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An intuitive model is proposed in this paper to describe the electrical behavior of certain ultracapacitors. The model is based
on a simple expression that can be fully characterized by five real numbers. In this paper, the measured impedances of three
ultracapacitors as a function of frequency are compared to model results. There is good agreement between the model and
measurements. Results presented in a previous study are also reviewed and the paper demonstrates that those results are also

consistent with the newly described model.

1. Introduction

Smart grids and energy systems always need energy stor-
age. Ultracapacitors represent an alternative to batteries for
storing electrical energy and can help to compensate for
the limited power density of batteries [1]. They resemble
rechargeable batteries in terms of their ability to transport
and store charge, but they employ a very different charge
storage mechanism. Ultracapacitors store electric energy by
accumulating and separating opposite charges physically, as
opposed to batteries, which store energy chemically [2].
Opposing charges are separated by an electrode/electrolyte
interface, which is referred to as an electrochemical double-
layer. Compared to batteries, ultracapacitors have a much
longer charge-discharge cycle life [2, 3]. The power density of
ultracapacitors is considerably higher than that of batteries,
and the energy density is higher than that of electrolytic
capacitors for power applications. Ultracapacitors can store
a high level of energy in a small volume and release this
energy in a powerful burst [4]; so they are useful in power
electronic systems and applications (e.g., power systems,
automotive, telecommunication, and military) that need to
provide or absorb sudden current surges [5]. The power out-
put of ultracapacitors is limited by their internal impedance.

The impedance needs to be identified and characterized
in order to develop models for different applications. The
development of these models requires measurements of their
dynamic electrical behavior [2-4].

Often, ultracapacitors are modeled with simple RC cir-
cuits as shown in Figure 1. Models like this are sufficient for
well-defined and stable electrical signals; however, they do
notaccurately describe the electrical behavior of these devices
in dynamic and high-power situations.

Practical ultracapacitor models are more complicated.
Conway [6] described the charge storage mechanism as a
Faradic pseudocapacitance involving a redox reaction of
microporous transition metal hydrous oxides. Some [3, 7]
have modeled the behavior of ultracapacitors using RC
transmission line equivalent circuits. The porous electrode
is described by a line of R and C elements representing
the elemental double layer capacitance and the respective
electrolyte resistance at a particular pore depth. A more
complete description of the porous electrode behavior was
given by De Levie [8]. Gualous et al. [4] took into account
the physics of the ultracapacitor and proposed an equivalent
circuit that described the ultracapacitor electrical behavior
with two RC branches as shown in Figure 2. This model
considers the nonlinear relationship between the capacitance
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FIGURE 1: RC circuit model for ultracapacitors.
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FIGURE 2: Equivalent circuit developed by Gualous et al.

of activated carbon particles and their surface area that varies
with the type of activated carbon used and the way it is
treated. But the model has six parameters to be identified and
does not accurately describe ultracapacitor behavior at low
frequencies.

Zubieta and Bonert [9] provided a model for the terminal
behavior of an ultracapacitor based on physical reasoning.
This model (see Figure 3) has three distinct RC time con-
stants. R¢, C¢ with the voltage-dependent capacitor Cy,
(F/V) which reflects the voltage dependence of the capac-
itance dominates the behavior of the ultracapacitor in the
time over a period of seconds in response to a charge action.
The other branches, R; with C; and R, with C,,, separately
determine the terminal behavior in the range of minutes and
the behavior for times longer than 10 mins. The resistor R,
is a leakage resistor representing the self discharge property
of the ultracapacitor. Others (e.g., [10]) have also developed
equivalent circuit models based on variable time constants
to fit the measured AC impedance data of ultracapacitors.
In [10], the dependence of the resistance on frequency was
divided into four distinct frequency zones and this model
included a voltage-dependent capacitor as well.

However, the pores of activated carbon in an ultraca-
pacitor have a complex branch pore structure for which
any impedance analysis model should account. Furthermore,
the parameters in the above models, especially the voltage
dependent capacitance, can be difficult to quantify.

Buller et al. [11, 12] presented a model shown in Figure 4,
which can be used to describe the behavior of ultracapacitors
over a wide range of frequencies. Z, is the complex pore
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FIGURE 3: Equivalent circuit developed by Zubieta and Bonert.
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FIGURE 4: Equivalent circuit developed by Buller et al.

impedance related to the porosity of the ultracapacitor. The
mathematical expression for Z , is

7 - coth (\/jwr)
- C- Vjor

Unfortunately, this function is not well suited for circuit
simulation software because of the coth term [13]. Moreover,
when the number N is high, the series denominators of the
formula in Figure 4

Z, (jo) )

T 2
mn?-C

become very large and may not be accurately determined
by measurements. Buller et al. [12] used 10 cells and 20
parameters to model a 1400 F ultracapacitor.

Qu and Shi [7] proposed an RC-ladder network model
for ultracapacitors based on the pore structure of activated
carbon which is shown in Figure 5. This model is particularly
intuitive, because it illustrates how more capacitance becomes
available as the time constant of the charging cycle is
increased. R; and C; (i = 1,...,n) can be treated as the
resistance and capacitance of the pores with certain pore size.
R,C; gives the unit of time and indicates how fast the pore of
certain size is.

Itagaki et al. [14] proposed a model for ultracapacitors
based on a fractal pore structure with three sizes of cylin-
drical pores. This model consisted of resistors and complex
impedances connected in a tree-like structure.
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FIGURE 5: Equivalent circuit developed by Qu and Shi.
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FIGURE 6: Pore model of the ultracapacitor electrodes.

This paper proposes a new electrical model for ultraca-
pacitors that is also based on a fractal interpretation of their
structure, but does not make any assumption about the size
or shape of the pores. The new model is relatively simple and
can be fully described by five parameters.

2. Model Description

Ultracapacitors are comprised of two highly porous activated
carbon electrodes, which take surface area and charge sep-
aration distance to an extreme. The surface areas can be
greater than 21,500 square feet per gram and the separation
between the charged surfaces is reduced to distances on the
order of nanometers [15]. The electrodes are immersed in a
suitable electrolyte to facilitate the charge transfer and storage
mechanism. Charges accumulate in the pores resulting in
capacitance.

Consider the sample pore structure illustrated in Figure 6,
a central conducting structure called a “post” is lined with
many smaller structures referred to as “teeth” Half of the
posts in this structure are connected to one electrode of an
ultracapacitor and the other half are connected to the other
electrode. The ultracapacitor has 2# posts, and every post has
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FIGURE 7: Capacitance scheme of porosity.

m teeth. In this model, each tooth is a smaller version of the
post that it is attached to.

If we start by analyzing the capacitance of the structure
without any teeth, the total capacitance is n times to the post-
to-post capacitance, because all of these capacitances are in
parallel. The equivalent series resistance of the ultracapacitor
is the resistance of one pair of posts divided by n, since the
post resistances are also in parallel, therefore, an equivalent
circuit for an ultracapacitor consisting of interleaved posts of
uniform size would be a simple RC circuit, where the value
of R is Ry /n and the value of C is Cpy x n. In this case,
Ry, is the resistance associated with charge moving from one
electrode into a single post and then to the second electrode.
Chpost is the contribution to the capacitance of a single pair of
posts. The time constant associated with charge populating
the posts (i.e., the RC time constant) is

post xXn= Rpostcpost' (3)
R0 is proportional to the length of the post and inversely
proportional to the cross-sectional area:

l

o—, (4)

Rpost = T-A

where o is the electrical conductivity of the post, [ is the length
of the post, and A is the cross-sectional area of the post.

The capacitance, C,,oy, can be expressed as the capac-
itance between any two posts times a constant that is
determined by the number of posts in proximity to a given
post. A uniform post distribution is illustrated in Figure 7.
Chpost 1s proportional to the length / and inversely proportional
to the natural log of the ratio of the post separation d, to the
post radius a, as indicated below:

a 2mel
Pt M n (d/a)’

where ¢ is the permittivity of the dielectric.

A circuit model for the post-only ultracapacitor is pro-
vided in Figure 8.

Now, consider the structure of the intermeshed teeth
between posts. In fractal geometry, each tooth would be a
scaled down version of the post to which it was attached. If
we assume that each post has m teeth and the size of each
tooth is 1/m times the size of the post, then the resistance of
a single tooth is

C (5)

I/m

Rtooth = UW =mX Rpost‘ (6)
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FIGURE 8: The post-only model.
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FIGURE 9: Equivalent circuit for a capacitor with one set of posts and
teeth.

The capacitance, C,,,, can be expressed as

27‘[81/1/)1 _ Cpost

In((d/m)/(afm) ~ m

For m teeth per post in parallel, the overall capacitance is
multiplied by m and the resistance is divided by m, yielding

7)

Ctooth =

(m X Rpost) 8)

R —
m

teeth_per_post — — Bpost>

C
post
Cteeth,per,post = ( m > xXm= Cpost' (9)

From (8) and (9), it is clear that the time constant
associated with charge moving from the posts out onto the
teeth is the same as the time constant associated with charge
moving out onto the posts and can be calculated with (3). The
equivalent circuit for the capacitor with both posts and teeth
is shown in Figure 9. Both resistors in this model have the
same value. Both capacitors also have the same value.

Employing (6) through (9), it is relatively straightforward
to show that adding m smaller teeth to each tooth in the
structure shown in Figure 6 would result in the same amount
of additional capacitance provided through the same amount
of additional resistance. The fractal geometry with many
layers of repeating structures would yield the equivalent
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FIGURE 10: Electrical model of a fractal electrode structure.

F1GURE 11: Ultracapacitor model described by only 5 real numbers.

circuit in Figure 10, where all of the resistors would have the
same value and so do all of the capacitors.

Although the example in Figure 6 employs cylindrical
pore structures, the resistance and capacitance will scale
similarly with nearly any branch-like pore structure. Gen-
erally, the resistance of a branch will be proportional to its
length and inversely proportional to its cross-sectional area.
The capacitance between closely spaced branches will be
proportional to its length and independent of cross-sectional
area if the spacing between branches is also scaled. Therefore,
the model in Figure 10 does not assume a particular pore
structure as long as the successively smaller branches of the
pores form fractal geometry.

As the different number of time between charging and
discharging, the deterioration of ultracapacitors is also not
the same. Few electrolytes will be decomposed to form the
free insoluble product particles, which increase the resistance.
Therefore, a resistor is paralleled in the model in Figure 10.
The greater the loss is, the higher the resistor value will be.

Considering its ohmic resistance characteristics and
ohmic capacitive characteristics, a resistor and a capacitor are
in series; thus, the model in Figure 11 is proposed, which has
5 independent component values.

Although the model in Figure 11 has only 5 independent
component values, it has an infinite number of elements.
In order to develop a closed-form expression for the input
impedance, it is convenient to use a Fourier transform
technique. For the impedance ladder network in Figure 12,
Z, is the equivalent input complex impedance and Z,_; is
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FIGURE 13: The equivalent circuit of ladder network in Figure 12.

the equivalent input complex impedance of the (n — 1)-order
ladder network (see Figure 13). So

Zn = (Zb + Zn—l) //Za' (10)
The recurrence formula for Z,, is

Zn _ (Za) ' Zn—l + (Za'Zb). (ll)
Zn—l + (Za+Zb)

The solution of (11) can be obtained using a method presented
in [16, 17]. In this case, the coefficient matrix of Z, which is
expressed by Z,_; is shown as follows:

— Zu Za'Zb
Ar= [ 1 Z4Zy) 12)
A, =A% (13)

A, in (13) is the coeflicient matrix of Z, which is expressed
by Z,. If A, is expressed by its characteristic values and
characteristic vectors, A’} can be calculated as

A1=P[A01 fZ]P’l, (14)
A" =p[%1 )8;]1)‘1. (15)

The characteristic values of A; and its characteristic vectors

are
22,42y + N\ 2] + 427,
A =

1

>

2
A, = ,
2
po|Zale X-22, (16)
A2, 1 ’
1 B A -Z,~2Z,
P—l _ Zb : (Al+Za) Zb ’ (A1+Za)

Az, Z, 7,
Zy-(M+2,)  Zy,- (M+2,)

Combining (16) into (15) results in

Al

ZaZpA} + M Z Ny 2,24 (Zg+ Zy=Ay) (AT =A7)

_ Zb ' (A1+Za) Zh ’ (/‘1+Za)
M=Z) (=20 M ZA" + Z,Z 00 :
Zb : (A1+Zu) Zb : (A1+Za)

17)
Zn = ((ZaZb/Vll + /\lzaAg) ' ZO
+ Zqu (Za+Zb - /\2) (/Vll - /\;))

X (M=Za) (W] = A9 Zo + (M ZAT + Z,205))

(18)
where
AM+A,=2Z,+ 27,
A Ay =272 )
If Zy = Z,, (18) can be simplified using (19) and as
Z — (Za_/\z) .AEHI _(Za_Al).AgH—l. (20)
n A;11+1 _ /\21-1
It is assumed that
[2
)\;2 _ ZZa+Zb - Zb +4Zu'Zh _ A;Z ej@ (21)
Mo 27,427,422 +42,2, M
Therefore,
Z - A)=(Z. = A)-IA /0 ntl j(n+1)0
an ( a 2) ( a 1) | 2/ ll € . (22)

1— Ay /A" eitnene

If |[A,/A,]| > 1, then the lim,

1
n—>oo|A'2/A'1|n+ — 00,

lim Z, = Z, - A, = o e (23)

n— 00 2
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(a) Nyquist plot of a 3.3 F ultracapacitor (values for the model calculation:
R; = 0.11510hm, C; = 3.634F, R, = 0.08732 Ohm, R = 0.004589 Ohm,
and C = 0.03791 F)
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(b) Nyquist plot of a 2 F ultracapacitor (values for the model calculation: R; =
0.07529 Ohm, C; = 2.063F, R, = 3.564 Ohm, R = 0.02241 Ohm, and C =
0.03445 F)

FIGURE 14: The Comparison between measured numbers and calculated numbers in Nyquist plot.

Orelse, if [1,/A,] < 1, then the lim LA S o,

n— 00
lim Z,=Z, ~ A, = o e @
n— 00 2

For the porous electrode model, Z, = 1/jwC, Z; = R.
In this case, |A,/A,| < 1, and (24) applies. Therefore, the
formula for the electrode impedance Z, ;, in Figure 10 is

2
lim Z,, -k R—+i, (25)
n—oco M%) 4 jwC

and the input impedance of the ultracapacitor model in
Figure 11 is

1 1
Z . =R, + +
@ jwCy 1Ry +1/Zyy,
=R, + = ! + ! .
joCr 1R, +1/ <—R/2 +JR2/4 + R/ij)

(26)

3. Validation of Model

Electrochemical impedance spectroscopy (EIS) is one of the
most frequently used analytical tools for the characterization
of ultracapacitors. This method was used to determine input
resistance and reactance of the ultracapacitor as a function of
frequency at a given excitation voltage.

Two ultracapacitors with nominal values of 3.3F and 2 F
were measured at room temperature. Potentiostat cycling
tests were performed in the capacitor designing lab of St. Jude
Medical’s Cardiac Rhythm Manufacture, the Liberty, S.C.,
with a Gamry potentiostat (Reference 3000). The impedance
was measured by applying a sinusoidal 5mV excitation
superimposed on a 1.2V DC bias to the ultracapacitor and
measuring the magnitude and phase of the current. The
frequency range was from 100 mHz to 1kHz.

In this study, a Panasonic 3.3F/2.3V (EEC-HW0D335)
ultracapacitor which is a new one and a Taiyo Yuden 2 F/2.3 V
(PAS1016LR2R3205) which had been charged and discharged
for many times were measured. Figures 14(a) and 14(b)
show the magnitude of the input impedance plotted as a
function of the real part of the input impedance for the two
ultracapacitors. At frequencies above 100 Hz, the electrical
behavior of the ultracapacitors is more like a simple resistor
than a capacitor. At low frequencies (f < 1Hz), the imagi-
nary part of the impedance dominates.

The values of R;, C;, R,, R, and C for each capacitor
model were obtained by curve-fitting the measured data to
the model input impedance in (26). It seems that the R,
value of old one (2 F) is larger than the new one (3.3 F). The
experimental data curves of the real part and the imaginary
part of Z,, were, respectively, fit using the MATLAB/CF Tool
software. Figure 14 also shows the impedance obtained from
the model in Figure 11. The plots show excellent agreement
between the model and the measured values. Figure 15 shows
the measured impedance of a new KAMCAP 400F/2.7V
(HP-2R7-J407UY LL) ultracapacitor with a DC bias voltage of
1.2V and 10 mV disturbance variable from 100 mHz to 100 Hz
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FIGURE 15: Complex-plane representation of a 400 F ultracapacitor
(values for the model calculation: R, = 0.01798 Ohm, C, = 420.5F,
R, =0.007511 Ohm, R = 0.0001291 Ohm, and C = 10 F).

at +25°C. This experiment was carried out by Zahner IM6eX.
The model data is also shown in Figure 15. In this model
R, = 0.017980hm, C, = 420.5F, R, = 0.007511 Ohm,
R = 0.0001291 Ohm, and C = 10F. It also shows excellent
agreement between the measured and modeled values.

4. Conclusion

A new model for describing the electrical behavior of ultra-
capacitors is introduced based on an intuitive representation
of the electrode pores as a fractal structure. The new model
has an infinite number of elements but is fully represented
by only five real numbers. A closed-form expression for the
input impedance was derived making it relatively easy to fit
measured results to the model.
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