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A hybrid iterative algorithmwithMeir-Keeler contraction is presented for solving the fixed point problem of the pseudocontractive
mappings and the variational inequalities. Strong convergence analysis is given as lim

𝑛→∞
𝑑(𝑆𝑇𝑥

𝑛
, 𝑇𝑆𝑥
𝑛
).

1. Introduction

Throughout, we assume thatH is a real Hilbert space with the
inner ⟨⋅, ⋅⟩ and the norm ‖ ⋅ ‖ andC ⊂ H is a nonempty closed
convex set.

Definition 1. A mapping T : C → C is said to be
pseudocontractive if

⟨T𝑢 − T𝑢
†

, 𝑢 − 𝑢
†

⟩ ≤
󵄩󵄩󵄩󵄩󵄩
𝑢 − 𝑢
†
󵄩󵄩󵄩󵄩󵄩

2 (1)

for all 𝑢, 𝑢† ∈ C.

We use Fix(T) to denote the set of fixed points of T .

Remark 2. It is easily seen that (1) is equivalent to the
following:

󵄩󵄩󵄩󵄩󵄩
T𝑢 − T𝑢

†
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑢 − 𝑢
†
󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
(I − T)𝑢 − (I − T)𝑢

†
󵄩󵄩󵄩󵄩󵄩

2 (2)

for all 𝑢, 𝑢† ∈ C.

Definition 3. A mapping T : C → C is said to be 𝐿-
Lipschitzian if

󵄩󵄩󵄩󵄩󵄩
T𝑢 − T𝑢

†
󵄩󵄩󵄩󵄩󵄩
≤ 𝐿

󵄩󵄩󵄩󵄩󵄩
𝑢 − 𝑢
†
󵄩󵄩󵄩󵄩󵄩

(3)

for all 𝑢, 𝑢† ∈ C, where 𝐿 > 0 is a constant.

If 𝐿 = 1, T is said to be nonexpansive.
One of our purposes of this paper is to find the fixed

points of the pseudocontractive mappings in Hilbert spaces.
In the literature, there are a large number references associ-
ated with the fixed point algorithms for the pseudocontrac-
tive mappings. See, for instance, [1–9]. The first interesting
algorithm for finding the fixed points of the Lipschitz pseu-
docontractive mappings in Hilbert spaces was presented by
Ishikawa [4] in 1974.

Ishikawa’s Algorithm. For any 𝑥
0

∈ C, define the sequence
{𝑥
𝑛
} iteratively by

𝑦
𝑛
= (1 − 𝜛

𝑛
) 𝑥
𝑛
+ 𝜛
𝑛
T𝑥
𝑛
,

𝑥
𝑛+1

= (1 − 󰜚
𝑛
) 𝑥
𝑛
+ 󰜚
𝑛
T𝑦
𝑛

(4)
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for all 𝑛 ∈ N, where {𝜛
𝑛
} ⊂ [0, 1] and {󰜚

𝑛
} ⊂ [0, 1] satisfy the

following conditions:
(a) lim

𝑛→∞
𝜛
𝑛
= 0;

(b) ∑
∞

𝑛=1
𝜛
𝑛
󰜚
𝑛
= ∞.

Ishikawa proved that the sequence {𝑥
𝑛
} generated by (4)

converges strongly to a fixed point of T provided C is a
compact set.

Recently, Zhou [9] suggested the following algorithm.

Zhou’s Algorithm. For any 𝑥
0

∈ C, define the sequence {𝑥
𝑛
}

iteratively by

𝑦
𝑛
= (1 − 󰜚

𝑛
) 𝑥
𝑛
+ 󰜚
𝑛
T𝑥
𝑛
,

𝑧
𝑛
= (1 − 𝜛

𝑛
) 𝑥
𝑛
+ 𝜛
𝑛
T𝑦
𝑛
,

C
𝑛
= {𝑧 ∈ C :

󵄩󵄩󵄩󵄩𝑧𝑛 − 𝑧
󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑧

󵄩󵄩󵄩󵄩
2

− 𝜛
𝑛
󰜚
𝑛
(1 − 2󰜚

𝑛
− 󰜚
2

𝑛
𝐿
2

)
󵄩󵄩󵄩󵄩𝑥𝑛 − T𝑥

𝑛

󵄩󵄩󵄩󵄩
2

} ,

Q
𝑛
= {𝑧 ∈ C : ⟨𝑥

𝑛
− 𝑧, 𝑥

0
− 𝑥
𝑛
⟩ ≥ 0} ,

𝑥
𝑛+1

= projC
𝑛
∩Q
𝑛

(𝑥
0
) , 𝑛 ∈ N,

(5)

where {𝜛
𝑛
} and {󰜚

𝑛
} are two real sequences in (0, 1) satisfying

the following conditions:
(a) 𝜛
𝑛
≤ 󰜚
𝑛
for all 𝑛 ∈ N;

(b) 0 < lim inf
𝑛→∞

󰜚
𝑛

≤ lim sup
𝑛→∞

󰜚
𝑛

≤ 󰜚 <

1/(√1 + 𝐿2 + 1).
Zhou proved that the sequence {𝑥

𝑛
} generated by (5)

converges strongly to projFix(T)(𝑥0) without the compactness
assumption.

Definition 4. A mapping A : C → H is said to be inverse
strongly monotone if there exists 𝜁 > 0 such that

⟨𝑢 − V,A𝑢 − AV⟩ ≥ 𝜁‖A𝑢 − AV‖2 (6)

for all 𝑢, V ∈ C.

The variational inequality problem is to find 𝑢 ∈ C such
that

⟨A𝑢, V − 𝑢⟩ ≥ 0, ∀V ∈ C. (7)

The set of solutions of the variational inequality problem
is denoted by VI(C,A). It is well known that variational
inequality theory has emerged as an important tool in
studying a wide class of obstacles, unilateral and equilibrium
problems, which arise in several branches of pure and applied
sciences in a unified and general framework. For related
work, please refer to [10–18] and the references therein.

Motivated and inspired by the related work on the fixed
point problem and the variational inequality problem in
the literature, the purpose of this paper is continuous to
study algorithmic approach to the fixed point problem of the
pseudocontractive mappings and the variational inequality
problem in Hilbert spaces. We suggest a hybrid algorithm
with Meir-Keeler contraction and consequently we prove the
strong convergence of the presented algorithm.

2. Preliminaries

Recall that the metric projection projC : H → C satisfies
󵄩󵄩󵄩󵄩𝑢 − projC (𝑢)

󵄩󵄩󵄩󵄩 = inf {󵄩󵄩󵄩󵄩󵄩𝑢 − 𝑢
†
󵄩󵄩󵄩󵄩󵄩
: 𝑢
†

∈ C} . (8)

The metric projection projC is a typical firmly nonexpansive
mapping, that is,

󵄩󵄩󵄩󵄩󵄩
projC (𝑢) − projC (𝑢

†

)
󵄩󵄩󵄩󵄩󵄩

2

≤ ⟨projC (𝑢) − projC (𝑢
†

) , 𝑢 − 𝑢
†

⟩

(9)

for all 𝑢, 𝑢† ∈ H.
It is well known that, in a real Hilbert space H, the

following equality holds:
󵄩󵄩󵄩󵄩󵄩
𝜉𝑢 + (1 − 𝜉) 𝑢

†
󵄩󵄩󵄩󵄩󵄩

2

= 𝜉‖𝑢‖
2

+ (1 − 𝜉)
󵄩󵄩󵄩󵄩󵄩
𝑢
†
󵄩󵄩󵄩󵄩󵄩

2

− 𝜉 (1 − 𝜉)
󵄩󵄩󵄩󵄩󵄩
𝑢 − 𝑢
†
󵄩󵄩󵄩󵄩󵄩

2

(10)

for all 𝑢, 𝑢† ∈ H and 𝜉 ∈ [0, 1].

Lemma 5 (see [9]). Let H be a real Hilbert space and let C be
a closed convex subset of H. Let T : C → C be a continuous
pseudocontractive mapping. Then,

(i) Fix(T) ⊂ C is a closed convex set;
(ii) (I − T) is demiclosed at zero.

Let {C
𝑛
} ⊂ H be a sequence of nonempty closed convex

sets. We define the symbols 𝑠-𝐿𝑖
𝑛
C
𝑛
and 𝑤-𝐿𝑠

𝑛
C
𝑛
as follows.

(1) 𝑥
∗

∈ 𝑠-𝐿𝑖
𝑛
C
𝑛

⇔ there exists {𝑥
𝑛
} ⊂ C

𝑛
such that

𝑥
𝑛

→ 𝑥
∗ strongly.

(2) 𝑥
†

∈ 𝑤-𝐿𝑠
𝑛
C
𝑛

⇔ there exist a subsequence {C
𝑛
𝑖

} of
{C
𝑛
} and a sequence {𝑥

𝑛
} in C

𝑛
𝑖

such that 𝑥
𝑛

⇀ 𝑥
†

weakly.

If C
0
satisfies the following:

C
0
= 𝑠-𝐿𝑖

𝑛
C
𝑛
= 𝑤-𝐿𝑠

𝑛
C
𝑛
, (11)

then we say that {C
𝑛
} converges to C

0
in the sense of Mosco

[19] and we write C
0
= 𝑀-lim

𝑛→∞
C
𝑛
. It is easy to show that

if {C
𝑛
} is nonincreasing with respect to inclusion, then {C

𝑛
}

converges to ⋂
∞

𝑛=1
C
𝑛
in the sense of Mosco.

Tsukada [20] proved the following theorem for themetric
projection.

Lemma 6 (see [20]). Let H be a Hilbert space. Let {C
𝑛
} be

a sequence of nonempty closed convex subsets of H. If C
0

=

𝑀-lim
𝑛→∞

C
𝑛
exists and is nonempty, then, for each 𝑥 ∈

H, {projC
𝑛

(𝑥)} converges strongly to projC
0

(𝑥), where projC
𝑛

and projC
0

are the metric projections of H onto C
𝑛
and C

0
,

respectively.

Let (E, 𝑑) be a complete metric space. A mapping 𝜓 :

E → E is called a Meir-Keeler contraction [21] if, for any
𝜖 > 0, there exists 𝛿 > 0 such that

𝑑 (𝑢, 𝑢
†

) < 𝜖 + 𝛿 󳨐⇒ 𝑑 (𝜓 (𝑢) , 𝜓 (𝑢
†

)) < 𝜖 (12)



Journal of Applied Mathematics 3

for all 𝑢, 𝑢
†

∈ E. It is well known that the Meir-Keeler
contraction is a generalization of the contraction.

Lemma 7 (see [21]). A Meir-Keeler contraction defined on a
complete metric space has a unique fixed point.

Lemma 8 (see [22]). Let 𝜓 be a Meir-Keeler contraction on a
convex subsetC of a Banach space E. Then, for any 𝜖 > 0, there
exists 𝜎 ∈ (0, 1) such that

󵄩󵄩󵄩󵄩󵄩
𝑢 − 𝑢
†
󵄩󵄩󵄩󵄩󵄩
≥ 𝜖 󳨐⇒

󵄩󵄩󵄩󵄩󵄩
𝜓 (𝑢) − 𝜓 (𝑢

†

)
󵄩󵄩󵄩󵄩󵄩
≤ 𝜎

󵄩󵄩󵄩󵄩󵄩
𝑢 − 𝑢
†
󵄩󵄩󵄩󵄩󵄩

(13)

for all 𝑢, 𝑢† ∈ C.

Lemma 9 (see [22]). Let C be a convex subset of a Banach
space E. Let T be a nonexpansive mapping on C and let 𝜓 be a
Meir-Keeler contraction on C. Then the following holds.

(i) T𝜓 is a Meir-Keeler contraction on C.
(ii) For each 𝜁 ∈ (0, 1), (1 − 𝜁)T + 𝛼𝜓 is a Meir-Keeler

contraction on C.

3. Main Results

In this section, we firstly introduce a hybrid iterative algo-
rithm for finding the common element of the fixed point
problem and the variational inequality problem.

Algorithm 10. Let H be a real Hilbert space and C ⊂ H a
nonempty closed convex set. Let 𝜓 : C → C be a Meir-
Keeler contractive mapping. Let A : C → H be a inverse
stronglymonotonemapping. Let T : C → C be a 𝜅-Lipschitz
pseudocontractive mapping with 𝜅 > 1. For 𝑥

0
∈ C
0

= C

arbitrarily, define a sequence {𝑥
𝑛
} iteratively by

𝑢
𝑛
= projC [𝑥

𝑛
− 𝛼A𝑥

𝑛
] ,

V
𝑛
= (1 − 󰜚

𝑛
) 𝑢
𝑛
+ 󰜚
𝑛
T𝑢
𝑛
,

𝑤
𝑛
= (1 − 𝜛

𝑛
) 𝑢
𝑛
+ 𝜛
𝑛
TV
𝑛
,

C
𝑛+1

= {𝜇 ∈ C
𝑛
:
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝜇

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝜇

󵄩󵄩󵄩󵄩} ,

𝑥
𝑛+1

= projC
𝑛+1

𝜓 (𝑥
𝑛
) , 𝑛 ∈ N,

(14)

where 𝛼 ∈ (0, 2𝜆) is a constant and {𝜛
𝑛
} and {󰜚

𝑛
} are two real

number sequences in (0, 1) satisfying 0 < 𝑐
1
< 𝜛
𝑛
≤ 󰜚
𝑛
< 𝑐
2
<

1/(√1 + 𝜅2 + 1).

Next, we show the strong convergence of (14).

Theorem 11. Suppose that Λ = VI(C,A) ∩ Fix(T) ̸= 0. Then
the sequence {𝑥

𝑛
} defined by (14) converges strongly to 𝑥

†

=

proj
Λ
𝜓(𝑥
†

).

Remark 12. Note that Λ is a closed convex subset of C. Thus
proj
Λ
is well defined. Since 𝜓 is a Meir-Keeler contraction of

C, it follows that proj
Λ
𝜓 is a Meir-Keeler contraction of C by

Lemma 9. According to Lemma 7, there exists a unique fixed
point 𝑥† ∈ C such that 𝑥† = proj

Λ
𝜓(𝑥
†

).

Proof. The outline of our proof is as follows.

Step 1. Λ ⊂ C
𝑛
for all 𝑛 ∈ N;

Step 2. C
𝑛
is closed and convex for all 𝑛 ∈ N;

Step 3. lim
𝑛→∞

‖𝑥
𝑛
− ]‖ = 0 where ] = proj

⋂
∞

𝑛=1
C
𝑛

𝜓(]);

Step 4. ] ∈ Fix(T);

Step 5. ] ∈ VI(C,A);

Step 6. ] = proj
Λ
𝜓(]) = 𝑥

†.

Proof of Step 1.We prove this step by induction. (i) Λ ⊂ C
0
is

obvious. (ii) Suppose that Λ ⊂ C
𝑘
for some 𝑘 ∈ N. Pick up

𝑥
∗

∈ Λ ⊂ C
𝑘
. Then, we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩projC [𝑥
𝑛
− 𝛼A𝑥

𝑛
] − projC [𝑥

∗

− 𝛼A𝑥
∗

]
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩(𝑥𝑛 − 𝛼A𝑥

𝑛
) − (𝑥

∗

− 𝛼A𝑥
∗

)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 .

(15)

By (2), we have

󵄩󵄩󵄩󵄩T𝑢
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩T𝑢
𝑛
− 𝑢
𝑛

󵄩󵄩󵄩󵄩
2

, (16)

󵄩󵄩󵄩󵄩TV𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩T ((1 − 󰜚

𝑛
) 𝑢
𝑛
+ 󰜚
𝑛
T𝑢
𝑛
) − 𝑥
∗󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩(1 − 󰜚

𝑛
) (𝑢
𝑛
− 𝑥
∗

) + 󰜚
𝑛
(T𝑢
𝑛
− 𝑥
∗

)
󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩(1 − 󰜚

𝑛
) 𝑢
𝑛
+ 󰜚
𝑛
T𝑢
𝑛
− TV
𝑛

󵄩󵄩󵄩󵄩
2

.

(17)

From (10), we obtain

󵄩󵄩󵄩󵄩(1 − 󰜚
𝑛
) 𝑢
𝑛
+ 󰜚
𝑛
T𝑢
𝑛
− TV
𝑛

󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩(1 − 󰜚

𝑛
) (𝑢
𝑛
− TV
𝑛
) + 󰜚
𝑛
(T𝑢
𝑛
− TV
𝑛
)
󵄩󵄩󵄩󵄩
2

= (1 − 󰜚
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − TV

𝑛

󵄩󵄩󵄩󵄩
2

+ 󰜚
𝑛

󵄩󵄩󵄩󵄩T𝑢
𝑛
− TV
𝑛

󵄩󵄩󵄩󵄩
2

− 󰜚
𝑛
(1 − 󰜚

𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − T𝑢

𝑛

󵄩󵄩󵄩󵄩
2

.

(18)

Since 𝑇 is 𝜅-Lipschitzian and 𝑢
𝑛
− V
𝑛
= 󰜚
𝑛
(𝑢
𝑛
− T𝑢
𝑛
), by (18),

we get

󵄩󵄩󵄩󵄩(1 − 󰜚
𝑛
) 𝑢
𝑛
+ 󰜚
𝑛
T𝑢
𝑛
− TV
𝑛

󵄩󵄩󵄩󵄩
2

≤ (1 − 󰜚
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − TV

𝑛

󵄩󵄩󵄩󵄩
2

+ 󰜚
3

𝑛
𝜅
2󵄩󵄩󵄩󵄩𝑢𝑛 − T𝑢

𝑛

󵄩󵄩󵄩󵄩
2

− 󰜚
𝑛
(1 − 󰜚

𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − T𝑢

𝑛

󵄩󵄩󵄩󵄩
2

= (1 − 󰜚
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − TV

𝑛

󵄩󵄩󵄩󵄩
2

+ (󰜚
3

𝑛
𝜅
2

+ 󰜚
2

𝑛
− 󰜚
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − T𝑢

𝑛

󵄩󵄩󵄩󵄩
2

.

(19)
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By (10) and (16), we have

󵄩󵄩󵄩󵄩(1 − 󰜚
𝑛
) (𝑢
𝑛
− 𝑥
∗

) + 󰜚
𝑛
(T𝑢
𝑛
− 𝑥
∗

)
󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩(1 − 󰜚

𝑛
) (𝑢
𝑛
− 𝑥
∗

) + 󰜚
𝑛
(T𝑢
𝑛
− 𝑥
∗

)
󵄩󵄩󵄩󵄩
2

= (1 − 󰜚
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 󰜚
𝑛

󵄩󵄩󵄩󵄩T𝑢
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩
2

− 󰜚
𝑛
(1 − 󰜚

𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − T𝑢

𝑛

󵄩󵄩󵄩󵄩
2

≤ (1 − 󰜚
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 󰜚
𝑛
(
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑢𝑛 − T𝑢

𝑛

󵄩󵄩󵄩󵄩
2

)

− 󰜚
𝑛
(1 − 󰜚

𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − T𝑢

𝑛

󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 󰜚
2

𝑛

󵄩󵄩󵄩󵄩𝑢𝑛 − T𝑢
𝑛

󵄩󵄩󵄩󵄩
2

.

(20)

From (17), (19), and (20), we deduce
󵄩󵄩󵄩󵄩TV𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ (1 − 󰜚
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − TV

𝑛

󵄩󵄩󵄩󵄩
2

− 󰜚
𝑛
(1 − 2󰜚

𝑛
− 󰜚
2

𝑛
𝜅
2

)
󵄩󵄩󵄩󵄩𝑢𝑛 − T𝑢

𝑛

󵄩󵄩󵄩󵄩
2

.

(21)

Since 󰜚
𝑛
< 𝑐
2
< 1/(√1 + 𝜅2 + 1), we have

1 − 2󰜚
𝑛
− 󰜚
2

𝑛
𝜅
2

> 0 (22)

for all 𝑛 ∈ N. This together with (21) implies that

󵄩󵄩󵄩󵄩TV𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ (1 − 󰜚
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − TV

𝑛

󵄩󵄩󵄩󵄩
2

. (23)

By (10), (15), and (23) and noting that 𝜛
𝑛
≤ 󰜚
𝑛
, we have

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩(1 − 𝜛

𝑛
) 𝑢
𝑛
+ 𝜛
𝑛
TV
𝑛
− 𝑥
∗󵄩󵄩󵄩󵄩
2

= (1 − 𝜛
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 𝜛
𝑛

󵄩󵄩󵄩󵄩TV𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
2

− 𝜛
𝑛
(1 − 𝜛

𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − TV

𝑛

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

− 𝜛
𝑛
(󰜚
𝑛
− 𝜛
𝑛
)
󵄩󵄩󵄩󵄩TV𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

(24)

and hence 𝑥
∗

∈ C
𝑘+1

.This indicates thatΛ ⊂ C
𝑛
for all 𝑛 ∈ N.

Proof of Step 2. In fact, it is obvious from the assumption that
C
0
= C is closed convex. Suppose thatC

𝑘
is closed and convex

for some 𝑘 ∈ N. For any 𝜇 ∈ C
𝑘
, we know that ‖𝑦

𝑘
− 𝜇‖ ≤

‖𝑥
𝑘
− 𝜇‖ is equivalent to

󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑥
𝑘

󵄩󵄩󵄩󵄩
2

+ 2 ⟨𝑦
𝑘
− 𝑥
𝑘
, 𝑥
𝑘
− 𝜇⟩ ≤ 0. (25)

So C
𝑘+1

is closed and convex. By induction, we deduce that
C
𝑛
is closed and convex for all 𝑛 ∈ N.

Proof of Step 3. Firstly, from Step 2, we note that {𝑥
𝑛
} is

well defined. Since ⋂
∞

𝑛=1
C
𝑛
is closed convex, we also have

that proj
⋂
∞

𝑛=1
C
𝑛

is well defined and so proj
⋂
∞

𝑛=1
C
𝑛

𝜓 is a Meir-
Keeler contraction on C. By Lemma 7, there exists a unique

fixed point ] ∈ ⋂
∞

𝑛=1
C
𝑛
of proj

⋂
∞

𝑛=1
C
𝑛

𝜓. Since C
𝑛
is a

nonincreasing sequence of nonempty closed convex subsets
of H with respect to inclusion, it follows that

0 ̸= Λ ⊂

∞

⋂

𝑛=1

C
𝑛
= 𝑀- lim
𝑛→∞

C
𝑛
. (26)

Setting 𝑠
𝑛

:= projC
𝑛

𝜓(]) and applying Lemma 6, we can
conclude that

lim
𝑛→∞

𝑠
𝑛
= proj

⋂
∞

𝑛=1
C
𝑛

𝜓 (]) = ]. (27)

Now, we show that lim
𝑛→∞

‖𝑥
𝑛
− ]‖ = 0. Assume that

𝑀 = lim
𝑛→∞

‖𝑥
𝑛
− ]‖ > 0. Then, for any 𝜖 with 0 < 𝜖 < 𝑀,

we can choose 𝛿
1
> 0 such that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − ]󵄩󵄩󵄩󵄩 > 𝜖 + 𝛿
1
. (28)

Since 𝜓 is a Meir-Keeler contraction, for the positive 𝜖, there
exists another 𝛿

2
> 0 such that

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 < 𝜖 + 𝛿

2
󳨐⇒

󵄩󵄩󵄩󵄩𝜓 (𝑥) − 𝜓 (𝑦)
󵄩󵄩󵄩󵄩 < 𝜖 (29)

for all 𝑥, 𝑦 ∈ C.
In fact, we can choose a common 𝛿 > 0 such that (28) and

(29) hold. If 𝛿
1
> 𝛿
2
, then

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − ]󵄩󵄩󵄩󵄩 > 𝜖 + 𝛿
1
> 𝜖 + 𝛿

2
. (30)

If 𝛿
1
≤ 𝛿
2
, then, from (29), it follows that
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 < 𝜖 + 𝛿
1
󳨐⇒

󵄩󵄩󵄩󵄩𝜓 (𝑥) − 𝜓 (𝑦)
󵄩󵄩󵄩󵄩 < 𝜖 (31)

for all 𝑥, 𝑦 ∈ C. Thus, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − ]󵄩󵄩󵄩󵄩 > 𝜖 + 𝛿, (32)

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 < 𝜖 + 𝛿 󳨐⇒

󵄩󵄩󵄩󵄩𝜓 (𝑥) − 𝜓 (𝑦)
󵄩󵄩󵄩󵄩 < 𝜖 (33)

for all 𝑥, 𝑦 ∈ C. Since 𝑠
𝑛

→ ], there exists 𝑛
0
∈ N such that

󵄩󵄩󵄩󵄩𝑠𝑛 − ]󵄩󵄩󵄩󵄩 < 𝛿 (34)

for all 𝑛 ≥ 𝑛
0
.

Now, we consider two possible cases.

Case 1.There exists 𝑛
1
≥ 𝑛
0
such that

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
1

− ]
󵄩󵄩󵄩󵄩󵄩
≤ 𝜖 + 𝛿. (35)

By (33) and (34), we get
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
1
+1

− ]
󵄩󵄩󵄩󵄩󵄩
≤

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
1
+1

− 𝑠
𝑛
1
+1

󵄩󵄩󵄩󵄩󵄩
+

󵄩󵄩󵄩󵄩󵄩
𝑠
𝑛
1
+1

− ]
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩
projC

𝑛
1
+1

𝜓 (𝑥
𝑛
1

) − projC
𝑛
1
+1

𝜓 (])
󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑠
𝑛
1
+1

− ]
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝜓 (𝑥
𝑛
1

) − 𝜓 (])
󵄩󵄩󵄩󵄩󵄩
+

󵄩󵄩󵄩󵄩󵄩
𝑠
𝑛
1
+1

− ]
󵄩󵄩󵄩󵄩󵄩

≤ 𝜖 + 𝛿.

(36)
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By induction, we can obtain that
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛
1
+𝑚

− ]
󵄩󵄩󵄩󵄩󵄩
≤ 𝜖 + 𝛿 (37)

for all 𝑚 ≥ 1, which implies that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − ]󵄩󵄩󵄩󵄩 ≤ 𝜖 + 𝛿, (38)

which contradicts (32). Therefore, we conclude that ‖𝑥
𝑛

−

]‖ → 0 as 𝑛 → ∞.

Case 2 (‖𝑥
𝑛
− ]‖ > 𝜖 + 𝛿 for all 𝑛 ≥ 𝑛

0
). Now, we prove that

Case 2 is impossible. Suppose that Case 2 is true. By Lemma 8,
there exists 𝜎 ∈ (0, 1) such that

󵄩󵄩󵄩󵄩𝜓 (𝑥
𝑛
) − 𝜓 (])󵄩󵄩󵄩󵄩 ≤ 𝜎

󵄩󵄩󵄩󵄩𝑥𝑛 − ]󵄩󵄩󵄩󵄩 (39)

for all 𝑛 ≥ 𝑛
0
. Thus we have

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑠
𝑛+1

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩
projC

𝑛+1

𝜓 (𝑥
𝑛
) − projC

𝑛+1

𝜓 (])
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝜓 (𝑥
𝑛
) − 𝜓 (])󵄩󵄩󵄩󵄩

≤ 𝜎
󵄩󵄩󵄩󵄩𝑥𝑛 − ]󵄩󵄩󵄩󵄩

(40)

for all 𝑛 ≥ 𝑛
0
. It follows that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − ]󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑠
𝑛+1

󵄩󵄩󵄩󵄩

≤ 𝜎 lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − ]󵄩󵄩󵄩󵄩

< lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − ]󵄩󵄩󵄩󵄩 ,

(41)

which gives a contradiction. Hence we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − ]󵄩󵄩󵄩󵄩 = 0. (42)

Proof of Step 4. By Step 3, we deduce immediately that {𝑥
𝑛
} is

bounded. Observe that
󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥

𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − ]󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩] − 𝑠
𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑠𝑛+1 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥𝑛 − ]󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩] − 𝑠
𝑛+1

󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
projC

𝑛+1

𝜓 (𝑥
𝑛
) − projC

𝑛+1

𝜓 (])
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − ]󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩] − 𝑠
𝑛+1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝜓 (𝑥
𝑛
) − 𝜓 (])󵄩󵄩󵄩󵄩 .

(43)

Therefore, we have

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛+1 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (44)

Since 𝑥
𝑛+1

∈ C
𝑛+1

, we have
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

𝑛+1

󵄩󵄩󵄩󵄩 . (45)

This together with (44) implies that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑥
𝑛+1

󵄩󵄩󵄩󵄩 = lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑥
𝑛

󵄩󵄩󵄩󵄩 = 0. (46)

From (15) and (24), we have

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩(𝑥𝑛 − 𝛼A𝑥

𝑛
) − (𝑥

∗

− 𝛼A𝑥
∗

)
󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 𝛼
2󵄩󵄩󵄩󵄩A𝑥
𝑛
− A𝑥
∗󵄩󵄩󵄩󵄩
2

− 2 ⟨A𝑥
𝑛
− A𝑥
∗

, 𝑥
𝑛
− 𝑥
∗

⟩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 𝛼 (𝛼 − 2𝜆)
󵄩󵄩󵄩󵄩A𝑥
𝑛
− A𝑥
∗󵄩󵄩󵄩󵄩
2

.

(47)

Then we have

(2𝜆 − 𝛼) 𝛼
󵄩󵄩󵄩󵄩A𝑥
𝑛
− A𝑥
∗󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤

𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩) .

(48)

By (46) and (48), we obtain

lim
𝑛→∞

󵄩󵄩󵄩󵄩A𝑥
𝑛
− A𝑥
∗󵄩󵄩󵄩󵄩 = 0. (49)

Since projC is firmly nonexpansive, we have

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
2

=
󵄩󵄩󵄩󵄩projC [𝑥

𝑛
− 𝛼A𝑥

𝑛
] − projC [𝑥

∗

− 𝛼A𝑥
∗

]
󵄩󵄩󵄩󵄩
2

≤ ⟨(𝑥
𝑛
− 𝛼A𝑥

𝑛
) − (𝑥

∗

− 𝛼A𝑥
∗

) , 𝑢
𝑛
− 𝑥
∗

⟩

=
1

2
(
󵄩󵄩󵄩󵄩(𝑥𝑛 − 𝛼A𝑥

𝑛
) − (𝑥

∗

− 𝛼A𝑥
∗

)
󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩(𝑥𝑛 − 𝛼A𝑥

𝑛
) − (𝑥

∗

− 𝛼A𝑥
∗

) + 𝑥
∗

− 𝑢
𝑛

󵄩󵄩󵄩󵄩
2

)

≤
1

2
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩(𝑥𝑛 − 𝑢

𝑛
) − 𝛼 (A𝑥

𝑛
− A𝑥
∗

)
󵄩󵄩󵄩󵄩
2

)

=
1

2
(
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩
2

+ 2𝛼 ⟨𝑥
𝑛
− 𝑢
𝑛
,A𝑥
𝑛
− A𝑥
∗

⟩ − 𝛼
2󵄩󵄩󵄩󵄩A𝑥
𝑛
− A𝑥
∗󵄩󵄩󵄩󵄩
2

) .

(50)

It follows that

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥
∗󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩
2

+ 2𝛼 ⟨𝑥
𝑛
− 𝑢
𝑛
,A𝑥
𝑛
− A𝑥
∗

⟩

− 𝛼
2󵄩󵄩󵄩󵄩A𝑥
𝑛
− A𝑥
∗󵄩󵄩󵄩󵄩
2

.

(51)
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From (24) and (51), we get
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩
2

+ 2𝛼 ⟨𝑥
𝑛
− 𝑢
𝑛
,A𝑥
𝑛
− A𝑥
∗

⟩ − 𝛼
2󵄩󵄩󵄩󵄩A𝑥
𝑛
− A𝑥
∗󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩
2

+ 2𝛼
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩A𝑥
𝑛
− A𝑥
∗󵄩󵄩󵄩󵄩

(52)

and so
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 2𝛼
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩A𝑥
𝑛
− A𝑥
∗󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑤

𝑛

󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑥

∗󵄩󵄩󵄩󵄩)

+ 2𝛼
󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩A𝑥
𝑛
− A𝑥
∗󵄩󵄩󵄩󵄩 .

(53)

This together with (46) and (49) implies that

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑢
𝑛

󵄩󵄩󵄩󵄩 = 0. (54)

Note that
󵄩󵄩󵄩󵄩𝑢𝑛 − T𝑢

𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑤

𝑛

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑤𝑛 − T𝑢

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑤

𝑛

󵄩󵄩󵄩󵄩 + (1 − 𝜛
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − T𝑢

𝑛

󵄩󵄩󵄩󵄩

+ 𝜛
𝑛

󵄩󵄩󵄩󵄩TV𝑛 − T𝑢
𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑤

𝑛

󵄩󵄩󵄩󵄩 + (1 − 𝜛
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − T𝑢

𝑛

󵄩󵄩󵄩󵄩

+ 𝜛
𝑛
𝜅
󵄩󵄩󵄩󵄩V𝑛 − 𝑢

𝑛

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑤

𝑛

󵄩󵄩󵄩󵄩 + (1 − 𝜛
𝑛
)
󵄩󵄩󵄩󵄩𝑢𝑛 − T𝑢

𝑛

󵄩󵄩󵄩󵄩

+ 𝜛
𝑛
󰜚
𝑛
𝜅
󵄩󵄩󵄩󵄩𝑢𝑛 − T𝑢

𝑛

󵄩󵄩󵄩󵄩 .

(55)

It follows that
󵄩󵄩󵄩󵄩𝑢𝑛 − T𝑢

𝑛

󵄩󵄩󵄩󵄩 ≤
1

𝜛
𝑛
(1 − 󰜚

𝑛
𝜅)

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑤
𝑛

󵄩󵄩󵄩󵄩

≤
1

𝑐
1
(1 − 𝑐
2
𝜅)

󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑤
𝑛

󵄩󵄩󵄩󵄩 󳨀→ 0.

(56)

Since 𝑥
𝑛

→ ], we have 𝑢
𝑛

→ ] by (54). So, from (56) and
Lemma 5, we deduce that ] ∈ Fix(T).

Proof of Step 5. Define a mapping 𝜙 by

𝜙 (V) = {
AV + 𝑁CV, V ∈ C,

0, V ∉ C.
(57)

Then 𝜙 is maximal monotone (see [15]). Let (V, 𝑤) ∈ 𝐺(𝜙).
Since𝑤−AV ∈ 𝑁CV and 𝑢

𝑛
∈ C, we have ⟨V−𝑢

𝑛
, 𝑤−AV⟩ ≥ 0.

On the other hand, from 𝑢
𝑛
= projC[𝑥𝑛 − 𝛼A𝑥

𝑛
], we have

⟨V − 𝑢
𝑛
, 𝑢
𝑛
− (𝑥
𝑛
− 𝛼A𝑥

𝑛
)⟩ ≥ 0, (58)

that is,

⟨V − 𝑢
𝑛
,
𝑢
𝑛
− 𝑥
𝑛

𝛼
+ A𝑥
𝑛
⟩ ≥ 0. (59)

Therefore, we have

⟨V − 𝑢
𝑛
, 𝑤⟩

≥ ⟨V − 𝑢
𝑛
,AV⟩

≥ ⟨V − 𝑢
𝑛
,AV⟩ − ⟨V − 𝑢

𝑛
,
𝑢
𝑛
− 𝑥
𝑛

𝛼
+ A𝑥
𝑛
⟩

= ⟨V − 𝑢
𝑛
,AV − A𝑥

𝑛
−

𝑢
𝑛
− 𝑥
𝑛

𝛼
⟩

= ⟨V − 𝑢
𝑛
,AV − A𝑢

𝑛
⟩ + ⟨V − 𝑢

𝑛
,A𝑢
𝑛
− A𝑥
𝑛
⟩

− ⟨V − 𝑢
𝑛
,
𝑢
𝑛
− 𝑥
𝑛

𝛼
⟩

≥ ⟨V − 𝑢
𝑛
,A𝑢
𝑛
− A𝑥
𝑛
⟩ − ⟨V − 𝑢

𝑛
,
𝑢
𝑛
− 𝑥
𝑛

𝛼
⟩ .

(60)

Noting that ‖𝑢
𝑛
−𝑥
𝑛
‖ → 0 andA is Lipschitz continuous, we

obtain ⟨V − ], 𝑤⟩ ≥ 0. Since 𝜙 is maximal monotone, we have
] ∈ 𝜙
−1

(0) and hence ] ∈ VI(C,A).

Proof of Step 6. Since 𝑥
𝑛+1

= projC
𝑛+1

𝜓(𝑥
𝑛
), we have

⟨𝜓 (𝑥
𝑛
) − 𝑥
𝑛+1

, 𝑥
𝑛+1

− 𝑦⟩ ≥ 0 (61)

for all 𝑦 ∈ C
𝑛+1

. Since Λ ⊂ C
𝑛+1

, we get

⟨𝜓 (𝑥
𝑛
) − 𝑥
𝑛+1

, 𝑥
𝑛+1

− 𝑦⟩ ≥ 0 (62)

for all 𝑦 ∈ Λ. Noting that 𝑥
𝑛

→ ] ∈ Λ, we deduce

⟨𝜓 (]) − ], ] − 𝑦⟩ ≥ 0 (63)

for all 𝑦 ∈ Λ. Thus ] = proj
Λ
𝜓(]) = 𝑥

†. This completes the
proof.
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[3] L. Ćirić, A. Rafiq, N. Cakić, and J. S. Ume, “Implicit Mann
fixedpoint iterations for pseudo-contractivemappings,”Applied
Mathematics Letters, vol. 22, no. 4, pp. 581–584, 2009.

[4] S. Ishikawa, “Fixed points by a new iteration method,” Proceed-
ings of the American Mathematical Society, vol. 44, pp. 147–150,
1974.

[5] J. Quan, S.-S. Chang, andM. Liu, “Strong andweak convergence
of an implicit iterative process for pseudocontractive semi-
groups in Banach space,” Fixed Point Theory and Applications,
vol. 2012, article 16, 2012.

[6] Y. C. Yao, Y. Liou, and G. Marino, “A hybrid algorithm
for pseudo-contractive mappings,” Nonlinear Analysis: Theory,
Methods & Applications, vol. 71, no. 10, pp. 4997–5002, 2009.

[7] H. Zegeye, N. Shahzad, and T. Mekonen, “Viscosity approx-
imation methods for pseudocontractive mappings in Banach
spaces,” Applied Mathematics and Computation, vol. 185, no. 1,
pp. 538–546, 2007.

[8] H. Zegeye and N. Shahzad, “An algorithm for a common fixed
point of a family of pseudocontractive mappings,” Fixed Point
Theory and Applications, vol. 2013, article 234, 2013.

[9] H. Zhou, “Convergence theorems of fixed points for Lipschitz
pseudo-contractions inHilbert spaces,” Journal ofMathematical
Analysis and Applications, vol. 343, no. 1, pp. 546–556, 2008.

[10] A. Bnouhachem, “A hybrid iterative method for a combination
of equilibrium problem, a combination of variational inequality
problem and a hierarchical fixed point problem,” Fixed Point
Theory and Applications, vol. 2014, article 163, 29 pages, 2014.

[11] A. Bnouhachem, “Strong convergence algorithm for approx-
imating the common solutions of a variational inequality,
a mixed equilibrium problem and a hierarchical fixed-point
problem,” Journal of Inequalities and Applications, vol. 2014,
article 154, 2014.

[12] M. A. Noor, “Some developments in general variational
inequalities,” Applied Mathematics and Computation, vol. 152,
no. 1, pp. 199–277, 2004.

[13] G.M.Korpelevich, “An extragradientmethod for finding saddle
points and for other problems,” Èkonomika i Matematicheskie
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