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We solve some different type of Urysohn integral equations by using the radial basis functions. These types include the linear
and nonlinear Fredholm, Volterra, and mixed Volterra-Fredholm integral equations. Our main aim is to investigate the rate of
convergence to solve these equations using the radial basis functions which have normic structure that utilize approximation in
higher dimensions. Of course, the use of this method often leads to ill-posed systems. Thus we propose an algorithm to improve
the results. Numerical results show that this method leads to the exponential convergence for solving integral equations as it was
already confirmed for partial and ordinary differential equations.

1. Introduction

Integral equations have been solved by many different meth-
ods [1, 2]. In [3] integral equations and methods of their
solving are classified.This reference includes some traditional
methods for solving integral equations. But some recent
methods are Adomian decomposition method (ADM) [4],
homotopy perturbation method (HPM) [5], He’s variational
iteration methods [6], optimal control [7], wavelets [8–11],
neural networks [12], simulation method [13], block-pulse
method [14], and so forth. Also, there are many other articles
which contain new approaches in solving integral equations
[15–18]. It is necessary to recall that most of the mentioned
methods are not easy for solving integral equations in higher
dimensions [19–24] and also for solving the mixed Volterra-
Fredholm cases [6, 25–27]. However, in the present paper,
we restrict ourselves to the method of radial basis functions
(RBFs).

The RBF methodology was introduced by Hardy [28].
At first, it was popular in multivariate interpolation [29–34].
In 1990, Kansa introduced a way to use these functions for

solving parabolic, hyperbolic, and elliptic partial differential
equations [35]. After that, radial basis functions have been
widely applied in numerous fields. In spite of many other
applications of RBFs, we only focus on the use of RBFs for
solving integral equations.

In 1992,Makroglou [36] applied the collocation technique
to solve various linear and nonlinear integral equations. In
2002, Galperin and Kansa [37] applied RBFs for solution
of weakly singular Volterra integral equations by global
optimization. In 2007, Alipanah andDehghan [38] used RBFs
for solving one-dimensional nonlinear Fredholm integral
equationswithout optimization technique and via quadrature
integration methods. In [39], this method is generalized for
two dimensions problems and the accuracy of the method
is compared with the traditional spectral method in [40].
Also, Avazzadeh et al. used the RBFs for solving partial
integrodifferential equations [41–43].

In [38, 39], the method was applied for Fredholm integral
equations. In this paper, we describe the method for solving
more different types of integral equations such asVolterra and
mixed Volterra-Fredholm equations. In fact, some singular
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types of integral equations can be solved by this method.
Therefore, the method can solve linear and nonlinear Fred-
holm,Volterra, andmixedVolterra-Fredholm equations even
in higher dimensions.

The paper is organized in the following way. In Section
2, the radial basis functions as a tool for approximation are
introduced. In Section 3, we recall the method of the solu-
tion of Fredholm integral equation [38, 39] and then the
Volterra and mixed Volterra-Fredholm integral equations
will be solved by using radial basis functions. In Section 4,
some illustrating examples are presented. The last section
includes conclusion and some ideas for future work.

2. Radial Basis Functions

Definition 1. Consider a given set of 𝑛 distinct data points
{𝑝𝑗}
𝑛
𝑗=0 and the corresponding data values {𝑓𝑗}

𝑛
𝑗=0, the basic

RBF interpolant is given by

𝑠 (𝑝) =

𝑛

∑

𝑗=0

𝑐𝑗𝜙 (
󵄩
󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑝𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
) , (1)

where ‖ ⋅ ‖ is the Euclidean norm, 𝑝, 𝑝𝑗 ∈ R𝑑 (𝑑 is a positive
finite integer), and 𝑓𝑗 is scalar. Also 𝜙(𝑟), 𝑟 ≥ 0, is some
radial basis functions. The coefficient 𝑐𝑗 is determined from
the interpolation 𝑠(𝑝𝑗) = 𝑓𝑗, 𝑗 = 0, 1, . . . , 𝑛, which leads to
the following symmetric linear system:

𝐴c = f , (2)

where the entries of c, f , and 𝐴 are given by

c = [𝑐0, . . . , 𝑐𝑛]
𝑇
, f = [𝑓0, . . . , 𝑓𝑛]

𝑇
,

𝑎𝑗𝑘 = 𝜙 (
󵄩
󵄩
󵄩
󵄩
󵄩
𝑝𝑘 − 𝑝𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
) , 𝑘, 𝑗 = 0, 1, . . . , 𝑛.

(3)

Sometimes, {𝑝𝑗}
𝑛
𝑗=0 are called center points. Every basis is

directly related to one center point. Since these points are
chosen arbitrarily, we have a mesh-free method [44–46].

The sufficient conditions for 𝜙(𝑟) in (3) to guarantee non-
singularity of thematrix are given in [47]. Also,Micchelli [33]
showed that a larger class of functions could be considered,
and thus the RBF method is uniquely solvable.

There are two kinds of radial basis functions, the piece-
wise smooth and the infinitely smooth radial functions. For
infinitely smooth radial functions, we have a shape parameter
𝜖. The parameter 𝜖 is a free parameter for controlling the
shape of functions. As 𝜖 → 0 the radial functions become
flatter [48, 49].

Some piecewise smooth RBFs are 𝑟3 (Cubic) and 𝑟2 log 𝑟
(Thin plate spline) and some common infinitely smooth
examples of the 𝜙(𝑟) that lead to a uniquely solvable method
are in the following forms:

linear: 𝑟,
Gaussian (GA): 𝑒−(𝜖𝑟)

2

,
Multiquadric (MQ): (1 + (𝜖𝑟)2)𝛼/2, (𝛼 ̸= 0, 𝛼 ̸= 2N),
inverse multiquadric (IMQ): (1 + (𝜖𝑟)2)−1/2,
inverse quadric (IQ): (1 + (𝜖𝑟)2)−1.

Madych and Nelson have proved exponential conver-
gence property of multiquadratic approximation [31, 50]. He
has shown that under certain conditions the interpolation
error is 𝜀 = 𝑂(𝜆𝑐/ℎ) (note that MQ RBF has been redefined
from Hardy’s original definition by the transformation 𝑐 =
1/𝜖), ℎ is the mesh size, and 0 < 𝜆 < 1 is a constant. As is
said in [51], this implies that there are two ways to improve
the approximation: either by reducing the size of ℎ or by
increasing the magnitude of 𝑐. It means that if 𝑐 → ∞ then
𝜀 → 0. While reducing ℎ leads to the heavy computations,
increasing 𝑐 is without the extra computational cost. How-
ever, according to “uncertainty principle” of Schaback [52],
as the error becomes smaller, the matrix becomes more ill-
conditioned; hence the solutionwill break down as 𝑐 becomes
too large. Nevertheless, there exists a wide range of 𝑐 that high
accurate results can be produced. So, if we could solve the ill-
conditioned system, we could increase 𝑐 and obtain the best
approximation [50].There are some experimental trials about
the shape parameter, ill-conditioning, and convergence [53–
55].

There are some methods for trade-off between 𝑐 and
error [56, 57]. The golden section algorithm [56] as a new
method for finding a good shape parameter can be effective
but often it is expensive. Baxter [58] investigated the pre-
conditioned conjugate gradient technique. Casciola et al. [59]
regularized the solutions with changing the Euclidean norm
to the anisotropic norm. Karageorghis et al. [60] applied the
matrix decomposition algorithm for improving 3D elliptic
problems. Also, there are the regularization techniques for
solving ill-conditioned systems such as truncated singular
value decomposition (TSVD) and Tikhonov regularization
method. Reader can see details in [58–60] and the references
there in.

3. Integral Equation

3.1. Fredholm Integral Equation. Consider the following
Fredholm integral equation of the Urysohn form:

𝑢 (𝑥) − 𝜆∫

𝑏

𝑎

𝐺 (𝑥, 𝑡, 𝑢 (𝑡)) 𝑑𝑡 = 𝑓 (𝑥) , (4)

where 𝜆 is constant; 𝑓(𝑥) and 𝐺(𝑥, 𝑡, 𝑢(𝑡)) are assumed to be
defined on the interval 𝑎 ≤ 𝑥, 𝑡 ≤ 𝑏. Let 𝜙(𝑥) be a radial
basis function and we approximate 𝑢(𝑥) with the following
interpolant function:

𝑢 (𝑥) ≃

𝑛

∑

𝑗=0

𝑐𝑗𝜙 (
󵄩
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑥𝑗

󵄩
󵄩
󵄩
󵄩
󵄩
) = 𝐶

𝑇
Ψ (𝑥) , (5)

where 𝐶𝑇 = [𝑐0, 𝑐1, . . . , 𝑐𝑛] and Ψ(𝑥) = [𝜙(‖𝑥 − 𝑥0‖), 𝜙(‖𝑥 −
𝑥1‖), . . . , 𝜙(‖𝑥−𝑥𝑛‖)]

𝑇. Now, by replacing (5) in (4) we obtain

𝐶
𝑇
Ψ (𝑥) − 𝜆∫

𝑏

𝑎

𝐺(𝑥, 𝑡, 𝐶
𝑇
Ψ (𝑡)) 𝑑𝑡 ≃ 𝑓 (𝑥) . (6)
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In the above equation, 𝑐𝑗, 𝑗 = 0, 1, . . . , 𝑛, are unknown. For
computing them, we collocate the points 𝑥𝑖, 𝑖 = 0, 1, . . . , 𝑛, as
follows:

𝐶
𝑇
Ψ (𝑥𝑖) − 𝜆∫

𝑏

𝑎

𝐺(𝑥𝑖, 𝑡, 𝐶
𝑇
Ψ (𝑡)) 𝑑𝑡 ≃ 𝑓 (𝑥𝑖) .

(7)

By applying the Legendre quadrature integration formula
[61], (5) can be changed to the following form:

𝐶
𝑇
Ψ (𝑥𝑖) − 𝜆

𝑁

∑

𝑗=0

𝑤𝑗𝐺(𝑥𝑖, 𝑡𝑗, 𝐶
𝑇
Ψ(𝑡𝑗)) 𝑑𝑡 ≃ 𝑓 (𝑥𝑖) . (8)

This is a nonlinear system of equations that can be solved by
Newton’s iterative method to obtain the unknown vector 𝐶𝑇.

Similarly, for the two-dimensional integral equation,
consider the Fredholm integral equation as follows:

𝑢 (𝑥, 𝑦) − 𝜆∫

𝑑

𝑐

∫

𝑏

𝑎

𝐺 (𝑥, 𝑦, 𝑠, 𝑡, 𝑢 (𝑠, 𝑡)) 𝑑𝑠 𝑑𝑡

= 𝑓 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ [𝑎, 𝑏] × [𝑐, 𝑑] ,

(9)

where 𝐺(𝑥, 𝑦, 𝑠, 𝑡, 𝑢(𝑠, 𝑡)) and 𝑓(𝑥, 𝑦) are given analytic
functions. According to (1) the function 𝑢(𝑥, 𝑦) may be
represented by approximate series as

𝑢 (𝑝) ≃

𝑛

∑

𝛾=0

𝑐𝛾𝜙 (
󵄩
󵄩
󵄩
󵄩
󵄩
𝑝 − 𝑝𝛾

󵄩
󵄩
󵄩
󵄩
󵄩
) = 𝐶

𝑇
Ψ (𝑝) , (10)

where 𝑛 is any natural number, 𝑝 = (𝑥, 𝑦) ∈ R2, and 𝑝𝛾 =
(𝑥𝑖, 𝑦𝑗) ∈ R2. Noting the previous section, it is clear that
the collocation points {𝑝𝛾}

𝑛
𝛾=0 can be chosen as the centers.

However, the selection process of the center points can affect
accuracy; sometimes the uniform points or random points
are preferred.

Replacing (10) in (9) we have

𝐶
𝑇
Ψ (𝑥, 𝑦) − 𝜆∫

𝑑

𝑐

∫

𝑏

𝑎

𝐺(𝑥, 𝑦, 𝑠, 𝑡, 𝐶
𝑇
Ψ (𝑠, 𝑡)) 𝑑𝑠 𝑑𝑡

≃ 𝑓 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ [𝑎, 𝑏] × [𝑐, 𝑑] .

(11)

In the above equation, only 𝑐𝛾 (𝛾 = 0, 1, . . . , 𝑛) are unknowns
and it is an interesting technical advantage in using of RBFs. It
means the process of solving is no more complicated in spite
of increasing the dimension of the given problem.

Now we substitute the given collocation points in the
above equation. Collocation points can be the same center
points or any other arbitrary points:

𝐶
𝑇
Ψ(𝑥𝑖, 𝑦𝑗) − 𝜆∫

𝑑

𝑐

∫

𝑏

𝑎

𝐺(𝑥𝑖, 𝑦𝑗, 𝑠, 𝑡, 𝐶
𝑇
Ψ (𝑠, 𝑡)) 𝑑𝑠 𝑑𝑡

≃ 𝑓 (𝑥𝑖, 𝑦𝑗) .

(12)

By applying the quadrature integration formula, (12) can be
changed to the following form:

𝐶
𝑇
Ψ(𝑥𝑖, 𝑦𝑗) −

𝑁

∑

𝑙=0

𝑁

∑

𝑘=0

𝑤𝑙𝑤𝑘𝐺(𝑥𝑖, 𝑦𝑗, 𝑠𝑘, 𝑡𝑙, 𝐶
𝑇
Ψ (𝑠𝑘, 𝑡𝑙))

≃ 𝑓 (𝑥𝑖, 𝑦𝑗) .

(13)

This is a nonlinear system of equations that can be solved
by Newton’s iterative method to obtain the unknown vector
𝐶
𝑇. We recall that the obtained linearized system byNewton’s

method is ill-conditioned and the use of regularization
methods is efficient. Also, we can apply some other iterative
regularizationmethods for solving an ill-conditioned nonlin-
ear system of equations [62].

The mentioned method for solving Fredholm integral
equation was discussed in [38, 39] and in the current paper
it is generalized for solving Volterra and Volterra-Fredholm
integral equations.

3.2. Volterra Integral Equation. Consider the following
Urysohn Volterra integral equation:

𝑢 (𝑥) − 𝜆∫

𝑥

𝑎

𝐺 (𝑥, 𝑡, 𝑢 (𝑡)) 𝑑𝑡 = 𝑓 (𝑥) , (14)

where 𝜆 is constant; 𝑓(𝑥) and 𝐺(𝑥, 𝑡, 𝑢(𝑡)) are assumed to be
defined on the interval 𝑎 ≤ 𝑥, 𝑡 ≤ 𝑏. Similar to the previous
section, we substitute (5) in (14) and collocate the points 𝑥𝑖,
𝑖 = 0, 1, . . . , 𝑛. So we have

𝐶
𝑇
Ψ (𝑥𝑖) − 𝜆∫

𝑥
𝑖

𝑎

𝐺(𝑥𝑖, 𝑡, 𝐶
𝑇
Ψ (𝑡)) 𝑑𝑡 ≃ 𝑓 (𝑥𝑖) . (15)

Using the linear transform as follows,

𝑡 = 𝜇 (𝑠) =

𝑥𝑖 − 𝑎

2

𝑠 +

𝑥𝑖 + 𝑎

2

, (16)

reduces (15) to the following integral equation:

𝐶
𝑇
Ψ (𝑥𝑖)

− 𝜆

𝑥𝑖 − 𝑎

2

∫

1

−1

𝐺(𝑥𝑖, 𝜇 (𝑠) , 𝐶
𝑇
Ψ (𝜇 (𝑠))) 𝑑𝑠 ≃ 𝑓 (𝑥𝑖) .

(17)

Now, by applying a quadrature integration formula, we
approximate the integral in (17) and thus we have a nonlinear
system of equations that can be solved by Newton’s iterative
method to obtain the unknown vector 𝐶𝑇.

It is easy to use that the proposed method for solving the
two-dimensional Volterra integral equation gives

𝐹 (𝑢 (𝑥, 𝑦)) − 𝜆∫

𝑦

𝑐

∫

𝑥

𝑎

𝐺 (𝑥, 𝑦, 𝑠, 𝑡, 𝑢 (𝑠, 𝑡)) 𝑑𝑠 𝑑𝑡

= 𝑓 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ [𝑎, 𝑏] × [𝑐, 𝑑] ,

(18)

where 𝐺(𝑥, 𝑦, 𝑠, 𝑡, 𝑢(𝑠, 𝑡)) and 𝑓(𝑥, 𝑦) are given analytic func-
tions. Similarly, we substitute (10) in (18) and collocate the
points (𝑥𝑖, 𝑦𝑗), 𝑖, 𝑗 = 0, 1, . . . , 𝑛. So we have

𝐹 (𝐶
𝑇
Ψ(𝑥𝑖, 𝑦𝑗)) − 𝜆∫

𝑦
𝑗

0

∫

𝑥
𝑖

0

𝐺(𝑥𝑖, 𝑦𝑗, 𝑠, 𝑡, 𝐶
𝑇
Ψ (𝑠, 𝑡)) 𝑑𝑠 𝑑𝑡

≃ 𝑓 (𝑥𝑖, 𝑦𝑗) .

(19)
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In the above equation, let the linear transforms

𝑠 = 𝜇 (𝜉) =

𝑥𝑖 − 𝑎

2

𝜉 +

𝑥𝑖 + 𝑎

2

,

𝑡 = ] (𝜏) =
𝑦𝑗 − 𝑐

2

𝜏 +

𝑦𝑗 + 𝑐

2

.

(20)

Therefore, (19) is reduced to the integral equation which can
be solved easily:

𝐹 (𝐶
𝑇
Ψ(𝑥𝑖, 𝑦𝑗)) − 𝜆

(𝑥𝑖 − 𝑎) (𝑦𝑗 − 𝑐)

2

×∫

1

−1

∫

1

−1

𝐺(𝑥𝑖, 𝑦𝑗, 𝜇 (𝜉) ,

] (𝜏) , 𝐶𝑇Ψ (𝜇 (𝜉) , ] (𝜏))) 𝑑𝜉 𝑑𝜏

≃ 𝑓 (𝑥𝑖, 𝑦𝑗) .

(21)

Now, by applying a quadrature integration formula, we
approximate the obtained integrals; then the nonlinear sys-
tem of equations can be solved by Newton’s iterative method
to obtain the unknown vector 𝐶𝑇.

3.3. The Mixed Volterra-Fredholm Integral Equation. In gen-
eral, Volterra-Fredholm integral equations can be classified
into different types [6, 26].We will only investigate themixed
Volterra-Fredholm integral equations in the following form:

𝐹 (𝑢 (𝑥, 𝑦)) − 𝜆∫

𝑦

𝑐

∫

𝑏

𝑎

𝐺 (𝑥, 𝑦, 𝑠, 𝑡, 𝑢 (𝑠, 𝑡)) 𝑑𝑠 𝑑𝑡

= 𝑓 (𝑥, 𝑦) , (𝑥, 𝑦) ∈ [𝑎, 𝑏] × [𝑐, 𝑑] ,

(22)

where 𝐺(𝑥, 𝑦, 𝑠, 𝑡, 𝑢) and 𝑓(𝑥, 𝑦) are given analytic functions.
Similarly, we must substitute (10) in (22) and collocate the
points (𝑥𝑖, 𝑦𝑗), 𝑖, 𝑗 = 0, 1, . . . , 𝑛. After that, let the linear
transforms

𝑠 = 𝜇 (𝜉) =

𝑏 − 𝑎

2

𝜉 +

𝑏 + 𝑎

2

,

𝑡 = ] (𝜏) =
𝑦𝑗 − 𝑐

2

𝜏 +

𝑦𝑗 + 𝑐

2

,

(23)

and apply the quadrature integration formula corresponding
to [−1, 1]. Similar to the previous section, we get the following
system of equations:

𝐹 (𝐶
𝑇
Ψ(𝑥𝑖, 𝑦𝑗))

− 𝜆

𝑦𝑗 − 𝑐

2

𝑁

∑

𝑙=0

𝑁

∑

𝑘=0

𝑤𝑘𝑤𝑙𝐺(𝑥𝑖, 𝑦𝑗, 𝜇 (𝜉𝑘) ,

] (𝜏𝑙) , 𝐶
𝑇
Ψ (𝜇 (𝜉𝑘) , ] (𝜏𝑙)))

≃ 𝑓 (𝑥𝑖, 𝑦𝑗) .

(24)

The obtained nonlinear system of equations can be solved by
Newton’s iterative method to fulfill the unknown vector 𝐶𝑇.

Table 1:Numerical results of different RBFs for Example 1.The roots
of Legendre polynomial are chosen as center points.

𝑛 GA MQ IQ
4 7.6 × 10−3 9.0 × 10−3 7.5 × 10−3

9 2.1 × 10−4 2.0 × 10−4 1.6 × 10−4

16 1.6 × 10−5 1.1 × 10−5 1.4 × 10−5

25 3.0 × 10−7 7.0 × 10−7 2.6 × 10−7

36 6.6 × 10−8 4.9 × 10−8 6.2 × 10−8

49 2.5 × 10−10 3.7 × 10−10 2.8 × 10−10

4. Numerical Example

In this section, some examples are given to show validity and
efficiency of the mentioned method. In this paper, the com-
putations have been done using the Maple 13 with 100
digits precision. Note that digits are important factor because
the obtained systems are ill-conditioned. For improving the
results we have two ways: increasing digits and applying a
regularization method. Since decreasing of digits leads to
intensive decreasing of accuracy [54], we preferred to use
high digits instead of applying complicated regularization
methods. It can be a trade-off between increasing of complex-
ity of mathematical operations in applying a regularization
algorithm and increasing digits.

In our practical experiments with 100 digits, even apply-
ing SVD, QR, and iterative refinement methods did not
affect the results for solving the linear systems. It must be
mentioned that although it occurred in our experiments,
it can be related to the rate of ill-conditioning. Hence,
we reported the result of solving the obtaining nonlinear
systems by Newton’s iteration method without applying any
regularizationmethod. In this study, the criterion of accuracy
is the value of infinity norm of the error function.

Example 1. Consider the following Volterra integral equation
[63]:

𝑢 (𝑥, 𝑦) − ∫

𝑦

0

∫

𝑥

0

(𝑥𝑡
2
+ cos 𝑠) 𝑢 (𝑠, 𝑡) 𝑑𝑠 𝑑𝑡

= 𝑥 sin𝑦 − 1
4

𝑥
5
+

1

4

𝑥
5 cos𝑦 − 1

4

𝑥
2 sin (𝑦2) ,

(25)

where (𝑥, 𝑦) ∈ [0, 1]
2 and the exact solution is 𝑢(𝑥, 𝑦) =

𝑥 sin𝑦. The error for some radial basis functions and for
different values of 𝑛 is given in Table 1.

As it is mentioned, the interpolation error is 𝜀 = 𝑂(𝜆𝑐/ℎ),
ℎ is the mesh size, 𝑐 = 1/𝜖, and 0 < 𝜆 < 1 is a constant [50].
However the proof is for an interpolant function [50] and
we are involved with a nonlinear integral equation; since we
apply the collocation method, the error of the approximation
and interpolation techniques are nearly the same.

Now we investigate how 𝑛 affects error. Note that 𝜀 is
directly related to 𝑛 because 𝑛 is inversely related tomesh size:

1

ℎ

∝ 𝑛 󳨐⇒ 𝜀 ∝ 𝑛. (26)
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Figure 1:The horizontal axis is related to 𝑛 and the vertical axis shows the corresponding error values. It is perceived that the relation between
𝑛 and log (error) is linear. It confirms 𝑛 can affect error exponentially. We emphasize the spectral accuracy is the most important feature of
the method. The relevant data is presented in Tables 1, 2, and 3.

So, we expect increasing of 𝑛 decreases 𝜀 exponentially [44,
50]. In Figure 1, we show how 𝑛 affects error. Also, we
show the effect of 𝑐 on error in Figure 2. We must note the
obtained system is nonlinear. Therefore, although we expect
the exponential trend, the nature of nonlinearity has negative
effect on the rate of convergence which is different for each
problem.

Example 2. Consider the following Volterra nonlinear inte-
gral equation [20]:

𝑢 (𝑥, 𝑦) − ∫

𝑦

0

∫

𝑥

0
[𝑢(𝑠, 𝑡)]

2
𝑑𝑠 𝑑𝑡

= 𝑥
2
+ 𝑦
2
−

1

5

𝑥
5
𝑦 +

2

9

𝑥
3
𝑦
3
−

1

5

𝑥𝑦
5
, (𝑥, 𝑦) ∈ [0, 1]

2
,

(27)
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Figure 2: The horizontal axis is related to 𝑐 or shape parameter and
the vertical axis shows the corresponding error values where 𝑛 = 49.
The relation between 𝑐 and log (error) is linear in the interval (0, 10).
Although the trend is changed, the graph confirms 𝑐 can affect error
exponentially. In brief, the error function is sensitive to 𝑐 intensively.
The data is related to Example 1.

with the exact solution𝑢(𝑥, 𝑦) = 𝑥2+𝑦2. Error for some radial
basis functions for different values of 𝑛 is given in Table 2.The
effect of 𝑛 on error is shown in Figure 1.

Example 3. Consider the following Volterra-Fredholm inte-
gral equation of Urysohn type [24]:

𝑢 (𝑥, 𝑦) − ∫

𝑦

0

∫

1

0

𝑥 (1 − 𝑡
2
)

(1 + 𝑦) (1 + 𝑠
2
)

(1 − exp−𝑢(𝑠,𝑡)) 𝑑𝑠 𝑑𝑡

= − ln(1 +
𝑥𝑦

1 + 𝑦
2
) +

𝑥𝑦
2

8 (1 + 𝑦) (1 + 𝑦
2
)

,

(28)

where (𝑥, 𝑦) ∈ [0, 1]
2 and the exact solution is 𝑢(𝑥, 𝑦) =

− ln(1 + 𝑥𝑦/(1 + 𝑦2)). Error for some radial basis functions
for different values of 𝑛 is given in Table 3. The exponential
effect of 𝑛 on error is shown in Figure 1.

So far we compute the errors in the infinity norm that are
shown in Tables 1, 2, and 3. Now, we compute the root mean
square residual errors by the formula

√
∑
𝑁
𝑖=1 𝛿
2
𝑖𝑗

𝑁

,
(29)

where

𝛿 (𝑥, 𝑦) = 𝑢̂ (𝑥, 𝑦)

− ∫∫𝐺 (𝑥, 𝑦, 𝑠, 𝑡, 𝑢̂ (𝑠, 𝑡)) 𝑑𝑠 𝑑𝑡 − 𝑓 (𝑥, 𝑦) ,

(30)

such that 𝑢̂ is the approximated solution,𝑁 is a large number,
and (𝑥𝑖, 𝑦𝑗) are points uniformly distributed over the domain.
This criterion shows tolerance of error in the solution region.

Table 2: Numerical results of different RBFs for Example 2. The
roots of Legendre polynomial are chosen as center points.

𝑛 GA MQ IQ
4 2.2 × 10−2 2.6 × 10−2 2.2 × 10−2

9 2.5 × 10−4 1.2 × 10−4 5.2 × 10−4

16 3.2 × 10−7 3.0 × 10−7 4.4 × 10−7

25 7.1 × 10−8 7.4 × 10−8 8.0 × 10−8

36 6.0 × 10−11 5.1 × 10−11 5.9 × 10−11

49 1.5 × 10−11 2.1 × 10−11 2.0 × 10−11

Table 3: Numerical results of different RBFs for Example 3. The
roots of Legendre polynomial are chosen as the center points.

𝑛 GA MQ IQ
4 1.2 × 10−2 1.7 × 10−2 1.2 × 10−2

9 2.1 × 10−3 2.4 × 10−4 2.4 × 10−3

16 8.0 × 10−4 7.7 × 10−4 6.5 × 10−4

25 1.0 × 10−4 3.1 × 10−4 3.4 × 10−4

36 1.6 × 10−5 2.8 × 10−5 1.4 × 10−5

49 5.2 × 10−6 4.9 × 10−6 7.2 × 10−6

Table 4: Value of the root of mean square of residual errors that is
computed by (29). The results for Examples 1, 2, and 3 are reported
for Gaussian radial basis functions and 𝑁 = 400. Comparison
between Tables 1, 2, and 3 and following results confirms the strong
correlation between absolute maximum of error and the root of
mean square of residual errors. In brief, the estimation error of
approximation is possible by (29) even as the exact solution is not
given.

𝑛 Example 1 Example 2 Example 3
4 1.0 × 10−3 9.3 × 10−3 1.2 × 10−3

9 1.8 × 10−5 8.9 × 10−5 2.1 × 10−4

16 1.8 × 10−5 1.4 × 10−7 8.3 × 10−4

25 1.4 × 10−6 3.1 × 10−8 7.5 × 10−6

36 8.5 × 10−8 2.0 × 10−11 5.9 × 10−6

49 6.8 × 10−9 5.2 × 10−12 8.2 × 10−7

The results for Examples 1, 2, and 3 are reported in Table 4
for the Gaussian radial basis function with𝑁 = 400. In fact,
if we have the exact solution, we can compute the absolute
maximum of error or infinity norm of error function; other-
wise, we must compute the root mean square residual error
which is defined in (29). The comparison between Tables
1, 2, 3, and 4 confirms the strong correlation between the
absolute maximum of errors and the root of mean square
of residual errors. So, even without having the exact solu-
tion we still will be able to estimate the error of approxima-
tion.

5. Conclusion

First, we exploit some technical methods that can be used to
improve results.
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Supplementary Techniques

Quadrature Integration Methods. we applied the general-
ized Gauss-Lobatto quadrature on interval [𝑎, 𝑏] where the
boundaries of the interval coincide with the collocation
points. Since 𝑥0 = 𝑎 and 𝑥𝑛 = 𝑏 in Gauss-Lobatto quadrature,
we can improve the approximation on boundaries and the
results are stable on boundary.

Regularization. We suggest applying the regularizationmeth-
ods for solving the resulting linear and particularly nonlinear
systems. Considering there is no guarantee that Newton’s
method leads to the convergent solution, using of the regular-
ization methods such as Tikhonov or Landweber is definitely
recommended for ill-conditioned nonlinear system [62].

Partitioning. As mentioned the obtained systems by the
collocation points are ill-conditioned. Moreover, the ill-
conditioning is worse by increasing the number of collo-
cation points. Therefore, to avoid the ill-conditioning we
can partition domain of problems to the smaller area. This
technique gives the smaller systems that can be solved easier.
The numerical experiments show that performance of this
technique can be effective when it is not possible to improve
the tools of computation.

Finding the accurate solution of the two-dimensional
integral equations is usually difficult. In this work, the linear
and nonlinear, Fredholm, Volterra, and mixed Volterra-
Fredholm integral equations of the second kind are solved
by applying the radial basis functions (RBFs) method. The
illustrative examples confirm the exponential convergence
rate for integral equations similar to rate of convergence for
solving partial and ordinary deferential equations using RBF
method reported in [53].
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