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This paper is devoted to the study of the linearization problem of fifth-order ordinary differential equations by means of fiber
preserving transformations.The necessary and sufficient conditions for linearization are obtained.The procedure for obtaining the
linearizing transformations is provided in explicit form. Examples demonstrating the procedure of using the linearization theorems
are presented.

1. Introduction

1.1. The Research Problem and Its Significance. In mathemat-
ics, a nonlinear equation is an equation which is not linear;
that is, an equation which does not satisfy the superposition
principle, or whose output is not directly proportional to its
input. Less technically, a nonlinear equation is any problem
where the variables to be solved for cannot be written as a
linear combination of independent components.

Nonlinear problems are of interest to engineers, physi-
cists, and mathematicians because most physical systems
are inherently nonlinear in nature. Nonlinear equations are
difficult to solve and give rise to interesting phenomena.
While solving problems related to nonlinear ordinary differ-
ential equations, it is often expedient to simplify equations
by a suitable change of variables. One of the fundamental
methods to solve this relies upon the transformation of a
given equation to another equation of standard form. The
transformation may be to an equation of equal order or of
greater or lesser order. In particular, the possibility that a
given equation could be linearized, that is, transformed to
a linear equation, was a most attractive proposition due to
the special properties of linear differential equations. The
reduction of an ordinary differential equation to a linear
ordinary differential equation besides simplification allows us
to construct an exact solution of the original equation.

One type of the classification problem is the equivalence
problem. Two equations of differential equations are said
to be equivalent if there exists an invertible transformation
which transforms any solution of one equation to a solution of
the other equation and vice versa. The linearization problem
is a particular case of the equivalence problem, where one of
the equations is a linear equation. It is one of the essential
parts in the study of nonlinear equations.

The main difficulty in solving the linearization problem
comes from the large number of complicated calculations.
Because of this difficulty, no one attempts to solve this
problem for nonlinear equations are higher than fourth.
However if we can solve the linearization problem of fifth-
order ordinary differential equations, then we should set a
new process to solve the problems in Physics or Engineering.

1.2. Historical Review. The linearization, that is, mapping
a nonlinear differential equation into a linear differential
equation, is an important tool in the theory of differential
equations. The problem of linearization of ordinary differen-
tial equations attracted attention of mathematicians such as
Lie and Cartan. The first linearization problem for ordinary
differential equations was solved by Lie [1, 2]. He found the
general form of all ordinary differential equations of second-
order that can be reduced to a linear equation by changing
the independent and dependent variables. He showed that
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any linearizable second-order equation should be at most
cubic in the first-order derivative and provided a linearization
test in terms of its coefficients. The linearization criterion
is written through relative invariants of the equivalence
group. Liouville [3] and Tresse [4] treated the equivalence
problem for second-order ordinary differential equations in
terms of relative invariants of the equivalence group of point
transformations. There are other approaches for solving the
linearization problem of a second-order ordinary differential
equation. For example, one was developed by Cartan [5].The
idea of his approach was to associate with every differential
equation a uniquely defined geometric structure of a certain
form.

In 1993, Bocharov et al. [6] considered the linearization
problem of third-order with respect to point transformations.
Grebot [7] studied the linearization of third-order ordinary
differential equations by means of a restricted class of point
transformations, namely, 𝑡 = 𝜑(𝑥) and 𝑢 = 𝜓(𝑥, 𝑦). However,
the problem was not completely solved. Complete criteria
for linearization by means of point transformations were
obtained by Ibragimov and Meleshko [8].

In 2008, Ibragimov et al. [9] solved the linearization
problem for fourth-order ordinary differential equations by
using point transformation.

Nowadays, the linearization problem of fifth-order ordi-
nary differential equations via point transformations still is
an unsolved one.

1.3. The Mapping of a Function by a Point Transformation

Definition 1. A transformation,

𝑡 = 𝜑 (𝑥, 𝑦) ,

𝑢 = 𝜓 (𝑥, 𝑦) ,

(1)

where 𝜑 and 𝜓 are sufficiently smooth functions, is called a
point transformation. If 𝜑𝑦 = 0, a transformation (1) is called
a fiber preserving transformation.

Let us explain how a point transformation maps one
function into another.

Assume that 𝑦0(𝑥) is a given function, the transformed
function 𝑢0(𝑡) is defined by the following two steps. On the
first step one has to solve with respect to 𝑥 the equation

𝑡 = 𝜑 (𝑥, 𝑦0 (𝑥)) . (2)

Using the Inverse Function Theorem we find that 𝑥 = 𝛼(𝑡)
is a solution of this equation. The transformed function is
determined by the formula

𝑢0 (𝑡) = 𝜓 (𝛼 (𝑡) , 𝑦0 (𝛼 (𝑡))) . (3)

Conversely, if one has the function 𝑢0(𝑡), then for finding
the function 𝑦0(𝑥) one has to solve the ordinary differential
equation

𝑢0 (𝜑 (𝑥, 𝑦0 (𝑥))) = 𝜓 (𝑥, 𝑦0 (𝑥)) . (4)

2. Necessary Conditions of Linearization

We begin with investigating the necessary conditions for
linearization. Recall that according to the Laguerre theorem a
linear fifth-order ordinary differential equation has the form

𝑢
(5)
+ 𝛼 (𝑡) 𝑢

󸀠󸀠
+ 𝛽 (𝑡) 𝑢

󸀠
+ 𝛾 (𝑡) 𝑢 = 0. (5)

Here we consider the fifth-order ordinary differential equa-
tions

𝑦
(5)
= 𝑓 (𝑥, 𝑦, 𝑦

󸀠󸀠
, 𝑦
󸀠󸀠󸀠
, 𝑦
(4)
) , (6)

which can be transformed to the linear equation (5) with 𝛼 =
𝛽 = 𝛾 = 0 under the fiber preserving transformation

𝑡 = 𝜑 (𝑥) ,

𝑢 = 𝜓 (𝑥, 𝑦) .

(7)

So we arrive at the following theorem.

Theorem 2. Any fifth-order ordinary differential equation (6)
obtained from a linear equation (5) with 𝛼 = 𝛽 = 𝛾 = 0 by a
fiber preserving transformation (7) has to be the form

𝑦
(5)
+ (𝐴1𝑦

󸀠
+ 𝐴0) 𝑦

(4)

+ (𝐵3𝑦
󸀠󸀠
+ 𝐵2𝑦

󸀠2
+ 𝐵1𝑦

󸀠
+ 𝐵0) 𝑦

󸀠󸀠󸀠

+ (𝐶1𝑦
󸀠
+ 𝐶0) 𝑦

󸀠󸀠(2)

+ (𝐷3𝑦
󸀠3
+ 𝐷2𝑦

󸀠2
+ 𝐷1𝑦

󸀠
+ 𝐷0) 𝑦

󸀠󸀠

+ 𝐸5𝑦
󸀠5
+ 𝐸4𝑦

󸀠4
+ 𝐸3𝑦

󸀠3
+ 𝐸2𝑦

󸀠2

+ 𝐸1𝑦
󸀠
+ 𝐸0 = 0,

(8)

where

𝐴1 =

5𝜓𝑦𝑦

𝜓𝑦

, (9)

𝐴0 =

−5 (2𝜑𝑥𝑥𝜓𝑦 − 𝜑𝑥𝜓𝑥𝑦)

(𝜑𝑥𝜓𝑦)

, (10)

𝐵3 =

10𝜓𝑦𝑦

𝜓𝑦

, (11)

𝐵2 =

10𝜓𝑦𝑦𝑦

𝜓𝑦

, (12)

𝐵1 =

−20 (2𝜑𝑥𝑥𝜓𝑦𝑦 − 𝜑𝑥𝜓𝑥𝑦𝑦)

(𝜑𝑥𝜓𝑦)

, (13)
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𝐵0 = −5 (2𝜑𝑥𝑥𝑥𝜑𝑥𝜓𝑦 − 9𝜑
2

𝑥𝑥
𝜓𝑦 + 8𝜑𝑥𝑥𝜑𝑥𝜓𝑥𝑦

−2𝜑
2

𝑥
𝜓𝑥𝑥𝑦) (𝜑

2

𝑥
𝜓𝑦)
−1

,

(14)

𝐶1 =

15𝜓𝑦𝑦𝑦

𝜓𝑦

, (15)

𝐶0 =

−15 (2𝜑𝑥𝑥𝜓𝑦𝑦 − 𝜑𝑥𝜓𝑥𝑦𝑦)

(𝜑𝑥𝜓𝑦)

, (16)

𝐷3 =

10𝜓𝑦𝑦𝑦𝑦

𝜓𝑦

, (17)

𝐷2 =

−30 (2𝜑𝑥𝑥𝜓𝑦𝑦𝑦 − 𝜑𝑥𝜓𝑥𝑦𝑦𝑦)

(𝜑𝑥𝜓𝑦)

, (18)

𝐷1 = (15 (9𝜑
2

𝑥𝑥
𝜓𝑦𝑦 − 8𝜑𝑥𝑥𝜑𝑥𝜓𝑥𝑦𝑦 + 2𝜑

2

𝑥
𝜓𝑥𝑥𝑦𝑦

−2𝜑𝑥𝑥𝑥𝜑𝑥𝜓𝑦𝑦)) (𝜑
2

𝑥
𝜓𝑦)
−1

,

(19)

𝐷0 = −5 (𝜑𝑥𝑥𝑥𝑥𝜑
2

𝑥
𝜓𝑦 − 12𝜑𝑥𝑥𝑥𝜑𝑥𝑥𝜑𝑥𝜓𝑦

+ 6𝜑𝑥𝑥𝑥𝜑
2

𝑥
𝜓𝑥𝑦 + 21𝜑

3

𝑥𝑥
𝜓𝑦 − 27𝜑

2

𝑥𝑥
𝜑𝑥𝜓𝑥𝑦

+12 𝜑𝑥𝑥𝜑
2

𝑥
𝜓𝑥𝑥𝑦 − 2𝜑

3

𝑥
𝜓𝑥𝑥𝑥𝑦)

× (𝜑
3

𝑥
𝜓𝑦)
−1

,

(20)

𝐸5 =

𝜓𝑦𝑦𝑦𝑦𝑦

𝜓𝑦

, (21)

𝐸4 =

−5 (2𝜑𝑥𝑥𝜓𝑦𝑦𝑦𝑦 − 𝜑𝑥𝜓𝑥𝑦𝑦𝑦𝑦)

(𝜑𝑥𝜓𝑦)

, (22)

𝐸3 = (−5 ((2𝜑𝑥𝑥𝑥𝜑𝑥 − 9𝜑
2

𝑥𝑥
) 𝜓𝑦𝑦𝑦

+2 (4𝜑𝑥𝑥𝜓𝑥𝑦𝑦𝑦 − 𝜑𝑥𝜓𝑥𝑥𝑦𝑦𝑦) 𝜑𝑥)

× (𝜑
2

𝑥
𝜓𝑦)
−1

,

(23)

𝐸2 = 5 ((6 (2𝜑𝑥𝑥𝜓𝑦𝑦 − 𝜑𝑥𝜓𝑥𝑦𝑦) 𝜑𝑥𝑥𝑥 − 𝜑𝑥𝑥𝑥𝑥𝜑𝑥𝜓𝑦𝑦) 𝜑𝑥

− (21𝜑
3

𝑥𝑥
𝜓𝑦𝑦 − 27𝜑

2

𝑥𝑥
𝜑𝑥𝜓𝑥𝑦𝑦

+12 𝜑𝑥𝑥𝜑
2

𝑥
𝜓𝑥𝑥𝑦𝑦 − 2𝜑

3

𝑥
𝜓𝑥𝑥𝑥𝑦𝑦))

× (𝜑
3

𝑥
𝜓𝑦)
−1

,

(24)

𝐸1 = (5 (21𝜑
4

𝑥𝑥
𝜓𝑦 − 42𝜑

3

𝑥𝑥
𝜑𝑥𝜓𝑥𝑦 + 27𝜑

2

𝑥𝑥
𝜑
2

𝑥
𝜓𝑥𝑥𝑦

−8𝜑𝑥𝑥𝜑
3

𝑥
𝜓𝑥𝑥𝑥𝑦 + 𝜑

4

𝑥
𝜓𝑥𝑥𝑥𝑥𝑦 + 2𝜑

2

𝑥𝑥𝑥
𝜑
2

𝑥
𝜓𝑦)

− 𝜓𝑥𝑥𝑥𝑥𝑥𝜑
3

𝑥
𝜓𝑦 + 5 (3𝜑𝑥𝑥𝜓𝑦 − 2𝜑𝑥𝜓𝑥𝑦) 𝜑𝑥𝑥𝑥𝑥𝜑

2

𝑥

− 15 (7𝜑
2

𝑥𝑥
𝜓𝑦 − 8𝜑𝑥𝑥𝜑𝑥𝜓𝑥𝑦 + 2𝜑

2

𝑥
𝜓𝑥𝑥𝑦)

× 𝜑𝑥𝑥𝑥𝜑𝑥) (𝜑
4

𝑥
𝜓𝑦)
−1

,

(25)

𝐸0 = − (𝜓𝑥𝑥𝑥𝑥𝑥𝜑
3

𝑥
𝜓𝑥 − 15𝜑𝑥𝑥𝑥𝑥𝜑𝑥𝑥𝜑

2

𝑥
𝜓𝑥

+ 5𝜑𝑥𝑥𝑥𝑥𝜑
3

𝑥
𝜓𝑥𝑥 − 10𝜑

2

𝑥𝑥𝑥
𝜑
2

𝑥
𝜓𝑥

+ 105𝜑𝑥𝑥𝑥𝜑
2

𝑥𝑥
𝜑𝑥𝜓𝑥 − 60𝜑𝑥𝑥𝑥𝜑𝑥𝑥𝜑

2

𝑥
𝜓𝑥𝑥

+ 10𝜑𝑥𝑥𝑥𝜑
3

𝑥
𝜓𝑥𝑥𝑥

− 105𝜑
4

𝑥𝑥
𝜓𝑥 + 105𝜑

3

𝑥𝑥
𝜑𝑥𝜓𝑥𝑥

−45 𝜑
2

𝑥𝑥
𝜑
2

𝑥
𝜓𝑥𝑥𝑥 + 10𝜑𝑥𝑥𝜑

3

𝑥
𝜓𝑥𝑥𝑥𝑥 − 𝜑

4

𝑥
𝜓𝑥𝑥𝑥𝑥𝑥)

× (𝜑
4

𝑥
𝜓𝑦)
−1

.

(26)

Proof. Applying a fiber preserving transformation (7), one
obtains the following transformation of derivatives:

𝑢
󸀠
(𝑡) =

𝐷𝑥𝜓

𝐷𝑥𝜑
=

𝜓𝑥 + 𝑦
󸀠
𝜓𝑦

𝜑𝑥

= 𝑃 (𝑥, 𝑦, 𝑦
󸀠
) , (27)

𝑢
󸀠󸀠
(𝑡) =

𝐷𝑥𝑃

𝐷𝑥𝜑
=

𝑃𝑥 + 𝑦
󸀠
𝑃𝑦 + 𝑦

󸀠󸀠
𝑃𝑦󸀠

𝜑𝑥

=
1

𝜑
3
𝑥

[(𝜑𝑥𝜓𝑦) 𝑦
󸀠󸀠
+ (𝜑𝑥𝜓𝑦𝑦) 𝑦

󸀠2

+ (−𝜑𝑥𝑥𝜓𝑦 + 2𝜑𝑥𝜓𝑥𝑦) 𝑦
󸀠
− 𝜑𝑥𝑥𝜓𝑥 + 𝜑𝑥𝜓𝑥𝑥]

= 𝑄 (𝑥, 𝑦, 𝑦
󸀠
, 𝑦
󸀠󸀠
) ,

(28)

𝑢
󸀠󸀠󸀠
(𝑡) =

𝐷𝑥𝑄

𝐷𝑥𝜑
=

𝑄𝑥 + 𝑦
󸀠
𝑄𝑦 + 𝑦

󸀠󸀠
𝑄𝑦󸀠 + 𝑦

󸀠󸀠󸀠
𝑄𝑦󸀠󸀠

𝜑𝑥

=
1

𝜑
5
𝑥

[(𝜑
2

𝑥
𝜓𝑦) 𝑦

󸀠󸀠󸀠
+ (3𝜑

2

𝑥
𝜓𝑦𝑦) 𝑦

󸀠
𝑦
󸀠󸀠

+3𝜑𝑥 (−𝜑𝑥𝑥𝜓𝑦 + 𝜑𝑥𝜓𝑥𝑦) 𝑦
󸀠󸀠
+ ⋅ ⋅ ⋅ ]

= 𝑅 (𝑥, 𝑦, 𝑦
󸀠
, 𝑦
󸀠󸀠
, 𝑦
󸀠󸀠󸀠
) ,

(29)

𝑢
(4)
(𝑡) =

𝐷𝑥𝑅

𝐷𝑥𝜑

=

𝑅𝑥 + 𝑦
󸀠
𝑅𝑦 + 𝑦

󸀠󸀠
𝑅𝑦󸀠 + 𝑦

󸀠󸀠󸀠
𝑅𝑦󸀠󸀠 + 𝑦

(4)
𝑅𝑦󸀠󸀠󸀠

𝜑𝑥

=
1

𝜑
7
𝑥

[(𝜑
3

𝑥
𝜓𝑦) 𝑦

(4)
+ (4𝜑

3

𝑥
𝜓𝑦𝑦) 𝑦

󸀠
𝑦
󸀠󸀠󸀠

+2𝜑
2

𝑥
(−3𝜑𝑥𝑥𝜓𝑦 + 2𝜑𝑥𝜓𝑥𝑦) 𝑦

󸀠󸀠󸀠
+ ⋅ ⋅ ⋅ ]

= 𝑆 (𝑥, 𝑦, 𝑦
󸀠
, 𝑦
󸀠󸀠
, 𝑦
󸀠󸀠󸀠
, 𝑦
(4)
) ,

(30)

𝑢
(5)
(𝑡) =

𝐷𝑥𝑆

𝐷𝑥𝜑

=

𝑆𝑥 + 𝑦
󸀠
𝑆𝑦 + 𝑦

󸀠󸀠
𝑆𝑦󸀠 + 𝑦

󸀠󸀠󸀠
𝑆𝑦󸀠󸀠 + 𝑦

(4)
𝑆𝑦󸀠󸀠󸀠 + 𝑦

(5)
𝑆
𝑦(4)

𝜑𝑥

=
1

𝜑
9
𝑥

[(𝜑
4

𝑥
𝜓𝑦) 𝑦

(5)
+ (5𝜑

4

𝑥
𝜓𝑦𝑦) 𝑦

󸀠
𝑦
(4)

+5𝜑
3

𝑥
(−2𝜑𝑥𝑥𝜓𝑦 + 𝜑𝑥𝜓𝑥𝑦) 𝑦

(4)
+ ⋅ ⋅ ⋅ ] ,

(31)
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where 𝐷𝑥 = (𝜕/𝜕𝑥) + 𝑦
󸀠
(𝜕/𝜕𝑦) + 𝑦

󸀠󸀠
(𝜕/𝜕𝑦
󸀠
) + 𝑦
󸀠󸀠󸀠
(𝜕/𝜕𝑦
󸀠󸀠
) +

𝑦
(4)
(𝜕/𝜕𝑦
󸀠󸀠󸀠
) + 𝑦
(5)
(𝜕/𝜕𝑦
(4)
) + ⋅ ⋅ ⋅ is a total derivative. Substi-

tuting 𝑢(5)(𝑡) into the linear equation (5), we have

𝑦
(5)
+ ((

5𝜓𝑦𝑦

𝜓𝑦

)𝑦
󸀠
− 5 (2𝜑𝑥𝑥𝜓𝑦 − 𝜑𝑥𝜓𝑥𝑦))𝑦

(4)

+ ((

10𝜓𝑦𝑦

𝜓𝑦

)𝑦
󸀠󸀠
+ (

10𝜓𝑦𝑦𝑦

𝜓𝑦

)𝑦
󸀠2

−(

20 (2𝜑𝑥𝑥𝜓𝑦𝑦 − 𝜑𝑥𝜓𝑥𝑦𝑦)

(𝜑𝑥𝜓𝑦)

)𝑦
󸀠
+ ⋅ ⋅ ⋅ ) 𝑦

󸀠󸀠󸀠

+ ((

15𝜓𝑦𝑦𝑦

𝜓𝑦

)𝑦
󸀠
+ ⋅ ⋅ ⋅ ) 𝑦

󸀠󸀠2
+ ⋅ ⋅ ⋅ = 0.

(32)

Denoting 𝐴 𝑖, 𝐵𝑖, 𝐶𝑖, 𝐷𝑖, and 𝐸𝑖 as (10)–(21), we obtain the
necessary form (8). These prove the theorem.

3. Formulation of the Linearization Theorem

Wehave shown in the previous section that every linearizable
fifth-order ordinary differential equation belongs to the class
of (8). In this section, we formulate the main theorems
containing necessary and sufficient conditions for lineariza-
tion as well as the methods for constructing the linearizing
transformations.

Theorem 3. Sufficient conditions for (8) to be linearizable via
a fiber preserving transformation are as follows:

𝐴0𝑦 = 𝐴1𝑥, (33)

𝐵3 = 2𝐴1, (34)

𝐴1𝑦 =

− (2𝐴
2

1
− 5𝐵2)

10
, (35)

𝐴1𝑥 =
− (4𝐴0𝐴1 − 5𝐵1)

20
, (36)

𝐵2 =
2𝐶1

3
, (37)

𝐵1 =
4𝐶0

3
, (38)

𝐶1𝑦 =
− (2𝐴1𝐶1 − 15𝐷3)

10
, (39)

𝐶0𝑦 =
− (2𝐴1𝐶0 − 5𝐷2)

10
, (40)

𝐷3𝑦 =
− (𝐴1𝐷3 − 50𝐸5)

5
, (41)

𝐷2𝑦 =
− (𝐴1𝐷2 − 30𝐸4)

5
, (42)

𝐵0𝑦 =

−2 (15𝐴0𝑥𝐴1 − 25𝐶0𝑥 + 3𝐴
2

0
𝐴1 − 5𝐴0𝐶0)

75
, (43)

𝐶0𝑥 =

(30𝐴0𝑥𝐴1 + 6𝐴
2

0
𝐴1 − 10𝐴0𝐶0 − 15𝐴1𝐵0 + 25𝐷1)

50
,

(44)

𝐴0𝑥𝑥 =

− (60𝐴0𝑥𝐴0 − 75𝐵0𝑥 + 8𝐴
3

0
− 30𝐴0𝐵0 + 50𝐷0)

50
,

(45)

𝐷1𝑦 =
− (𝐴1𝐷1 − 15𝐸3)

5
, (46)

𝐷0𝑦 = (60𝐴0𝑥𝐴0𝐴1 − 100𝐴0𝑥𝐶0 − 75𝐵0𝑥𝐴1

+ 125𝐷1𝑥 + 12𝐴
3

0
𝐴1 − 20𝐴

2

0
𝐶0 − 45𝐴0𝐴1𝐵0

+ 25𝐴0𝐷1 − 75𝐴1𝐷0 + 50𝐵0𝐶0 + 375𝐸2) (750)
−1
,

(47)

𝐵0𝑥𝑥 = (2 (175𝐴
2

0𝑥
+ 70𝐴0𝑥𝐴

2

0
− 325𝐴0𝑥𝐵0

− 75𝐵0𝑥𝐴0 + 500𝐷0𝑥 + 7𝐴
4

0

− 65𝐴
2

0
𝐵0 + 100𝐴0𝐷0 + 100𝐵

2

0
− 625𝐸1))

× (375)
−1
.

(48)

Proof. For obtaining sufficient conditions, one has to solve
the compatibility problem. Considering the representations
of the coefficients𝐴 𝑖, 𝐵𝑖,𝐶𝑖,𝐷𝑖, and 𝐸𝑖 through the unknown
functions 𝜑 and 𝜓. We first rewrite the expressions (9) and
(10) for 𝐴1 and 𝐴0 in the following form:

𝜓𝑦𝑦 =

𝜓𝑦𝐴1

5
, (49)

𝜑𝑥𝑥 =

(5𝜓𝑥𝑦 − 𝜓𝑦𝐴0) 𝜑𝑥

(10𝜓𝑦)

. (50)

Differentiating (50) with respect to 𝑦, one obtains the con-
dition (33). Substituting the expressions of 𝜓𝑦𝑦 and 𝜑𝑥𝑥 into
(11), (12), (13), (15), (16), (17), (18), (21), and (22) one gets
conditions (34)–(42), respectively. From (14) we have

𝜓𝑥𝑥𝑦 = − (20𝐴0𝑥𝜓
2

𝑦
− 125𝜓

2

𝑥𝑦
+ 10𝜓𝑥𝑦𝜓𝑦𝐴0

+ 7𝜓
2

𝑦
𝐴
2

0
− 20𝜓

2

𝑦
𝐵0) (100𝜓𝑦)

−1

.

(51)

Comparing the mixed derivative (𝜓𝑥𝑥𝑦)𝑦 = (𝜓𝑦𝑦)𝑥𝑥 one
obtains the condition (43). Equations (19), (20), (23), (24),
and (25) provide the conditions (44)–(48), respectively.

Consider the form of𝜓𝑦𝑦 : 𝜓𝑦𝑦 = (𝜓𝑦𝐴1/5) one can solve
that

𝜓𝑦 = 𝜔1 (𝑥, 𝑦) 𝜓1 (𝑥) , (52)

where 𝜔1(𝑥, 𝑦) = 𝑒
∫(𝐴
1
/5)𝑑𝑦 and 𝜓1(𝑥) = 𝑒

𝐾
1
(𝑥). Since 𝜓𝑦 ̸= 0

then 𝜓1 and 𝜔1 cannot be zero. From 𝜔1 = 𝑒
∫(𝐴
1
/5)𝑑𝑦, we

found the relation

𝐴1 = 5

𝜔1𝑦

𝜔1

. (53)
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Relations (𝐴1)𝑥 = 𝐴1𝑥 and (𝐴1)𝑦 = 𝐴1𝑦 provide the condi-
tions

𝜔1𝑥𝑦 =

(15𝜔1𝑥𝜔1𝑦 − 3𝐴0𝜔1𝑦𝜔1 + 𝐶0𝜔
2

1
)

(15𝜔1)
,

𝜔1𝑦𝑦 =
𝐶1𝜔1

15
,

(54)

respectively, and the relation (52) satisfied the condition
(𝜓𝑦)𝑦 = 𝜓𝑦𝑦. cComposing the relation (𝜓𝑦)𝑥𝑥 = 𝜓𝑥𝑥𝑦, one
has the equation

𝜓1𝑥𝑥 = (−20𝐴0𝑥𝜔
2

1
𝜓
2

1
− 100𝜔1𝑥𝑥𝜔1𝜓

2

1
+ 125𝜔

2

1𝑥
𝜓
2

1

+ 50𝜔1𝑥𝜓1𝑥𝜔1𝜓1 − 10𝜔1𝑥𝐴0𝜔1𝜓
2

1

+ 125𝜓
2

1𝑥
𝜔
2

1
− 10𝜓1𝑥𝐴0𝜔

2

1
𝜓1 − 7𝐴

2

0
𝜔
2

1
𝜓
2

1

+ 20𝐵0𝜔
2

1
𝜓
2

1
) (100𝜔

2

1
𝜓1)
−1

.

(55)

Consider 𝜓𝑦 = 𝜔1(𝑥, 𝑦)𝜓1(𝑥); one can solve that

𝜓 = 𝜓1 (𝑥) 𝜔2 (𝑥, 𝑦) + 𝜓2 (𝑥) , (56)

where 𝜔2(𝑥, 𝑦) = ∫𝜔1(𝑥, 𝑦)𝑑𝑦. Because of ∫𝜔1(𝑥, 𝑦)𝑑𝑦 =

𝜔2(𝑥, 𝑦) then

𝜔1 (𝑥, 𝑦) = 𝜔2𝑦. (57)

Since 𝜔1 ̸= 0 then 𝜔2𝑦 ̸= 0. Substituting 𝜔1 into 𝜔1𝑥𝑦 and 𝜔1𝑦𝑦
we obtain the additional conditions

𝜔2𝑥𝑦𝑦 =

((−3𝜔2𝑦𝑦𝐴0 + 𝜔2𝑦𝐶0) 𝜔2𝑦 + 15𝜔2𝑥𝑦𝜔2𝑦𝑦)

(15𝜔2𝑦)

,

𝜔2𝑦𝑦𝑦 =

𝜔2𝑦𝐶1

15
,

(58)

respectively, and these satisfied the relations (𝜓)𝑦 = 𝜓𝑦,
(𝜓)𝑦𝑦 = 𝜓𝑦𝑦, and (𝜓)𝑥𝑥𝑦 = 𝜓𝑥𝑥𝑦. From (26), setting 𝜇1(𝑥, 𝑦),
𝜇2(𝑥, 𝑦), and 𝜇3(𝑥, 𝑦) as (A.1), (see Appendix) then we obtain

𝜓2𝑥𝑥𝑥𝑥𝑥 = (−140625𝜓
4

1𝑥
𝜓2𝑥𝜔
5

2𝑦
+ 1125000𝜓

3

1𝑥
𝜓2𝑥𝑥𝜔

5

2𝑦
𝜓1

+ 112500𝜓
3

1𝑥
𝜓2𝑥𝜔
4

2𝑦
𝜓1 (−5𝜔2𝑥𝑦 + 𝜔2𝑦𝐴0)

− 2250000𝜓
2

1𝑥
𝜓2𝑥𝑥𝑥𝜔

5

2𝑦
𝜓
2

1

+ 675000𝜓
2

1𝑥
𝜓2𝑥𝑥𝜔

4

2𝑦
𝜓
2

1
(5𝜔2𝑥𝑦 − 𝜔2𝑦𝐴0)

+ 11250𝜓
2

1𝑥
𝜓2𝑥𝜔
3

2𝑦
𝜓
2

1

× (−40𝐴0𝑥𝜔
2

2𝑦
− 75𝜔

2

2𝑥𝑦
+ 30𝜔2𝑥𝑦𝜔2𝑦𝐴0

− 11𝜔
2

2𝑦
𝐴
2

0
+ 20𝜔

2

2𝑦
𝐵0)

+ 1500000𝜓1𝑥𝜓2𝑥𝑥𝑥𝑥𝜔
5

2𝑦
𝜓
3

1

+ 900000𝜓1𝑥𝜓2𝑥𝑥𝑥𝜔
4

2𝑦
𝜓
3

1
(−5𝜔2𝑥𝑦 + 𝜔2𝑦𝐴0)

+ 75000𝜓1𝑥𝜓2𝑥𝑥𝜔
3

2𝑦
𝜓
3

1

× (16𝐴0𝑥𝜔
2

2𝑦
+ 45𝜔

2

2𝑥𝑦
− 18𝜔2𝑥𝑦𝜔2𝑦𝐴0

+ 5𝜔
2

2𝑦
𝐴
2

0
− 8𝜔
2

2𝑦
𝐵0) + 1500𝜓1𝑥𝜓2𝑥𝜔

2

2𝑦
𝜓
3

1

× (200𝐴0𝑥𝜔2𝑥𝑦𝜔
2

2𝑦
− 40𝐴0𝑥𝜔

3

2𝑦
𝐴0

+ 375𝜔
3

2𝑥𝑦
− 225𝜔

2

2𝑥𝑦
𝜔2𝑦𝐴0 + 85𝜔2𝑥𝑦𝜔

2

2𝑦
𝐴
2

0

− 100𝜔2𝑥𝑦𝜔
2

2𝑦
𝐵0 − 11𝜔

3

2𝑦
𝐴
3

0
+ 20𝜔

3

2𝑦
𝐴0𝐵0

− 2𝜇3) + 300000𝜓2𝑥𝑥𝑥𝑥𝜔
4

2𝑦
𝜓
4

1

× (5𝜔2𝑥𝑦 − 𝜔2𝑦𝐴0)

+ 30000𝜓2𝑥𝑥𝑥𝜔
3

2𝑦
𝜓
4

1

× (−20𝐴0𝑥𝜔
2

2𝑦
− 75𝜔

2

2𝑥𝑦
+ 30𝜔2𝑥𝑦𝜔2𝑦𝐴0

−7𝜔
2

2𝑦
𝐴
2

0
+ 10𝜔

2

2𝑦
𝐵0)

+ 3000𝜓2𝑥𝑥𝜔
2

2𝑦
𝜇3𝜓
4

1

+ 25𝜓2𝑥𝜔2𝑦𝜇2𝜓
4

1
+ 16𝜇1𝜓

5

1
)

× (300000𝜔
5

2𝑦
𝜓
4

1
)
−1

.

(59)

By the proof of Theorem 3, we arrive at the following
Corollary.

Corollary 4. Provided that the sufficient conditions in
Theorem 3 are satisfied, the transformation (7) of mapping
equation (8) to a linear equation 𝑢(5)(𝑡) is obtained by solving
the compatible system of equations (49), (50), (56), (55), and
(59) for the functions 𝜑(𝑥) and 𝜓(𝑥, 𝑦).

4. Examples

Example 1. Consider the nonlinear ordinary differential
equation

𝑥
2
𝑦𝑦
(5)
+ 5 (𝑥

2
𝑦
󸀠
+ 2𝑥𝑦) 𝑦

(4)

+ 10 (𝑥
2
𝑦
󸀠󸀠
+ 4𝑥𝑦

󸀠
+ 2𝑦) 𝑦

󸀠󸀠󸀠
+ 30𝑥𝑦

󸀠󸀠2

+ 60𝑦
󸀠
𝑦
󸀠󸀠
= 0.

(60)

It is an equation of the form (8) with the coefficients

𝐴1 =
5

𝑦
, 𝐴0 =

10

𝑥
, 𝐵3 =

10

𝑦
,

𝐵2 = 0, 𝐵1 =
40

𝑥𝑦
, 𝐵0 =

20

𝑥
2
,

𝐶1 = 0, 𝐶0 =
30

𝑥𝑦
, 𝐷3 = 0,

𝐷2 = 0, 𝐷1 =
60

𝑥
2
𝑦
, 𝐷0 = 0,

𝐸5 = 0, 𝐸4 = 0, 𝐸3 = 0,

𝐸2 = 0, 𝐸1 = 0, 𝐸0 = 0,

𝜔1 = 𝑦, 𝜔2 =
𝑦
2

2
, 𝜇1 = 0,

𝜇2 =
−90000𝑦

4

𝑥
4

, 𝜇3 =
−3000𝑦

3

𝑥
3

.

(61)



6 Journal of Applied Mathematics

Applying Theorem 3 for checking the linearity, the coeffi-
cients in (61) obey all the conditions in Theorem 3, so that
one concludes that equation (60) is linearizable. Applying
Corollary 4, the linearizing transformation is found by solv-
ing the following equations:

𝜑𝑥𝑥 =
(𝜑𝑥𝜓1𝑥𝑥 − 2𝜓1)

(2𝜓1𝑥)
, (62)

𝜓1𝑥𝑥 =

(5𝜓
2

1𝑥
𝑥
2
− 4𝜓1𝑥𝜓1𝑥 − 4𝜓

2

1
)

(4𝜓1𝑥
2
)

, (63)

𝜓2𝑥𝑥𝑥𝑥𝑥 = (5 (−3𝜓
4

1𝑥
𝜓2𝑥𝑥
4
+ 24𝜓

3

1𝑥
𝜓2𝑥𝑥𝜓1𝑥

4

+ 24𝜓
3

1𝑥
𝜓2𝑥𝜓1𝑥

3
− 48𝜓

2

1𝑥
𝜓2𝑥𝑥𝑥𝜓

2

1
𝑥
4

− 144𝜓
2

1𝑥
𝜓2𝑥𝑥𝜓

2

1
𝑥
3
− 72𝜓

2

1𝑥
𝜓2𝑥𝜓
2

1
𝑥
2

+ 32𝜓1𝑥𝜓2𝑥𝑥𝑥𝑥𝜓
3

1
𝑥
4
+ 192𝜓1𝑥𝜓2𝑥𝑥𝜓

3

1
𝑥
3

+ 288𝜓1𝑥𝜓2𝑥𝑥𝜓
3

1
𝑥
2
+ 96𝜓1𝑥𝜓2𝑥𝜓

3

1
𝑥

− 64𝜓2𝑥𝑥𝑥𝑥𝜓
4

1
𝑥
3
− 192𝜓2𝑥𝑥𝑥𝜓

4

1
𝑥
2

−192𝜓2𝑥𝑥𝜓
4

1
𝑥 − 48𝜓2𝑥𝜓

4

1
))

× (32𝜓
4

1
𝑥
4
)
−1

(64)

𝜓 =

(𝜓1𝑦
2
+ 2𝜓2)

2
.

(65)

Since 𝜑𝑦 = 0, then one can take the simplest solution

𝜑 = 𝑥. (66)

Thus, (62) becomes 𝜓1𝑥𝑥 − 2𝜓1 = 0; the solution for this
equation is

𝜓1 = 𝐶𝑥
2
. (67)

Choosing 𝐶 = 2, we have

𝜓1 = 2𝑥
2
. (68)

This solution satisfied (63). Equation (64) becomes

𝜓2𝑥𝑥𝑥𝑥𝑥 = 0. (69)

Choosing the particular solution

𝜓2 = 0. (70)

Hence (65) is in the form

𝜓 = 𝑥
2
𝑦
2
. (71)

So one obtains the linearizing transformation

𝑡 = 𝑥, 𝑢 = 𝑥
2
𝑦
2
. (72)

Thus, the nonlinear equation (60) can be mapped by trans-
formation of (72) into the linear equation 𝑢(5)(𝑡) = 0. Next,
we will find the solution of (60). Since

𝑢
(5)
(𝑡) = 0, (73)

then we get the general solution

𝑢 (𝑡) = 𝐶0

𝑡
4

24
+ 𝐶1

𝑡
3

6
+ 𝐶2

𝑡
2

2
+ 𝐶3𝑡 + 𝐶4,

(74)

where 𝐶0, 𝐶1, 𝐶2, 𝐶3, and 𝐶4 are arbitrary constants. Substi-
tuting (72) into (74) we get

𝑥
2
𝑦
2
= 𝐶0

𝑥
4

24
+ 𝐶1

𝑥
3

6
+ 𝐶2

𝑥
2

2
+ 𝐶3𝑥 + 𝐶4.

(75)

Example 2. Consider the nonlinear ordinary differential equ-
ation

16𝑦
4
𝑦
(5)
− 40 (𝑦

3
𝑦
󸀠
+ 4𝑦
4
) 𝑦
(4)

− 40 (2𝑦
3
𝑦
󸀠󸀠
− 3𝑦
2
𝑦
󸀠2
− 8𝑦
3
𝑦
󸀠
− 14𝑦

4
) 𝑦
󸀠󸀠󸀠

+ 60 (3𝑦
󸀠
𝑦
2
+ 4𝑦
3
) 𝑦
󸀠󸀠2

− 20 (15𝑦𝑦
󸀠3
+ 36𝑦

2
𝑦
󸀠2
+ 42𝑦

3
𝑦
󸀠
+ 40𝑦

4
) 𝑦
󸀠󸀠

× 105𝑦
󸀠5
+ 300𝑦𝑦

󸀠4
+ 420𝑦

2
𝑦
󸀠3

+ 400𝑦
3
𝑦
󸀠2
+ 384y4𝑦󸀠 = 0.

(76)

It is an equation of the form equation (8) with the coefficients

𝐴1 =
−5

2𝑦
, 𝐴0 = −10, 𝐵3 =

−5

𝑦
,

𝐵2 =
15

2𝑦
2
, 𝐵1 =

20

𝑦
, 𝐵0 = 35,

𝐶1 =
45

4𝑦
2
, 𝐶0 =

15

𝑦
, 𝐷3 =

−75

4𝑦
3
,

𝐷2 =
−45

𝑦
2
, 𝐷1 =

−105

2𝑦
, 𝐷0 = −50,

𝐸5 =
105

16𝑦
4
, 𝐸4 =

75

4𝑦
3
, 𝐸3 =

105

4𝑦
2
,

𝐸2 =
25

𝑦
, 𝐸1 = 24, 𝐸0 = 0,

𝜔1 =
1

√𝑦
, 𝜔2 = 2√𝑦,

𝜇1 = 0, 𝜇2 =
−288000

𝑦
2

, 𝜇3 =
5000

𝑦√𝑦
.

(77)

Applying Theorem 3 for checking the linearity, the coef-
ficients in (77) obey all conditions in Theorem 3, so that
one concludes that (76) is linearizable. Applying Corollary 4,
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the linearizing transformation is found by solving the follow-
ing equations:

𝜑𝑥𝑥 =
𝜑𝑥 (𝜓1𝑥 + 2𝜓1)

(2𝜓1)
, (78)

𝜓1𝑥𝑥 = 𝜓1𝑥 (5𝜓1𝑥 + 4𝜓1) , (79)

𝜓2𝑥𝑥𝑥𝑥𝑥 = (−15𝜓
4

1𝑥
𝜓2𝑥 + 120𝜓

3

1𝑥
𝜓2𝑥𝑥𝜓1

− 120𝜓
3

1𝑥
𝜓2𝑥𝜓1 − 240𝜓

2

1𝑥
𝜓2𝑥𝑥𝑥𝜓

2

1

+ 720𝜓
2

1𝑥
𝜓2𝑥𝑥𝜓

2

1
− 480𝜓

2

1𝑥
𝜓2𝑥𝜓
2

1

+ 160𝜓1𝑥𝜓2𝑥𝑥𝑥𝑥𝜓
3

1
− 960𝜓1𝑥𝜓2𝑥𝑥𝑥𝜓

3

1

+ 1760𝜓1𝑥𝜓2𝑥𝑥𝜓
3

1
− 960𝜓1𝑥𝜓2𝑥𝜓

3

1

+ 320𝜓2𝑥𝑥𝑥𝑥𝜓
4

1
− 1120𝜓2𝑥𝑥𝑥𝜓

4

1

+1600𝜓2𝑥𝑥𝜓
4

1
− 768𝜓2𝑥𝜓

4

1
)

× (32𝜓
4

1
)
−1

,

(80)

𝜓 =

(𝜓1𝑦
2
+ 2𝜓2)

2
.

(81)

From (78),
𝜑𝑥𝑥

𝜑𝑥

=
𝜓1𝑥

2𝜓1

+ 1. (82)

Taking the particular solution 𝜑 = 𝑒𝑥, then the solution of
(82) is

𝜓1 = 𝐶. (83)

Choosing 𝐶 = (1/2), we have

𝜓1 =
1

2
. (84)

This solution satisfied (79). Equation (80) becomes

𝜓2𝑥𝑥𝑥𝑥𝑥 = 10𝜓2𝑥𝑥𝑥𝑥 − 35𝜓2𝑥𝑥𝑥 + 50𝜓2𝑥𝑥 − 24𝜓2𝑥. (85)

Choosing the particular solution

𝜓2 = 0. (86)

Hence (81) is in the form

𝜓 = √𝑦. (87)

So one obtains the linearizing transformation

𝑡 = 𝑒
𝑥
, 𝑢 = √𝑦. (88)

Thus, the nonlinear equation (76) can bemapped by transfor-
mation of (88) into the linear equation 𝑢(5)(𝑡) = 0. Next, we
will find the solution of (76). Since

𝑢
(5)
(𝑡) = 0, (89)

then we get the general solution

𝑢 (𝑡) = 𝐶0

𝑡
4

24
+ 𝐶1

𝑡
3

6
+ 𝐶2

𝑡
2

2
+ 𝐶3𝑡 + 𝐶4,

(90)

where 𝐶0, 𝐶1, 𝐶2, 𝐶3, and 𝐶4 are arbitrary constants. Substi-
tuting (88) into (90) we get

√𝑦 = 𝐶0

𝑒
4𝑥

24
+ 𝐶1

𝑒
3𝑥

6
+ 𝐶2

𝑒
2𝑥

2
+ 𝐶3𝑒

𝑥
+ 𝐶4.

(91)

Appendix

Equations in Section 3

Consider

𝜇1 = 700𝐴
2

0𝑥
𝜔
5

2𝑦
𝐴0𝜔2 − 1750𝐴0𝑥𝐵0𝑥𝜔

5

2𝑦
𝜔2

+ 280𝐴0𝑥𝜔
5

2𝑦
𝐴
3

0
𝜔2 − 1050𝐴0𝑥𝜔

5

2𝑦
𝐴0𝐵0𝜔2

+ 2750𝐴0𝑥𝜔
5

2𝑦
𝐷0𝜔2 − 350𝐵0𝑥𝜔

5

2𝑦
𝐴
2

0
𝜔2

+ 875𝐵0𝑥𝜔
5

2𝑦
𝐵0𝜔2 + 1250𝐷0𝑥𝑥𝜔

5

2𝑦
𝜔2

+ 500𝐷0𝑥𝜔
5

2𝑦
𝐴0𝜔2 − 6250𝐸1𝑥𝜔

5

2𝑦
𝜔2

+ 2250000𝜔
5

2𝑥𝑦
𝜔2 − 2250000𝜔

4

2𝑥𝑦
𝜔2𝑥𝜔2𝑦

− 450000𝜔
4

2𝑥𝑦
𝜔2𝑦𝐴0𝜔2 − 4500000𝜔

3

2𝑥𝑦
𝜔2𝑥𝑥𝑦𝜔2𝑦𝜔2

+ 1125000𝜔
3

2𝑥𝑦
𝜔2𝑥𝑥𝜔

2

2𝑦

+ 450000𝜔
3

2𝑥𝑦
𝜔2𝑥𝜔
2

2𝑦
𝐴0 + 112500𝜔

3

2𝑥𝑦
𝜔
2

2𝑦
𝐵0𝜔2

+ 1125000𝜔
2

2𝑥𝑦
𝜔2𝑥𝑥𝑥𝑦𝜔

2

2𝑦
𝜔2

− 375000𝜔
2

2𝑥𝑦
𝜔2𝑥𝑥𝑥𝜔

3

2𝑦

+ 3375000𝜔
2

2𝑥𝑦
𝜔2𝑥𝑥𝑦𝜔2𝑥𝜔

2

2𝑦

+ 675000𝜔
2

2𝑥𝑦
𝜔2𝑥𝑥𝑦𝜔

2

2𝑦
𝐴0𝜔2

− 225000𝜔
2

2𝑥𝑦
𝜔2𝑥𝑥𝜔

3

2𝑦
𝐴0

− 112500𝜔
2

2𝑥𝑦
𝜔2𝑥𝜔
3

2𝑦
𝐵0

− 37500𝜔
2

2𝑥𝑦
𝜔
3

2𝑦
𝐷0𝜔2

− 187500𝜔2𝑥𝑦𝜔2𝑥𝑥𝑥𝑥𝑦𝜔
3

2𝑦
𝜔2

+ 93750𝜔2𝑥𝑦𝜔2𝑥𝑥𝑥𝑥𝜔
4

2𝑦

− 750000𝜔2𝑥𝑦𝜔2𝑥𝑥𝑥𝑦𝜔2𝑥𝜔
3

2𝑦

− 150000𝜔2𝑥𝑦𝜔2𝑥𝑥𝑥𝑦𝜔
3

2𝑦
𝐴0𝜔2

+ 75000𝜔2𝑥𝑦𝜔2𝑥𝑥𝑥𝜔
4

2𝑦
𝐴0

+ 1687500𝜔2𝑥𝑦𝜔
2

2𝑥𝑥𝑦
𝜔
2

2𝑦
𝜔2

− 1125000𝜔2𝑥𝑦𝜔2𝑥𝑥𝑦𝜔2𝑥𝑥𝜔
3

2𝑦

− 450000𝜔2𝑥𝑦𝜔2𝑥𝑥𝑦𝜔2𝑥𝜔
3

2𝑦
𝐴0

− 112500𝜔2𝑥𝑦𝜔2𝑥𝑥𝑦𝜔
3

2𝑦
𝐵0𝜔2

+ 56250𝜔2𝑥𝑦𝜔2𝑥𝑥𝜔
4

2𝑦
𝐵0
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+ 37500𝜔2𝑥𝑦𝜔2𝑥𝜔
4

2𝑦
𝐷0

+ 18750𝜔2𝑥𝑦𝜔
4

2𝑦
𝐸1𝜔2

+ 18750𝜔2𝑥𝑥𝑥𝑥𝑥𝑦𝜔
4

2𝑦
𝜔2

− 18750𝜔2𝑥𝑥𝑥𝑥𝑥𝜔
5

2𝑦

+ 93750𝜔2𝑥𝑥𝑥𝑥𝑦𝜔2𝑥𝜔
4

2𝑦

+ 18750𝜔2𝑥𝑥𝑥𝑥𝑦𝜔
4

2𝑦
𝐴0𝜔2

− 18750𝜔2𝑥𝑥𝑥𝑥𝜔
5

2𝑦
𝐴0

− 375000𝜔2𝑥𝑥𝑥𝑦𝜔2𝑥𝑥𝑦𝜔
3

2𝑦
𝜔2

+ 187500𝜔2𝑥𝑥𝑥𝑦𝜔2𝑥𝑥𝜔
4

2𝑦

+ 75000𝜔2𝑥𝑥𝑥𝑦𝜔2𝑥𝜔
4

2𝑦
𝐴0

+ 18750𝜔2𝑥𝑥𝑥𝑦𝜔
4

2𝑦
𝐵0𝜔2

+ 187500𝜔2𝑥𝑥𝑥𝜔2𝑥𝑥𝑦𝜔
4

2𝑦

− 18750𝜔2𝑥𝑥𝑥𝜔
5

2𝑦
𝐵0

− 562500𝜔
2

2𝑥𝑥𝑦
𝜔2𝑥𝜔
3

2𝑦

− 112500𝜔
2

2𝑥𝑥𝑦
𝜔
3

2𝑦
𝐴0𝜔2

+ 112500𝜔2𝑥𝑥𝑦𝜔2𝑥𝑥𝜔
4

2𝑦
𝐴0

+ 56250𝜔2𝑥𝑥𝑦𝜔2𝑥𝜔
4

2𝑦
𝐵0

+ 18750𝜔2𝑥𝑥𝑦𝜔
4

2𝑦
𝐷0𝜔2

− 18750𝜔2𝑥𝑥𝜔
5

2𝑦
𝐷0

− 18750𝜔2𝑥𝜔
5

2𝑦
𝐸1 + 18750𝜔

6

2𝑦
𝐸0

+ 28𝜔
5

2𝑦
𝐴
5

0
𝜔2 − 210𝜔

5

2𝑦
𝐴
3

0
𝐵0𝜔2

+ 550𝜔
5

2𝑦
𝐴
2

0
𝐷0𝜔2 + 350𝜔

5

2𝑦
𝐴0𝐵
2

0
𝜔2

− 1250𝜔
5

2𝑦
𝐴0𝐸1𝜔2 − 1250𝜔

5

2𝑦
𝐵0𝐷0𝜔2,

𝜇2 = −3200𝐴
2

0𝑥
𝜔
4

2𝑦
− 18000𝐴0𝑥𝜔

2

2𝑥𝑦
𝜔
2

2𝑦

− 2400𝐴0𝑥𝜔2𝑥𝑦𝜔
3

2𝑦
𝐴0 − 2000𝐴0𝑥𝜔

4

2𝑦
𝐴
2

0

+ 5600𝐴0𝑥𝜔
4

2𝑦
𝐵0 + 12000𝐵0𝑥𝜔2𝑥𝑦𝜔

3

2𝑦

− 4000𝐷0𝑥𝜔
4

2𝑦
− 5625𝜔

4

2𝑥𝑦

+ 4500𝜔
3

2𝑥𝑦
𝜔2𝑦𝐴0 − 4950𝜔

2

2𝑥𝑦
𝜔
2

2𝑦
𝐴
2

0

+ 9000𝜔
2

2𝑥𝑦
𝜔
2

2𝑦
𝐵0 − 300𝜔2𝑥𝑦𝜔

3

2𝑦
𝐴
3

0

+ 3600𝜔2𝑥𝑦𝜔
3

2𝑦
𝐴0𝐵0 − 12000𝜔2𝑥𝑦𝜔

3

2𝑦
𝐷0

− 281𝜔
4

2𝑦
𝐴
4

0
+ 1480𝜔

4

2𝑦
𝐴
2

0
𝐵0

− 800𝜔
4

2𝑦
𝐴0𝐷0 − 2000𝜔

4

2𝑦
𝐵
2

0
+ 8000𝜔

4

2𝑦
𝐸1,

𝜇3 = 400𝐴0𝑥𝜔2𝑥𝑦𝜔
2

2𝑦
− 100𝐵0𝑥𝜔

3

2𝑦

+ 375𝜔
3

2𝑥𝑦
− 225𝜔

2

2𝑥𝑦
𝜔2𝑦𝐴0

+ 125𝜔2𝑥𝑦𝜔
2

2𝑦
𝐴
2

0
− 200𝜔2𝑥𝑦𝜔

2

2𝑦
𝐵0

− 3𝜔
3

2𝑦
𝐴
3

0
− 20𝜔

3

2𝑦
𝐴0𝐵0 + 100𝜔

3

2𝑦
𝐷0.
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