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Firstly, a two-unit cold standby shock model with multiple adaptive vacations is introduced, in which the startup and replacement
of repair facility are also considered. Secondly, using supplementary variable method and Laplace transform, some important
reliability indices are derived, such as availability, failure frequency,mean vacation period,mean renewal cycle,mean startup period,
and replacement frequency. Finally, a production line controlled by two cold-standby computers is modeled to present numerical
illustration and its optimal part-time job policy at a maximum profit.

1. Introduction

It is well known that the shock model is used to study the
external causes which may make a system fail. For example, a
computer systemmay fail due to the invasion of some virus or
an attack from a raider. Many authors have investigated var-
ious shock models based on different assumptions. Among
them, Esary et al. [1], Barlow and Proschan [2], Ross [3], and
Fagiuoli and Pellerey [4] dealt with Poisson shock models.
Eryilmaz [5, 6] discussed discrete-time shock model and its
life behavior. Also, Gottlieb [7], Aven and Gaarder [8], Wang
and Zhang [9], Lam and Zhang [10], and Tang and Lam [11]
obtained the optimal replacement policies for several shock
models. Recently, from the reliability viewpoint, Li and Zhao
[12] studied a 𝛿-shockmodel consisting of 𝑛 components, and
Q. T. Wu and S. M. Wu [13] analyzed a two-unit cold standby
shock model with single vacation.

However, in the existing shock literature, the repair facil-
ity is assumed to be always available when a failed unit occurs,
although this assumption is evidently unrealistic. In fact, in
many practical situations the repair facility generally needs
a startup time with random length for its preparatory work
before starting repair. Furthermore, the busy repair facility
is typically subject to lengthy and unpredictable breakdowns
and has to be replaced (see [14–16]). On the other hand,
to utilize the repairman’s idle time effectively and increase

profit, the system manager can assign some secondary jobs
to the idle repairman. But the repairman’s additional tasks
will reduce system availability and sometimes yield huge
economic losses. Therefore, it is very important that the
system manager knows how to assign the idle repairman
optimal additional jobs based on a maximum profit and high
availability level. In this paper, the periodwhen the repairman
undertakes additional jobs is represented by the repairman’s
vacation time. A comprehensive and excellent study on the
vacation models can be found in Tian and Zhang’s book [17].

Based on the above facts, in this paper we present an
extended shock model for two identical unit cold-standby
systems. Here, cold standby means that the redundant unit
cannot fail at its standby state. Our study differs from
previous work [1–13] in that (i) it considers the startup and
breakdown of repair facility and (ii) it introduces themultiple
adaptive vacation policy (MAVP). The MAVP first proposed
by Tian and Zhang [17] is more general than single vacation,
multiple vacations and variant vacations, which is useful for
high availability and profit optimization of the system (see
Section 5); (iii) some new reliability indices are derived, such
as mean renewal cycle, mean vacation period, mean startup
period, mean idle period, and mean busy period; (iv) as an
application of our model, a production line controlled by two
identical cold-standby computers is modeled to analyze its
optimal part-time job policy.
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The paper is organized as follows. Section 2 presents the
assumptions. In Sections 3 and 4 we obtain the solutions to
state probability equations and main reliability indices by the
supplementary variable method. In Section 5 the numerical
illustration and optimal part-time job policy for a production
line are given. Conclusions are drawn in Section 6.

2. Assumptions

The extended shock model we consider here consists of two
identical cold-standby units, a repair facility and a repairman.
The model assumptions are as follows.

(1) The external shocks arrive according to a Poisson
process with the rate 𝜆(> 0). The magnitude of each
shock, 𝜒, is independent with common distribution
function 𝑇. Shocks only influence the operating unit.
The operating unit will fail if 𝜒 outstrips a threshold
𝜍, where 𝜍 is assumed to be nonnegative with a
distribution function 𝜙.

(2) Suppose that shocks are the only cause of unit failure.
The system breaks down if and only if two units fail.
When the operating unit fails, the standby one begins
to operate if there is one (the switch is instantaneous
and perfect). The failed units are repaired in order
of failures. The repairman can repair only one failed
unit at a time by means of repair facility. The repaired
unit is as good as new and immediately goes into
standby or operating state. The repair times are
independent and identically distributed (i.i.d.) with
common distribution function 𝐺(𝑡) (𝑡 ≥ 0), density
function 𝑔(𝑡) (𝑡 ≥ 0), hazard rate function 𝜇(𝑡) (=

𝑔(𝑡)/(1 − 𝐺(𝑡))), and finite mean 𝐸(𝑌), respectively.
(3) After completing repair, the repairmanwill shut down

repair facility and take a multiple adaptive vacation
policy. Under this vacation policy, the length of each
vacation is i.i.d. random variable, which follows a
general distribution function 𝑉(𝑡) (𝑡 ≥ 0) with
density function 𝑣(𝑡) (𝑡 ≥ 0), hazard rate function
𝑟(𝑡) (= V(𝑡)/(1 − 𝑉(𝑡))), and mean vacation time
𝐸(𝑉), respectively. The maximum vacation number
of the repairman, denoted by 𝐻, has an arbitrary
distribution {𝑐

𝑖
}
∞

𝑖=1
with probability generating func-

tion 𝐻(𝑧) = ∑
∞

𝑖=1
𝑐
𝑖
𝑧
𝑖, |𝑧| < 1. At each vacation

completion instant, the repairman checks the system
and decides the action to take according to the system
state. There are three possible cases: (A) if there is
any failed unit in the system, he will immediately
spend a startup time 𝑄 to turn repair facility on and
then start his repair until there are no failed units;
(B) if there is no failed unit in the system and the
total number of vacations is still less than 𝐻, he will
take another vacation; (C) if there is no failed units
in the system and the total number of vacations is
equal to 𝐻, he will remain idle in the system until
the first failed unit appears, which induces a startup
time 𝑄 and subsequent repair. We assume that the
startup time𝑄 has distribution function𝑄(𝑡) (𝑡 ≥ 0),

density function 𝑞(𝑡) (𝑡 ≥ 0), hazard rate function
𝜃(𝑡) (= 𝑞(𝑡)/(1 −𝑄(𝑡))), and mean startup time 𝐸(𝑄),
respectively.

(4) The repair facility may break down with a Poisson
rate 𝛼 in the process of repair. The broken facility is
immediately replaced by the repairman. The replace-
ment times are assumed to be i.i.d. random variables
having a general distribution function 𝐵(𝑡) (𝑡 ≥ 0),
density function 𝑏(𝑡) (𝑡 ≥ 0), hazard rate function
𝛽(𝑡) (= 𝑏(𝑡)/(1 − 𝐵(𝑡))), and mean replacement
time 𝐸(𝐵), respectively. After replacement, the repair
facility continues its remaining repair.The repair time
of the failed unit is cumulative.

(5) Initially, both units are new (one is operating and the
other is in cold standby), and the repairman is idle.
After the first busy period is completed, he begins to
take a multiple adaptive vacation policy. All random
variables are mutually independent.

Remark 1. FromAssumptions (1) and (5), the probability that
a shock causes the operating unit to fail is given by

𝑝 = Pr (𝜒 > 𝜍) = ∫

∞

0

Pr (𝜍 < 𝑡 | 𝜒 = 𝑡) 𝑑Pr (𝜒 ≤ 𝑡)

= ∫

∞

0

𝜙 (𝑡) 𝑑𝑇 (𝑡) ,

(1)

where Pr(Ω) is the probability of event Ω.

3. The State Probability
Equations and Solutions

We define the possible states of the system as follows:
(0) 𝑜𝑠V, (1) 𝑜𝑜 V, (2) 𝑜 𝑜 V, (3) 𝑜𝑜, (4) 𝑜 𝑜, (5) 𝑜𝑜 V, (6) 𝑜 𝑜 V,
(7𝑖𝑗) 𝑜𝑠V

𝑖𝑗
, 𝑗 = 1, 2, . . . , 𝑖; 𝑖 = 1, 2, . . ., (8𝑖𝑗) 𝑜𝑜V

𝑖𝑗
, 𝑗 =

1, 2, . . . , 𝑖; 𝑖 = 1, 2, . . ., (9𝑖𝑗) 𝑜 𝑜V
𝑖𝑗
, 𝑗 = 1, 2, . . . , 𝑖; 𝑖 = 1, 2, . . .,

where 𝑜, 𝑠, 𝑜, o, and 𝑜 represent that one unit is operating, in
cold standby, waiting for repair, waiting for remaining repair
(preserving the time spent in repair), and under repair, and
V, V, V, and V

𝑖𝑗
represent that the repairman is idle, turning the

repair facility on, replacing the repair facility, and taking the
𝑗th vacation under the condition that the maximum vacation
number is 𝑖, 𝑗 = 1, 2, . . . , 𝑖; 𝑖 = 1, 2, . . ., respectively. By
definition, the system states (0), (1), (3), (5), (7𝑖𝑗), and (8𝑖𝑗)

are operable and (2), (4), (6), and (9𝑖𝑗) are inoperable.
Let 𝑆(𝑡) be the system state at time 𝑡. For 𝑡 ≥ 0, we define

𝑋(𝑡) as the elapsed startup time of repair facility at time 𝑡,
𝑌(𝑡) the elapsed repair time of the failed unit at time 𝑡, 𝑍(𝑡)

the elapsed replacement time of the broken repair facility at
time 𝑡, and 𝛾(𝑡) the elapsed vacation time of the repairman at
time 𝑡. Then, {𝑆(𝑡), 𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡), 𝛾(𝑡), 𝑡 ≥ 0} is a vector
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Markov process. Define the state probabilities at time 𝑡 as
follows:

𝑃
0 (𝑡) = Pr {𝑆 (𝑡) = (0)} ;

𝑃
𝑚 (𝑡, 𝑥) 𝑑𝑥 = Pr {𝑆 (𝑡) = (𝑚) , 𝑥 ≤ 𝑋 (𝑡) < 𝑥 + 𝑑𝑥} ,

𝑚 = 1, 2;

𝑃
𝑛
(𝑡, 𝑦) 𝑑𝑦 = Pr {𝑆 (𝑡) = (𝑛) , 𝑦 ≤ 𝑌 (𝑡) < 𝑦 + 𝑑𝑦} ,

𝑛 = 3, 4;

𝑃
𝑙
(𝑡, 𝑦, 𝑧) 𝑑𝑧 = Pr {𝑆 (𝑡) = (𝑙) , 𝑌 (𝑡) = 𝑦,

𝑧 ≤ 𝑍 (𝑡) < 𝑧 + 𝑑𝑧} , 𝑙 = 5, 6;

𝑃
𝑘𝑖𝑗 (𝑡, 𝑤) 𝑑𝑤 = Pr {𝑆 (𝑡) = (𝑘𝑖𝑗) , 𝑤 ≤ 𝛾 (𝑡) < 𝑤 + 𝑑𝑤} ,

𝑘 = 7, 8, 9; 𝑗 = 1, 2, . . . , 𝑖; 𝑖 = 1, 2, . . . ,

(2)

where 𝑥, 𝑦, 𝑧, and 𝑤 are the values taken by 𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡),
and 𝛾(𝑡), respectively.

In steady state, we define

𝑃
0
= lim
𝑡→∞

𝑃
0 (𝑡) ,

𝑃
𝑚 (𝑥) = lim

𝑡→∞
𝑃
𝑚 (𝑡, 𝑥) , 𝑚 = 1, 2,

𝑃
𝑛
(𝑦) = lim

𝑡→∞
𝑃
𝑛
(𝑡, 𝑦) , 𝑛 = 3, 4,

𝑃
𝑙
(𝑦, 𝑧) = lim

𝑡→∞
𝑃
𝑙
(𝑡, 𝑦, 𝑧) , 𝑙 = 5, 6,

𝑃
𝑘𝑖𝑗 (𝑤) = lim

𝑡→∞
𝑃
𝑘𝑖𝑗 (𝑡, 𝑤) , 𝑘 = 7, 8, 9;

𝑗 = 1, 2, . . . , 𝑖; 𝑖 = 1, 2, . . . .

(3)

Let 𝜌 = 𝑝𝜆, since the process {𝑆(𝑡), 𝑋(𝑡), 𝑌(𝑡),

𝑍(𝑡), 𝛾(𝑡), 𝑡 ≥ 0} is a vector Markov process in continuous
time, one can write the equations of the process in the usual
way by considering the transitions occurring in 𝑡 and 𝑡 + Δ𝑡.
For example, we have

𝑃
0 (𝑡 + Δ𝑡) = 𝑃

0 (𝑡) (1 − 𝜌Δ𝑡)

+

∞

∑

𝑖=1

∫

∞

0

𝑟 (𝑤) 𝑃7𝑖𝑖 (𝑡, 𝑤) 𝑑𝑤Δ𝑡 + 𝑜 (Δ𝑡) .

(4)

Letting Δ𝑡 tend to zero yields

(
𝑑

𝑑𝑡
+ 𝜌)𝑃

0 (𝑡) =

∞

∑

𝑖=1

∫

∞

0

𝑟 (𝑤) 𝑃7𝑖𝑖 (𝑡, 𝑤) 𝑑𝑤. (4
󸀠
)

By taking the limit 𝑡 → ∞ in (4
󸀠
), we can obtain

𝜌𝑃
0
=

∞

∑

𝑖=1

∫

∞

0

𝑟 (𝑤) 𝑃7𝑖𝑖 (𝑤) 𝑑𝑤. (5)

In the same way, we readily get the following steady-state
equations for state probabilities:

[
𝑑

𝑑𝑥
+ 𝜌 + 𝜃 (𝑥)] 𝑃

1 (𝑥) = 0, (6)

[
𝑑

𝑑𝑥
+ 𝜃 (𝑥)] 𝑃

2 (𝑥) = 𝜌𝑃
1 (𝑥) , (7)

[
𝑑

𝑑𝑦
+ 𝛼 + 𝜌 + 𝜇 (𝑦)] 𝑃

3
(𝑦) = ∫

∞

0

𝛽 (𝑧) 𝑃5 (𝑦, 𝑧) 𝑑𝑧,

(8)

[
𝑑

𝑑𝑦
+ 𝛼 + 𝜇 (𝑦)] 𝑃

4
(𝑦) = 𝜌𝑃

3
(𝑦) + ∫

∞

0

𝛽 (𝑧) 𝑃6 (𝑦, 𝑧) 𝑑𝑧,

(9)

[
𝑑

𝑑𝑧
+ 𝜌 + 𝛽 (𝑧)] 𝑃

5
(𝑦, 𝑧) = 0, (10)

[
𝑑

𝑑𝑧
+ 𝛽 (𝑧)] 𝑃

6
(𝑦, 𝑧) = 𝜌𝑃

5
(𝑦, 𝑧) , (11)

[
𝑑

𝑑𝑤
+ 𝜌 + 𝑟 (𝑤)] 𝑃

7𝑖𝑗 (𝑤) = 0, 𝑗 = 1, 2, . . . , 𝑖; 𝑖 = 1, 2, . . . ,

(12)

[
𝑑

𝑑𝑤
+ 𝜌 + 𝑟 (𝑤)]𝑃

8𝑖𝑗 (𝑤) = 𝜌𝑃
7𝑖𝑗 (𝑤) ,

𝑗 = 1, 2, . . . , 𝑖; 𝑖 = 1, 2, . . . ,

(13)

[
𝑑

𝑑𝑤
+ 𝑟 (𝑤)] 𝑃

9𝑖𝑗 (𝑤) = 𝜌𝑃
8𝑖𝑗 (𝑤) ,

𝑗 = 1, 2, . . . , 𝑖; 𝑖 = 1, 2, . . . ,

(14)

with the boundary conditions

𝑃
1 (0) = 𝜌𝑃

0
+

∞

∑

𝑖=1

𝑖

∑

𝑗=1

∫

∞

0

𝑟 (𝑤) 𝑃8𝑖𝑗 (𝑤) 𝑑𝑤 (15)

𝑃
2 (0) =

∞

∑

𝑖=1

𝑖

∑

𝑗=1

∫

∞

0

𝑟 (𝑤) 𝑃9𝑖𝑗 (𝑤) 𝑑𝑤, (16)

𝑃
3 (0) = ∫

∞

0

𝜃 (𝑥) 𝑃1 (𝑥) 𝑑𝑥 + ∫

∞

0

𝜇 (𝑦) 𝑃
4
(𝑦) 𝑑𝑦, (17)

𝑃
4 (0) = ∫

∞

0

𝜃 (𝑥) 𝑃2 (𝑥) 𝑑𝑥, (18)

𝑃
5
(𝑦, 0) = 𝛼𝑃

3
(𝑦) , (19)

𝑃
6
(𝑦, 0) = 𝛼𝑃

4
(𝑦) , (20)

𝑃
7𝑖1 (0) = 𝑐

𝑖
∫

∞

0

𝜇 (𝑦) 𝑃
3
(𝑦) 𝑑𝑦, 𝑖 = 1, 2, . . . , (21)



4 Journal of Applied Mathematics

𝑃
7𝑖𝑗 (0) = ∫

∞

0

𝑟 (𝑤) 𝑃7𝑖,𝑗−1 (𝑤) 𝑑𝑤,

𝑗 = 2, 3, . . . , 𝑖; 𝑖 = 2, 3, . . . ,

(22)

𝑃
𝑘𝑖𝑗 (0) = 0, 𝑘 = 8, 9; 𝑗 = 1, 2, . . . , 𝑖; 𝑖 = 1, 2, . . . , (23)

and the normalization condition

𝑃
0
+

4

∑

𝑚=1

∫

∞

0

𝑃
𝑚 (𝜏) 𝑑𝜏 +

6

∑

𝑙=5

∫

∞

0

∫

∞

0

𝑃
𝑙
(𝑦, 𝑧) 𝑑𝑦 𝑑𝑧

+

∞

∑

𝑖=1

𝑖

∑

𝑗=1

9

∑

𝑘=7

∫

∞

0

𝑃
𝑘𝑖𝑗 (𝑤) 𝑑𝑤 = 1.

(24)

In order to derive important reliability indices, we define
the Laplace transform of a nonnegative function 𝐹(𝑡) as
𝐹
∗
(𝑠) = ∫

∞

0
𝑒
−𝑠𝑡

𝐹(𝑡)𝑑𝑡, and we also denote 𝐹(𝑡) = 1 − 𝐹(𝑡),
𝐹
∗

(𝑠) = ∫
∞

0
𝑒
−𝑠𝑡

𝐹(𝑡)𝑑𝑡. Define

𝜋
𝑚

=

{{{{{{{{{{{{{{

{{{{{{{{{{{{{{

{

𝑃
0
, 𝑚 = 0,

∫

∞

0

𝑃
𝑚 (𝜏) 𝑑𝜏, 𝑚 = 1, 2, 3, 4,

∫

∞

0

∫

∞

0

𝑃
𝑚

(𝑦, 𝑧) 𝑑𝑦 𝑑𝑧, 𝑚 = 5, 6,

∞

∑

𝑖=1

𝑖

∑

𝑗=1

∫

∞

0

𝑃
𝑚𝑖𝑗 (𝑤) 𝑑𝑤, 𝑚 = 7, 8, 9;

(25)

then we have the following.

Lemma 2. The expressions of 𝜋
𝑚
, 𝑚 = 0, 1, . . . , 9 are given as

follows:

𝜋
0
=

1

𝜌
𝑃
3 (0) 𝑔

∗
(Λ)𝐻 (V∗ (𝜌)) ,

𝜋
1
= 𝑃
1 (0) 𝑄

∗

(𝜌) ,

𝜋
2
= [𝐸 (𝑄) − 𝑄

∗

(𝜌)] 𝑃
1 (0) + 𝐸 (𝑄) 𝑃2 (0) ,

𝜋
3
= 𝑃
3 (0) 𝐺

∗

(Λ) ,

𝜋
4
= [𝐸 (𝐺) − 𝐺

∗

(Λ)] 𝑃
3 (0) + 𝐸 (𝐺) 𝑃4 (0) ,

𝜋
5
= 𝛼𝐵
∗

(𝜌) 𝜋
3
,

𝜋
6
= 𝛼𝐸 (𝐵) 𝜋4 + 𝛼 [𝐸 (𝐵) − 𝐵

∗

(𝜌)] 𝜋
3
,

𝜋
7
= 𝑉
∗

(𝜌) 𝑃
3 (0) 𝑔

∗
(Λ)

1 − 𝐻 (V∗ (𝜌))
1 − V∗ (𝜌)

,

𝜋
8
= [𝑉
∗

(𝜌) − V∗
0
(𝜌)] 𝑃

3 (0) 𝑔
∗
(Λ)

1 − 𝐻 (V∗ (𝜌))
1 − V∗ (𝜌)

,

𝜋
9
= [𝐸 (𝑉) + V∗

0
(𝜌) − 2𝑉

∗

(𝜌)] 𝑃
3 (0) 𝑔

∗
(Λ)

1 − 𝐻 (V∗ (𝜌))
1 − V∗ (𝜌)

,

(26)

where

𝑃
−1

3
(0) = [

𝐻 (V∗ (𝜌))
𝜌

+ 𝐸 (𝑉)
1 − 𝐻 (V∗ (𝜌))

1 − V∗ (𝜌)
+ 𝐸 (𝑄)]

× 𝑔
∗
(Λ) + 𝐸 (𝐺) [1 + 𝛼𝐸 (𝐵)]

× {1 + 𝑔
∗
(Λ) − 𝑞

∗
(𝜌) 𝑔
∗
(Λ)

× [𝐻 (V∗ (𝜌)) + 𝜌V∗
0
(𝜌)

1 − 𝐻 (V∗ (𝜌))
1 − V∗ (𝜌)

]} ,

𝑃
1 (0)=𝑃

3 (0) 𝑔
∗
(Λ) [𝐻 (V∗ (𝜌)) + 𝜌V∗

0
(𝜌)

1 − 𝐻 (V∗ (𝜌))
1 − V∗ (𝜌)

] ,

𝑃
2 (0) = 𝑃

3 (0) 𝑔
∗
(Λ) [1 − V∗ (𝜌) − 𝜌V∗

0
(𝜌)]

1 − 𝐻 (V∗ (𝜌))
1 − V∗ (𝜌)

,

𝑃
4 (0) = 𝑃

1 (0) [1 − 𝑞
∗
(𝜌)] + 𝑃

2 (0) ,

Λ = 𝜌 + 𝛼 − 𝛼𝑏
∗
(𝜌) , V∗

0
(𝜌) = ∫

∞

0

𝑥e−𝜌𝑥V (𝑥) 𝑑𝑥.

(27)

Proof. Solving (6) and (10), respectively, and using (19), we
get

𝑃
1 (𝑥) = 𝑃

1 (0) e
−𝜌𝑥

𝑄 (𝑥) , (28)

𝑃
5
(𝑦, 𝑧) = 𝑃

5
(𝑦, 0) 𝑒

−𝜌𝑧
𝐵 (𝑧) = 𝛼𝑃

3
(𝑦) 𝑒
−𝜌𝑧

𝐵 (𝑧) . (29)

Applying (28), (7) becomes

𝑑𝑃
2 (𝑥)

𝑑𝑥
+ 𝜃 (𝑥) 𝑃2 (𝑥) = 𝜌𝑃

1 (0) 𝑒
−𝜌𝑥

𝑄 (𝑥) , (30)

which leads to

𝑃
2 (𝑥) = 𝑄 (𝑥) [𝑃1 (0) (1 − 𝑒

−𝜌𝑥
) + 𝑃
2 (0)] . (31)

Similarly, by the theory of first-order, linear, ordinary differ-
ential equation, we get

𝑃
3
(𝑦) = 𝑃

3 (0) 𝑒
−Λ𝑦

𝐺 (𝑦) , (32)

𝑃
4
(𝑦) = 𝐺 (𝑦) [𝑃

3 (0) (1 − 𝑒
−Λ𝑦

) + 𝑃
4 (0)] , (33)

𝑃
6
(𝑦, 𝑧) = 𝛼𝐵 (𝑧) [𝑃3 (𝑦) (1 − 𝑒

−𝜌𝑧
) + 𝑃
4
(𝑦)] , (34)

𝑃
7𝑖𝑗 (𝑤) = 𝑃

7𝑖𝑗 (0) 𝑒
−𝜌𝑤

𝑉 (𝑤) , 𝑗 = 1, 2, . . . , 𝑖; 𝑖 = 1, 2, . . . ,

(35)

𝑃
8𝑖𝑗 (𝑤) = 𝑃

7𝑖𝑗 (0) 𝑉 (𝑤) 𝜌𝑤𝑒
−𝜌𝑤

,

𝑗 = 1, 2, . . . , 𝑖; 𝑖 = 1, 2, . . . ,

(36)

𝑃
9𝑖𝑗 (𝑤) = 𝑃

7𝑖𝑗 (0) 𝑉 (𝑤) [1 − (1 + 𝜌𝑤) 𝑒
−𝜌𝑤

] ,

𝑗 = 1, 2, . . . , 𝑖; 𝑖 = 1, 2, . . . .

(37)

Now, we need to determine the values of 𝑃
0
, 𝑃
𝑚
(0), 𝑚 =

1, 2, 3, 4, and 𝑃
7𝑖𝑗

(0), 𝑗 = 1, 2, . . . , 𝑖; 𝑖 = 1, 2, . . ..
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Substituting (32) and (35) into (21) and (22), respectively,
leads to

𝑃
7𝑖1 (0) = 𝑐

𝑖
𝑃
3 (0) 𝑔

∗
(Λ) , 𝑖 = 1, 2, . . . ,

𝑃
7𝑖𝑗 (0) = 𝑃

7𝑖,𝑗−1 (0) V
∗
(𝜌) , 𝑖 = 2, 3, . . . ; 𝑗 = 2, 3, . . . , 𝑖,

(38)

which gives rise to

𝑃
7𝑖𝑗 (0) = 𝑐

𝑖
𝑃
3 (0) 𝑔

∗
(Λ) [V∗ (𝜌)]𝑗−1,

𝑖 = 2, 3, . . . ; 𝑗 = 2, 3, . . . , 𝑖,

(39)

∞

∑

𝑖=1

𝑃
7𝑖𝑖 (0) = 𝑃

711 (0) +

∞

∑

𝑖=2

𝑃
7𝑖𝑖 (0) = 𝑃

3 (0) 𝑔
∗
(Λ)

𝐻 (V∗ (𝜌))
V∗ (𝜌)

,

(40)

∞

∑

𝑖=1

𝑖

∑

𝑗=1

𝑃
7𝑖𝑗 (0) =

∞

∑

𝑖=1

(𝑃
7𝑖1 (0) +

𝑖

∑

𝑗=2

𝑃
7𝑖𝑗 (0))

= 𝑃
3 (0) 𝑔

∗
(Λ)

1 − 𝐻 (V∗ (𝜌))
1 − V∗ (𝜌)

.

(41)

From (5), (35), and (40), we obtain

𝑃
0
=

1

𝜌
𝑃
3 (0) 𝑔

∗
(Λ)𝐻 (V∗ (𝜌)) . (42)

Substituting (42), (36), and (41) into (15) gives

𝑃
1 (0) = 𝑃

3 (0) 𝑔
∗
(Λ) [𝐻 (V∗(𝜌)) + 𝜌V∗

0
(𝜌)

1 − 𝐻 (V∗ (𝜌))
1 − V∗ (𝜌)

].

(43)

Combining (16), (37), and (41) leads to

𝑃
2 (0) = 𝑃

3 (0) 𝑔
∗
(Λ) [1 − V∗ (𝜌) − 𝜌V∗

0
(𝜌)]

1 − 𝐻 (V∗ (𝜌))
1 − V∗ (𝜌)

.

(44)

By (17) and (18), we get

𝑃
3 (0) = 𝑃

1 (0) 𝑞
∗
(𝜌) + 𝑃

3 (0) [1 − 𝑔
∗
(Λ)] + 𝑃

4 (0) ,

𝑃
4 (0) = 𝑃

1 (0) [1 − 𝑞
∗
(𝜌)] + 𝑃

2 (0) .

(45)

It follows from (45) that

𝑃
1 (0) + 𝑃

2 (0) = 𝑃
3 (0) 𝑔

∗
(Λ) , (46)

𝑃
4 (0) = 𝑃

3 (0) 𝑔
∗
(Λ) − 𝑃

1 (0) 𝑞
∗
(𝜌) . (47)

Finally, according to (47) and (43), we have

𝑃
3 (0) + 𝑃

4 (0)

= 𝑃
3 (0) [1 + 𝑔

∗
(Λ)] − 𝑃

1 (0) 𝑞
∗
(𝜌)

= 𝑃
3 (0) {1 + 𝑔

∗
(Λ) − 𝑞

∗
(𝜌) 𝑔
∗
(Λ)

× [𝐻 (V∗ (𝜌)) + 𝜌V∗
0
(𝜌)

1 − 𝐻 (V∗ (𝜌))
1 − V∗ (𝜌)

]} .

(48)

Thus, 𝜋
𝑚
, 𝑚 = 0, 1, . . . , 9 are obtained by (28)–(37) and the

above results. Again by the normalization condition (24), we
get the value of 𝑃

3
(0).

4. Reliability Indices

Based on the results obtained in Lemma 2, some important
reliability indices are easily derived as follows.

Theorem 3. (1)The steady-state availability of the system, that
is, in steady state, the probability that the system is operating,
denoted by 𝐴, is

𝐴 = 𝜋
0
+ 𝜋
1
+ 𝜋
3
+ 𝜋
5
+ 𝜋
7
+ 𝜋
8

= 𝑃
3 (0) {𝑔

∗
(Λ) [2𝑉

∗

(𝜌) − V∗
0
(𝜌)]

×
1 − 𝐻 (V∗ (𝜌))

1 − V∗ (𝜌)
+ [1 + 𝛼𝐵

∗

(𝜌)] 𝐺
∗

(Λ)

+
𝑔
∗
(Λ)

𝜌
𝐻 (V∗ (𝜌)) + 𝑄

∗

(𝜌) 𝑔
∗
(Λ)

× [𝐻 (V∗ (𝜌)) + 𝜌V∗
0
(𝜌)

1 − 𝐻 (V∗ (𝜌))
1 − V∗ (𝜌)

]} .

(49)

(2)The steady-state failure frequency of the system, that is,
in steady state, the rate of occurrence of failures of the system,
is given by

𝑊 = 𝜌 (𝜋
1
+ 𝜋
3
+ 𝜋
5
+ 𝜋
8
)

= 𝜌𝑃
3 (0) {[1 + 𝛼𝐵

∗

(𝜌)] 𝐺
∗

(Λ)

+ 𝑔
∗
(Λ) [𝑉

∗

(𝜌) − V∗
0
(𝜌)]

×
1 − 𝐻 (V∗ (𝜌))

1 − V∗ (𝜌)
+ 𝑄
∗

(𝜌) 𝑔
∗
(Λ)

× [𝐻 (V∗ (𝜌)) + 𝜌V∗
0
(𝜌)

1 − 𝐻 (V∗ (𝜌))
1 − V∗ (𝜌)

]} .

(50)

(3) In steady state, let 𝑃
𝐼
and 𝑃
𝑉
denote the repairman’s idle

and vacation probabilities, and 𝑃
𝑆
and 𝑃

𝐵
are the startup and

busy (repair and replacement) probabilities of repair facility,
respectively; then

𝑃
𝐼
= 𝜋
0
=

1

𝜌
𝑔
∗
(Λ) 𝑃3 (0)𝐻 (V∗ (𝜌)) ,

𝑃
𝑉

= 𝜋
7
+ 𝜋
8
+ 𝜋
9
= 𝑃
3 (0) 𝐸 (𝑉) 𝑔

∗
(Λ)

1 − 𝐻 (V∗ (𝜌))
1 − V∗ (𝜌)

,

𝑃
𝑆
= 𝜋
1
+ 𝜋
2
= 𝑃
3 (0) 𝐸 (𝑄) 𝑔

∗
(Λ) ,
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𝑃
𝐵
= 𝜋
3
+ 𝜋
4
+ 𝜋
5
+ 𝜋
6
= 𝑃
3 (0) [1 + 𝛼𝐸 (𝐵)] 𝐸 (𝐺)

× {1 + 𝑔
∗
(Λ) − 𝑞

∗
(𝜌) 𝑔
∗
(Λ)

× [𝐻 (V∗ (𝜌)) + 𝜌V∗
0
(𝜌)

1 − 𝐻 (V∗ (𝜌))
1 − V∗ (𝜌)

]} .

(51)

(4) In steady state, let 𝜉 denote the unavailability of the
repair facility, that is, the probability that the repair facility is
under replacement, and 𝜂 is the replacement frequency of the
repair facility, that is, the rate of occurrence of replacements;
then

𝜉 = 𝜋
5
+ 𝜋
6
= 𝑃
3 (0) 𝛼𝐸 (𝐵) 𝐸 (𝐺)

× { 1 + 𝑔
∗
(Λ) − 𝑞

∗
(𝜌) 𝑔
∗
(Λ)

× [𝐻 (V∗ (𝜌)) + 𝜌V∗
0
(𝜌)

1 − 𝐻 (V∗ (𝜌))
1 − V∗ (𝜌)

]} ,

𝜂 = 𝛼 (𝜋
3
+ 𝜋
4
) =

𝜉

𝐸 (𝐵)
,

(52)

where 𝑃
3
(0) is given by Lemma 2.

Proof. According to the frequency formula in [18], 𝑊 and 𝜂

are easily obtained. The rest of probabilities are derived by
their definitions, Lemma 2, and direct calculations.

Noting that the time points that the repairman completes
repair and begins to take vacation are regenerative ones, we
define the following.

(i) System renewal cycle denoted by 𝐿
𝑅
: this is the length

of time from the beginning of the last vacation period
to the beginning of the next vacation period.

(ii) Vacation period denoted by 𝐿
𝑉
: this is the length of

total vacation time of repairman per renewal cycle.
(iii) Idle period denoted by 𝐿

𝐼
: this is the length of total

idle time of repairman per renewal cycle.
(iv) Startup period denoted by𝐿

𝑆
: this is the length of total

startup time of repair facility per renewal cycle.
(v) Busy period denoted by 𝐿

𝐵
: this is the sum of repair

time and replacement time of repair facility per
renewal cycle.

Theorem 4. Denote by 𝐸(𝐿
𝑉
) and 𝐸(𝐽) the mean vacation

period and mean actual vacation number of repairman,
respectively; then

𝐸 (𝐿
𝑉
) =

1 − 𝐻 (V∗ (𝜌))
1 − V∗ (𝜌)

𝐸 (𝑉) , 𝐸 (𝐽) =
1 − 𝐻 (V∗ (𝜌))

1 − V∗ (𝜌)
.

(53)

Proof. Let 𝐿
𝑉
(𝑡) = Pr(𝐿

𝑉
≥ 𝑡) denote the complementary

distribution of vacation period 𝐿
𝑉
; then 𝐸(𝐿

𝑉
) = 𝐿

∗

𝑉
(0).

Now, we will construct a vector Markov process with finite
absorbing states to get 𝐿∗

𝑉
(𝑠).

Let all system states defined in Section 3 except (𝑘𝑖𝑗), 𝑘 =

7, 8, 9; 𝑗 = 1, 2, . . . , 𝑖; and 𝑖 = 1, 2, . . . be absorbing states; then
we obtain a new vectorMarkov process. For this new process,
using similar state probability notations to Section 3, we get
the following set of equations:

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑤
+ 𝜌 + 𝑟 (𝑤)] 𝑃

7𝑖𝑗 (𝑡, 𝑤) = 0,

𝑗 = 1, 2, . . . , 𝑖; 𝑖 = 1, 2, . . . ,

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑤
+ 𝜌 + 𝑟 (𝑤)] 𝑃

8𝑖𝑗 (𝑡, 𝑤) = 𝜌𝑃
7𝑖𝑗 (𝑡, 𝑤) ,

𝑗 = 1, 2, . . . , 𝑖; 𝑖 = 1, 2, . . . ,

[
𝜕

𝜕𝑡
+

𝜕

𝜕𝑤
+ 𝑟 (𝑤)] 𝑃

9𝑖𝑗 (𝑡, 𝑤) = 𝜌𝑃
8𝑖𝑗 (𝑡, 𝑤) ,

𝑗 = 1, 2, . . . , 𝑖; 𝑖 = 1, 2, . . . ,

(54)

with the boundary conditions

𝑃
7𝑖1 (𝑡, 0) = 𝑐

𝑖
𝛿 (𝑡) , 𝑖 = 1, 2, . . . ,

𝑃
7𝑖𝑗 (𝑡, 0) = ∫

∞

0

𝑟 (𝑤) 𝑃7𝑖,𝑗−1 (𝑡, 𝑤) 𝑑𝑤,

𝑗 = 2, 3, . . . , 𝑖; 𝑖 = 2, 3, . . . ,

𝑃
8𝑖𝑗 (𝑡, 0) = 𝑃

9𝑖𝑗 (𝑡, 0) = 0, 𝑗 = 1, 2, . . . , 𝑖; 𝑖 = 1, 2, . . . ,

(55)

where 𝛿(𝑡) = 1 if 𝑡 = 0, 𝛿(𝑡) = 0 if 𝑡 ̸= 0, and the initial
conditions: 𝑃

7𝑖1
(0, 𝑤) = 𝑐

𝑖
𝛿(𝑤), 𝑖 = 1, 2, . . ., the rest are zero.

These equations can be solved in a similar manner to that
in Section 3.The Laplace transforms of solutions are given by

𝑃
∗

7𝑖𝑗
(𝑠, 𝑤) = 𝑐

𝑖
𝑒
−(𝑠+𝜌)𝑤

𝑉 (𝑤) [V∗(𝑠 + 𝜌)]
𝑗−1

,

𝑗 = 1, 2, . . . , 𝑖; 𝑖 = 1, 2, . . . ,

𝑃
∗

8𝑖𝑗
(𝑠, 𝑤) = 𝑐

𝑖
𝜌𝑤𝑒
−(𝑠+𝜌)𝑤

𝑉 (𝑤) [V∗(𝑠 + 𝜌)]
𝑗−1

,

𝑗 = 1, 2, . . . , 𝑖; 𝑖 = 1, 2, . . . ,

𝑃
∗

9𝑖𝑗
(𝑠, 𝑤) = 𝑐

𝑖
𝑒
−𝑠𝑤

𝑉 (𝑤) [1 − (1 + 𝜌𝑤)e−𝜌𝑤] [V∗(𝑠 + 𝜌)]
𝑗−1

,

𝑗 = 1, 2, . . . , 𝑖; 𝑖 = 1, 2, . . . .

(56)

Therefore, we have

𝐿
∗

𝑉
(𝑠) =

∞

∑

𝑖=1

𝑖

∑

𝑗=1

∫

∞

0

[𝑃
∗

7𝑖𝑗
(𝑠, 𝑤) + 𝑃

∗

8𝑖𝑗
(𝑠, 𝑤) + 𝑃

∗

9𝑖𝑗
(𝑠, 𝑤)] 𝑑𝑤.

(57)

Substituting the values of 𝑃∗
𝑘𝑖𝑗

(𝑠, 𝑤), 𝑘 = 7, 8, 9; 𝑗 = 1, 2, . . . , 𝑖;
and 𝑖 = 1, 2, . . . into the above equation and direct calcula-
tions complete the proof of Theorem 4.
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Corollary 5. Denote by 𝐸(𝐿
𝑅
), 𝐸(𝐿

𝐼
), 𝐸(𝐿

𝑆
), and 𝐸(𝐿

𝐵
) the

mean renewal cycle, mean idle period, mean startup period,
and mean busy period, respectively; then

𝐸 (𝐿
𝑅
) =

𝐸 (𝐿
𝑉
)

𝑃
𝑉

=
1

𝑃
3 (0) 𝑔

∗ (Λ)
,

𝐸 (𝐿
𝐼
) = 𝑃
𝐼
𝐸 (𝐿
𝑅
) =

1

𝜌
𝐻 (V∗ (𝜌)) ,

𝐸 (𝐿
𝑆
) = 𝑃
𝑆
𝐸 (𝐿
𝑅
) = 𝐸 (𝑄) ,

𝐸 (𝐿
𝐵
) = 𝑃
𝐵
𝐸 (𝐿
𝑅
) = (1 + 𝛼𝐸 (𝐵)) 𝐸 (𝐺)

× {1 +
1

𝑔∗ (Λ)
− 𝑞
∗
(𝜌)

× [𝐻 (V∗ (𝜌)) + 𝜌V∗
0
(𝜌)

1 − 𝐻 (V∗ (𝜌))
1 − V∗ (𝜌)

]} ,

(58)

where 𝑃
3
(0) is given by Lemma 2.

Proof. The results are easily derived by noting that

𝐸 (𝐿
𝑉
) + 𝐸 (𝐿

𝐼
) + 𝐸 (𝐿

𝑆
) + 𝐸 (𝐿

𝐵
) = 𝐸 (𝐿

𝑅
) ,

𝑃
𝑉

+ 𝑃
𝐼
+ 𝑃
𝑆
+ 𝑃
𝐵
= 1.

(59)

Remark 6. Since the time points in which the repairman
completes repair and begins to take vacation are regenerative
ones, by the frequency formula in [18] and 𝑃

3
(𝑦) in (32),

the steady state renewal frequency of system, that is, the
rate of occurrence of renewals of system, is given by 𝜅 =

∫
∞

0
𝜇(𝑦)𝑃

3
(𝑦)𝑑𝑦 = 𝑃

3
(0)𝑔
∗
(Λ). Again by Proposition 3.3

in [19], we get 𝐸(𝐿
𝑅
) = 1/𝜅 = 1/(𝑃

3
(0)𝑔
∗
(Λ)). The result

derived by this method agrees with that in Corollary 5, which
confirms that the deduction processes in Theorem 4 and
Corollary 5 are right. More importantly, Theorem 4 presents
an effective analysis technique to derive the mean vacation
period and mean actual vacation number.

Remark 7 (special cases). (1) If 𝑝 = 0, then each shock does
not harm the operating unit; If 𝑝 = 1, then each shock will
cause the operating unit to fail.

(2) If 𝛼 → 0, then our model becomes a two-unit cold
standby shock systemwith repair facility startup andmultiple
adaptive vacations.

(3) If we let 𝑄(𝑡) = 1 − 𝑒
−𝜃𝑡

(𝜃 > 0, 𝑡 ≥ 0), then when
𝜃 → ∞,𝛼 → 0, ourmodel becomes a two-unit cold standby
shock system with multiple adaptive vacations.

(4) If we let 𝐻 = 𝑘 and 𝐻(𝑧) = 𝑧
𝑘, |𝑧| < 1, 𝑘 = 0, 1, 2, . . .,

then our model can describe a two-unit cold standby shock
system with repair facility startup and replacement under a
variant vacation policy. In this special case, 𝐻 = 0, 1, 𝑘 and
∞ represent no vacation, single vacation, 𝑘 vacations, and
multiple vacations, respectively.

5. Numerical Illustration and Optimal
Part-Time Job Policy for a Production Line

As an application example of our model and its results, we
consider a production line controlled by a huge operating
computer, which may fail due to the invasion of some virus.
The virus arrives according to a Poisson process with rate
𝜆 (> 0). If the magnitude of a shock 𝜒 outstrips a threshold 𝜍

the operating computer will fail, where 𝜒 and 𝜍 are assumed
to have distribution functions 𝑇(𝑥) and 𝜙(𝑥), 𝑥 > 0,
respectively. When the operating computer fails, an identical
standby computer begins to operate. If two computers fail the
production will be stopped. The repairer repaired the failed
computer(s) in order of failure at a repair station. Before
repair the repair station needs a random startup time𝑄. After
startup, the repairer starts his repair until no failed computer
appears.The repair time of each computer𝐺 is assumed to be
a randomvariable.The repaired computer goes into operating
or standby state. Whenever no failed computer occurs, the
repairer shuts down the repair station and performs 𝐻

part-time jobs (vacations), where 𝐻 is a discrete random
variable with generating function 𝐻(𝑧), |𝑧| < 1. The part-
time jobs can make profits for the production line. Upon
completion of each part-time job time 𝑉, the repairer checks
the computer failure and decides whether or not to resume
startup and subsequent repair. If at this moment there is no
failed computer, a decision may be made for taking another
part-time job to be performed. If the failed computer occurs,
he will restart the startup of repair station before repair. If 𝐻
part-time jobs are completed, the repairer will be idle and
wait for the computer failure. Further, the repair of failed
computer may be interrupted due to some unpredictable
events, which occur according to a Poisson process with rate
𝛼 (> 0).The interrupted repair is immediately recoveredwith
a random time𝐵.The repairwill restartwhen the interruption
is recovered.

Firstly, we numerically analyze the effects of part-time
job, virus arrival rate, startup, and repair recovery time on
main reliability indices of production line. These indices
include the stop production frequency 𝑊, mean renewal
cycle 𝐸(𝐿

𝑅
), mean startup period 𝐸(𝐿

𝑉
), mean part-time

job period 𝐸(𝐿
𝑉
), the availability 𝐴, busy probability 𝑃

𝐵
,

unavailability 𝜉, and repair recovery frequency 𝜂.
For convenience, we assume that (1) the time of each part-

time job 𝑉 is exponentially distributed with parameter 𝑟 (>

0), (2) the repair time 𝐺 is deterministic with mean 𝐸(𝐺) =

0.25, (3) the startup time 𝑄 obeys 2-stage Erlang distribution
with parameter 𝜃 (> 0), and (4) the repair recovery time 𝐵

follows hyperexponential distribution with density function
𝑏(𝑡) = 0.4𝛽𝑒

−𝛽𝑡
+ 0.6(2𝛽)𝑒

−2𝛽𝑡, 𝛽, 𝑡 > 0. Also, suppose that
𝑇(𝑥) = 1 − 𝑒

−𝜎𝑥 and 𝜙(𝑥) = 1 − 𝑒
−(1/2)𝜎𝑥, 𝜎, 𝑥 > 0; then we get

𝑝 = ∫
∞

0
𝜙(𝑥)𝑑𝑇(𝑥) = 1/3. The numerical results are reported

in Tables 1–5 by varying values of 𝐻, 𝑟, 𝜆, 𝜃 and 𝛽, where in
Tables 2–5 it is assumed that 𝐻 is geometrically distributed
with mean 5.

By means of analysis results derived in Section 4, Table 1
shows that the effects of maximum part-time job number
𝐻 on main reliability indices of production line for the set
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Table 1: Main reliability indices of production line for different maximum part-time job number 𝐻 with (𝜆, 𝑟, 𝜃, 𝛼, 𝛽) = (3, 15, 6, 0.35, 14).

𝐻 𝜉 𝜂 𝐴 𝑊 𝑃
𝐵

𝐸(𝐿
𝑅
) 𝐸(𝐿

𝑆
) 𝐸(𝐿

𝑉
)

0 0.0057 0.0802 0.9171 0.2614 0.2350 1.5251 0.1667 0.0000
1 0.0057 0.0802 0.9163 0.2628 0.2348 1.5301 0.1667 0.0667
3 0.0057 0.0800 0.9148 0.2651 0.2344 1.5392 0.1667 0.1878
5 0.0057 0.0799 0.9135 0.2672 0.2341 1.5473 0.1667 0.2942
∞ 0.0057 0.0791 0.9046 0.2817 0.2318 1.6055 0.1667 1.0667

Table 2: Main reliability indices of production line for different part-time job rate 𝑟 with (𝜆, 𝜃, 𝛼, 𝛽) = (3, 6, 0.35, 14).

𝑟 𝜉 𝜂 𝐴 𝑊 𝑃
𝐵

𝐸(𝐿
𝑅
) 𝐸(𝐿

𝑆
) 𝐸(𝐿

𝑉
)

5 0.0056 0.0783 0.8946 0.2861 0.2292 1.6434 0.1667 0.6000
8 0.0057 0.0794 0.9070 0.2751 0.2324 1.5825 0.1667 0.4327
11 0.0057 0.0797 0.9114 0.2700 0.2335 1.5592 0.1667 0.3409
14 0.0057 0.0799 0.9134 0.2673 0.2341 1.5477 0.1667 0.2820
17 0.0057 0.0800 0.9145 0.2657 0.2344 1.5412 0.1667 0.2406

Table 3: Main reliability indices of production line for different virus arrival rate 𝜆 with (𝑟, 𝜃, 𝛼, 𝛽) = (15, 6, 0.35, 14).

𝜆 𝜉 𝜂 𝐴 𝑊 𝑃
𝐵

𝐸(𝐿
𝑅
) 𝐸(𝐿

𝑆
) 𝐸(𝐿

𝑉
)

1 0.0021 0.0288 0.9869 0.0404 0.0843 3.4655 0.1667 0.3067
2 0.0040 0.0577 0.9553 0.1384 0.1632 2.0062 0.1667 0.2848
3 0.0057 0.0800 0.9139 0.2667 0.2342 1.5452 0.1667 0.2667
4 0.0072 0.1013 0.8686 0.4077 0.2968 1.3327 0.1667 0.2513
5 0.0086 0.1200 0.8228 0.5508 0.3514 1.2188 0.1667 0.2381

Table 4: Main reliability indices of production line for different startup time parameter 𝜃 with (𝜆, 𝑟, 𝛼, 𝛽) = (3, 15, 0.35, 14).

𝜃 𝜉 𝜂 𝐴 𝑊 𝑃
𝐵

𝐸(𝐿
𝑅
) 𝐸(𝐿

𝑆
) 𝐸(𝐿

𝑉
)

4 0.0056 0.0782 0.8937 0.2851 0.2290 1.6429 0.2500 0.2667
7 0.0057 0.0804 0.9193 0.2601 0.2356 1.5169 0.1429 0.2667
10 0.0058 0.0813 0.9287 0.2463 0.2380 1.4654 0.1000 0.2667
13 0.0058 0.0817 0.9335 0.2378 0.2392 1.4374 0.0769 0.2667
16 0.0059 0.0819 0.9363 0.2320 0.2399 1.4198 0.0625 0.2667

Table 5: Main reliability indices of production line for different repair recovery time parameter 𝛽 with (𝜆, 𝑟, 𝜃, 𝛼) = (3, 15, 6, 0.35).

𝛽 𝜉 𝜂 𝐴 𝑊 𝑃
𝐵

𝐸(𝐿
𝑅
) 𝐸(𝐿

𝑆
) 𝐸(𝐿

𝑉
)

5 0.0159 0.0795 0.9088 0.2692 0.2431 1.5634 0.1667 0.2667
9 0.0089 0.0798 0.9124 0.2676 0.2370 1.5508 0.1667 0.2667
13 0.0061 0.0799 0.9137 0.2668 0.2346 1.5460 0.1667 0.2667
17 0.0047 0.0800 0.9143 0.2664 0.2333 1.5434 0.1667 0.2667
21 0.0038 0.0800 0.9147 0.2661 0.2325 1.5418 0.1667 0.2667

Table 6: Availability 𝐴 and average profit per unit time Γ(𝐾) of production line for different maximum number 𝐾 of part-time jobs.

𝐾 1 2 3 4 5 6 7 8 9
𝐴 0.9019 0.8821 0.8692 0.8606 0.8547 0.8506 0.8478 0.8458 0.8443
Γ(𝐾) 1367.1 1666.2 1860.6 1990.8 2079.7 2141.3 2184.3 2214.5 2235.9

Table 7: Availability 𝐴 and average profit per unit time Γ(𝑢) of production line for different time 𝑢 of each part-time job.

𝑢 1 2 3 4 5 6 7 8 9
𝐴 0.9115 0.8635 0.8103 0.7593 0.7127 0.6707 0.6330 0.5991 0.5684
Γ(𝑢) 1623.5 1946.6 2088.8 2153.7 2183.3 2195.7 2199.3 2198.3 2194.7
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of parameters (𝜆, 𝑟, 𝜃, 𝛼, 𝛽) = (3, 15, 6, 0.35, 14). Here, we
assume that 𝐻 = 0, 1, 3, 5,∞; that is, suppose that the
repairman takes no part-time job, single part-time job, 3
part-time jobs, 5 part-time jobs, and multiple part-time jobs,
respectively. It is observed that the stop production frequency
𝑊, mean renewal cycle𝐸(𝐿

𝑅
), andmean part-time job period

𝐸(𝐿
𝑉
) all increase monotonously, and the availability𝐴, busy

probability 𝑃
𝐵
, and repair recovery frequency 𝜂 all decrease

monotonously as the value𝐻 increases.The same conclusion
holds for decreasing value of part-time job rate 𝑟 in Table 2.

The effects of virus arrival rate 𝜆 on main reliability
indices are reported in Table 3, where we set (𝑟, 𝜃, 𝛼, 𝛽) =

(15, 6, 0.35, 14). As is expected,𝐴,𝐸(𝐿
𝑅
), and𝐸(𝐿

𝑉
)decrease,

and 𝑊, 𝑃
𝐵
, 𝜉, and 𝜂 increase as 𝜆 increases. But the mean

startup period 𝐸(𝐿
𝑆
) does not change. The effect of varying

startup parameter 𝜃 is shown in Table 4 for the set of
parameters (𝜆, 𝑟, 𝛼, 𝛽) = (3, 15, 0.35, 14). We see that the
mean startup period increases monotonously as the value 𝜃

decreases.
Table 5 reports the effects of repair recovery time param-

eter 𝛽 on main reliability indices for the set of parameters
(𝜆, 𝑟, 𝜃, 𝛼) = (3, 15, 6, 0.35). It should be noted that the repair
recovery time does not affect the mean startup period and
mean part-time job period. The trends shown by Tables 1–5
are as expected.

Next, we numerically analyze the optimal part-time job
policy of production line while maintaining a maximum
profit. Let us define

𝑥
𝐴

≡ income of the production line per unit time
when one computer is operating,
𝑥
𝑉

≡ income per unit time when the repairer is
performing part-time jobs,
𝑥
𝑊

≡ loss of the production line when the production
stops for each time,
𝑥
𝐼
≡ idle cost of the repairer per unit time,

𝑥
𝑆
≡ startup cost of the repair station per unit time,

𝑥
𝐵
≡ repair and repair recovery costs per unit time,

𝑥
𝜂

≡ loss of the production line when the repair is
recovered for each time;

then the average profit of production line per unit time is
given by

Γ = 𝑥
𝐴
𝐴 + 𝑥

𝑉

𝐸 (𝐿
𝑉
)

𝐸 (𝐿
𝑅
)
− 𝑥
𝑊
𝑊 − 𝑥

𝐼

𝐸 (𝐿
𝐼
)

𝐸 (𝐿
𝑅
)

− 𝑥
𝑆

𝐸 (𝐿
𝑆
)

𝐸 (𝐿
𝑅
)
− 𝑥
𝐵

𝐸 (𝐿
𝐵
)

𝐸 (𝐿
𝑅
)
− 𝑥
𝜂
𝜂,

(60)

where 𝐴, 𝑊, 𝐸(𝐿
𝑅
), 𝐸(𝐿

𝐼
), 𝐸(𝐿

𝑆
), 𝐸(𝐿

𝐵
), 𝐸(𝐿

𝑉
), and 𝜂 are

given by Theorems 3−4 and Corollary 5, respectively. For
optimization analysis, we let

(1) 𝑥
𝐴

= 1000, 𝑥
𝑉

= 2000, 𝑥
𝑊

= 400, 𝑥
𝐼
= 16, 𝑥

𝑆
= 25,

𝑥
𝐵
= 60, and 𝑥

𝜂
= 160;

(2) 𝜆 = 0.5, 𝑇(𝑥) = 1 − 𝑒
−𝜎𝑥, 𝜙(𝑥) = 1 − 𝑒

−(2/3)𝜎𝑥, and
𝜎, 𝑥 > 0;

(3) the startup time 𝑄 obeys 4-stage Erlang distribution
with mean 𝐸(𝑄) = 1;

(4) the repair time 𝐺 follows 3-stage Erlang distribution
with mean 𝐸(𝐺) = 5/6;

(5) the repair is interrupted according to a Poisson
process with rate 𝛼 = 0.2;

(6) the repair recovery time 𝐵 is deterministic with mean
𝐸(𝐵) = 1/3.

The following two optimal part-time job policies will
be determined so as to maximize the average profit Γ and
maintain an availability no less than 0.85: (a) the maximum
number of part-time jobs𝐾 when the time of each part-time
job 𝑉 follows an exponential distribution with mean 𝐸(𝑉) =

2; (b) the maximum value of 𝑢 when the maximum number
of part-time jobs 𝐻 obeys a negative binomial distribution
Nb(3, 4/5) and the time of each part-time job 𝑉 is a positive
integer 𝑢.

For case (a), we set 𝑉(𝑡) = 1 − 𝑒
−0.5𝑡

, 𝑡 ≥ 0 and 𝐻(𝑧) =

𝑧
𝐾
, |𝑧| < 1; the optimization problem is given by

max Γ (𝐾) = 𝑥
𝐴
𝐴 + 𝑥

𝑉

𝐸 (𝐿
𝑉
)

𝐸 (𝐿
𝑅
)
− 𝑥
𝑊
𝑊 − 𝑥

𝐼

𝐸 (𝐿
𝐼
)

𝐸 (𝐿
𝑅
)

− 𝑥
𝑆

𝐸 (𝐿
𝑆
)

𝐸 (𝐿
𝑅
)
− 𝑥
𝐵

𝐸 (𝐿
𝐵
)

𝐸 (𝐿
𝑅
)
− 𝑥
𝜂
𝜂,

s.t. 0.85 ≤ 𝐴 < 1, 𝐾 = 1, 2, . . . .

(61)

For case (b), we set

𝑉 (𝑡) = {
1, 𝑡 ≥ 𝑢,

0, 𝑡 < 𝑢,
(62)

and 𝐻(𝑧) = (4𝑧/(5 − 𝑧))
3, |𝑧| < 1; the optimization problem

is

max Γ (𝑢) = 𝑥
𝐴
𝐴 + 𝑥

𝑉

𝐸 (𝐿
𝑉
)

𝐸 (𝐿
𝑅
)
− 𝑥
𝑊
𝑊 − 𝑥

𝐼

𝐸 (𝐿
𝐼
)

𝐸 (𝐿
𝑅
)

− 𝑥
𝑆

𝐸 (𝐿
𝑆
)

𝐸 (𝐿
𝑅
)
− 𝑥
𝐵

𝐸 (𝐿
𝐵
)

𝐸 (𝐿
𝑅
)
− 𝑥
𝜂
𝜂,

s.t. 0.85 ≤ 𝐴 < 1, 𝑢 = 1, 2, . . . .

(63)

WithMatlab 7.0 and a heuristicmethod, the numerical results
for two optimization problems are reported in Tables 6 and
7, respectively. Table 6 shows that for case (a), a maximum
average profit value per unit time of 2141.3 is achieved at
𝐾
∗
= 6. It is seen fromTable 7 that for case (b), themaximum

average profit per unit time is 1946.6 as themaximumpositive
integer value of 𝑢 equals 2.

6. Conclusions

In this paper, with the help of supplementary variablemethod
and Laplace transform, we successfully obtain main steady-
state reliability indices of an extended shock model, such
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as availability, failure frequency, mean renewal cycle, mean
vacation period, andmean startup period. Some special cases
are given. As an application, a production line is modeled
to study numerical illustration and its optimal part-time job
policy. For future research, one could consider some discrete
time shock models with a repairman vacation and their
optimization applications.
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