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The paper studies sampled-data consensus for nonlinear multiagent dynamical systems. A distributed linear reliable consensus
protocol is designed, where probabilistic actuators with different failure rates and random network-induced delay are considered.
Based on the input delay approach, a new distribution-based fault multiagent system model with random delay is proposed. By
using the stochastic analysis technique and Kronecker product properties, some consensus conditions are derived in terms of
linear matrix inequalities, and the solvability of derived conditions depends on not only the failure rate of the actuator but also on
the probability of the delay. Finally, a numerical example is provided to demonstrate the effectiveness of the obtained theoretical
results.

1. Introduction

In recent years, distributed coordination of multiagent sys-
tems has received increasing attention due to its potential
applications, such as control of distributed sensor networks,
unmanned-air-vehicle formations, satellite clusters, and so
on [1–4]. As one of the fundamental and important issues
in the area of cooperative control, the consensus problem in
multiagent systems has been the hot and significant topic [5–
13].

In many engineering applications, on the one hand, with
the rapid development of computer hardware, only sampled
data is used for the implementation of digital sensors, filters,
and controllers. On the other hand, it is quite difficult to
measure the continuous information transmission due to
the capability of transmission bandwidth of networks; thus,
it is more practical to apply sampled-data control, and the
sampled-data control technology has shown more and more
superiority over other control approaches. In particular, a
new approach to dealwith the sampled-data control problems
has been proposed in [14–18]; the sampling period has been
converted into a time-varying bounded delay. Based on this
method, recently, many results have been established for
the consensus in multiagent systems with sampled data. For
example, in [19], the average consensus problem is considered

for a class of first-order multiagent systems sampled-data
communications; the consensus can be achieved by choosing
the appropriate sampling interval. In [11, 20], some necessary
and sufficient conditions are derived for consensus of mul-
tiagent systems with a fixed directed topology and periodic
sampling. The consensus is also discussed for multiagent
systems with sampled control by using zero-order holds or
direction [21–24]. In [21], the sampled-data coordination
algorithms are given for double-integrator dynamics, where
the first algorithm guarantees that a team of vehicles achieves
coordination on their positions with a zero final velocity
and the second algorithm guarantees that a team of vehicles
achieves coordination on their positions with a constant final
velocity. The consensus problems for second-order agents
in [22] are discussed in sampled-data setting, where the
sampling period of each agent is independent of the others.
Second-order sampled-data consensus problems are studied
in [23, 24]; the sampled position and velocity data are used
in [23] to design the consensus protocol, but, in [24], only
the sampled position data is utilized. It is well known that the
agent needs to exchange the informationwith their neighbors
by an interconnected network to accomplish some specific
tasks. Hence, the wireless sensor networks play a critical
role for information exchange, and in practice the sensor
might be destroyed, subjected to external attacks, and fail to
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communicate with its neighbors; the reliability and robust-
ness of multiagent systems might become weaker than before
[25, 26]. To describe the actuator fault, a Bernoulli distributed
variable is employed to investigate themissingmeasurements
[27, 28], which takes the value 0 to mean complete sensor
failure and 1 to mean completely normal. Later, a more
general random variable taking in [0, 1] is introduced in [29–
31], when taking value in (0, 1) means the partial failure of
the sensors. It should be pointed out that in most existing
references concerning the multiagent systems, the related
results have been obtained only by using the information of
the variation range of the delay; however, in practice, the
distribution of the delay is not uniform, the probability of the
delay taking values in a long rangemay be very small [30–32].
This phenomenonmotivates us to investigate the effect of the
system performance. Unfortunately, up to now, by employing
the distribution information of the time delay, designing the
reliable consensus control algorithms by using the sampled
data has not been investigated, and the purpose of this paper
is to close this gap.

The main contributions of this paper can be summarized
as follows. (1) A distributed linear reliable sampled-data
consensus protocol is designed, where the actuator fault and
random network-induced delay are considered. (2) A more
generalized random variable is introduced for describing the
different conditions of actuator fault; these conditions contain
the case of complete failure, partial failure, complete normal,
and measurements distortion. (3) The solvability of derived
conditions depends on not only the size of the delay (the
sampling period), but also on taking values of failure rates of
the actuator fault.

Motivated by the above analysis, sampled-data consensus
for nonlinear multiagent dynamical systems is investigated.
A distributed linear reliable consensus protocol is designed,
where probabilistic actuator and random delay are consid-
ered. Based on the input delay approach, some consensus
conditions are derived in terms of linear matrix inequali-
ties, containing the information of the actuator fault and
random delay, the maximum sampling period (the delay)
can be obtained. Finally, a numerical example is provided
to demonstrate the effectiveness of the obtained theoretical
results.

The rest of this paper is organized as follows. In Section 2,
problem formulation and preliminaries are briefly outlined.
In Section 3, main results are derived in the form of LMIs.
In Section 4, a simulation example is provided to show the
advantages of the obtained results, and some conclusions are
drawn in Section 5.

Notation. The notation used in the paper is fairly standard.
R𝑛 denotes the 𝑛-dimensional Euclidean space and R𝑛×𝑚 is
a set of real 𝑛 × 𝑚 matrices. The notation 𝑋 > 0 (resp., 𝑋 <

0), for 𝑋 ∈ R𝑛×𝑛, means that the matrix 𝑋 is real symmetric
positive definite (resp., negative definite). diag{⋅ ⋅ ⋅ } stands for
a block-diagonal matrix. ‖ ⋅ ‖ denotes the Euclidean norm
inR𝑛. The superscript “𝑇” stands for matrix transposition. 𝐼

𝑛

denotes 𝑛 × 𝑛 identity matrix. 𝐸{⋅} stands for mathematical
expectation. The Kronecker product of matrices 𝑄 ∈ R𝑚×𝑛

and 𝑅 ∈ R𝑝×𝑞 is a matrix in R𝑚𝑝×𝑛𝑞 denoted as 𝑄 ⊗ 𝑅. In this

paper, if not explicitly stated, matrices are assumed to have
compatible dimensions.

2. Problem Formulation and Preliminaries

Consider the following nonlinear multiagent dynamical sys-
tems consisting of 𝑁 agents

�̇� (𝑡) = 𝐴𝑥
𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡)) + 𝑢

𝑖
(𝑡) , (𝑖 = 1, 2, . . . , 𝑁) , (1)

where 𝑥
𝑖
(𝑡) ∈ R𝑛 is the position state vector of the 𝑖th agent.

𝑓(⋅) ∈ R𝑛 is an unknown but sector-bounded nonlinear vec-
tor function to describe the time-varying nonlinear dynamics
of agent 𝑖 and 𝑢

𝑖
(𝑡) ∈ R𝑛 is the control input. In this paper,

control input 𝑢
𝑖
(𝑡) is sampled before entering networks based

on the sampling technique and zero-order hold circuit, and
𝑡
𝑘
are the sampling instants satisfying 0 ≤ 𝑡

0
< 𝑡
1

< ⋅ ⋅ ⋅ <

𝑡
𝑘

< ⋅ ⋅ ⋅ ; for simplicity, it is assumed that 𝑡
𝑘+1

− 𝑡
𝑘

= 𝜏, where
𝜏 > 0 is the sampling period and then the controller can be
described as

𝑢
𝑖
(𝑡) = 𝑐𝐾

𝑁

∑

𝑗=1

𝑎
𝑖𝑗

[𝑥
𝑗
(𝑡
𝑘
) − 𝑥
𝑖
(𝑡
𝑘
)]

= −𝑐𝐾

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
𝑥
𝑗
(𝑡
𝑘
) , (𝑡

𝑘
≤ 𝑡 < 𝑡

𝑘+1
) ,

(2)

where [𝑎
𝑖𝑗
]
𝑁×𝑁

is a weighted adjacency matrix, 𝑎
𝑖𝑗

= 0 if
and only if there is a connection between agent 𝑖 and agent
𝑗; otherwise 𝑎

𝑖𝑗
= 0. The Laplacian matrix 𝐿 = [𝑙

𝑖𝑗
]
𝑁×𝑁

is
defined by 𝑙

𝑖𝑖
= − ∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
𝑙
𝑖𝑗
and 𝑙
𝑖𝑗

= −𝑎
𝑖𝑗

(𝑖 ̸= 𝑗). 𝑐 is a
constant denoting the coupling strength; 𝐾 is the feedback
controller to be designed.

Let 𝜏(𝑡) = 𝑡 − 𝑡
𝑘
. Then, (2) can be rewritten as

𝑢
𝑖
(𝑡) = −𝑐𝐾

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
𝑥
𝑗
(𝑡 − 𝜏 (𝑡)) , (3)

where 0 ≤ 𝜏(𝑡) < 𝜏, 𝜏 is the upper bound of the delay 𝜏(𝑡)

which is also the sampling period.
When the actuator experiences failures, we use 𝑢

𝐹

𝑖
(𝑡) to

describe the control signal to be sent from actuator of the
neighbors; that is,

𝑢
𝐹

𝑖
(𝑡) = −𝑐Π𝐾

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
𝑥
𝑗
(𝑡 − 𝜏 (𝑡)) , (4)

where Π is a random variable taking values on the interval
[0, 𝜃], where 𝜃 ≥ 1. The mathematical expectation and
variance of Π are 𝜇 and 𝜎

2, respectively.

Remark 1. Spring by [27–31], when Π = 0, it means complete
failure of actuator. When Π = 1, it means the actuator has
good working condition. When 0 < Π < 1, it means partial
failure of the actuator. When Π > 1, it means the data
distortionwith themeasurement of the actuator is bigger than
the real measurement.
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Substituting (4) into (1), we can obtain

�̇�
𝑖
(𝑡) = 𝐴𝑥

𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡)) − 𝑐Π𝐾

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
𝑥
𝑗
(𝑡 − 𝜏 (𝑡))

= 𝐴𝑥
𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡))

− 𝑐𝜇𝐾

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
𝑥
𝑗
(𝑡 − 𝜏 (𝑡)) − 𝑐 (Π − 𝜇) 𝐾

×

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
𝑥
𝑗
(𝑡 − 𝜏 (𝑡)) .

(5)

Assumption 2. The distribution of the random networked-
induced delay can be observed; that is, there exist constants
𝜏
1
and 𝜏, where 0 ≤ 𝜏

1
≤ 𝜏, such that either 𝜏(𝑡) ∈ [0, 𝜏

1
) or

𝜏(𝑡) ∈ [𝜏
1
, 𝜏], and the probability distribution of 𝜏(𝑡) taking

values in [0, 𝜏
1
) and [𝜏

1
, 𝜏] is known a priori.

Define the following two functions and a stochastic
variable:

𝜏
1

(𝑡) = {
𝜏 (𝑡) , 𝜏 (𝑡) ∈ [0, 𝜏

1
) ,

𝜏
1
, 𝜏 (𝑡) ∈ [𝜏

1
, 𝜏] ,

𝜏
2

(𝑡) = {
𝜏 (𝑡) , 𝜏 (𝑡) ∈ [𝜏

1
, 𝜏] ,

𝜏, 𝜏 (𝑡) ∈ [0, 𝜏
1
) ,

𝛼 (𝑡) = {
1, 𝑡 ∈ {𝑡 | 𝜏 (𝑡) = 𝜏

1
(𝑡)} ,

0, 𝑡 ∈ {𝑡 | 𝜏 (𝑡) = 𝜏
2

(𝑡)} .

(6)

Assumption 3. 𝛼(𝑡) is Bernoulli distributed sequence with
𝑃{𝛼(𝑡) = 1} = 𝛼

0
and 𝑃{𝛼(𝑡) = 0} = 1 − 𝛼

0
. Then, we have

𝐸{𝛼(𝑡)} = 𝛼
0
and 𝐸{(𝛼(𝑡) − 𝛼

0
)
2

} = 𝛼
0
(1 − 𝛼

0
).

Remark 4. The Bernoulli distributed sequence is used to
describe the distribution information of the delay in [33],
which is an important characteristic of the network to affect
the system performance. Unfortunately, such kind of statis-
tical information has been utilized to design the consensus
protocol for multiagent systems.

Combining (5)-(6), the system (6) can be rewritten as

�̇�
𝑖
(𝑡) = 𝐴𝑥

𝑖
(𝑡) + 𝑓 (𝑥

𝑖
(𝑡)) − 𝑐𝛼 (𝑡) 𝜇𝐾

×

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
𝑥
𝑗
(𝑡 − 𝜏
1

(𝑡)) − 𝑐 (1 − 𝛼 (𝑡)) 𝜇𝐾

×

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
𝑥
𝑗
(𝑡 − 𝜏
2

(𝑡))

− 𝑐𝛼 (𝑡) (Π − 𝜇) 𝐾

×

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
𝑥
𝑗
(𝑡 − 𝜏
1

(𝑡)) − 𝑐 (1 − 𝛼 (𝑡)) (Π − 𝜇) 𝐾

×

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
𝑥
𝑗
(𝑡 − 𝜏
2

(𝑡)) .

(7)

By using theKronecker product of thematrices, the above
system (7) can be written in a compact form as

�̇� (𝑡) = (𝐼
𝑁

⊗ 𝐴) 𝑥 (𝑡) + 𝐹 (𝑥 (𝑡)) − 𝑐𝜇𝛼 (𝑡) (𝐿 ⊗ 𝐾) 𝑥

× (𝑡 − 𝜏
1

(𝑡)) − 𝑐𝜇 (1 − 𝛼 (𝑡)) (𝐿 ⊗ 𝐾) 𝑥 (𝑡 − 𝜏
2

(𝑡))

− 𝑐𝛼 (𝑡) (Π − 𝜇) (𝐿 ⊗ 𝐾) 𝑥 (𝑡 − 𝜏
1

(𝑡))

− 𝑐 (1 − 𝛼 (𝑡)) (Π − 𝜇) (𝐿 ⊗ 𝐾) 𝑥 (𝑡 − 𝜏
2

(𝑡)) ,

(8)

where

𝑥 (𝑡) = (𝑥
𝑇

1
(𝑡) , 𝑥
𝑇

2
(𝑡) , . . . , 𝑥

𝑇

𝑁
(𝑡))
𝑇

,

𝐹 (𝑥 (𝑡)) = (𝑓
𝑇

(𝑥
1

(𝑡)) , 𝑓
𝑇

(𝑥
2

(𝑡)) , . . . , 𝑓
𝑇

(𝑥
𝑁

(𝑡)))
𝑇

.

(9)

Before starting the main results, some definitions and
lemmas are introduced here.

Definition 5. Consensus in multiagent systems (1) is said to
be achieved if, for any initial conditions,

lim
𝑡→∞

𝐸

𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)


= 0, (𝑖, 𝑗 = 1, 2, . . . , 𝑁) . (10)

Assumption 6 (see [34]). For ∀𝑢, V ∈ R𝑛, the nonlinear func-
tion 𝑓(⋅) satisfies the following sector-bounded condition:

[𝑓 (𝑢) − 𝑓 (V) − 𝐹
1

(𝑢 − V)]𝑇 [𝑓 (𝑢) − 𝑓 (V) − 𝐹
1

(𝑢 − V)] ≤ 0,

(11)

where 𝐹
1
, 𝐹
2
are real constant matrices with 𝐹

2
− 𝐹
1

≥ 0.

Lemma 7 (see [35, 36]). Let 𝑈 = (𝑢
𝑖𝑗
)
𝑁×𝑁

, 𝑃 ∈ R𝑛×𝑛,
𝑥 = (𝑥

𝑇

1
, 𝑥
𝑇

2
, . . . , 𝑥

𝑇

𝑁
) ∈ R𝑁𝑛, where 𝑥

𝑖
= (𝑥
𝑖1

, 𝑥
𝑖2

, . . . , 𝑥in) ∈

R𝑛 and 𝑦 = (𝑦
𝑇

1
, 𝑦
𝑇

2
, . . . , 𝑦

𝑇

𝑁
) ∈ R𝑁𝑛, where 𝑦

𝑖
=

(𝑦
𝑖1

, 𝑦
𝑖2

, . . . , 𝑦
𝑖𝑛

) ∈ R𝑛. If 𝑈 = 𝑈
𝑇 and each row sum of 𝑈

is zero, then

𝑥
𝑇

(𝑈 ⊗ 𝑃) 𝑦 = ∑

1≤𝑖<𝑗≤𝑁

𝑢
𝑖𝑗

(𝑥
𝑖
− 𝑥
𝑗
) 𝑃 (𝑦

𝑖
− 𝑦
𝑗
) . (12)

Lemma 8 (see [33]). 𝑄
1𝑖

, 𝑄
2𝑖

(𝑖 = 1, 2) and 𝑄 are some
constant matrices of appropriate dimensions; 𝜏

𝑖
(𝑡) (𝑖 = 1, 2)

satisfies 0 ≤ 𝜏
1
(𝑡) ≤ 𝜏

1
≤ 𝜏
2
(𝑡) ≤ 𝜏

2
. Then,

𝑄 + [𝜏
1

(𝑡) 𝑄
11

+ (𝜏
1

− 𝜏
1

(𝑡)) 𝑄
21

]

+ [(𝜏
2

(𝑡) − 𝜏
1
) 𝑄
12

+ (𝜏
2

− 𝜏
2

(𝑡)) 𝑄
22

] < 0

(13)
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if and only if

𝑄 + 𝜏
1
𝑄
11

+ (𝜏
2

− 𝜏
1
) 𝑄
12

< 0,

𝑄 + 𝜏
1
𝑄
11

+ (𝜏
2

− 𝜏
1
) 𝑄
22

< 0,

𝑄 + 𝜏
1
𝑄
21

+ (𝜏
2

− 𝜏
1
) 𝑄
12

< 0,

𝑄 + 𝜏
1
𝑄
21

+ (𝜏
2

− 𝜏
1
) 𝑄
22

< 0.

(14)

Lemma 9 (see [35, 36]). Let 𝑓(⋅) be a nonnegative function
defined on [0, +∞). If 𝑓(⋅) is Lebesgue integrable and is
uniformly continuous on [0, +∞), then lim

𝑡→∞
𝑓(𝑡) = 0.

3. Main Results

In this section, we will deal with sampled-data consensus for
nonlinear multiagent dynamical systems via reliable control.

Theorem 10. For given some positive scalars 𝜏 > 𝜏
1

> 0, 𝛼
0

>

0, 𝜇 > 0, 𝑐 > 0 and the feedback gain matrix 𝐾, consensus
in system (1) is achieved if there exist appropriate dimensional
matrices 𝑃 > 0, 𝑄

𝑖
> 0, 𝑅

𝑖
> 0 (𝑖 = 1, 2) and 𝑌

𝑖
, 𝑀
𝑖
, 𝑇
𝑖
,

𝑆
𝑖

(𝑖 = 1, 2), and a positive scalar 𝛼 > 0, such that the following
LMIs hold:

[
Σ
11

Σ
(𝑙)

12

∗ Σ
22

] < 0, (1 ≤ 𝑖 < 𝑗 ≤ 𝑁; 𝑙 = 1, 2, 3, 4) , (15)

where

Σ
11

=

[
[
[
[
[
[
[

[

Σ
11

Σ
12

Σ
13

0 Σ
15

0

∗ Σ
22

0 0 0 0

∗ ∗ Σ
33

Σ
34

0 0

∗ ∗ ∗ Σ
44

Σ
45

0

∗ ∗ ∗ ∗ Σ
55

Σ
56

∗ ∗ ∗ ∗ ∗ Σ
66

]
]
]
]
]
]
]

]

,

Σ
(1)

12
= [

0 0 √𝜏
1
𝑀
𝑇

1
√𝜏
1
𝑀
𝑇

2
0 0

0 0 0 0 √(𝜏 − 𝜏
1
)𝑆
𝑇

1
√(𝜏 − 𝜏

1
)𝑆
𝑇

2

]

𝑇

,

Σ
(2)

12
= [

0 0 √𝜏
1
𝑀
𝑇

1
√𝜏
1
𝑀
𝑇

2
0 0

0 0 0 √(𝜏 − 𝜏
1
)𝑇
𝑇

1
√(𝜏 − 𝜏

1
)𝑇
𝑇

2
0
]

𝑇

,

Σ
(3)

12
= [

√𝜏
1
𝑌
𝑇

1
0 √𝜏

1
𝑌
𝑇

2
0 0 0

0 0 0 0 √(𝜏 − 𝜏
1
)𝑆
𝑇

1
√(𝜏 − 𝜏

1
)𝑆
𝑇

2

]

𝑇

,

Σ
(4)

12
= [

√𝜏
1
𝑌
𝑇

1
0 √𝜏

1
𝑌
𝑇

2
0 0 0

0 0 0 √(𝜏 − 𝜏
1
)𝑇
𝑇

1
√(𝜏 − 𝜏

1
)𝑇
𝑇

2
0
]

𝑇

,

Σ
22

= diag {−𝑅
1
, −𝑅
2
} ,

Σ
11

= 𝑃𝐴 + 𝐴
𝑇

𝑃 + 𝑄
1

+ 𝑄
2

+ 𝐴
𝑇

𝑅
12

𝐴

+ 𝑌
1

+ 𝑌
𝑇

1
− 𝛼 (𝐹

𝑇

1
𝐹
2

+ 𝐹
𝑇

2
𝐹
1
) ,

Σ
12

= 𝑃 + 𝐴
𝑇

𝑅
12

+ 𝛼 (𝐹
𝑇

1
+ 𝐹
𝑇

2
) ,

Σ
13

= 𝑐𝛼
0
𝜇𝐿
𝑖𝑗
𝑃𝐾 + 𝑐𝛼

0
𝜇𝑁𝐿
𝑖𝑗
𝐴
𝑇

𝑅
12

𝐾 − 𝑌
1

+ 𝑌
𝑇

2
,

Σ
15

= 𝑐 (1 − 𝛼
0
) 𝜇𝑁𝐿

𝑖𝑗
𝑃𝐾 + 𝑐 (1 − 𝛼

0
) 𝜇𝑁𝐿

𝑖𝑗
𝐴
𝑇

𝑅
12

𝐾,

Σ
22

= 𝑅
12

− 2𝛼𝐼,

Σ
33

= − 2𝑐
2

𝛼
0

(𝜇
2

+ 𝜎
2

) 𝑁𝐿
(2)

𝑖𝑗
𝐾
𝑇

𝑅
12

𝐾

− 𝑌
2

− 𝑌
𝑇

2
+ 𝑀
1

+ 𝑀
𝑇

1
,

Σ
34

= −𝑀
1

+ 𝑀
𝑇

2
,

Σ
44

= −𝑄
1

− 𝑀
2

− 𝑀
𝑇

2
+ 𝑇
1

+ 𝑇
𝑇

1
,

Σ
45

= −𝑇
1

+ 𝑇
𝑇

2
,

Σ
55

= − 2𝑐
2

(1 − 𝛼) (𝜇
2

+ 𝜎
2

) 𝑁𝐿
(2)

𝑖𝑗
𝐾
𝑇

𝑅
12

𝐾

− 𝑇
2

− 𝑇
𝑇

2
+ 𝑆
1

+ 𝑆
𝑇

1
,

Σ
56

= −𝑆
1

+ 𝑆
𝑇

2
,

Σ
66

= −𝑄
2

− 𝑆
2

− 𝑆
𝑇

2
,

𝑅
12

= 𝜏
1
𝑅
1

+ (𝜏 − 𝜏
1
) 𝑅
2
.

(16)

Proof. Construct a Lyapunov-Krasovskii functional candi-
date as

𝑉 (𝑡, 𝑥
𝑡
) = 𝑉
1

(𝑡, 𝑥
𝑡
) + 𝑉
2

(𝑡, 𝑥
𝑡
) + 𝑉
3

(𝑡, 𝑥
𝑡
) , (17)

where

𝑉
1

(𝑡, 𝑥
𝑡
) = 𝑥
𝑇

(𝑡) (𝑈 ⊗ 𝑃) 𝑥 (𝑡) ,

𝑉
2

(𝑡, 𝑥
𝑡
) = ∫

𝑡

𝑡−𝜏
1

𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑄
1
) 𝑥 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏

𝑥
𝑇

(𝑠) (𝑈 ⊗ 𝑄
2
) 𝑥 (𝑠) 𝑑𝑠,

𝑉
3

(𝑡, 𝑥
𝑡
) = ∫

𝑡

𝑡−𝜏
1

∫

𝑡

𝑠

�̇�
𝑇

(V) (𝑈 ⊗ 𝑅
1
) �̇� (V) 𝑑V 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏

∫

𝑡

𝑠

�̇�
𝑇

(V) (𝑈 ⊗ 𝑅
3
) �̇� (V) 𝑑V 𝑑𝑠,

(18)

where 𝑃, 𝑄
𝑖
, 𝑅
𝑖

> 0 (𝑖 = 1, 2) are some matrices to be
determined and

𝑈 =

[
[
[
[
[
[

[

𝑁 − 1 −1 −1 ⋅ ⋅ ⋅ −1

−1 𝑁 − 1 −1 ⋅ ⋅ ⋅ −1

−1 −1 𝑁 − 1 ⋅ ⋅ ⋅ −1

...
...

... d
...

−1 −1 −1 ⋅ ⋅ ⋅ 𝑁 − 1

]
]
]
]
]
]

]

. (19)

The infinitesimal operatorL of 𝑉(𝑡, 𝑥
𝑡
) is defined as

L𝑉 (𝑡, 𝑥
𝑡
) = lim
Δ→0

+

𝐸 {{𝑉 (𝑡 + Δ, 𝑥
𝑡+Δ

) | 𝑥
𝑡
} − 𝑉 (𝑡, 𝑥

𝑡
)}

Δ
.

(20)
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Calculating the derivative of 𝑉
𝑖
(𝑡, 𝑥
𝑡
) (𝑖 = 1, 2, 3) along

the trajectories of system (8), we have

L𝑉
1

(𝑡, 𝑥
𝑡
) = 2𝑥

𝑇

(𝑡) (𝑈 ⊗ 𝑃)

× [(𝐼
𝑁

⊗ 𝐴) 𝑥 (𝑡) + 𝐹 (𝑥 (𝑡))

− 𝑐𝛼
0
𝜇 (𝐿 ⊗ 𝐾) 𝑥 (𝑡 − 𝜏

1
(𝑡))

−𝑐 (1 − 𝛼
0
) 𝜇 (𝐿 ⊗ 𝐾) 𝑥 (𝑡 − 𝜏

2
(𝑡))]

= 2𝑥
𝑇

(𝑡) (𝑈 ⊗ 𝑃𝐴) 𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) (𝑈 ⊗ 𝑃) 𝐹 (𝑥 (𝑡))

− 2𝑐𝛼
0
𝜇𝑥
𝑇

(𝑡) (𝑈𝐿 ⊗ 𝑃𝐾) 𝑥 (𝑡 − 𝜏
1

(𝑡))

− 2𝑐 (1 − 𝛼
0
) 𝜇𝑥
𝑇

(𝑡) (𝑈𝐿 ⊗ 𝑃𝐾) 𝑥 (𝑡 − 𝜏
2

(𝑡)) ,

L𝑉
2

(𝑡, 𝑥
𝑡
) = 𝑥
𝑇

(𝑡) [(𝑈 ⊗ 𝑄
1
) + (𝑈 ⊗ 𝑄

2
)] 𝑥 (𝑡)

− 𝑥
𝑇

(𝑡 − 𝜏
1
) (𝑈 ⊗ 𝑄

1
) 𝑥 (𝑡 − 𝜏

1
)

− 𝑥
𝑇

(𝑡 − 𝜏) (𝑈 ⊗ 𝑄
2
) 𝑥 (𝑡 − 𝜏) ,

L𝑉
3

(𝑡, 𝑥
𝑡
)

= �̇�
𝑇

(𝑡) [𝜏
1

(𝑈 ⊗ 𝑅
1
) + (𝜏 − 𝜏

1
)

× (𝑈 ⊗ 𝑅
2
)] �̇� (𝑡)

− ∫

𝑡

𝑡−𝜏
1

�̇�
𝑇

(𝑠) (𝑈 ⊗ 𝑅
1
) �̇� (𝑠) 𝑑𝑠

− ∫

𝑡−𝜏
1

𝑡−𝜏

�̇�
𝑇

(𝑠) (𝑈 ⊗ 𝑅
2
) �̇� (𝑠) 𝑑𝑠.

(21)

Denoting 𝑅
12

= 𝜏
1
𝑅
1

+ (𝜏 − 𝜏
1
)𝑅
2
, then 𝜏

1
(𝑈 ⊗ 𝑅

1
) + (𝜏 −

𝜏
1
)(𝑈 ⊗ 𝑅

2
) = 𝑈 ⊗ 𝑅

12
, and recalling (8), we can obtain

𝐸 {�̇�
𝑇

(𝑡) (𝑈 ⊗ 𝑅
12

) �̇� (𝑡)}

= 𝐸 {𝑥
𝑇

(𝑡) (𝐼
𝑁

⊗ 𝐴)
𝑇

(𝑈 ⊗ 𝑅
12

) (𝐼
𝑁

⊗ 𝐴) 𝑥 (𝑡)

+ 𝐹
𝑇

(𝑥 (𝑡)) (𝑈 ⊗ 𝑅
12

) 𝐹 (𝑥 (𝑡))

+ 𝑐
2

𝛼
0
𝜇
2

𝑥
𝑇

(𝑡 − 𝜏
1

(𝑡)) (𝐿 ⊗ 𝐾)
𝑇

× (𝑈 ⊗ 𝑅
12

) (𝐿 ⊗ 𝐾) 𝑥 (𝑡 − 𝜏
1

(𝑡))

+ 𝑐
2

(1 − 𝛼
0
) 𝜇
2

𝑥
𝑇

(𝑡 − 𝜏
2

(𝑡)) (𝐿 ⊗ 𝐾)
𝑇

× (𝑈 ⊗ 𝑅
12

) (𝐿 ⊗ 𝐾) 𝑥 (𝑡 − 𝜏
2

(𝑡))

+ 𝑐
2

𝛼
0
(𝜋 − 𝜇)

2

𝑥
𝑇

(𝑡 − 𝜏
1

(𝑡)) (𝐿 ⊗ 𝐾)
𝑇

× (𝑈 ⊗ 𝑅
12

) (𝐿 ⊗ 𝐾) 𝑥 (𝑡 − 𝜏
1

(𝑡))

+ 𝑐
2

(1 − 𝛼
0
) (𝜋 − 𝜇)

2

𝑥
𝑇

(𝑡 − 𝜏
2

(𝑡)) (𝐿 ⊗ 𝐾)
𝑇

× (𝑈 ⊗ 𝑅
12

) (𝐿 ⊗ 𝐾) 𝑥 (𝑡 − 𝜏
2

(𝑡))

− 2𝑥
𝑇

(𝑡) (𝐼
𝑁

⊗ 𝐴)
𝑇

(𝑈 ⊗ 𝑅
12

)

× [𝑐𝛼
0
𝜇 (𝐿 ⊗ 𝐾) 𝑥 (𝑡 − 𝜏

1
(𝑡))

+𝑐 (1 − 𝛼
0
) 𝜇 (𝐿 ⊗ 𝐾) 𝑥 (𝑡 − 𝜏

2
(𝑡))]}

= 𝑥
𝑇

(𝑡) (𝑈 ⊗ 𝐴
𝑇

𝑅
12

𝐴) 𝑥 (𝑡)

+ 𝐹
𝑇

(𝑥 (𝑡)) (𝑈 ⊗ 𝑅
12

) 𝐹 (𝑥 (𝑡))

+ 𝑐
2

𝛼
0
𝜇
2

𝑥
𝑇

(𝑡 − 𝜏
1

(𝑡))

× [(𝐿
𝑇

𝑈𝐿) ⊗ (𝐾
𝑇

𝑅
12

𝐾)] 𝑥 (𝑡 − 𝜏
1

(𝑡))

+ 𝑐
2

𝛼
0
𝜎
2

𝑥
𝑇

(𝑡 − 𝜏
1

(𝑡))

× [(𝐿
𝑇

𝑈𝐿) ⊗ (𝐾
𝑇

𝑅
12

𝐾)] 𝑥 (𝑡 − 𝜏
1

(𝑡))

+ 𝑐
2

(1 − 𝛼
0
) 𝜎
2

𝑥
𝑇

(𝑡 − 𝜏
2

(𝑡))

× [(𝐿
𝑇

𝑈𝐿) ⊗ (𝐾
𝑇

𝑅
12

𝐾)] 𝑥 (𝑡 − 𝜏
2

(𝑡))

+ 2𝑥
𝑇

(𝑡) (𝑈 ⊗ 𝐴
𝑇

𝑅
12

) 𝐹 (𝑥 (𝑡))

− 2𝑐𝛼
0
𝜇𝑥
𝑇

(𝑡) (𝑈𝐿 ⊗ 𝐴
𝑇

𝑅
12

𝐾) 𝑥 (𝑡 − 𝜏
1

(𝑡))

− 2𝑐 (1 − 𝛼
0
) 𝜇𝑥
𝑇

(𝑡) (𝑈𝐿 ⊗ 𝐴
𝑇

𝑅
12

𝐾) 𝑥 (𝑡 − 𝜏
2

(𝑡)) .

(22)

Employing the free matrix method, we have

2𝜉
𝑇

(𝑡) (𝑈 ⊗ 𝑌) [𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏
1

(𝑡))

− ∫

𝑡

𝑡−𝜏
1(𝑡)

�̇� (𝑠) 𝑑𝑠] = 0,

2𝜉
𝑇

(𝑡) (𝑈 ⊗ 𝑀) [𝑥 (𝑡 − 𝜏
1

(𝑡)) − 𝑥 (𝑡 − 𝜏
1
)

− ∫

𝑡−𝜏
1
(𝑡)

𝑡−𝜏
1

�̇� (𝑠) 𝑑𝑠] = 0,

2𝜉
𝑇

(𝑡) (𝑈 ⊗ 𝑇) [𝑥 (𝑡 − 𝜏
1
) − 𝑥 (𝑡 − 𝜏

2
(𝑡))

− ∫

𝑡−𝜏
1

𝑡−𝜏
2(𝑡)

�̇� (𝑠) 𝑑𝑠] = 0,

(23)

2𝜉
𝑇

(𝑡) (𝑈 ⊗ 𝑆) [𝑥 (𝑡 − 𝜏
2

(𝑡)) − 𝑥 (𝑡 − 𝜏)

− ∫

𝑡−𝜏
2
(𝑡)

𝑡−𝜏

�̇� (𝑠) 𝑑𝑠] = 0,

(24)

where

𝜉
𝑇

(𝑡) = [𝑥
𝑇
(𝑡) 𝐹

𝑇
(𝑥 (𝑡)) 𝑥

𝑇
(𝑡−𝜏
1 (𝑡)) 𝑥

𝑇
(𝑡−𝜏
1
) 𝑥
𝑇
(𝑡 −𝜏
2 (𝑡)) 𝑥

𝑇
(𝑡−𝜏)] ,

𝑌
𝑇

= [𝑌
𝑇

1
0 𝑌
𝑇

2
0 0 0] ,
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𝑀
𝑇

= [0 0 𝑀
𝑇

1
𝑀
𝑇

2
0 0] ,

𝑇
𝑇

= [0 0 0 𝑇
𝑇

1
𝑇
𝑇

2
0] ,

𝑆
𝑇

= [0 0 0 0 𝑆
𝑇

1
𝑆
𝑇

2
] .

(25)

It can be shown from (23) that there exist𝑅
𝑖
> 0 (𝑖 = 1, 2),

such that

− 2𝜉
𝑇

(𝑡) (𝑈 ⊗ 𝑌) ∫

𝑡

𝑡−𝜏
1(𝑡)

�̇� (𝑠) 𝑑𝑠

≤ 𝜏
1

(𝑡) 𝜉
𝑇

(𝑡) (𝑈 ⊗ 𝑌) (𝑈 ⊗ 𝑅
1
)
−1

(𝑈 ⊗ 𝑌)
𝑇

𝜉 (𝑡)

+ ∫

𝑡

𝑡−𝜏
1(𝑡)

�̇�
𝑇

(𝑠) (𝑈 ⊗ 𝑅
1
) �̇� (𝑠) 𝑑𝑠,

− 2𝜉
𝑇

(𝑡) (𝑈 ⊗ 𝑀) ∫

𝑡−𝜏
1
(𝑡)

𝑡−𝜏
1

�̇� (𝑠) 𝑑𝑠

≤ (𝜏
1

− 𝜏
1

(𝑡)) 𝜉
𝑇

(𝑡) (𝑈 ⊗ 𝑀) (𝑈 ⊗ 𝑅
1
)
−1

× (𝑈 ⊗ 𝑀)
𝑇

𝜉 (𝑡) + ∫

𝑡−𝜏
1
(𝑡)

𝑡−𝜏
1

�̇�
𝑇

(𝑠) (𝑈 ⊗ 𝑅
1
) �̇� (𝑠) 𝑑𝑠,

− 2𝜉
𝑇

(𝑡) (𝑈 ⊗ 𝑇) ∫

𝑡−𝜏
1

𝑡−𝜏
2(𝑡)

�̇� (𝑠) 𝑑𝑠

≤ (𝜏
2

(𝑡) − 𝜏
1
) 𝜉
𝑇

(𝑡) (𝑈 ⊗ 𝑇) (𝑈 ⊗ 𝑅
2
)
−1

× (𝑈 ⊗ 𝑇)
𝑇

𝜉 (𝑡) + ∫

𝑡−𝜏
1

𝑡−𝜏
2(𝑡)

�̇�
𝑇

(𝑠) (𝑈 ⊗ 𝑅
2
) �̇� (𝑠) 𝑑𝑠,

− 2𝜉
𝑇

(𝑡) (𝑈 ⊗ 𝑆) ∫

𝑡−𝜏
2
(𝑡)

𝑡−𝜏

�̇� (𝑠) 𝑑𝑠

≤ (𝜏 − 𝜏
2

(𝑡)) 𝜉
𝑇

(𝑡) (𝑈 ⊗ 𝑆) (𝑈 ⊗ 𝑅
2
)
−1

(𝑈 ⊗ 𝑆)
𝑇

𝜉 (𝑡)

+ ∫

𝑡−𝜏
2
(𝑡)

𝑡−𝜏

�̇�
𝑇

(𝑠) (𝑈 ⊗ 𝑅
2
) �̇� (𝑠) 𝑑𝑠.

(26)

For ∀𝛼 > 0, it can be derived from Assumption 6 that

− 𝛼[
𝑥 (𝑡)

𝐹 (𝑥 (𝑡))
]

𝑇

× [
𝑈 ⊗ (𝐹

𝑇

1
𝐹
2

+ 𝐹
𝑇

2
𝐹
1
) −𝑈 ⊗ (𝐹

𝑇

1
+ 𝐹
𝑇

2
)

−𝑈 ⊗ (𝐹
1

+ 𝐹
2
) 2 (𝑈 ⊗ 𝐼)

]

× [
𝑥 (𝑡)

𝐹 (𝑥 (𝑡))
] ≥ 0.

(27)

Noting 𝑈𝐿 = 𝐿𝑈 = 𝑁𝐿, based on the properties of the
Kronecker, we can obtain 𝐿

𝑇

𝑈𝐿 = 𝑁𝐿
𝑇

𝐿. For presentation
convenience, let 𝑥

𝑖𝑗
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥

𝑗
(𝑡), 𝑓
𝑖𝑗
(𝑡) = 𝑓(𝑥

𝑖
(𝑡)) −

𝑓(𝑥
𝑗
(𝑡)), and 𝜉

𝑖𝑗
(𝑡) = 𝜉

𝑖
(𝑡) − 𝜉

𝑗
(𝑡). Adding (23) to the right of

(20) and substituting (26) and (27) into (20), using Lemma 7,
one has

L𝑉 (𝑡, 𝑥
𝑡
)

≤ ∑

1≤𝑖<𝑗≤𝑁

{2𝑥
𝑇

𝑖𝑗
(𝑡) 𝑃𝐴𝑥

𝑖𝑗
(𝑡)

+ 2𝑥
𝑇

𝑖𝑗
(𝑡) 𝑃𝑓
𝑖𝑗

(𝑡)

+ 2𝑐𝛼
0
𝜇𝑁𝐿
𝑖𝑗
𝑥
𝑇

𝑖𝑗
𝑃𝐾𝑥
𝑖𝑗

(𝑡 − 𝜏
1

(𝑡))

+ 2𝑐 (1 − 𝛼
0
) 𝜇𝑁𝐿

𝑖𝑗
𝑥
𝑇

𝑖𝑗
𝑃𝐾𝑥
𝑖𝑗

(𝑡 − 𝜏
2

(𝑡))

+ 𝑥
𝑇

𝑖𝑗
(𝑡) (𝑄

1
+ 𝑄
2
) 𝑥
𝑖𝑗

(𝑡)

− 𝑥
𝑇

𝑖𝑗
(𝑡 − 𝜏
1
) 𝑄
1
𝑥
𝑖𝑗

(𝑡 − 𝜏
1
)

− 𝑥
𝑇

𝑖𝑗
(𝑡 − 𝜏) 𝑄

2
𝑥
𝑖𝑗

(𝑡 − 𝜏)

+ 𝑥
𝑇

𝑖𝑗
(𝑡) 𝐴
𝑇

𝑅
12

𝐴𝑥
𝑖𝑗

(𝑡)

+ 𝑓
𝑇

𝑖𝑗
(𝑡) 𝑅
12

𝑓
𝑖𝑗

(𝑡) − 2𝑐
2

𝛼
0
𝜇
2

𝑁𝐿
(2)

𝑖𝑗
𝑥
𝑇

𝑖𝑗

× (𝑡 − 𝜏
1

(𝑡)) 𝐾
𝑇

𝑅
12

𝐾𝑥
𝑖𝑗

(𝑡 − 𝜏
1

(𝑡))

− 2𝑐
2

(1 − 𝛼
0
) 𝜇
2

𝑁𝐿
(2)

𝑖𝑗
𝑥
𝑇

𝑖𝑗
(𝑡 − 𝜏
2

(𝑡))

× 𝐾
𝑇

𝑅
12

𝐾𝑥
𝑖𝑗

(𝑡 − 𝜏
2

(𝑡))

− 2𝑐
2

𝛼
0
𝜎
2

𝑁𝐿
(2)

𝑖𝑗
𝑥
𝑇

𝑖𝑗
(𝑡 − 𝜏
1

(𝑡))

× 𝐾
𝑇

𝑅
12

𝐾𝑥
𝑖𝑗

(𝑡 − 𝜏
1

(𝑡))

− 2𝑐
2

(1 − 𝛼
0
) 𝜎
2

𝑁𝐿
(2)

𝑖𝑗
𝑥
𝑇

𝑖𝑗
(𝑡 − 𝜏
2

(𝑡))

× 𝐾
𝑇

𝑅
12

𝐾𝑥
𝑖𝑗

(𝑡 − 𝜏
2

(𝑡))

+ 2𝑥
𝑇

𝑖𝑗
(𝑡) 𝐴
𝑇

𝑅
12

𝑓
𝑖𝑗

(𝑡) + 2𝑐𝛼
0
𝜇𝑁𝐿
𝑖𝑗
𝑥
𝑇

𝑖𝑗
(𝑡)

× 𝐴
𝑇

𝑅
12

𝐾𝑥
𝑖𝑗

(𝑡 − 𝜏
1

(𝑡))

+ 2𝑐 (1 − 𝛼
0
) 𝜇𝑁𝐿

𝑖𝑗
𝑥
𝑇

𝑖𝑗
(𝑡) 𝐴
𝑇

𝑅
12

𝐾𝑥
𝑖𝑗

(𝑡 − 𝜏
2

(𝑡))

+ 2𝜉
𝑇

𝑖𝑗
(𝑡) 𝑌 (𝑥

𝑖𝑗
(𝑡) − 𝑥

𝑖𝑗
(𝑡 − 𝜏
1

(𝑡)))

+ 2𝜉
𝑇

𝑖𝑗
(𝑡) 𝑀 (𝑥

𝑖𝑗
(𝑡 − 𝜏
1

(𝑡)) − 𝑥
𝑖𝑗

(𝑡 − 𝜏
1
))

+ 2𝜉
𝑇

𝑖𝑗
(𝑡) 𝑇 (𝑥

𝑖𝑗
(𝑡 − 𝜏
1
) − 𝑥
𝑖𝑗

(𝑡 − 𝜏
2

(𝑡)))

+ 2𝜉
𝑇

𝑖𝑗
(𝑡) 𝑆 (𝑥

𝑖𝑗
(𝑡 − 𝜏
2

(𝑡)) − 𝑥
𝑖𝑗

(𝑡 − 𝜏))

− 𝛼[
𝑥
𝑖𝑗

(𝑡)

𝑓
𝑖𝑗

(𝑡)
]

𝑇

[
𝐹
𝑇

1
𝐹
2

+ 𝐹
𝑇

2
𝐹
1

− (𝐹
𝑇

1
+ 𝐹
𝑇

2
)

− (𝐹
1

+ 𝐹
2
) 2𝐼

]

× [
𝑥
𝑖𝑗

(𝑡)

𝑓
𝑖𝑗

(𝑡)
] + 𝜏
1

(𝑡) 𝜉
𝑇

𝑖𝑗
(𝑡) 𝑌𝑅

−1

1
𝑌
𝑇

𝜉
𝑖𝑗

(𝑡)
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+ (𝜏
1

− 𝜏
1

(𝑡)) 𝜉
𝑇

𝑖𝑗
(𝑡) 𝑀𝑅

−1

1
𝑀
𝑇

𝜉
𝑖𝑗

(𝑡)

+ (𝜏
2

(𝑡) − 𝜏
1
) 𝜉
𝑇

𝑖𝑗
(𝑡) 𝑇𝑅

−1

2
𝑇
𝑇

𝜉
𝑖𝑗

(𝑡)

+ (𝜏 − 𝜏
2

(𝑡)) 𝜉
𝑇

𝑖𝑗
(𝑡) 𝑆𝑅

−1

2
𝑆
𝑇

𝜉
𝑖𝑗

(𝑡) }

= ∑

1≤𝑖<𝑗≤𝑁

𝜉
𝑇

𝑖𝑗
(𝑡) Ξ𝜉
𝑖𝑗

(𝑡) ,

(28)

where 𝐿
(2)

𝑖𝑗
is the element of the 𝑖th row and the 𝑗th column of

𝐿
2.
By Schur complement and Lemma 8, we can obtain Ξ < 0

and then it follows that

L𝑉 (𝑡, 𝑥
𝑡
) ≤ 𝜆max (Ξ) ∑

1≤𝑖<𝑗≤𝑁

𝐸 {

𝜉
𝑖𝑗

(𝑡)


2

}

≤ 𝜆max (Ξ) ∑

1≤𝑖<𝑗≤𝑁

𝐸 {

𝑥
𝑖𝑗

(𝑡)


2

} .

(29)

Therefore, we have

𝐸 {𝑉 (𝑡)} − 𝐸 {𝑉 (0)} ≤ 𝜆max (Ξ) ∫

𝑡

0

∑

1≤𝑖<𝑗≤𝑁

𝐸 {

𝑥
𝑖𝑗

(𝑠)


2

} 𝑑𝑠

(30)

which implies that

∫

𝑡

0

∑

1≤𝑖<𝑗≤𝑁

𝐸 {

𝑥
𝑖𝑗

(𝑠)


2

} 𝑑𝑠 ≤ −
1

𝜆max (Ξ)
𝐸 {𝑉 (0)} < +∞.

(31)

It is easy to see that 𝐸{‖ 𝑥
𝑖𝑗
(𝑠)‖
2

} is uniformly continuous
on [0, +∞), and, from Lemma 9, one has

lim
𝑡→+∞

𝐸 {

𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)


} = 0. (32)

From Definition 5, it can be seen that consensus is achieved
in system (1). The proof can be completed.

Remark 11. A sufficient condition is presented for consensus
analysis of multiagent systems (1), which is an LMI condition
when the gain𝐾 is given.When the gain𝐾 is amatrix variable
to be determined, the above condition is not an LMI, we
are now ready to consider the gain 𝐾 design problem. From
Theorem 10, the following result can be derived easily.

Theorem 12. For given some positive scalars 𝜏 > 𝜏
1

> 0,
𝛼
0

> 0, 𝜇 > 0, 𝑐 > 0, 𝜀
1

> 0, and 𝜀
2

> 0, consensus in
system (1) is achieved with feedback gain 𝐾 = 𝑃

−1

𝑉. If there
exist appropriate dimensional matrices 𝑃 > 0, 𝑄

1
> 0, 𝑄

2
> 0,

𝑉,𝑌
𝑖
,𝑀
𝑖
,𝑇
𝑖
, and 𝑆

𝑖
(𝑖 = 1, 2), and a positive scalar 𝛼 > 0, such

that the following LMIs hold:

[
[
[

[

Ξ
11

Ξ
12

Ξ
13

Ξ
(𝑙)

14

∗ Ξ
22

0 0

∗ ∗ Ξ
33

0

∗ ∗ ∗ Ξ
44

]
]
]

]

< 0, (1 ≤ 𝑖 < 𝑗 ≤ 𝑁; 𝑙 = 1, 2, 3, 4) ,

(33)

where

Ξ
11

=

[
[
[
[
[
[
[

[

𝜃
11

𝜃
12

𝜃
13

0 𝜃
15

0

∗ 𝜃
22

0 0 0 0

∗ ∗ 𝜃
33

𝜃
34

0 0

∗ ∗ ∗ 𝜃
44

𝜃
45

0

∗ ∗ ∗ ∗ 𝜃
55

𝜃
56

∗ ∗ ∗ ∗ ∗ 𝜃
66

]
]
]
]
]
]
]

]

,

Ξ
12

=

[
[
[
[

[

√𝛼0𝜏1𝜀1𝐴
𝑇
𝑃 √(1 − 𝛼

0
) 𝜏
1
𝜀
1
𝐴
𝑇
𝑃 0 0

0 0 0 0

√𝛼0𝜏1𝑟2𝜀1𝑉
𝑇

0 √𝛼0𝜏1𝑟1𝜀1𝑉
𝑇

0

0 0 0 0

0 √(1 − 𝛼
0
) 𝜏
1
𝑟
2
𝜀
1
𝑉
𝑇

0 √(1 − 𝛼
0
) 𝜏
1
𝑟
1
𝜀
1
𝑉
𝑇

0 0 0 0

]
]
]
]

]

,

Ξ
13

=

[
[

[

√𝛼0(𝜏−𝜏1)𝜀2𝐴
𝑇
𝑃 √(1−𝛼0)(𝜏 − 𝜏1)𝜀2𝐴

𝑇
𝑃 0 0

0 0 0 0

√𝛼0(𝜏−𝜏1)𝑟2𝜀2𝑉
𝑇

0 √𝛼0 (𝜏 − 𝜏1) 𝑟1𝜀2𝑉
𝑇

0

0 0 0 0

0 √(1−𝛼0) (𝜏−𝜏1)𝑟2𝜀2𝑉
𝑇

0 √(1 − 𝛼0) (𝜏 − 𝜏1) 𝑟1𝜀2𝑉
𝑇

0 0 0 0

]
]

]

,

Ξ
(1)

14
= [

0 0 √𝜏
1
𝑀
𝑇

1
√𝜏
1
𝑀
𝑇

2
0 0

0 0 0 0 √(𝜏 − 𝜏
1
)𝑆
𝑇

1
√(𝜏 − 𝜏

1
)𝑆
𝑇

2

]

𝑇

,

Ξ
(2)

14
= [

0 0 √𝜏
1
𝑀
𝑇

1
√𝜏
1
𝑀
𝑇

2
0 0

0 0 0 √(𝜏 − 𝜏
1
)𝑇
𝑇

1
√(𝜏 − 𝜏

1
)𝑇
𝑇

2
0
]

𝑇

,

Ξ
(3)

14
= [

√𝜏
1
𝑌
𝑇

1
0 √𝜏

1
𝑌
𝑇

2
0 0 0

0 0 0 0 √(𝜏 − 𝜏
1
)𝑆
𝑇

1
√(𝜏 − 𝜏

1
)𝑆
𝑇

2

]

𝑇

,

Ξ
(4)

14
= [

√𝜏
1
𝑌
𝑇

1
0 √𝜏

1
𝑌
𝑇

2
0 0 0

0 0 0 √(𝜏 − 𝜏
1
)𝑇
𝑇

1
√(𝜏 − 𝜏

1
)𝑇
𝑇

2
0
]

𝑇

,

Ξ
22

= diag {−𝜀
1
𝑃, −𝜀
1
𝑃, −𝜀
1
𝑃, −𝜀
1
𝑃} ,

Ξ
33

= diag {−𝜀
2
𝑃, −𝜀
2
𝑃, −𝜀
2
𝑃, −𝜀
2
𝑃} ,

Ξ
44

= diag {−𝜀
1
𝑃, −𝜀
2
𝑃} ,

𝜃
11

= 𝑃𝐴 + 𝐴
𝑇

𝑃 + 𝑄
1

+ 𝑄
2

+ 𝑌
1

+ 𝑌
𝑇

1
− 𝛼 (𝐹

𝑇

1
𝐹
2

+ 𝐹
𝑇

2
𝐹
1
) ,

𝜃
12

= 𝑃 + 𝜏
1
𝜀
1
𝐴
𝑇

𝑃 + (𝜏 − 𝜏
1
) 𝜀
2
𝐴
𝑇

𝑃

+ 𝛼 (𝐹
𝑇

1
+ 𝐹
𝑇

2
) ,

𝜃
13

= 𝛼
0
𝑟
2
𝑉 − 𝑌

1
+ 𝑌
𝑇

2
,

𝜃
15

= (1 − 𝛼
0
) 𝑟
2
𝑉,

𝜃
22

= 𝜏
1
𝜀
1
𝑃 + (𝜏 − 𝜏

1
) 𝜀
2
𝑃 − 2𝛼𝐼,

𝜃
33

= −𝑌
2

− 𝑌
𝑇

2
+ 𝑀
1

+ 𝑀
𝑇

1
,

𝜃
34

= −𝑀
1

+ 𝑀
𝑇

2
,

𝜃
44

= −𝑄
1

− 𝑀
2

− 𝑀
𝑇

2
+ 𝑇
1

+ 𝑇
𝑇

1
,
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𝜃
45

= −𝑇
1

+ 𝑇
𝑇

2
,

𝜃
55

= −𝑇
2

− 𝑇
𝑇

2
+ 𝑆
1

+ 𝑆
𝑇

1
,

𝜃
56

= −𝑆
1

+ 𝑆
𝑇

2
,

𝜃
66

= −𝑄
2

− 𝑆
2

− 𝑆
𝑇

2
,

𝑟
1

= −𝑐
2

𝜇
2

𝑁
2

𝐿
2

𝑖𝑗
− 2𝑐
2

𝜇
2

𝑁𝐿
(2)

𝑖𝑗
− 2𝑐
2

𝜎
2

𝑁𝐿
(2)

𝑖𝑗
,

𝑟
2

= 𝑐𝜇𝑁𝐿
𝑖𝑗
,

(34)

then we can obtain the gain matrix 𝐾 = 𝑃
−1

𝑉.

Proof. From (22) and Lemma 7, the following inequalities
hold:

𝐸 {�̇�
𝑇

(𝑡) (𝑈 ⊗ 𝑅
12

) �̇� (𝑡)}

= ∑

1≤𝑖<𝑗≤𝑁

{𝑥
𝑇

𝑖𝑗
(𝑡) 𝐴
𝑇

𝑅
12

𝐴𝑥
𝑖𝑗

(𝑡)

− 2𝑐
2

𝛼
0
𝜇
2

𝑁𝐿
(2)

𝑖𝑗
𝑥
𝑇

𝑖𝑗
(𝑡 − 𝜏
1

(𝑡))

× 𝐾
𝑇

𝑅
12

𝐾𝑥
𝑖𝑗

(𝑡 − 𝜏
1

(𝑡))

+ 𝑓
𝑇

𝑖𝑗
(𝑡) 𝑅
12

𝑓
𝑖𝑗

(𝑡) − 2𝑐
2

(1 − 𝛼
0
) 𝜇
2

𝑁𝐿
(2)

𝑖𝑗
𝑥
𝑇

𝑖𝑗

× (𝑡 − 𝜏
2

(𝑡)) 𝐾
𝑇

𝑅
12

𝐾𝑥
𝑖𝑗

(𝑡 − 𝜏
2

(𝑡))

− 2𝑐
2

𝛼
0
𝜎
2

𝑁𝐿
(2)

𝑖𝑗
𝑥
𝑇

𝑖𝑗
(𝑡 − 𝜏
1

(𝑡))

× 𝐾
𝑇

𝑅
12

𝐾𝑥
𝑖𝑗

(𝑡 − 𝜏
1

(𝑡))

− 2𝑐
2

(1 − 𝛼
0
) 𝜎
2

𝑁𝐿
(2)

𝑖𝑗
𝑥
𝑇

𝑖𝑗
(𝑡 − 𝜏
2

(𝑡))

× 𝐾
𝑇

𝑅
12

𝐾𝑥
𝑖𝑗

(𝑡 − 𝜏
2

(𝑡))

+ 2𝑥
𝑇

𝑖𝑗
(𝑡) 𝐴
𝑇

𝑅
12

𝑓
𝑖𝑗

(𝑡) + 2𝑐𝛼
0
𝜇𝑁𝐿
𝑖𝑗
𝑥
𝑇

𝑖𝑗
(𝑡)

× 𝐴
𝑇

𝑅
12

𝐾𝑥
𝑖𝑗

(𝑡 − 𝜏
1

(𝑡)) + 2𝑐 (1 − 𝛼
0
)

× 𝜇𝑁𝐿
𝑖𝑗
𝑥
𝑇

𝑖𝑗
(𝑡) 𝐴
𝑇

𝑅
12

𝐾𝑥
𝑖𝑗

(𝑡 − 𝜏
2

(𝑡))}

= ∑

1≤𝑖<𝑗≤𝑁

{𝑓
𝑇

𝑖𝑗
(𝑡) 𝑅
12

𝑓
𝑖𝑗

(𝑡) + 2𝑥
𝑇

𝑖𝑗
(𝑡) 𝐴
𝑇

𝑅
12

𝑓
𝑖𝑗

(𝑡)

+ 𝛼
0
𝑥
𝑇

𝑖𝑗
(𝑡) 𝐴
𝑇

𝑅
12

𝐴𝑥
𝑖𝑗

(𝑡)

+ 2𝑐𝛼
0
𝜇𝑁𝐿
𝑖𝑗
𝑥
𝑇

𝑖𝑗
(𝑡) 𝐴
𝑇

𝑅
12

𝐾𝑥
𝑖𝑗

(𝑡 − 𝜏
1

(𝑡))

+ 𝛼
0
𝑐
2

𝜇
2

𝑁
2

𝐿
𝑖𝑗
𝑥
𝑇

𝑖𝑗
(𝑡 − 𝜏
1

(𝑡))

× 𝐾
𝑇

𝑅
12

𝐾𝑥
𝑖𝑗

(𝑡 − 𝜏
1

(𝑡))

+ (1 − 𝛼
0
) 𝑥
𝑇

𝑖𝑗
(𝑡) 𝐴
𝑇

𝑅
12

𝐴𝑥
𝑖𝑗

(𝑡)

+ 2𝑐 (1 − 𝛼
0
) 𝜇𝑁𝐿

𝑖𝑗
𝑥
𝑇

𝑖𝑗
(𝑡) 𝐴
𝑇

𝑅
12

𝐾𝑥
𝑖𝑗

(𝑡 − 𝜏
2

(𝑡))

+ (1 − 𝛼
0
) 𝑐
2

𝜇
2

𝑁
2

𝐿
2

𝑖𝑗
𝑥
𝑇

𝑖𝑗
(𝑡 − 𝜏
2

(𝑡))

× 𝐾
𝑇

𝑅
12

𝐾𝑥
𝑖𝑗

(𝑡 − 𝜏
2

(𝑡))

− [𝛼
0
𝑐
2

𝜇
2

𝑁
2

𝐿
2

𝑖𝑗
+ 2𝛼
0
𝑐
2

𝜇
2

𝑁𝐿
(2)

𝑖𝑗

+ 2𝛼
0
𝑐
2

𝜎
2

𝑁𝐿
(2)

𝑖𝑗
] 𝑥
𝑇

𝑖𝑗

× (𝑡 − 𝜏
1

(𝑡)) 𝐾
𝑇

𝑅
12

𝐾𝑥
𝑖𝑗

(𝑡 − 𝜏
1

(𝑡))

− [(1 − 𝛼
0
) 𝑐
2

𝜇
2

𝑁
2

𝐿
2

𝑖𝑗
+ 2 (1 − 𝛼

0
) 𝑐
2

𝜇
2

𝑁𝐿
(2)

𝑖𝑗

+ 2 (1 − 𝛼
0
) 𝑐
2

𝜎
2

𝑁𝐿
(2)

𝑖𝑗
] 𝑥
𝑇

𝑖𝑗

× (𝑡 − 𝜏
2

(𝑡)) 𝐾
𝑇

𝑅
12

𝐾𝑥
𝑖𝑗

(𝑡 − 𝜏
2

(𝑡))}

= ∑

1≤𝑖<𝑗≤𝑁

{𝑓
𝑇

𝑖𝑗
(𝑡) 𝑅
12

𝑓
𝑖𝑗

(𝑡) + 2𝑥
𝑇

𝑖𝑗
(𝑡) 𝐴
𝑇

𝑅
12

𝑓
𝑖𝑗

(𝑡)

+ 𝛼
0
𝜉
𝑇

𝑖𝑗
(𝑡)A
𝑇

1
𝑅
12
A
1
𝜉
𝑖𝑗

(𝑡)

+ (1 − 𝛼
0
) 𝜉
𝑇

𝑖𝑗
(𝑡)A
𝑇

2
𝑅
12
A
2
𝜉
𝑖𝑗

(𝑡)

+ 𝛼
0
𝑟
1
𝜉
𝑇

𝑖𝑗
(𝑡)A
𝑇

3
𝑅
12
A
3
𝜉
𝑖𝑗

(𝑡)

+ (1 − 𝛼
0
) 𝑟
1
𝜉
𝑇

𝑖𝑗
(𝑡)A
𝑇

4
𝑅
12
A
4
𝜉
𝑖𝑗

(𝑡)} ,

(35)

where

A
1

= [𝐴 0 𝑟
2
𝐾 0 0 0]

𝑇

,

A
2

= [𝐴 0 0 0 𝑟
2
𝐾 0]
𝑇

,

A
3

= [0 0 𝐾 0 0 0]
𝑇

,

A
4

= [0 0 0 0 𝐾 0]
𝑇

,

𝑟
1

= −𝑐
2

𝜇
2

𝑁
2

𝐿
2

𝑖𝑗
− 2𝑐
2

𝜇
2

𝑁𝐿
(2)

𝑖𝑗
− 2𝑐
2

𝜎
2

𝑁𝐿
(2)

𝑖𝑗
,

𝑟
2

= 𝑐𝜇𝑁𝐿
𝑖𝑗
.

(36)

Combining (28) and (35), we can obtain

L𝑉 (𝑡, 𝑥
𝑡
)

≤ ∑

1≤𝑖<𝑗≤𝑁

{2𝑥
𝑇

𝑖𝑗
(𝑡) 𝑃𝐴𝑥

𝑖𝑗
(𝑡) + 2𝑥

𝑇

𝑖𝑗
(𝑡) 𝑃𝑓
𝑖𝑗

(𝑡)

+ 2𝑐𝛼
0
𝜇𝑁𝐿
𝑖𝑗
𝑥
𝑇

𝑖𝑗
𝑃𝐾𝑥
𝑖𝑗

(𝑡 − 𝜏
1

(𝑡))

+ 2𝑐 (1 − 𝛼
0
) 𝜇𝑁𝐿

𝑖𝑗
𝑥
𝑇

𝑖𝑗
𝑃𝐾𝑥
𝑖𝑗

(𝑡 − 𝜏
2

(𝑡))

+ 𝑥
𝑇

𝑖𝑗
(𝑡) (𝑄

1
+ 𝑄
2
) 𝑥
𝑖𝑗

(𝑡)

− 𝑥
𝑇

𝑖𝑗
(𝑡 − 𝜏
1
) 𝑄
1
𝑥
𝑖𝑗

(𝑡 − 𝜏
1
) − 𝑥
𝑇

𝑖𝑗
(𝑡 − 𝜏)

× 𝑄
2
𝑥
𝑖𝑗

(𝑡 − 𝜏) + 𝑥
𝑇

𝑖𝑗
(𝑡) 𝐴
𝑇

𝑅
12

𝐴𝑥
𝑖𝑗

(𝑡)
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+ 𝑓
𝑇

𝑖𝑗
(𝑡) 𝑅
12

𝑓
𝑖𝑗

(𝑡) + 2𝑥
𝑇

𝑖𝑗
(𝑡) 𝐴
𝑇

𝑅
12

𝑓
𝑖𝑗

(𝑡)

+ 𝛼
0
𝜉
𝑇

𝑖𝑗
(𝑡)A
𝑇

1
𝑅
12
A
1
𝜉
𝑖𝑗

(𝑡)

+ (1 − 𝛼
0
) 𝜉
𝑇

𝑖𝑗
(𝑡)A
𝑇

2
𝑅
12
A
2
𝜉
𝑖𝑗

(𝑡)

+ 𝛼
0
𝑟
1
𝜉
𝑇

𝑖𝑗
(𝑡)A
𝑇

3
𝑅
12
A
3
𝜉
𝑖𝑗

(𝑡)

+ (1 − 𝛼
0
) 𝑟
1
𝜉
𝑇

𝑖𝑗
(𝑡)A
𝑇

4
𝑅
12
A
4
𝜉
𝑖𝑗

(𝑡)

+ 2𝜉
𝑇

𝑖𝑗
(𝑡) 𝑌 (𝑥

𝑖𝑗
(𝑡) − 𝑥

𝑖𝑗
(𝑡 − 𝜏
1

(𝑡)))

+ 2𝜉
𝑇

𝑖𝑗
(𝑡) 𝑀 (𝑥

𝑖𝑗
(𝑡 − 𝜏
1

(𝑡)) − 𝑥
𝑖𝑗

(𝑡 − 𝜏
1
))

+ 2𝜉
𝑇

𝑖𝑗
(𝑡) 𝑇 (𝑥

𝑖𝑗
(𝑡 − 𝜏
1
) − 𝑥
𝑖𝑗

(𝑡 − 𝜏
2

(𝑡)))

+ 2𝜉
𝑇

𝑖𝑗
(𝑡) 𝑆 (𝑥

𝑖𝑗
(𝑡 − 𝜏
2

(𝑡)) − 𝑥
𝑖𝑗

(𝑡 − 𝜏))

− 𝛼[
𝑥
𝑖𝑗

(𝑡)

𝑓
𝑖𝑗

(𝑡)
]

𝑇

× [
𝐹
𝑇

1
𝐹
2

+ 𝐹
𝑇

2
𝐹
1

− (𝐹
𝑇

1
+ 𝐹
𝑇

2
)

− (𝐹
1

+ 𝐹
2
) 2𝐼

]

× [
𝑥
𝑖𝑗

(𝑡)

𝑓
𝑖𝑗

(𝑡)
]

+ 𝜏
1

(𝑡) 𝜉
𝑇

𝑖𝑗
(𝑡) 𝑌𝑅

−1

1
𝑌
𝑇

𝜉
𝑖𝑗

(𝑡) + (𝜏
1

− 𝜏
1

(𝑡))

× 𝜉
𝑇

𝑖𝑗
(𝑡) 𝑀𝑅

−1

1
𝑀
𝑇

𝜉
𝑖𝑗

(𝑡)

+ (𝜏
2

(𝑡) − 𝜏
1
) 𝜉
𝑇

𝑖𝑗
(𝑡) 𝑇𝑅

−1

2
𝑇
𝑇

𝜉
𝑖𝑗

(𝑡)

+ (𝜏 − 𝜏
2

(𝑡)) 𝜉
𝑇

𝑖𝑗
(𝑡) 𝑆𝑅

−1

2
𝑆
𝑇

𝜉
𝑖𝑗

(𝑡) }

= ∑

1≤𝑖<𝑗≤𝑁

𝜉
𝑇

𝑖𝑗
(𝑡) Ξ𝜉
𝑖𝑗

(𝑡) .

(37)

Let 𝑅
1

= 𝜀
1
𝑃, 𝑅
2

= 𝜀
2
𝑃, and 𝑉 = 𝑃𝐾 in (15) and then by

using Lemma 8, we can obtain Ξ < 0.The proof is completed.

Remark 13. The solvability of derived conditions depends
on not only the failure rate of the actuator but also on the
probability of the delay. Since more information has been
employed, less conservative results might be obtained, which
can be seen from the following numerical example.

4. Numerical Examples

Example 14. For simplicity, we consider multiagent systems
with three agents and the state vector of each node being

Table 1: The upper bounds of the delay (sampling period) for
different values of 𝛼

0
.

𝛼
0

0.1 0.3 0.5 0.7 0.9 0.99
𝜏 0.0129 0.0204 0.0372 0.1063 0.3853 0.7250

two dimensional; that is, 𝑁 = 3, 𝑛 = 2, and other related
parameters are given as follows:

𝐴 = [
−4 1

−2 4
] , 𝐿 = [

[

2 −1 −1

−1 2 −1

−1 −1 2

]

]

, 𝑐 = 0.1,

𝜇 = 1.4, 𝜎 = 0.2,

𝜏
1

= 0.001, 𝜀
1

= 𝜀
2

= 0.1.

(38)

The nonlinear function is as follows:

𝑓 (𝑥
𝑖
(𝑡)) = [

0.5𝑥
𝑖1

(𝑡) − tanh (0.2𝑥
𝑖1

(𝑡)) + 0.2𝑥
𝑖2

(𝑡)

0.95𝑥
𝑖2

(𝑡) − tanh (0.75𝑥
𝑖2

(𝑡))
] (39)

and then it is easy to verify that

𝐹
1

= [
0.3 0.2

0 0.2
] , 𝐹

2
= [

0.5 0.2

0 0.95
] . (40)

When the delay is random and its probability distribution
is known, we can obtain the upper bound of the delay
(sampling period) byTheorem 10; it is found in Table 1. It can
be seen that when the probability information of the delay
values in interval is known, the obtained upper bound of
the delay (sampling period) is larger than the one obtained
by tradition method with only variation range information
(𝜏 = 0.0106) of the delay.

To illustrate the efficiency of the designed method, the
following three possible cases are considered.

Case 1. Consider no actuator failure and measurements
distortion in the system, that is 𝜇 = 1, 𝜎 = 0, when 𝛼

0
= 0.7.

The upper bound of the delay (sampling period) is 𝜏 = 0.1071

by usingTheorem 12, and the corresponding feedback gain is

𝐾 = [
35.9117 21.0898

−161.3924 −243.4319
] . (41)

The state responses are shown in Figure 1.

Case 2. When the actuator is partial failure, let 𝜇 = 0.7, 𝜎 =

0.2, and when 𝛼
0

= 0.7, we can obtain that the upper bound
of the delay (sampling period) is 𝜏 = 0.1060 and the feedback
gain is

𝐾 = [
50.4724 29.7689

−224.4166 −343.5873
] . (42)

The state responses are shown in Figure 2.

Case 3. When considering actuator fault and measurement
distortion, let 𝜇 = 1.4, 𝜎 = 0.2, and when 𝛼

0
= 0.7, from
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Table 2: The upper bounds of the delay (sampling period) for different values of 𝛼
0
and the conditions of actuator.

𝛼
0

0.5 0.6 0.7 0.8 0.9 0.99
𝜇 = 1, 𝜎 = 0 0.0373 0.0569 0.1071 0.1988 0.3906 0.7457
𝜇 = 0.7, 𝜎 = 0.2 0.0371 0.0560 0.1060 0.1915 0.3702 0.6691
𝜇 = 1.4, 𝜎 = 0.2 0.0372 0.0567 0.1063 0.1969 0.3853 0.7250

Table 3: The feedback gain matrices 𝐾 for different values of 𝛼
0
and the conditions of actuator.

𝛼
0

0.5 0.6 0.7 0.8
𝜇 = 1

𝜎 = 0
[

14.4864 9.5364

−35.6942 −108.7951
] [

22.8536 14.2459

−73.8533 −163.0010
] [

35.9117 21.0898

−161.3924 −243.4319
] [

62.6971 36.2678

−419.9275 −428.9063
]

𝜇 = 0.7

𝜎 = 0.2
[

21.0127 13.6887

−51.8329 −155.9968
] [

32.0593 20.0371

−102.4567 −229.2493
] [

50.4724 29.7689

−224.4166 −343.5873
] [

90.1993 53.0314

−609.1302 −628.2796
]

𝜇 = 1.4

𝜎 = 0.2
[

10.2856 6.7829

−25.2842 −77.3933
] [

16.2402 10.1321

−52.3181 −115.9304
] [

25.5233 14.9789

−114.2535 −172.8522
] [

44.7015 25.9764

−229.7514 −307.3281
]
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t

Figure 1: The position state curves of multiagent systems with 𝛼
0

=

0.7, 𝜇 = 1, and 𝜎 = 0 (without failure).
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Figure 2:The position state curves of multiagent systems with 𝛼
0

=

0.7, 𝜇 = 0.7, and 𝜎 = 0.2 (with partial failure).
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Figure 3: The position state curves of multiagent systems with 𝛼
0

=

0.7, 𝜇 = 1.4, and 𝜎 = 0.2 (measurement distortion).

Theorem 12, the upper bound of the delay (sampling period)
is obtained as 𝜏 = 0.1063 and the feedback gain is

𝐾 = [
25.5233 14.9789

−114.2535 −172.8522
] . (43)

The state responses are shown in Figure 3.
From the above three cases, when the actuator has fault,

the upper bound of the delay (sampling period) is smaller
than the other two cases. To illustrate the influence on the
system by employing distribution information, for different
𝛼
0
, the upper bound of the delay (sampling period) and the

corresponding feedback gain are listed in Tables 2 and 3 for
without failure, partial failure, and measure distortion of the
actuator.

5. Conclusions

The paper studies sampled-data consensus for nonlinear
multiagent dynamical systems. A distributed linear reliable
sampled-data consensus protocol is designed, where the
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actuator fault and random network-induced delay are con-
sidered. By using Lyapunov stability theory, some consensus
conditions are derived in terms of linear matrix inequalities.
In our future work, we will further consider the problems for
randomly occurring nonlinearities and randomly occurring
network topology.
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