥) d𝑝

2
. (43)

The linear operator (𝑑
(𝑝
3
,𝑞
3
),(𝑝
1
,𝑞
1
)
) can be represented as

the composition of the linear operators (𝑐
(𝑝
2
,𝑞
2
,±),(𝑝

1
,𝑞
1
)
) and

(𝑘
(𝑝
3
,𝑞
3
),(𝑝
2
,𝑞
2
,±)
); namely,

(𝑑
(𝑝
3
,𝑞
3
),(𝑝
1
,𝑞
1
)
) = (𝑘

(𝑝
3
,𝑞
3
),(𝑝
2
,𝑞
2
,±)
) (𝑐
(𝑝
2
,𝑞
2
,±),(𝑝

1
,𝑞
1
)
) . (44)

From this equality, we have, in particular,

𝑑
(𝑝
3
,𝑞
3
),(|𝑞
3
|,−𝑞
3
)

= ∫

+∞

0

𝑘
(𝑝
3
,𝑞
3
),(𝑝
2
,𝑞
3
,±)
𝑐
(𝑝
2
,𝑞
3
,±),(|𝑞

3
|,−𝑞
3
)
d𝑝
2
.

(45)

Theorem 6. The following formula holds true: for R(𝜎) <

−(1/2),

𝐾
𝜎+1

(𝑝
3
)

= 2𝜋𝑝
𝜎

3
Γ (−𝜎)

∞

∑

𝑛=0

(−1)
𝑛

22𝑛+1[𝑛!]
2
𝐵 (𝑛 + 1, −2𝜎 − 1)

×
2𝐹1 (𝑛 + 1, −𝜎; 𝑛 − 2𝜎; −1) .

(46)

Proof. Note that the restrictions of the functions 𝑓∗
𝑝
2
,𝑞
2
,𝑝𝑚

∈

D
−𝜎−2

and 𝑓∗∗
𝑝
3
,𝑞
3

∈ D
𝜎
to 𝛾
3
are, respectively,

𝑓
∗

𝑝
2
,𝑞
2
,𝑝𝑚
|
𝛾
2

≡ 𝑓
∗

𝑝
2
,𝑞
2
,𝑝𝑚

(𝛼
3
, 𝛽
3
)

= 2
𝜎+2
(1 − 𝛼

2

3
)
±
𝑃
−|𝑞
2
|

−(1/2)+i𝑝2
(
1 + 𝛼
2

3

1 − 𝛼
2

3

) exp (i 󵄨󵄨󵄨󵄨𝑞2
󵄨󵄨󵄨󵄨 𝛽3) ,

𝑓
∗∗

𝑝
3
,𝑞
3

|
𝛾
2

≡ 𝑓
∗∗

𝑝
3
,𝑞
3

(𝛼
3
, 𝛽
3
) = 𝐽
|𝑞
3
|
(𝛼
3
𝑝
3
) exp (i 󵄨󵄨󵄨󵄨𝑞3

󵄨󵄨󵄨󵄨 𝛽3) .

(47)

Setting 𝑞
3
= 0, we can rewrite (45) as

𝐾
𝜎+1

(𝑝
3
)

= 2
−𝜎−1

√𝜋𝑝
𝜎

3

⋅ ∫

+∞

0

𝑝
2
sinh (𝜋𝑝

2
) Γ (

1

2
+ i𝑝
2
) Γ (

1

2
− i𝑝
2
)

× Γ(
−𝜎 + i𝑝

2

2
−
1

4
) Γ(

−𝜎 − i𝑝
2

2
−
1

4
)

⋅ ∫

1

0

𝛼
3
(1 − 𝛼

2

3
)
−𝜎−2

𝐽
0
(𝑝
3
𝛼
3
) 𝑃
0

−(1/2)+i𝑝2

× (
1 + 𝛼
2

3

1 − 𝛼
2

3

) d𝛼
3
d𝑝
2
.

(48)

Changing the order of integration and using formula (see,
e.g., [15, Entry 2.17.27-9])

∫

+∞

0

𝑥 sinh (𝜋𝑛𝑥) Γ [1
2
− 𝜇 + i, 1

2
− 𝜇 − i, ] + i𝑟𝑥, ] − i𝑟𝑥]

× 𝑃
𝜇

i𝑥−(1/2) (𝑐) d𝑥 = 𝑅𝑛,𝑟 (R (𝜇) ≤
1

2
; R (]) ≥ 0) ,

𝑅
1,(1/2)

= 2
(3/2)−2]

𝜋
3/2
Γ (2] − 𝜇 +

1

2
) 𝑐
𝜇−2]−(1/2)

× (𝑐
2
− 1)
−𝜇/2

,

(49)

we find, in the case of 𝜇 = 0, 𝑟 = (1/2), and ] = −(𝜎/2)−(1/4),
that

𝐾
𝜎+1

(𝑝
3
) = 2𝜋𝑝

𝜎

3
Γ (−𝜎)

× ∫

1

0

𝛼
3
(1 − 𝛼

2

3
)
−2𝜎−2

(1 + 𝛼
2

3
)
𝜎

𝐽
0
(𝑝
3
𝛼
3
) d𝛼
3
.

(50)

Using here the decomposition

𝐽] (𝑧) =

∞

∑

𝑗=0

(−1)
𝑗

𝑗!Γ (] + 𝑗 + 1)
(
𝑧

2
)

]+2𝑗
, (51)

we obtain

𝐾
𝜎+1

(𝑝
3
)

= 2𝜋𝑝
𝜎

3
Γ (−𝜎)

×

∞

∑

𝑛=0

(−1)
𝑛

22𝑛[𝑛!]
2
∫

1

0

𝛼
2𝑛+1

3
(1 − 𝛼

2

3
)
−2𝜎−2

(1 + 𝛼
2

3
)
𝜎

d𝛼
3
.

(52)

To evaluate the right-sided integral, considering new variable
𝛼
3
:= 𝑠, we rewrite it as

1

2
∫

1

0

𝑠
𝑛
(1 − 𝑠)

−2𝜎−2
(1 + 𝑠)

𝜎d𝑠 (53)
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and use a known formula (see, e.g., [16, page 315, Entry 3.197-
8])

∫

𝑎

0

𝑥
𝑎−1
(𝑎 − 𝑥)

𝜔−1
(𝑥 + 𝑧)

−𝜌d𝑥

= 𝑎
𝛼+𝜔−1

𝑧
−𝜌
𝐵(𝛼, 𝜔)

2
𝐹
1
(𝛼, 𝜌; 𝛼 + 𝜔; −𝑎/𝑧)

(
󵄨󵄨󵄨󵄨arg 𝑧

󵄨󵄨󵄨󵄨 < 𝜋; 𝑎 > 0; R (𝑎) > 0; R (𝜔) > 0) .

(54)

This completes the proof.
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