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Generalized symbolic trajectory evaluation (GSTE) is an extension of symbolic trajectory evaluation (STE) and a method of model
checking. GSTE specifications are given as assertion graphs. There are four efficient methods to verify whether a circuit model
obeys an assertion graph in GSTE, Model Checking Strong Satisfiability (SMC), Model Checking Normal Satisfiability (NMC),
Model Checking Fair Satisfiability (FMC), and Model Checking Terminal Satisfiability (TMC). SMC, NMC, and FMC have been
proved and applied in industry, but TMC has not. This paper gives a six-tuple definition and presents a new algorithm for TMC.
Based on these, we prove that our algorithm is sound and complete. It solves the SMC’s limitation (resulting in false negative)
without extending from finite specification to infinite specification. At last, a case of using TMC to verify a realistic hardware
circuit round-robin arbiter is achieved. Avoiding verifying the undesired paths which are not related to the specifications, TMC
makes it possible to reduce the computational complexity, and the experimental results suggest that the time cost by SMC is 3.14×
with TMC in the case.

1. Introduction

Logic errors found in finite state concurrent systems are
extremely important problems for both circuit designers
and programmers [1] (i.e., sequential circuit designs and
communication protocols). Model checking is a technique
for verifying finite state concurrent systems [1]. Symbolic
trajectory evaluation is a lattice-based model checking tech-
nique based on a form of symbolic simulation [2–4]. STE
has shown great promise in verifying medium to large
scale industrial hardware designs with a high degree of
automation at both the gate level and the transistor level
[4–7]. Generalized symbolic trajectory evaluation [3, 8] is an
extension of symbolic trajectory evaluation [9, 10]. STE is
very limited in the types of properties that it can specify and
verify. GSTE can handle 𝜔-regular properties and maintain
the efficiency and capacity of STE [9–13]. GSTE is originally
developed at Intel and has been used successfully on Intel’s
next-generation microprocessors [14].

The main disadvantage of model checking is the state
explosion, which motivates the need for algorithms such as
abstract technology and the data structure of BDD and so

forth to alleviate it [2, 15–18]. Although a lot of effort has
been spent on improving this weakness, the efficient and
effectivemethod has yet to be developed.GSTE is amethod of
model checking and it also has the problem of state explosion.
In GSTE, specifications are given as assertion graph and a
model is induced by transition relation. Each edge in the
model represents a state transition and a trace in the model
is a state sequence, while a path in the assertion graph is an
edge sequence. In SMC, NMC, and FMC, a model satisfies
an assertion graph if all the traces (finite or infinite) in the
model are accepted by all the paths of the same length in the
assertion graph [3, 8, 19]. Results shown in [1, 9, 15, 17, 20–22]
indicate that themethod of enumeration usually leads to state
explosion and increases the complexity of computing. As we
know, traces are induced by model, and the number of traces
is directly proportional to the size of model. Furthermore,
paths are related to specifications. Thus, it will not need to
verify each trace or path. Therefore, the key to alleviating
the state explosion lies in deleting some undesired paths and
traces. Aiming at this situation, this paper puts forward the
filtering approach for TMC (Terminal Satisfiability Model
Checking).
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Previous studies have shown or suggested that a tool
is needed to tell the difference between desired paths and
undesired paths. One possible method is to choose 𝐸

𝑇
as

the filter condition, where 𝐸
𝑇
is the set of edges in assertion

graph. Our approach only adds some restricted conditions
into assertion graphs without changing the structure of
models and assertion graphs. Each edge in the assertion graph
is labeled by an antecedent ant(𝑒) and consequent cons(𝑒).
Ant(𝑒) and cons(𝑒) are sets of states in the model, so we can
assign the states related to specifications to the ant(𝑒) of edge
which is in 𝐸

𝑇
. Then, we can delete undesired paths by 𝐸

𝑇
. A

fuller discussion of TMC will appear in a later section.
In this paper, we focus on the need for alleviating state

explosion and present a new algorithm for TMC based on
GSTE. In Section 2, we introduce the basic definitions in
GSTE. In Section 3, some concepts such as terminal assertion
graph, terminal path, and terminal satisfiability are defined.
After a statement of the basic concepts, related properties and
a theorem are given. In Section 4, we present an algorithm for
verifying terminal satisfiabilitywith an examplewhich cannot
be verified by SMC but by TMC. In the end, we use TMC
to successfully verify a hardware circuit round-robin arbiter,
and the time cost by SMC is 3.14× with TMC in the case. In
Section 5, we prove that our algorithm is sound and complete.
Section 6 is the conclusion of the paper.

2. Preliminaries

We introduce some basic definitions in GSTE [3, 8]. We
assume a universal set of finite states, denoted by 𝑆.

2.1. Model

Definition 1 (transition relation; see [3, 8]). A relation 𝑇 ⊆

𝑆 × 𝑆 is a transition relation if for all 𝑠 ∈ 𝑆, ∃𝑠󸀠 ∈ 𝑆, (𝑠, 𝑠󸀠) ∈ 𝑇.

Definition 2 (model; see [3, 8]). Themodel𝑀 induced by the
transition relation 𝑇 is the pair (pre, post), where

(1) the preimage transformer pre: 2𝑆 → 2
𝑆 is defined as

pre (𝑄) = {𝑠 | ∃𝑠󸀠 ∈ 𝑄, (𝑠, 𝑠󸀠) ∈ 𝑇} ∀𝑄 ∈ 2
𝑆
, (1)

(2) and the postimage transformer post: 2𝑆 → 2
𝑆 is

defined as

post (𝑄) = {𝑠󸀠 | ∃𝑠 ∈ 𝑄, (𝑠, 𝑠󸀠) ∈ 𝑇} ∀𝑄 ∈ 2
𝑆
. (2)

Definition 3 (trace; see [3, 8]). A trace 𝜎 in model 𝑀 =

(pre, post) is a state sequence such that 𝜎[𝑖 + 1] ∈ post(𝜎[𝑖])
for all 1 ≤ 𝑖 ≤ |𝜎|.

2.2. Assertion Graph

Definition 4 (assertion graph; see [3, 8]). An assertion graph
is a quintuple 𝐺 = (𝑉, V

0
, 𝐸, ant, cons), where 𝑉 is a finite set

of vertices, V
0
is the initial vertex, 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges

satisfying for all 𝑢 ∈ 𝑉, ∃V ∈ 𝑉, (𝑢, V) ∈ 𝐸, ant is a mapping:
𝐸 → 2

𝑆, and cons is a mapping: 𝐸 → 2
𝑆.

Definition 5 (path; see [3, 8]). A path 𝜌 in assertion graph 𝐺
is an edge sequence such that 𝜌[𝑖] ends at a vertex fromwhich
𝜌[𝑖 + 1] starts for all 1 ≤ 𝑖 ≤ |𝜌|.

Definition 6 (a trace is accepted by a path; see [3, 8]). An
execution trace 𝜎 in a model is accepted by a path 𝜌 in an
assertion graph if (suppose the length of trace and path is 𝑛)

∀𝑖
1≤𝑖≤𝑛

𝜎 [𝑖] ∈ ant (𝜌 [𝑖]) 󳨐⇒ ∀𝑖
1≤𝑖≤𝑛

𝜎 [𝑖] ∈ cons (𝜌 [𝑖]) , (3)

where 𝜎[𝑖] is the 𝑖th state of the trace 𝜎 and 𝜌[𝑖] is the 𝑖th edge
of the path 𝜌.

2.3. Four Kinds of Verifying Algorithms. Based on
Definition 6, GSTE has four kinds of acceptance [19].

Definition 7 (SMC (model checking strong satisfiability)). A
model𝑀 strongly satisfies an assertion graph𝐺 if for all finite
initial paths 𝜌 in 𝐺 and all finite traces 𝜎 in 𝑀 of the same
length 𝜎 is accepted by 𝜌, denoted by𝑀 ⊨ 𝐺.

Definition 8 (NMC (model checking normal satisfiability)).
Amodel𝑀normally satisfies an assertion graph𝐺 if for every
infinite initial path 𝜌

𝜔
in 𝐺 and every infinite trace 𝜎

𝜔
in𝑀

of the same length 𝜎
𝜔
is accepted by 𝜌

𝜔
, denoted by𝑀 ⊨ 𝐺.

Definition 9 (FMC (model checking fair satisfiability)). A
model 𝑀 fairly satisfies an assertion graph 𝐺 under 𝐹

(fairness constraint) if for every infinite fair path 𝜌
𝜔
in 𝐺 and

every infinite trace 𝜎
𝜔
in𝑀, 𝜎

𝜔
is accepted by 𝜌

𝜔
, denoted by

𝑀⊨
𝐹
𝐺.

Definition 10 (TMC (model checking terminal satisfiability)).
A model 𝑀 terminally satisfies an assertion graph 𝐺 under
𝐸
𝑇
(terminal edge set) if for all finite terminal paths 𝜌

𝑇
in 𝐺

and all finite traces 𝜎 in𝑀 of the same length 𝜎 is accepted
by 𝜌
𝑇
, denoted by𝑀⊨

𝑇
𝐺.

We use the following notations in the rest of the paper,
𝜌 = [𝑒

1
, 𝑒
2
, . . .] be an arbitrary sequence of elements, |𝜌| be

the length of the sequence, and 𝜌[𝑖] be the 𝑖th element 𝑒
𝑖
in the

sequence. Further, (𝜌 : 𝑒) denotes the sequence by appending
element 𝑒 to the end of 𝜌 when 𝜌 is finite, and (𝑒 : 𝜌) is the
sequence by appending element 𝑒 to the head of 𝜌.

3. Terminal Satisfiability

In this section, we define some concepts such as terminal
assertion graph and terminal path and give some related
properties on them.

In GSTE, the set of states in model 𝑀 is finite
(|𝑆| is finite), but each state has its successor states so that
traces in the model can be extended to infinite length. Each
edge in the assertion graph has its successor edges so that
assertion graphs can specify infinite properties. It should be
noted that in our daily life, most of the properties which have
been verified are finite rather than infinite. In particular, some
properties are terminated at some states and these states are
not involved. In GSTE existing theories, the SMC algorithm
is the only one used to handle finite properties [3, 8]; it cannot
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stop at some edges whose labels ant(𝑒) are not related to
the specifications and there are many redundant calculations.
The program proves that we can predict the behavior of
the model; these observations lead us to hypothesize that
finite specifications will terminate at some states which we
can predict. Corresponding to terminal specifications, the
paths will also terminate at some edges, which are named
terminal edge. Our algorithm will make the labels ant(𝑒) on
the edges, which cannot reach terminal edges, equal to 0. The
method outlined here can be used to reduce the complexity
of computation.

For convenience, we expanded the assertion graph into
six-tuple.

Definition 11 (terminal assertion graph). A terminal assertion
graph is a six-tuple 𝐺 = (𝑉, V

0
, 𝐸, ant, cons, 𝐸

𝑇
), where 𝑉, V

0
,

𝐸, ant, and cons are the same as in preliminaries; 𝐸
𝑇
⊆ 𝐸 is a

set of terminal edges.

Definition 12 (terminal path). A terminal path is

𝜌
𝑇
= 𝑒
0
𝑒
1
𝑒
2
⋅ ⋅ ⋅ 𝑒
|𝜌𝑇|

(𝑒
𝑖
∈ 𝐸, 𝑖 = 0, 1, 2, . . . ,

󵄨󵄨󵄨󵄨𝜌𝑇
󵄨󵄨󵄨󵄨) , (4)

where 𝑒
0
is an initial edge, it starts from V

0
, and 𝑒

|𝜌𝑇|
is a

terminal edge, 𝑒
|𝜌𝑇|

∈ 𝐸
𝑇
. The last edge of path 𝜌

𝑇
must be

terminal edge.

Definition 13 (a trace is accepted by a terminal path; see [3, 8,
19]). Let 𝐺 = (𝑉, V

0
, 𝐸, ant, cons, 𝐸

𝑇
) be a terminal assertion

graph and𝑀 = (pre, post) be amodel. Given an edge labeling
𝛾 : 𝐸 → 2

𝑆 where 𝛾 is either ant or cons, a trace 𝜎 in 𝑀
satisfies a terminal path 𝜌

𝑇
of the same length under 𝛾 if for

every 1 ≤ 𝑖 ≤ |𝜎|, 𝜎[𝑖] ∈ 𝛾(𝜌
𝑇
[𝑖]), denoted by

(𝑀, 𝜎) ⊨𝛾 (𝐺, 𝜌𝑇) (𝛾 = ant or cons) . (5)

The trace 𝜎 is accepted by the terminal path 𝜌
𝑇
if

(𝑀, 𝜎) ⊨ant (𝐺, 𝜌𝑇) 󳨐⇒ (𝑀, 𝜎) ⊨cons (𝐺, 𝜌𝑇) , (6)

denoted by (𝑀, 𝜎) ⊨
𝑇
(𝐺, 𝜌
𝑇
).

Definition 14 (model satisfies terminal assertion graph). A
model 𝑀 satisfies a terminal assertion graph 𝐺 if for all
terminal paths𝜌

𝑇
in𝐺 and all traces𝜎 in𝑀 of the same length

one has (𝑀, 𝜎) ⊨
𝑇
(𝐺, 𝜌
𝑇
), denoted by

𝑀⊨
𝑇
𝐺. (7)

Definition 15 (model strongly satisfies assertion graph; see [3,
8]). A model𝑀 strongly satisfies an assertion graph𝐺 (𝐸

𝑇
=

0) if for all finite paths 𝜌 in𝐺 and all traces 𝜎 in𝑀 of the same
length one has (𝑀, 𝜎) ⊨ (𝐺, 𝜌), denoted by

𝑀 ⊨ 𝐺. (8)

The Difference between Finite Path and Terminal Path. Note
that there is a key difference between finite path and terminal
path; unlike terminal path, which must be end up with a
terminal edge 𝑒 ∈ 𝐸

𝑇
, finite path can end up with any edge

𝑒 ∈ 𝐸. Given our analysis, this suggests a terminal path will
be a finite path; however, a finite path may not be a terminal
path.

Let 𝐴 = {𝜌 | 𝜌 is a finite initial path and the length of 𝜌 is
|𝜌|, where |𝜌| = 1, 2, . . .} and 𝐵 = {𝜌

𝑇
| 𝜌
𝑇
is a terminal path

and the length of 𝜌
𝑇
is |𝜌
𝑇
|, where |𝜌

𝑇
| = 1, 2, . . .}. The last

edge of 𝜌
𝑇
must be a terminal edge, 𝜌

𝑇
[|𝜌
𝑇
|] ∈ 𝐸

𝑇
; however,

the last edge of 𝜌 does not have this restriction, it just needs
to meet 𝜌[|𝜌|] ∈ 𝐸, 𝐸

𝑇
⊆ 𝐸, so one has 𝐵 ⊆ 𝐴.

Theorem 16. For any assertion graph 𝐺 = (𝑉, V
0
, 𝐸, 𝑎𝑛𝑡, 𝑐𝑜𝑛𝑠,

𝐸
𝑇
) and any model𝑀, one has

𝑀 ⊨ 𝐺 󳨐⇒ 𝑀⊨
𝑇
𝐺. (9)

Proof. According to Definition 15

𝑀 ⊨ 𝐺 ⇐⇒ ∀𝜌 ∈ 𝐴, (𝑀, 𝜎) ⊨ (𝐺, 𝜌)

󳨐⇒ ∀𝜌
𝑇
∈ 𝐵, (𝑀, 𝜎) ⊨𝑇 (𝐺, 𝜌𝑇) (using 𝐵 ⊆ 𝐴)

⇐⇒ 𝑀⊨
𝑇
𝐺 (using Definition 14) .

(10)

Theorem 16 describes the relationship between SMC and
TMC. If SMC returns true, then TMC returns true, but not
vice versa. When 𝐸

𝑇
= 𝐸, terminal satisfiability behaves as

strong satisfiability. When 𝐸
𝑇
⊆ 𝐸, 𝐸

𝑇
̸= 𝐸, we can remove

some undesired paths in the assertion graph.

4. Model Checking with Terminal Satisfiability

In this section, we describe a model checking method for
verifying terminal satisfiability. The concept of terminal
satisfiability was proposed in [19] but was not given any
algorithm. In this paper, we present an algorithm and prove
it.

4.1. The TMC Algorithm. In [3, 8], the algorithms for SMC,
NMC, and FMC were given. Our TMC algorithm is similar.
First, we should define the backward simulation sequence.

Definition 17. Given an assertion graph 𝐺 = (𝑉, V
0
, 𝐸, ant,

cons, 𝐸
𝑇
) and a model 𝑀 = (pre, post), the backward

simulation sequence is as below

[𝜑
1
, 𝜑
2
, 𝜑
3
, . . .] , (11)

where𝜑
𝑛
: 𝐸 → 2

𝑆 (𝑛 ≥ 1) is the 𝑛-step backward simulation
relation. It is defined as

𝜑
1 (𝑒) =

{{{{

{{{{

{

⋃

𝑒
+
∈out(𝑒)∩𝐸𝑇

(pre (ant (𝑒+)) ∩ ant (𝑒))

∀𝑒 ∈ 𝐸 − 𝐸
𝑇
,

ant (𝑒) ∀𝑒 ∈ 𝐸
𝑇
,

𝜑
𝑛 (𝑒) =

{{{{{

{{{{{

{

𝜑
𝑛 (𝑒) ∪ ( ⋃

𝑒
+
∈out(𝑒)

(pre (𝜑
𝑛
(𝑒
+
)) ∩ ant (𝑒)))

∀𝑒 ∈ 𝐸 − 𝐸
𝑇
,

ant (𝑒) ∀𝑒 ∈ 𝐸
𝑇
.

(12)
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Based on this result, when we verify finite properties, we
simply verify those traces that can reach some states in ant(𝑒),
where 𝑒 ∈ 𝐸

𝑇
. These states, which are related to the property,

are assigned to the label ant of the terminal edge. Then we
emulate the model’s behavior backwards starting from the
terminal edge. The 𝑛-step backward simulation relation 𝜑

𝑛
is

the set of the states that can reach the terminal edge within
𝑛-step.

Obviously, the backward simulation relation sequence is
nondecreasing and has a least fix-point upper limit bounded
by ant. We denote the least fix-point by 𝜑∗

𝑇
. Now we propose

a terminal satisfiability model checking algorithm that first
performs a series of graph transformations and then checks
strong satisfiability on the resulting graph.

4.2. The Application of TMC. In order to describe TMC
clearly, let us look at the following example [23].

Example 18. Consider the model 𝑀 in Figure 1, where 𝑆 =

{𝑠
0
, 𝑠
1
, 𝑠
2
, 𝑠
3
, 𝑠
4
, 𝑠
5
, 𝑠
6
}.

Suppose we want to specify the following property: if the
system is in the state 𝑠

5
, then it must have been in 𝑠

3
the last

time when it was neither in 𝑠
5
nor 𝑠
6
. The model satisfies this

property. Now, let us catch this property using the assertion
graph in Figure 2.

The fact that SMC cannot verify this property is due to
undesired paths, such as the finite initial path 𝜌

1
= [(V
0
, V
1
)]

and the finite trace 𝜎
1
= [𝑠
4
], 𝜎
1
⊨ant 𝜌1, but the first state 𝑠4 of

𝜎
1
is not in the cons((V

0
, V
1
)) = {𝑠

3
}.Thus, themodel does not

strongly satisfy the assertion graph. If we use SMC, the SMC
algorithmwill return false. In order to deal with this situation
in the former, [3, 8] introduce NMC and FMC. As we know,
NMC and FMC have been used to deal with 𝜔-regular
properties. If wewant to solve the SMC’s limitation,we should
expand finite specifications to infinite specifications. This is
the key that leads to the increasing complexity of the model
checking. However, the algorithm of using TMC to verify this
property is more suitable. TMC can be accomplished without
expanding finite specifications to infinite specifications. The
following example is constructed only for the purpose of
illustrating the computational procedure discussed.

Step 1. Construct the terminal assertion graph and figure out
the terminal edges (Figure 3).

Step 2. First, the fix-point 𝜑∗
𝑇
of every edge is computed

according to Definition 17; then the label ant of every edge
is replaced by the corresponding 𝜑

∗

𝑇
; lastly, the resulting

assertion graph 𝐺󸀠 is gotten.

Step 3. This step behaves as the algorithm SMC : SMC(𝑀,

𝐺
󸀠
).The edge which is marked by the blue line is the terminal

edge. Supposing 𝐸
𝑇
= {(V
1
, V
2
)}, there is only one terminal

edge in the case (Figure 3). Thus, the terminal path can be
grouped into two cases (as follows):

𝜌
𝑇1
= [(V
0
, V
1
) (V
1
, V
2
)] (

󵄨󵄨󵄨󵄨󵄨
𝜌
𝑇1

󵄨󵄨󵄨󵄨󵄨
= 2) ,

𝜌
𝑇2
= [(V
0
, V
1
) (V
1
, V
1
) ⋅ ⋅ ⋅ (V

1
, V
1
) (V
1
, V
2
)] (

󵄨󵄨󵄨󵄨󵄨
𝜌
𝑇2

󵄨󵄨󵄨󵄨󵄨
≥ 3) .

(13)

S0

S1

S2

S3

S4

S5

S6

Figure 1: A simple model.

V0 V1 V2

S − {S5, S6}/{S3}

{S5, S6}/S

{S5}/S
S/S

Figure 2: An assertion graph.

S − {S5, S6}/{S3}

{S5, S6}/S

{S5}/S
S/S

V0 V1 V2

Figure 3: A terminal assertion graph.

Because the terminal path must end up with the terminal
edge, there is only one terminal edge in Figure 3 and the
vertex V

2
to V
1
is unreachable. Thus, if a path reaches the

edge (V
2
, V
2
) that is not a terminal path, then all terminal

paths are finite. As we know, the length of a terminal path
must be greater than or equal to 2.Thus, we can eliminate the
path 𝜌

1
and the trace 𝜎

1
, which will lead to SMC returning

false negative, since |𝜌
1
| = |𝜎

1
| = 1. The trace in model 𝑀

(Figure 1), if not starting from 𝑠
3
, ultimately would violate the

label ant((V
1
, V
2
)) on the edge (V

1
, V
2
); therefore the model𝑀

(Figure 1) terminally satisfies the terminal assertion graph 𝐺
(Figure 3). The calculation is as follows (after one iteration,
every edge can be reached to the fix-point).

The first iteration (initialization):

𝜑
1
(V
1
, V
2
) = ant ((V

1
, V
2
)) = {𝑠

5
} ,

𝜑
1
(V
1
, V
1
) = pre (ant ((V

1
, V
2
))) ∩ ant ((V

1
, V
1
))

= pre ({𝑠
5
}) ∩ {𝑠

5
, 𝑠
6
} = {𝑠

3
, 𝑠
5
} ∩ {𝑠
5
, 𝑠
6
} = {𝑠

5
} ,

𝜑
1
(V
0
, V
1
) = pre (ant ((V

1
, V
2
))) ∩ ant ((V

0
, V
1
))

= {𝑠
3
, 𝑠
5
} ∩ {𝑠
0
, 𝑠
1
, 𝑠
2
, 𝑠
3
, 𝑠
4
}

= {𝑠
3
} ,

𝜑
1
(V
2
, V
2
) = 0.

(14)

The second iteration:
𝜑
2
(V
1
, V
2
) = {𝑠

5
} ,

𝜑
2
(V
1
, V
1
) = 𝜑
1
(V
1
, V
1
) ∪ (pre (𝜑

1
(V
1
, V
1
)) ∩ ant ((V

1
, V
1
)))

∪ (pre (𝜑
1
(V
1
, V
2
)) ∩ ant ((V

1
, V
1
)))

= {𝑠
5
} ∪ (pre {𝑠

5
} ∩ {𝑠
5
, 𝑠
6
})

= {𝑠
5
} ,
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Figure 4: The resulting assertion graph 𝐺󸀠.

routeEnable

Req0. . . 3

grant1

grant0
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Figure 5: An arbiter with 4 inputs.

𝜑
2
(V
0
, V
1
) = 𝜑
1
(V
0
, V
1
) ∪ (pre (𝜑

1
(V
1
, V
1
)) ∩ ant ((V

0
, V
1
)))

∪ (pre (𝜑
1
(V
1
, V
2
)) ∩ ant ((V

0
, V
1
)))

= {𝑠
3
} ∪ (pre {𝑠

5
} ∩ {𝑠
0
, 𝑠
1
, 𝑠
2
, 𝑠
3
, 𝑠
4
})

∪ (pre {𝑠
5
} ∩ {𝑠
0
, 𝑠
1
, 𝑠
2
, 𝑠
3
, 𝑠
4
})

= {𝑠
3
} ,

𝜑
2
(V
2
, V
2
) = 0.

(15)

After replacing the label ant of each edgewith the correspond-
ing fix-point 𝜑∗

𝑇
, the resulting assertion graph 𝐺󸀠 is shown as

Figure 4.
As can be seen, ant of each edge has been reached by the

minimum, and TMC returns true. Thus, the model satisfies
the terminal assertion graph.

4.3. A Hardware Verification Case of TMC. In this section,
we present a case study of TMC on hardware verification.The
circuit we choose for this study is a round-robin arbiter, which
is the core component in many real network systems [24]. An
arbiter has 𝑁 inputs and the output is a vector encoding of
arbitration results. Request with highest priority in round-
robin order is granted in each cycle, and the priority of the
request which is granted in last arbitration will become the
lowest in the next round; this protocol guarantees a dynamic
priority assignment to requestors without starvation. We
consider the arbiter with 4 inputs (shown in Figure 5). First,
the priority of inputs is placed in descending order from
req[0] to req[3] [25, 26].Thus, req[0] has the highest priority,
req[1] has the next priority, and so on. Each input of the
arbiter in Figure 5 is connected to a switch cell; only one of the
four inputs will succeed each clock cycle. Others are rejected
and must retry later. routeEnable is enable signal.

We model this arbiter as a finite state machine (shown in
Figure 6) according to its truth table in paper [24]. The input
req[3 : 0] is a vector of ternary-valued variables; each variable
can take 0, 1, or 𝑋. 𝑋 indicates that variable can take 0 or 1.
Figure 6 is the model of this arbiter. Consider

trans 0 0 = req1 = 0&req2 = 0&req3 = 0&routeEnable = 1,
trans 0 1 = req1 = 1&ruoteEnable = 1,

trans 0 0

s0 s1

s2 s3

tr
an
s
0
2

trans 2 2

trans 1 0

trans 0 1
trans 3

0trans 0
3

tran
s 1

2

tran
s 2

1

trans 3 2

trans 2 3

tr
an
s
1
3

tr
an
s
3
1

trans 3 3

trans 1 1

tr
an
s
2
0

Figure 6: The behavior of arbiter.

trans 0 2 = req1 = 0&req2 = 1&routeEnable = 1,

trans 0 3 = req1 = 0&req2 = 0&req3 = 1&routeEnable = 1,

trans 1 1 = req2 = 0&req3 = 0&req0 = 0&routeEnable = 1,

trans 1 2 = req2 = 1&routeEnable = 1,

trans 1 3 = req2 = 0&req3 = 1&routeEnable = 1,

trans 1 0 = req2 = 0&req3 = 0&req0 = 1&routeEnable = 1,

trans 2 2 = req3 = 0&req0 = 0&req1 = 0&routeEnable = 1,

trans 2 3 = req3 = 1&routeEnable = 1,

trans 2 0 = req3 = 0&req0 = 1&routeEnable = 1,

trans 2 1 = req3 = 0&req0 = 0&req1 = 1&routeEnable = 1,

trans 3 3 = req0 = 0&req1 = 0&req2 = 0&routeEnable = 1,

trans 3 0 = req0 = 1&routeEnable = 1,

trans 3 1 = req0 = 0&req1 = 1&routeEnable = 1,

trans 3 2 = req0 = 0&req1 = 0&req2 = 1&routeEnable = 1.
(16)

Safety property: once a request reqi is set high froma state and
kept high, then the request will be granted after several cycles.
Suppose a state where the value of grant is [1, 0], whichmeans
that the last request granted is req2; if the request req2 is set
high again and kept high, then the request will be granted
after at most 4 cycles. We use the terminal assertion graph
to specify this property (shown as in Figure 7) [24]. Consider

ant 𝑉
𝐼
𝑉set = req0 = 0&req1 = 0&req2 = 1&req3 = 0,

ant 𝑉set 𝑉
1
= req2 = 1&req3 = 0&req0 = 0&req1 = 1,

ant 𝑉set 𝑉
3
= req2 = 1&req3 = 1,

ant 𝑉set 𝑉
0
= req2 = 1&req3 = 0&req0 = 1,

ant 𝑉
1
𝑉
2
= req2 = 1,
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Figure 7: The terminal assertion graph.

ant 𝑉
0
𝑉
1
= req2 = 1&req1 = 1,

ant 𝑉
0
𝑉
2
= req2 = 1&req1 = 0,

ant 𝑉
3
𝑉
0
= req2 = 1&req0 = 1,

ant 𝑉
3
𝑉
1
= req2 = 1&req0 = 0&req1 = 1,

ant 𝑉
3
𝑉
2
= req2 = 1&req0 = 0&req1 = 0,

ant 𝑉
2
𝑉end = grant1 = 0&grant0 = 1,

cons = grant1 = 0&grant0 = 1.
(17)

The edge (𝑉
2
, 𝑉end) is the terminal edge.We only verify those

paths that end up with the edge (𝑉
2
, 𝑉end). If we use SMC to

verify this property, we must verify all finite paths. If using
TMC, we only need to verify terminal paths. In the terminal
assertion graph (Figure 7), all finite paths are as follows:

𝜌
1
= [𝑉
𝐼
, 𝑉set] ,

𝜌
2
= [𝑉
𝐼
, 𝑉set] [𝑉set, 𝑉

1
] ,

𝜌
3
= [𝑉
𝐼
, 𝑉set] [𝑉set, 𝑉

3
] ,

𝜌
4
= [𝑉
𝐼
, 𝑉set] [𝑉set, 𝑉

0
] ,

𝜌
5
= [𝑉
𝐼
, 𝑉set] [𝑉set, 𝑉

1
] [𝑉
1
, 𝑉
2
] ,

𝜌
6
= [𝑉
𝐼
, 𝑉set] [𝑉set, 𝑉

3
] [𝑉
3
, 𝑉
1
] ,

𝜌
7
= [𝑉
𝐼
, 𝑉set] [𝑉set, 𝑉

0
] [𝑉
0
, 𝑉
1
] ,

𝜌
8
= [𝑉
𝐼
, 𝑉set] [𝑉set, 𝑉

3
] [𝑉
3
, 𝑉
0
] ,

𝜌
9
= [𝑉
𝐼
, 𝑉set] [𝑉set, 𝑉

3
] [𝑉
3
, 𝑉
2
] ,

𝜌
10
= [𝑉
𝐼
, 𝑉set] [𝑉set, 𝑉

3
] [𝑉
3
, 𝑉
1
] [𝑉
1
, 𝑉
2
] ,

𝜌
11
= [𝑉
𝐼
, 𝑉set] [𝑉set, 𝑉

3
] [𝑉
3
, 𝑉
0
] [𝑉
0
, 𝑉
1
] ,

𝜌
12
= [𝑉
𝐼
, 𝑉set] [𝑉set, 𝑉

3
] [𝑉
3
, 𝑉
0
] [𝑉
0
, 𝑉
1
] [𝑉
1
, 𝑉
2
] ,

𝜌
13
= [𝑉
𝐼
, 𝑉set] [𝑉set, 𝑉

3
] [𝑉
3
, 𝑉
0
] [𝑉
0
, 𝑉
2
] ,

𝜌
14
= [𝑉
𝐼
, 𝑉set] [𝑉set, 𝑉

0
] [𝑉
0
, 𝑉
1
] [𝑉
1
, 𝑉
2
] ,

𝜌
15
= [𝑉
𝐼
, 𝑉set] [𝑉set, 𝑉

0
] [𝑉
0
, 𝑉
2
] ,

𝜌
16
= [𝑉
𝐼
, 𝑉set] [𝑉set, 𝑉

1
] [𝑉
1
, 𝑉
2
] [𝑉
2
, 𝑉end] ,

𝜌
17
= [𝑉
𝐼
, 𝑉set] [𝑉set, 𝑉

0
] [𝑉
0
, 𝑉
1
] [𝑉
1
, 𝑉
2
] [𝑉
2
, 𝑉end] ,

𝜌
18
= [𝑉
𝐼
, 𝑉set] [𝑉set, 𝑉

0
] [𝑉
0
, 𝑉
2
] [𝑉
2
, 𝑉end] ,

𝜌
19
= [𝑉
𝐼
, 𝑉set] [𝑉set, 𝑉

3
] [𝑉
3
, 𝑉
1
] [𝑉
1
, 𝑉
2
] [𝑉
2
, 𝑉end] ,

𝜌
20
= [𝑉
𝐼
, 𝑉set] [𝑉set, 𝑉

3
] [𝑉
3
, 𝑉
2
] [𝑉
2
, 𝑉end] ,

𝜌
21
= [𝑉
𝐼
, 𝑉set] [𝑉set, 𝑉

3
] [𝑉
3
, 𝑉
0
] [𝑉
0
, 𝑉
2
] [𝑉
2
, 𝑉end] ,

𝜌
22
= [𝑉
𝐼
, 𝑉set] [𝑉set, 𝑉

3
] [𝑉
3
, 𝑉
0
] [𝑉
0
, 𝑉
1
] [𝑉
1
, 𝑉
2
]

× [𝑉
2
, 𝑉end] .

(18)

If we use SMC, we must verify 22 paths: 𝜌
1
, . . . , 𝜌

22
. But we

use TMC only to verify 𝜌
16
, . . . , 𝜌

22
. Therefore, the time cost

by SMC is 3.14× with TMC in this case.

5. Correctness Proof

In this section, we formally prove that the TMC algorithm is
both sound and complete.

5.1. The Logic of Algorithm. 𝑀⊨
𝑇
𝐺 ⇔ for all 𝜌

𝑇
in 𝐺, for all

𝜎 in𝑀 of the same length, and (𝑀, 𝜎) ⊨
𝑇
(𝐺, 𝜌
𝑇
) ⇔ for all 𝜌

𝑇

in 𝐺 and for all 𝜎 in𝑀 of the same length,

(𝑀, 𝜎) ⊨ant (𝐺, 𝜌𝑇) 󳨐⇒ (𝑀, 𝜎) ⊨cons (𝐺, 𝜌𝑇) . (19)

By analyzing algorithmTMC, in the end,we use SMC(𝑀,𝐺
󸀠
).

Consider

SMC (𝑀,𝐺
󸀠
) returns true 󳨐⇒ 𝑀 ⊨ 𝐺

󸀠
. (20)

It indicates that we can only get

∀𝜌 in 𝐺, ∀𝜎 in 𝑀 of the same length,

(𝑀, 𝜎) ⊨𝜑∗
𝑇

(𝐺, 𝜌) 󳨐⇒ (𝑀, 𝜎) ⊨cons (𝐺, 𝜌) .
(21)

But we are aiming at (according to (19))

∀𝜌
𝑇
in 𝐺, ∀𝜎 in 𝑀 of the same length,

(𝑀, 𝜎) ⊨ant (𝐺, 𝜌𝑇) 󳨐⇒ (𝑀, 𝜎) ⊨cons (𝐺, 𝜌𝑇) .
(22)
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Then, if we want to prove TMC is correct, we must prove that
(according to (21) and (22))

∀𝜌
𝑇
in 𝐺, ∀𝜎 in 𝑀 of the same length,

(𝑀, 𝜎) ⊨ant (𝐺, 𝜌𝑇) 󳨐⇒ (𝑀, 𝜎) ⊨𝜑∗
𝑇

(𝐺, 𝜌
𝑇
) .

(23)

5.2. The TMC Algorithm Is Sound. According to
Definition 17, we get the following lemma.

Lemma 19. For a terminal assertion graph 𝐺 = (𝑉, V
0
, 𝐸,

𝑎𝑛𝑡, 𝑐𝑜𝑛𝑠, 𝐸
𝑇
) and amodel𝑀 = (𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡), let [𝜑

1
, 𝜑
2
, 𝜑
3
, . . .]

be the backward simulation sequence towards𝐸
𝑇
⊆ 𝐸.Then for

any 𝑛 ≥ 2, for all finite terminal paths 𝜌
𝑇
, and all finite traces

𝜎 of length 𝑛 + 1, such that
(1) 𝜌
𝑇
[𝑛 + 1] ∈ 𝐸

𝑇

(2) when 𝜎
2
⊨
𝑎𝑛𝑡
𝜌
2

𝑇
and |𝜎

2
| = |𝜌

2

𝑇
| = 𝑛, we have

𝜎[𝑖] ∈ 𝜑
𝑛+1−𝑖

(𝜌
𝑇
[𝑖]) (𝑖 = 2, 3, . . . , 𝑛) (note: 𝜌2

𝑇
repre-

sents all paths of length 𝑛 which are obtained by
traversing backwards starting from the terminal edge.
For example, if 𝜌

𝑇
= 𝑒
1
𝑒
2
⋅ ⋅ ⋅ 𝑒
𝑛
𝑒
𝑛+1

and 𝑒
𝑛+1

∈ 𝐸
𝑇
, then

𝜌
2

𝑇
= 𝑒
2
𝑒
3
⋅ ⋅ ⋅ 𝑒
𝑛
𝑒
𝑛+1

, 𝜎2 represents all traces of length 𝑛
obtained by traversing backwards starting from the last
state of 𝜎)

(3) when 𝜎 ⊨
𝑎𝑛𝑡
𝜌
𝑇
, we have 𝜎[1] ∈ 𝜑

𝑛
(𝜌
𝑇
[1]), 𝜎[𝑛 + 1] ∈

𝜑
1
(𝜌
𝑇
[𝑛 + 1]).

Proof (mathematical induction). Suppose |𝜌
𝑇
| = |𝜎| = 𝑘 + 1.

First Step (𝑘 = 2). (1) 𝜌
𝑇
[3] ∈ 𝐸

𝑇
since 𝜌

𝑇
is a terminal path.

(2) Let us prove 𝜎[2] ∈ 𝜑
1
(𝜌
𝑇
[2]):

𝜎
2
⊨ant 𝜌
2

𝑇
󳨐⇒ 𝜎 [2] ∈ ant (𝜌

𝑇 [2]) , 𝜎 [3] ∈ ant (𝜌
𝑇 [3]) ,

(24)

𝜎 [2] ∈ pre (𝜎 [3])
(24)

󳨐󳨐󳨐⇒ 𝜎 [2] ∈ pre (ant (𝜌
𝑇 [3])) .

(25)

According to (24)-(25),

𝜎 [2] ∈ ant (𝜌
𝑇 [2]) ∩ pre (ant (𝜌

𝑇 [3])) ⊆ 𝜑1 (𝜌𝑇 [2]) . (26)

(3) Let us prove 𝜎[1] ∈ 𝜑
2
(𝜌
𝑇
[1]), 𝜎[3] ∈ 𝜑

1
(𝜌
𝑇
[3]):

𝜎 [1] ∈ pre (𝜎 [2])
(26)

󳨐󳨐󳨐⇒ 𝜎 [1] ∈ pre (𝜑
1
(𝜌
𝑇 [2]))

(27)

𝜎 ⊨ant 𝜌𝑇 󳨐⇒ 𝜎 [1] ∈ ant (𝜌
𝑇 [1]) . (28)

According to (27)-(28),

𝜎 [1] ∈ ant (𝜌
𝑇 [1]) ∩ pre (𝜑

1
(𝜌
𝑇 [2]))

⊆ 𝜑
1
(𝜌
𝑇 [1])

∪ ( ⋃

𝑒
+
∈out(𝜌𝑇[1])

(pre (𝜑
1
(𝑒
+
)) ∩ ant (𝜌

𝑇 [1])))

= 𝜑
2
(𝜌
𝑇 [1]) ,

𝜎 ⊨ant 𝜌𝑇 󳨐⇒ 𝜎 [3] ∈ ant (𝜌
𝑇 [3]) = 𝜑1 (𝜌𝑇 [3]) .

(29)

Then, the conclusions (1), (2), and (3) are true for 𝑘 = 2.

Second Step. We already saw that the conclusions are true for
𝑘 = 2. Assume this, for an arbitrary 𝑛, the above lemma is
true for 𝑘 = 𝑛, then we get the following.

(𝜎 represents all traces of length 𝑛 + 1 and 𝜌
𝑇
represents

all terminal paths of the same length) (1) 𝜌
𝑇
[𝑛 + 1] ∈ 𝐸

𝑇
.

(2) When 𝜎
2
⊨ant 𝜌
2

𝑇
, we have 𝜎[𝑖] ∈ 𝜑

𝑛+1−𝑖
(𝜌
𝑇
[𝑖]) (𝑖 =

2, 3, . . . , 𝑛) (where 𝜌2
𝑇
represents all paths of length 𝑘 obtained

by traversing backwards starting from the terminal edge;
the terminal edge is the last edge of the terminal path; 𝜎2
is similar), (3) when 𝜎 ⊨ant 𝜌𝑇, we have 𝜎[1] ∈ 𝜑

𝑛
(𝜌
𝑇
[1]),

𝜎[𝑛 + 1] ∈ 𝜑
1
(𝜌
𝑇
[𝑛 + 1]).

Third Step (let us derive the lemma is true for 𝑘 = 𝑛 + 1 from
above assumption). We must consider all terminal paths 𝜌

𝑇

of length 𝑛 + 2 and all traces of the same length.
(1) 𝜌
𝑇
[𝑛 + 2] ∈ 𝐸

𝑇
since 𝜌

𝑇
is a terminal path.

(2) We must prove 𝜎2 ⊨ant 𝜌
2

𝑇
⇒ 𝜎[𝑖] ∈ 𝜑

𝑛+2−𝑖
(𝜌
𝑇
[𝑖]) (𝑖 =

2, 3, . . . , 𝑛, 𝑛 + 1) at this step, |𝜌2
𝑇
| = |𝜎
2
| = 𝑛 + 1

𝜎
2
⊨ant 𝜌
2

𝑇
󳨐⇒ 𝜎

3
⊨ant 𝜌
3

𝑇
, (30)

where 𝜌3
𝑇
represents all paths of length 𝑛 obtained by travers-

ing starting from the terminal edge and 𝜎
3 is obtained by

deleting the first two states of 𝜎, |𝜎| = 𝑛 + 2 ⇒ |𝜎
3
| = 𝑛,

and |𝜌
𝑇
| = 𝑛 + 2 ⇒ |𝜌

3

𝑇
| = 𝑛. By the induction hypothesis we

have the following conclusion:

𝜎
3
⊨ant 𝜌
3

𝑇
󳨐⇒ 𝜎 [𝑖] ∈ 𝜑𝑛+1−𝑖 (𝜌𝑇 [𝑖]) ⊆ 𝜑𝑛+2−𝑖 (𝜌𝑇 [𝑖]) ,

(𝑖 = 3, 4, . . . , 𝑛, 𝑛 + 1) .

(31)

According to (31),

𝜎 [3] ∈ 𝜑𝑛−1 (𝜌𝑇 [3]) , (32)

𝜎 [2] ∈ pre (𝜎 [3])
(32)

󳨐󳨐󳨐⇒ 𝜎 [2] ∈ pre (𝜑
𝑛−1

(𝜌
𝑇 [3])) ,

(33)

𝜎 [2] ∈ ant (𝜌
𝑇 [2])

(33)

󳨐󳨐󳨐⇒ 𝜎 [2] ∈ ant (𝜌
𝑇 [2])

∩ pre (𝜑
𝑛−1

(𝜌
𝑇 [3]))

⊆ 𝜑
𝑛−1

(𝜌
𝑇 [2])

∪ ( ⋃

𝑒
+
∈out(𝜌𝑇[2])

(pre (𝜑
𝑛−1

(𝑒
+
)) ∩ ant (𝜌

𝑇 [2])))

= 𝜑
𝑛
(𝜌
𝑇 [2]) ,

(34)

namely, 𝜎2 ⊨ant 𝜌
2

𝑇
⇒ 𝜎[𝑖] ∈ 𝜑

𝑛+2−𝑖
(𝜌
𝑇
[𝑖]) (𝑖 = 2, 3, . . . , 𝑛, 𝑛 +

1).
(3) Consider

𝜎 ⊨ant 𝜌𝑇 󳨐⇒ 𝜎 [1] ∈ ant (𝜌
𝑇 [1]) , (35)

𝜎 ⊨ant 𝜌𝑇 󳨐⇒ 𝜎
2
⊨ant 𝜌
2

𝑇

(34)

󳨐󳨐󳨐⇒ 𝜎 [2] ∈ 𝜑𝑛 (𝜌𝑇 [2]) ,
(36)

𝜎 [1] ∈ pre (𝜎 [2])
(36)

󳨐󳨐󳨐⇒ 𝜎 [1] ∈ pre (𝜑
𝑛
(𝜌
𝑇 [2])) .

(37)
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According to (35)–(37),

𝜎 [1] ∈ ant (𝜌
𝑇 [1]) ∩ pre (𝜑

𝑛
(𝜌
𝑇 [2]))

⊆ 𝜑
𝑛
(𝜌
𝑇 [1])

∪ ( ⋃

𝑒
+
∈out(𝜌𝑇[1])

(pre (𝜑
𝑛
(𝑒
+
)) ∩ ant (𝜌

𝑇 [1])))

= 𝜑
𝑛+1

(𝜌
𝑇 [1]) ,

𝜎 ⊨ant 𝜌𝑇 󳨐⇒ 𝜎 [𝑛 + 2] ∈ ant (𝜌
𝑇 [𝑛 + 2]) = 𝜑1 (𝜌𝑇 [𝑛 + 2])

(38)

which exactly means that the lemma holds for 𝑘 = 𝑛 + 1.
Therefore, the lemma is true for all 𝑛 starting with 2.

The conclusions of Lemma 19 have been used to prove
Theorem 20. At the same time, Lemma 19 gives the con-
clusion that the backward simulation sequence 𝜑

𝑛
is a

convergent sequence. If the length of the path is 𝑛, then the
simulation sequence of the 𝑖th edges will reach the fixed point
through at least 𝑛 + 1 − 𝑖 iterations.

Suppose 𝜑∗
𝑇
is the fix-point of the backward simulation

sequence based on the terminal set 𝐸
𝑇
; after replacing the

label ant of each edge with the corresponding fix-point 𝜑∗
𝑇
,

the resulting assertion graph is denoted by 𝐺󸀠.

Theorem 20. Consider

𝑀⊨
𝑇
𝐺 ⇐⇒𝑀⊨

𝑇
𝐺
󸀠
. (∗)

Proof. According to Section 5.1 (the logic of algorithm), we
know (∗) holds equivalent to the following (∗∗). For any
𝑛 ≥ 2, 𝜌

𝑇
represents all terminal paths of length 𝑛 in assertion

graph 𝐺 (𝜌
𝑇
is also the terminal path in assertion graph 𝐺󸀠)

and 𝜎 represents all traces of the same length in model 𝑀.
Consider

𝜎 ⊨ant 𝜌𝑇 ⇐⇒ 𝜎⊨
𝜑
∗

𝑇

𝜌
𝑇
. (∗∗)

Thedirection⇐ is obvious, since𝜑∗
𝑇
(𝑒) ⊆ ant(𝑒) for any 𝑒 ∈ 𝐸.

The direction⇒: when 𝜎 ⊨ant 𝜌𝑇, according to Lemma 19,

𝜎 [𝑖] ∈ 𝜑
∗

𝑇
(𝜌
𝑇 [𝑖]) (𝑖 = 1, 2, . . . , 𝑛) ; (39)

therefore, 𝜎⊨ant𝜌𝑇 ⇒ 𝜎⊨
𝜑
∗

𝑇

𝜌
𝑇
.

𝐺
󸀠 can be obtained through a series of transformations

on 𝐺. Theorem 20 guarantees that these transformation
operations will not change the model’s features on terminal
satisfiability.

Theorem 21. For any terminal assertion graph 𝐺 = (𝑉, V
0
, 𝐸,

𝑎𝑛𝑡, 𝑐𝑜𝑛𝑠, 𝐸
𝑇
) and any model𝑀,

𝑇𝑀𝐶 (𝑀,𝐺) 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑡𝑟𝑢𝑒 󳨐⇒ 𝑀⊨
𝑇
𝐺. (40)

Proof (𝐺󸀠 is defined inTheorem 20). Consider

TMC returns true

⇐⇒ SMC (𝑀,𝐺
󸀠
) returns true

󳨐⇒ 𝑀 ⊨ 𝐺
󸀠

(SMC is complete [3, 8])

󳨐⇒ 𝑀⊨
𝑇
𝐺
󸀠

(Theorem 16)

⇐⇒ 𝑀⊨
𝑇
𝐺 (Theorem 20) .

(41)

Theorem 21 proves that the TMC algorithm is sound.

5.3. The TMC Algorithm Is Complete. Now let us prove the
completeness of the algorithm. First, we need the following
lemma.

Lemma 22 (see [3, 8]). For any 𝑛 ≥ 1, 𝑒 ∈ 𝐸, and any 𝑠 ∈
𝜓
𝑛
(𝑒), there is a finite initial path 𝜌 and a finite trace 𝜎 of some

length 𝑙 ≤ 𝑛 such that

𝜌 [𝑙] = 𝑒, 𝜎 [𝑙] = 𝑠, 𝜎 ⊨
𝑎𝑛𝑡
𝜌. (42)

Lemma 22 provides a counterexample for the proof
of Theorem 25. We can find a path 𝜌 and a trace 𝜎

satisfying 𝜎 ⊨ant 𝜌 but 𝜎 ⊭cons 𝜌 when TMC returns false.
[𝜓
1
, 𝜓
2
, . . . , 𝜓

𝑛
, . . .] is the simulation sequence used in SMC

algorithm; for more, please read [3, 8].

Lemma 23 (see [3, 8]). For all 𝑛 ≥ 1 and 𝑒 ∈ 𝐸,

𝜓
𝑛 (𝑒) ⊆ 𝜓𝑛+1 (𝑒) , 𝜓

𝑛 (𝑒) ⊆ 𝑎𝑛𝑡 (𝑒) . (43)

According to the results of Lemma 23, we can conclude
that 𝜓

𝑛
(𝑒) ⊆ 𝜑

∗

𝑇
(𝑒) when ant(𝑒) = 𝜑∗

𝑇
(𝑒).

Lemma 24. For a terminal assertion graph 𝐺 = (𝑉, V
0
, 𝐸,

𝑎𝑛𝑡, 𝑐𝑜𝑛𝑠, 𝐸
𝑇
) and amodel𝑀 = (𝑝𝑟𝑒, 𝑝𝑜𝑠𝑡), let [𝜑

1
, 𝜑
2
, 𝜑
3
, . . .]

be the backward simulation sequence towards 𝐸
𝑇
⊆ 𝐸. Then,

for any 𝑛 ≥ 1, for any 𝑒 ∈ 𝐸, and any state 𝑠 ∈ 𝜑
𝑛
(𝑒), there is

a finite path 𝜌
𝑒
which starts from 𝑒 and a finite trace 𝜎

𝑠
which

starts from 𝑠 of some length 𝑙 (1 ≤ 𝑙 ≤ 𝑛 + 1) such that

𝜌
𝑒 [𝑙] ∈ 𝐸𝑇, 𝜎

𝑠
⊨
𝑎𝑛𝑡
𝜌
𝑒
. (44)

Proof (mathematical induction). 𝑘 is a subscripted variable of
the simulation sequence 𝜑.

(1) (𝑘 = 1): when 𝑒 ∈ 𝐸
𝑇
, we have 𝜑

1
(𝑒) = ant(𝑒); for

all 𝑠 ∈ 𝜑
1
(𝑒), there is a path 𝜌

𝑒
= [𝑒] of length 1 and a trace

𝜎
𝑠
= [𝑠] such that

𝜌
𝑒 [1] ∈ 𝐸𝑇, 𝜎

𝑠
⊨ant 𝜌𝑒. (45)

When 𝑒 ∈ 𝐸 − 𝐸
𝑇
, we have two cases.

Case 1. out(𝑒) ∩ 𝐸
𝑇
= 0, 𝜑

1
(𝑒) = 0, the conclusion is obvious.
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Input: the model𝑀 and terminal assertion graph 𝐺.
Output: true: model terminally satisfies the terminal assertion graph.

false: model doesn’t satisfy the terminal assertion graph.
(1) repeat
(2) 𝐺old := 𝐺;
(3) 𝜑∗
𝑇
:= the fix-point of the backward simulation sequence towards 𝐸

𝑇
;

(4) 𝐺:= replace the antecedent function in 𝐺 with 𝜑∗
𝑇
;

(5) until 𝐺 = 𝐺old;
(6) SMC(𝑀,𝐺);
(7) end.

Algorithm 1: TMC(𝑀,𝐺).

Case 2. out(𝑒) ∩ 𝐸
𝑇

̸= 0 and 𝜑
1
(𝑒) ̸= 0; according to

Definition 17:

∀𝑠 ∈ 𝜑
1 (𝑒) , ∃𝑒

+
∈ out (𝑒) ∩ 𝐸𝑇,

s.t. 𝑠 ∈ ant (𝑒) ∩ pre (ant (𝑒+)) 󳨐⇒ 𝑠 ∈ ant (𝑒) ,

𝑠 ∈ pre (ant (𝑒+)) ;

(46)

(46)

󳨐󳨐󳨐⇒ ∃𝑠
󸀠
∈ ant (𝑒+) , s.t. 𝑠 ∈ pre (𝑠󸀠) , (47)

namely, there is a path 𝜌
𝑒
= [𝑒𝑒
+
] of length 2 and a trace 𝜎

𝑠
=

[𝑠𝑠
󸀠
] such that

𝜌
𝑒 [2] = 𝑒

+
∈ 𝐸
𝑇
, 𝜎

𝑠
⊨ant 𝜌𝑒. (48)

(2) Suppose the lemma is true for 𝑘 = 𝑛 (𝑛 is an arbitrary
integer), we can get for all 𝑒 ∈ 𝐸, for all 𝑠 ∈ 𝜑

𝑛
(𝑒), there is a

finite path 𝜌
𝑒
starting from 𝑒 and a trace 𝜎

𝑠
starting from 𝑠 of

some length 𝑙 (1 ≤ 𝑙 ≤ 𝑛 + 1) such that

𝜌
𝑒 [𝑙] ∈ 𝐸𝑇, 𝜎

𝑠
⊨ant𝜌𝑒. (49)

(3) Suppose 𝑘 = 𝑛 + 1 for all 𝑒 ∈ 𝐸 and for all 𝑠 ∈ 𝜑
𝑛+1
(𝑒),

according to Definition 17, we also have two cases.

Case 1. 𝑠 ∈ 𝜑
𝑛
(𝑒); the lemma is obviously true according to

induction hypothesis.

Case 2. Consider

∃𝑒
+
∈ out (𝑒) , s.t. 𝑠 ∈ pre (𝜑

𝑛
(𝑒
+
)) ∩ ant (𝑒)

󳨐⇒ 𝑠 ∈ ant (𝑒) , 𝑠 ∈ pre (𝜑
𝑛
(𝑒
+
)) ;

(50)

(50)

⇒ ∃𝑠
󸀠
∈ 𝜑
𝑛
(𝑒
+
) s.t. 𝑠 ∈ pre (𝑠󸀠) (51)

by the induction hypothesis, there exists a path 𝜌
𝑒
+ of length

𝑙 (1 ≤ 𝑙 ≤ 𝑛 + 1) which starts from 𝑒
+ and a trace 𝜎

𝑠
󸀠 which

starts from 𝑠
󸀠 such that

𝜌
𝑒
+ [𝑙] ∈ 𝐸𝑇, 𝜎

𝑠
󸀠 ⊨ant 𝜌𝑒+ . (52)

According to (51), there is a path 𝜌
𝑒
= (𝑒 : 𝜌

𝑒
+) of length 𝑙 + 1

and a trace 𝜎
𝑠
= (𝑠 : 𝜎

𝑠
󸀠) of the same length such that

𝜌
𝑒 [𝑙 + 1] ∈ 𝐸𝑇, 𝜎

𝑠
⊨ant 𝜌𝑒. (53)

(1), (2), and (3) show that the lemma is true.

Lemma 24 ensures that the counterexample path which
we find is the terminal path.

Theorem 25. Consider

𝑇𝑀𝐶 (𝑀,𝐺) 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑓𝑎𝑙𝑠𝑒 󳨐⇒ 𝑀⊯
𝑇
𝐺. (54)

Proof. Consider

TMC (𝑀,𝐺) returns false 󳨐⇒ SMC (𝑀,𝐺
󸀠
) returns false;

(55)

according to the SMC algorithm, there exists an edge 𝑒
1
∈ 𝐸

such that 𝜓∗(𝑒
1
) ̸⊆ cons(𝑒

1
). Let 𝑠

1
∈ 𝜓
∗
(𝑒
1
) − cons(𝑒),

according to the Lemma 22, there exists a finite path 𝜌
1
of

length 𝑙
1
and a trace 𝜎

1
of the same length such that

𝜌
1
[𝑙
1
] = 𝑒
1
, 𝜎

1
[𝑙
1
] = 𝑠
1
,

𝜎
1
⊨ant 𝜌1, but 𝜎

1
⊯cons 𝜌1.

(56)

When 𝑒
1
∈ 𝐸
𝑇
, 𝜌
1
is the terminal path. Namely, there

exists an initial terminal path 𝜌
1
and a trace 𝜎

1
of the

same length such that 𝜎
1
⊨ant 𝜌1, 𝜎1 ⊭cons 𝜌1; according to

Definition 14, we get𝑀⊯
𝑇
𝐺.

When 𝑒
1
∈ 𝐸 − 𝐸

𝑇
, 𝜌
1
is not the terminal path, we know

𝑠
1
∈ 𝜓
∗
(𝑒
1
), 𝑠
1
∉ cons(𝑒

1
). By analyzing Algorithm 1, we find

that the terminal assertion graph 𝐺 is already updated to 𝐺󸀠
when we call the SMC, and every edge in 𝐺󸀠 is labeled with
𝜑
∗

𝑇
(𝑒)/cons(𝑒). In 𝐺󸀠, for all 𝑒 ∈ 𝐸, ant(𝑒) = 𝜑∗

𝑇
(𝑒). According

to Lemma 23, we get 𝑠
1
∈ 𝜓
∗
(𝑒
1
) ⊆ 𝜑

∗

𝑇
(𝑒
1
), 𝑠
1
∉ cons(𝑒

1
).

According to Lemma 24, there exists a finite path 𝜌
𝑒1
of length

𝑙
2
which starts from 𝑒

1
and a trace𝜎

𝑠1
of the same lengthwhich

starts from 𝑠
1
such that

𝜌
𝑒1
[𝑙
2
] ∈ 𝐸
𝑇
, 𝜎

𝑠1
⊨ant 𝜌𝑒1 . (57)

Since 𝜌
1
[𝑙
1
] = 𝜌
𝑒1
[1] = 𝑒

1
, 𝜌
1
and 𝜌
𝑒1
can be spliced into

one path 𝜌 of length 𝑙
1
+ 𝑙
2
− 1. Since 𝜎

1
[𝑙
1
] = 𝜎
𝑠1
[1] = 𝑠

1
is

true, 𝜎
1
and 𝜎

𝑠1
can be spliced into one trace 𝜎 whose length

is 𝑙
1
+ 𝑙
2
− 1. 𝜌 is a terminal path and such that

𝜌 [𝑙
1
+ 𝑙
2
− 1] ∈ 𝐸

𝑇
, 𝜎 ⊨ant 𝜌, 𝜎 ⊭cons 𝜌. (58)

According to Definition 14, we get𝑀⊯
𝑇
𝐺.

Theorem 25 proves that the TMC algorithm is complete.
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6. Conclusions

This paper has presented a theoretical and experimental study
of the TMC process and related concepts, such as terminal
assertion graph, terminal path, and terminal satisfiability.
Under the basis of the concept mentioned above, to improve
the efficiency of the method SMC and solve its limitation,
this paper presented an algorithm TMC.The approach TMC
is explained and discussed thoroughly in the body of the
paper. Then, we use the hardware circuit round-robin arbiter
to specify that TMC can be used in industry successfully. In
the end, this paper proves that our approach is sound and
complete. Themethod outlined here can be used to deal with
finite specifications. It remains to be determined whether our
approach will be suitable for infinite specifications.
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