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A class of iterativemethodswithout restriction on the computation of Fréchet derivatives includingmultisteps for solving systems of
nonlinear equations is presented. By considering a frozen Jacobian, we provide a class ofm-stepmethods with order of convergence
𝑚 + 1. A new method named as Steffensen-Schulz scheme is also contributed. Numerical tests and comparisons with the existing
methods are included.

1. Introduction

In this paper, we take into account the following system of
nonlinear equations:
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wherein each function 𝑓
𝑖
maps a vector x = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁
)
𝑇

of the 𝑁-dimensional space R𝑁 into the real line R. This
system contains 𝑁 nonlinear equations with 𝑁 unknowns
and could be expressed in a more simplified form by defining
a function 𝐹 mapping 𝐹(x) = (𝑓

1
(x), 𝑓
2
(x), . . . , 𝑓

𝑁
(x))𝑇.

Hence, the nonlinear system (1) can be written in the form
𝐹(x) = 0, where the functions 𝑓

1
(x), 𝑓
2
(x), . . . , 𝑓

𝑁
(x) are the

coordinate functions of 𝐹; see for more details [1] and also for
application issues the work [2].

We assume that 𝐹(x) is a smooth function of x in the
open convex set 𝐷 ⊆ R𝑁. There is a strong incentive to
use derivative information as well as function values in order

to solve traditionally the system (1). The most famous solver
for such a problem is Newton’s iteration [1], which is defined
as

x(𝑛+1) = x(𝑛) − 𝐹󸀠(x(𝑛))
−1

𝐹 (x(𝑛)) , 𝑛 = 0, 1, 2, . . . . (2)

In this iterative method, we use the 𝑁 × 𝑁 Jacobian
matrix, that is, 𝐹󸀠(x), with entries 𝐹󸀠(x)

𝑗𝑘
= 𝜕
𝑥𝑘
𝑓
𝑗
(x). To be

more precise, there are plenty of solvers to tackle the problem
(1) or its scalar case, such as those in [3–6]. Among such
methods, the third-order iterative methods like the Halley
and Chebyshev methods [7] are considered less practically
from a computational point of view because they need to
compute the expensive second-order Fréchet derivatives in
contrast to the quadratically convergentmethod (2), in which
the first-order Fréchet derivative needs to be calculated. As a
matter of fact, for the considered problem (1), the first Fréchet
derivative is a matrix with 𝑁2 entries, while the second-
order Fréchet derivative has𝑁3 entries (without considering
the symmetry). On this account, it needs a large amount of
operations in order to evaluate the second derivative for each
iteration.

To avoid using the Jacobian whose computation is
time-consuming for large scale systems, in Chapter 7 of
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[8], authors presented the definition of divided differ-
ence in 𝑁-dimensional space as an 𝑁 × 𝑁 matrix with
elements

[𝑥, 𝑦; 𝑓]
𝑖,𝑗
= (𝑓
𝑖
(𝑥
1
, . . . , 𝑥

𝑗
, 𝑦
𝑗+1
, . . . , 𝑦

𝑁
)

−𝑓
𝑖
(𝑥
1
, . . . , 𝑥

𝑗−1
, 𝑦
𝑗
, . . . , 𝑦

𝑁
))

× (𝑥
𝑗
− 𝑦
𝑗
)

−1

,

(3)

to prevent computing the first-order Fréchet derivative.
Note that (3) is a component-to-component definition.
Traub in the pioneer book [1] introduced another tool
named as 𝐽(𝑥,𝐻) to estimate the Jacobian matrix and
to derive Steffensen’s method for nonlinear systems as
follows:

x(𝑛+1) = x(𝑛) − 𝐽(x(𝑛), 𝐻(𝑛))
−1

𝐹 (x(𝑛)) , 𝑛 = 0, 1, 2, . . . ,

(4)

wherein

𝐽 (x(𝑛), 𝐻(𝑛)) = (𝐹 (x(𝑛) + 𝐻(𝑛)𝑒1) − 𝐹 (x(𝑛)) , . . . ,

𝐹 (x(𝑛) + 𝐻(𝑛)𝑒𝑁) − 𝐹 (x(𝑛)))𝐻(𝑛)
−1

,

(5)

with𝐻(𝑛) = diag(𝑓
1
(x(𝑛)), . . . , 𝑓

𝑁
(x(𝑛))).

The primary aim of the present study is to achieve high
rate of convergence in order to solve (1) using (5). Hence,
we first propose a new iterative method with fourth-order
convergence to find both real and complex solutions. The
new method does not even need the evaluation of one first-
order Fréchet derivative, let alone the higher-order ones.
Next, by considering a frozen Jacobian matrix, we suggest
a general 𝑚-step class of iterative methods with arbitrary
order of convergence and higher computational efficiency
index.

The rest of this paper is prepared as follows. In Section 2,
the construction of a scheme is offered. It also includes the
analysis of convergence and shows that the suggestedmethod
has fourth order. In Section 3, we will extend the newmethod
to present a multistep class of iterations. Section 4 contains
a discussion about the implementation and the efficiency of
the iterative methods. Section 5 contains a contribution of
this study by introducing Steffensen-Schulz iterative method
for the first time. This is followed by Section 6 where some
numerical testswill be furnished to illustrate the accuracy and
efficiency of the proposed approach. Section 7 ends the paper
where short conclusions of the study by pointing out future
research aspects are given.

2. Derivation

In [9], authors presented the following iterative method:

y(𝑛) = x(𝑛) − [x(𝑛),w(𝑛); 𝐹]
−1

𝐹 (x(𝑛)) , 𝑛 = 0, 1, 2, . . . ,

x(𝑛+1) = y(𝑛) − [x(𝑛), y(𝑛); 𝐹]
−1

× ([x(𝑛), y(𝑛); 𝐹] − [y(𝑛),w(𝑛); 𝐹]

+ [x(𝑛),w(𝑛); 𝐹])

× [x(𝑛), y(𝑛); 𝐹]
−1

𝐹 (y(𝑛)) ,

(6)

wherein w(𝑛) = x(𝑛) + 𝐹(x(𝑛)) and it possesses the fourth-
order convergence to approximate the simple solution of
the system (1). As could be seen, it includes the evaluations
𝐹(x(𝑛)), 𝐹(y(𝑛)), 𝐹(w(𝑛)) and three divided difference opera-
tors of order one based on (5), to possess the fourth-order
convergence.This process is costly for challenging systems of
nonlinear equations.

Now, in order to reach the fourth order of convergence
without imposing the computation of even first-order Fréchet
derivative or three divided difference operators, we consider
a three-step structure with the same correcting factor as
follows:

y(𝑛) = x(𝑛) −𝑀(𝑛)
−1

𝐹 (x(𝑛)) ,

z(𝑛) = y(𝑛) −𝑀(𝑛)
−1

𝐹 (y(𝑛)) ,

x(𝑛+1) = z(𝑛) −𝑀(𝑛)
−1

𝐹 (z(𝑛)) ,

(7)

wherein we could use the component-by-component approx-
imation (3) [10]:

𝑀
(𝑛)
= [x(𝑛),w(𝑛); 𝐹] , (8)

or the estimation introduced by Traub (5) as follows:

𝑀
(𝑛)
= 𝐽 (x(𝑛), 𝐻(𝑛)) . (9)

Note that (8) and (9) are not equal. Per computing step,
themethod (6) requires computing 𝐹 at three different points
without the computation of the Fréchet derivatives which are
costly for large scale problems.

The following theorem will be demonstrated by means of
the 𝑁-dimensional Taylor expansion of the functions using
the estimation (8) in (7). We here include some of the basic
notions which are important in the proof. Let 𝐹 : 𝐷 ⊆ R𝑁 →

R𝑁 be sufficiently Fréchet differentiable in 𝐷. By using the
notation introduced in [11], the 𝑞th derivative of 𝐹 at 𝑢 ∈ R𝑁,
𝑞 ≥ 1, is the 𝑞-linear function 𝐹(𝑞)(𝑢) : R𝑁 × ⋅ ⋅ ⋅ × R𝑁 →

R𝑁 such that 𝐹(𝑞)(𝑢)(V
1
, . . . , V

𝑞
) ∈ R𝑁. Thus, we have the

following:

(1) 𝐹(𝑞)(𝑢)(V
1
, . . . , V

𝑞−1
, ⋅) ∈L(R𝑁),

(2) 𝐹(𝑞)(𝑢)(V
𝜎(1)
, . . . , V

𝜎(𝑞)
) = 𝐹

(𝑞)
(𝑢)(V
1
, . . . , V

𝑞
), for all

permutation 𝜎 of {1, 2, . . . , 𝑞}.
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Hence, we take into account 𝐹(𝑞)(𝑢)(V
1
, . . . , V

𝑞
) =

𝐹
(𝑞)
(𝑢)V
1
, . . . , V

𝑞
, and also 𝐹(𝑞)(𝑢)V𝑞−1𝐹(𝑝)V𝑝 = 𝐹

(𝑞)
(𝑢)𝐹
(𝑝)

(𝑢)V𝑞+𝑝−1. It is well known that, for x∗ + ℎ ∈ R𝑁 lying
in a neighborhood of a solution x∗ of the nonlinear system
𝐹(x) = 0, Taylor’s expansion might be written as follows
(assuming that the Jacobian matrix 𝐹󸀠(x∗) is nonsingular):
𝐹(x∗ + ℎ) = 𝐹

󸀠
(x∗)[ℎ + ∑𝑝−1

𝑞=2
𝐶
𝑞
ℎ
𝑞
] + 𝑂(ℎ

𝑝
), where 𝐶

𝑞
=

(1/𝑞!)[𝐹
󸀠
(x∗)]−1𝐹(𝑞)(x∗), 𝑞 ≥ 2. We observe that 𝐶

𝑞
ℎ
𝑞
∈ R𝑁

since 𝐹(𝑞)(x∗) ∈ L(R𝑁 × ⋅ ⋅ ⋅ × R𝑁,R𝑁) and [𝐹󸀠(x∗)]−1 ∈
L(R𝑁).

In addition, we can express 𝐹󸀠 as 𝐹󸀠(x∗ + ℎ) = 𝐹󸀠(x∗)[𝐼 +
∑
𝑝−1

𝑞=2
𝑞𝐶
𝑞
ℎ
𝑞−1
] + 𝑂(ℎ

𝑝
), wherein 𝐼 is the identity matrix of

the same order to the Jacobian matrix. Therefore, 𝑞𝐶
𝑞
ℎ
𝑞−1

∈

L(R𝑁). We also in the sequel denote 𝑒(𝑛) = x(𝑛) − x∗ as the
error in the 𝑛th iteration. The equation

𝑒
(𝑛+1)

= 𝐿𝑒
(𝑛)
𝑝

+ 𝑂(𝑒
(𝑛)
𝑝+1

) , (10)

where 𝐿 is a 𝑝-linear function 𝐿 ∈L(R𝑁 × ⋅ ⋅ ⋅ ×R𝑁,R𝑁), is
called the error equation and 𝑝 is the order of convergence.

Remark 1. 𝑒(𝑛) = x(𝑛)−x∗ which is the error in the 𝑛th iteration
is a vector and 𝑒(𝑛)

𝑝

= (𝑒
(𝑛)
, 𝑒
(𝑛)
, . . . , 𝑒

(𝑛)
) would be a matrix.

Theorem 2. Let 𝐹 : 𝐷 ⊆ R𝑁 → R𝑁 be sufficiently Fréchet
differentiable at each point of an open convex neighborhood 𝐷
of x∗ ∈ R𝑁, that is, a simple solution of the system 𝐹(x) = 0.
Let one suppose that𝐹󸀠(x) is continuous and nonsingular in x∗.
Then the sequence {x(𝑛)}

𝑛≥0
obtained using the iterative method

(7) using (8) converges to x∗ with convergence rate 4, and the
error equation reads

𝑒
(𝑛+1)

= 𝐶
3

2
(𝐼 + 𝐹

󸀠
(x∗)) (2𝐼 + 𝐹󸀠 (x∗))

2

𝑒
(𝑛)
4

+ 𝑂(𝑒
(𝑛)
5

) .

(11)

Proof. Similar notation and terminology as in [11], yields to
𝐹(x(𝑛)) = 𝐹󸀠(x∗)[𝑒(𝑛) + 𝐶

2
𝑒
(𝑛)
2

+ 𝐶
3
𝑒
(𝑛)
3

+ 𝐶
4
𝑒
(𝑛)
4

] + 𝑂(𝑒
(𝑛)
5

),
and, by taking into consideration 𝑏(𝑛) = 𝑒(𝑛)+𝐹(𝑒(𝑛)), we write

𝐹 (w(𝑛)) = 𝐹󸀠 (x∗) [𝑏(𝑛) + 𝐶
2
𝑏
(𝑛)
2

+ 𝐶
3
𝑏
(𝑛)
3

+ 𝐶
4
𝑏
(𝑛)
4

]

+𝑂(𝑏
(𝑛)
5

) ,

(12)

where 𝐶
𝑘
= (1/𝑘!)[𝐹

󸀠
(x∗)]−1𝐹(𝑛)(x∗), 𝑘 = 2, 3, . . .. Then,

[x(𝑛),w(𝑛); 𝐹]
−1

𝐹 (x(𝑛)) = 𝑒(𝑛)
1

− 𝐶
2
(𝐼 + 𝐹

󸀠
(x∗)) 𝑒(𝑛)

2

− (𝐶
3
(𝐼 + 𝐹

󸀠
(x∗)) (2𝐼 + 𝐹󸀠 (x∗))

−𝐶
2

2
(2𝐼 + 𝐹

󸀠
(x∗) (2𝐼 + 𝐹󸀠 (x∗)))) 𝑒(𝑛)

3

+ 𝑂(𝑒
(𝑛)
4

) ,

(13)

and subsequently the expression for y(𝑛) would be

y(𝑛) − x∗ = 𝐶
2
(𝐼 + 𝐹

󸀠
(x∗)) 𝑒(𝑛)

2

+ ⋅ ⋅ ⋅ + 𝑂 (𝑒
(𝑛)
4

) . (14)

The Taylor expansion in the second step using (14) yields

z(𝑛) − x∗ = 𝐶2
2
(𝐼 + 𝐹

󸀠
(x∗)) (2𝐼 + 𝐹󸀠 (x∗)) 𝑒(𝑛)

3

+ ⋅ ⋅ ⋅ + 𝑂 (𝑒
(𝑛)
5

) .

(15)

Therefore,

𝐹 (z(𝑛)) = 𝐹󸀠 (x∗) [𝐶2
2
(𝐼 + 𝐹

󸀠
(x∗)) (2𝐼 + 𝐹󸀠 (x∗)) 𝑒(𝑛)

3

+ ⋅ ⋅ ⋅ + 𝑂 (𝑒
(𝑛)
5

)] .

(16)

Next, from an analogous reasoning as in (15) and (16), we
obtain the error equation (11). Consequently, taking into
account (11), it can be concluded that the order of convergence
of the proposed method is four.

Ourmost important class ofmethods is to derive a class of
iterations free from derivatives using the estimation (5). For
example, the method (7) using (9) results in

y(𝑛) = x(𝑛) − 𝐽(x(𝑛), 𝐻(𝑛))
−1

𝐹 (x(𝑛)) ,

z(𝑛) = y(𝑛) − 𝐽(x(𝑛), 𝐻(𝑛))
−1

𝐹 (y(𝑛)) ,

x(𝑛+1) = z(𝑛) − 𝐽(x(𝑛), 𝐻(𝑛))
−1

𝐹 (z(𝑛)) .

(17)

Note that it could be shown, in a similar way to the previ-
ous theorem, that (17) possesses fourth order of convergence.
The implementation of (17) depends on the involved linear
algebra problems. An interesting point in the new method
(17) is that the LU decomposition of 𝐽 needs to be done
only once, and it could effectively be used three times per
computing step to increase the rate of convergence without
imposing much computational burden.

3. An 𝑚-Step Class

This section presents a general class of multistep iteration
methods. In fact, the new scheme (17) can simply be improved
by considering the Jacobian matrix 𝐽(x(𝑛), 𝐻(𝑛)) to be frozen.
In such a way, we are able to propose a general𝑚-step multi-
point class of iterative methods in the following structure:

𝜗
(𝑛)

1
= x(𝑛) − 𝜛(𝑛)

1
,

𝜗
(𝑛)

2
= 𝜗
(𝑛)

1
− 𝜛
(𝑛)

2
,

...

x(𝑛+1) = 𝜗(𝑛)
𝑚
= 𝜗
(𝑛)

𝑚−1
− 𝜛
(𝑛)

𝑚
,

(18)
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Figure 1: The log plot of the efficiency indices for different methods (a) when𝑁 = 4, . . . , 10 and (b) when𝑁 = 30, . . . , 50.

wherein 𝜗(𝑛)
𝑖

is used in the linear system 𝐽(x(𝑛), 𝐻(𝑛))𝜛(𝑛)
𝑖
=

𝐹(𝜗
(𝑛)

𝑖−1
), 𝑖 = 1, . . . , 𝑚. We remark that, in this structure, the

LU factorization of the Jacobian matrix would be computed
only once. This reduces the computational load of the linear
algebra problems in implementing (18).

In the iterative process (18) each added step will impose
onemore𝑁-dimensional function, whose cost is𝑁while the
convergence order will be improved to 1+𝑂(𝑚−1), wherein
𝑂(𝑚 − 1) is the order of the previous substeps. Considering
the well-known mathematical induction, it would be easy to
deduce the followingTheorem for (18).

Theorem3. Using the same conditions as inTheorem 2, the𝑚-
step iterative process (18) has the local convergence order𝑚+1
using 𝑚 + 1 evaluations of the function 𝐹 and one first-order
divided difference operator per full iterations.

Proof. The proof of this theorem is based on mathematical
induction and is straightforward.

As an example, the five-step sixth-order method from the
new class has the following structure:

𝜗
(𝑛)

1
= x(𝑛) − 𝜛(𝑛)

1
,

𝜗
(𝑛)

2
= 𝜗
(𝑛)

1
− 𝜛
(𝑛)

2
,

𝜗
(𝑛)

3
= 𝜗
(𝑛)

2
− 𝜛
(𝑛)

3
,

𝜗
(𝑛)

4
= 𝜗
(𝑛)

3
− 𝜛
(𝑛)

4
,

x(𝑛+1) = 𝜗(𝑛)
5
= 𝜗
(𝑛)

4
− 𝜛
(𝑛)

5
.

(19)

4. Complexity

In the iterative method (17), one may solve one linear
system of equations per computing step, with three right-
hand side vectors 𝐹(x(𝑛)), 𝐹(y(𝑛)), and 𝐹(z(𝑛)), and a similar
procedure must be applied for (19). In such a case, one could

compute a factorization of the matrix and use it repeatedly.
It is known that the cost (number of products/quotients) of
solving the associated linear system by LU decomposition is
(1/3)𝑁

3
+ 𝑁
2
− (1/3)𝑁 (including the LU factorization and

two triangular systems), where 𝑁 is the size of the system.
Moreover, if one has 𝑘 systems with the same matrix, then
the final cost is (1/3)𝑁3 + 𝑘𝑁2 − (1/3)𝑁.

The computational cost for (17) is as follows: 𝑁 evalu-
ations of scalar functions for 𝐹(x), 𝑁 evaluations of scalar
functions𝐹(y), and𝑁 evaluations of scalar functions for𝐹(w)
and 𝑁2 − 𝑁 (since we have computed above 𝐹(x) and 𝐹(w)
before) for the estimation (5).

We provide a comparison of efficiency indices for the
methods (2) denoted by NM, (4) denoted by SM, (6) denoted
by ZM, and the new methods (17) denoted by PM4 and (19)
denoted by PM6 based on the computational efficiency index
which is also known as operational-efficiency index in the
literature [11].

The log plot of the efficiencies according to the definition
of this index for an iterative method, which is given by 𝐸 =
𝑝
1/𝐶, where 𝑝 is the order of convergence and 𝐶 stands

for the total computational cost per iteration in terms of
the number of functional evaluations and the number of
products/quotients in finding the LU decomposition and two
triangular systems, is given in Figure 1. It is clearly obvious
that the new method (19) for higher 𝑁 has dominance with
respect to the other well-known methods.

Note that 𝐸NM = 𝐸SM = 2
3/𝑁(2+6𝑁+𝑁

2
)
, 𝐸ZM =

4
3/𝑁(−2+15𝑁+5𝑁

2
), and for the proposed methods 𝐸PM4 =

4
3/𝑁(8+12𝑁+𝑁

2
) and 𝐸PM6 = 6

3/𝑁(14+18𝑁+𝑁
2
).

Although the new scheme does not have the drawbacks of
NMor ZM in terms of computing Fréchet derivatives or three
different divided difference operators, a significant focus
should be allocated for large scale nonlinear systems. In fact,
for large scale sparse nonlinear systems of equations, we have
two main shortcomings, first putting numeric values into the
Jacobian matrix for Newton-type methods and second the
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Figure 2: Attraction basins of the polynomial 𝑧3 − 1 = 0 in the complex plane (shaded according to the number of iterations).

LU decomposition, which is time-consuming. The suggested
method in this work does not need the computations of
the Fréchet derivatives and, due to this, it resolves the first
problem. For solving the second problem, the new scheme
should be coded in the inexact form (see, e.g., [12, 13]) using
very efficient solvers for the solution of linear systems of
equations such as GMRES.

5. A Multiplication-Rich Scheme

A contribution of this study lies in a simple trick that could be
used in this section to produce derivative-free schemes which
are inversion-free as well. As amatter of fact, the general class
(18) is free from Fréchet derivative per computing step and
this makes it nice but we could use a simple trick to make
the process inversion-free. That is to say, the computation
of the inverse of 𝐽 in (18) is tough since it could be a dense
matrix. Although we use the LU decomposition to proceed
per cycle, we could apply an iterative inverse finder to avoid
the computation of inverse (or solving a system) by imposing
further matrix-matrix multiplications.

Such a procedure could be done using the well-known
Schulz-type methods (see, e.g., [14]). Here, we apply the
Schulz inverse finder for this purpose, for one step of the
matrix iterative method (18) as follows:

𝑃
𝑛
=

2

𝜎
2

1
+ 𝜎
2

𝑟

𝐽
∗

𝑛
,

𝑃
𝑛+1
= 𝑃
𝑛
(2𝐼 − 𝐽

𝑛
𝑃
𝑛
) ,

x(𝑛+1) = x(𝑛) − 𝑃
𝑛+1
𝐹 (x(𝑛)) ,

(20)

wherein 𝐽
𝑛
= 𝐽(x(𝑛), 𝐻(𝑛)) = (𝐹(x(𝑛) + 𝐻(𝑛)𝑒1) − 𝐹(x(𝑛)),

. . . , 𝐹(x(𝑛)+𝐻(𝑛)𝑒𝑁)−𝐹(x(𝑛)))𝐻(𝑛)−1 and 𝜎
1
, 𝜎
𝑟
are the largest

and smallest singular values of 𝐽. Unfortunately, convergence
of this iterative scheme happens for initial matrices so close to
the zeros and it might not be quadratic. In fact, the Steffensen
method (SM) and its variants obtained by the class (18), for
instance, the approach (19), should become inversion-free
easily and efficiently.

We now illustrate the basins of attraction for SM2 and
PM4 in the complex square of [−4, 4] × [−4, 4], when the
stopping criterion is |𝑥

𝑛+1
− 𝑥
𝑛
| ≤ 10

−6. Hopefully, the con-
vergence radius for tackling nonlinear problems can become
broadened by introducing the free nonzero parameter 𝛽,
which would be a constant array in the multivariate case
[9]. Introducing 𝛽 yields the following form of Steffensen’s
method:

𝐻
(𝑛)
= diag (𝛽𝑓

1
(x(𝑛)) , . . . , 𝛽𝑓

𝑁
(x(𝑛))) ,

𝐽 (x(𝑛), 𝛽𝐻(𝑛))

= (𝐹 (x(𝑛) + 𝐻(𝑛)𝑒1) − 𝐹 (x(𝑛)) , . . . ,

𝐹 (x(𝑛) + 𝐻(𝑛)𝑒𝑁) − 𝐹 (x(𝑛)))𝐻(𝑛)
−1

,

x(𝑛+1) = x(𝑛) − 𝐽(x(𝑛), 𝛽𝐻(𝑛))
−1

𝐹 (x(𝑛)) .

(21)

Figure 2(a) shows the SM without imposing small values
for 𝛽, that is, with 𝛽 = 1, and Figure 2(b) is the basins of
attraction of PM4. Figure 3 shows the basins of attraction of
SM and PM4, but with small values of 𝛽.

It is clear that choosing small value for 𝛽 results in
larger basins of attraction [15]. Hence, we revise this idea
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Figure 3: Attraction basins of the polynomial 𝑧3 − 1 = 0 in the complex plane (shaded according to the number of iterations).

and propose an inversion-free method for solving nonlinear
systems of equation in what follows:

choose a small value for 𝛽,

compute x(1) by (21) and set 𝑇
1
= 𝐽(x(0), 𝛽𝐻(0))

−1

,

𝑇
𝑛+1
= 𝑇
𝑛
(2𝐼 − 𝐽

𝑛
𝑇
𝑛
) , 𝑛 = 1, 2, . . . ,

x(𝑛+1) = x(𝑛) − 𝑇
𝑛+1
𝐹 (x(𝑛)) ,

(22)

wherein 𝐽
𝑛
= 𝐽(x(𝑛), 𝛽𝐻(𝑛)).

We name this multiplication-rich method as the
Steffensen-Schulz iteration since it is derivative-free and
inversion-free at the same time. It only requires one matrix
inversion in the whole process of computing x(1).

6. Numerical Testing

We employ here the second-order method of Newton (2),
the second-order scheme of Steffensen (4), the fourth-order
scheme of Zheng et al. (6), and the proposed fourth-order
derivative-free method (17) to compare the numerical results
obtained from these methods in solving test nonlinear sys-
tems. We also put (22) into test for Test Problems 1 and 4.

Test 1. As the first problem,we take into account the following
hard system of 10 nonlinear equations with 10 unknowns:

5 exp (𝑥
1
− 2) 𝑥

2
+ 8𝑥
𝑥4

3
− 5𝑥
3

6
+ 2𝑥
𝑥10

7
− 𝑥
9
= 0,

5 tan (𝑥
1
+ 2) + 𝑥

3

2
+ 7𝑥
4

3
− 2 sin (𝑥

6
)
3

+ cos (𝑥𝑥10
9
) = 0,

𝑥
2

1
+ tan (𝑥

2
) + 2𝑥

𝑥4

3
− 5𝑥
3

6
− 𝑥
5
𝑥
6
𝑥
7
𝑥
8
𝑥
9
𝑥
10
= 0,

2 tan (𝑥2
1
) + 2
𝑥2
+ 𝑥
2

3
− 5𝑥
3

5
− 𝑥
6
+ 𝑥

cos(𝑥9)
8

= 0,

10𝑥
2

1
+ cos (𝑥

2
) + 𝑥
2

3
− 5𝑥
3

6
− 4
𝑥9
− 2𝑥
8
− 𝑥
10
= 0,

arccos (𝑥2
1
) sin (𝑥

2
) + 𝑥
2

3
− 2𝑥
4

5
𝑥
6
𝑥
9
𝑥
10
= 0,

𝑥
1
𝑥
𝑥7

2
+ 𝑥
5

3
− 5𝑥
3

5
+ 𝑥
7
− 𝑥
𝑥10

8
= 0,

𝑥
4
sin (𝑥

2
) + 𝑥
3
− 15𝑥

2

5
+ 𝑥
7
+ arccos (𝑥

8
+ 𝑥
9
− 10𝑥

10
) = 0,

10𝑥
1
+ 𝑥
2

3
− 5𝑥
2

5
+ 10𝑥

𝑥8

6
+ 2𝑥
9
− sin (𝑥

7
) = 0,

𝑥
1
sin (𝑥

2
) − 5𝑥

6
− 2𝑥
𝑥8

10
− 10𝑥

9
+ 𝑥
10
= 0.

(23)

In this test problem, the approximate solution up to
5 decimal places is the following vector: x∗ ≈ (1.88885 +

0.20069𝐼, 0.57690−2.01025𝐼, 1.003311−0.271000𝐼, 2.94243+

0.83281𝐼, 0.841597 − 0.133319𝐼, −0.471176 + 0.882220𝐼,

0.123992 + 0.141636𝐼, 1.58763 − 0.37199𝐼, 2.55259 +

0.18419𝐼, −2.06453 + 1.58241𝐼)
𝑇.

Test 2. We consider the following nonlinear system:

𝑥
𝑖
𝑥
𝑖+1
− 1 = 0, 𝑖 = 1, 2, . . . , 𝑁 − 1,

𝑥
𝑁
𝑥
1
− 1 = 0,

(24)

where its solution is the vector x∗ = (1, . . . , 1)𝑇 for odd𝑁.

Test 3. We consider the following large scale nonlinear
system:

(𝑥
𝑖
𝑥
𝑖+1
)
2

− 3 = 0, 𝑖 = 1, 2, . . . , 𝑁 − 1,

𝑥
𝑁
(𝑥
1
)
2

− 1 = 0,

(25)



Journal of Applied Mathematics 7

Table 1: Results of comparisons for different methods in Test 1 using x(0) = (1.88 + 0.2𝐼, 0.57 − 2.01𝐼, 1.00 − 0.27𝐼, 2.94 + 0.83𝐼, 0.84 − 0.13𝐼,
−0.47 + 0.88𝐼, 0.12 + 0.14𝐼, 1.58 − 0.37𝐼, 2.55 + 0.18𝐼, −2.06 + 1.58𝐼)𝑇.

Iterative methods NM SM ZM PM4
Number of iterations 7 9 4 5
The residual norm 3.73 × 10

−164
1.49 × 10

−153
4.14 × 10

−149
9.37 × 10

−173

COC 2.01 1.99 3.99 4.00
The elapsed time 0.35 1.00 1.23 0.37

Table 2: Results of comparisons for different methods in Test 2 using x(0) = (2, . . . , 2) and𝑁 = 99.

Iterative methods NM SM ZM PM4
Number of iterations 8 8 5 5
The residual norm 2.86 × 10

−121
2.86 × 10

−121
0 0

COC 2.00 2.00 4.00 4.00
The elapsed time 0.70 0.79 2.82 0.65

Table 3: Results of comparisons for different methods in Test 3 using x(0) = (2, . . . , 2) and𝑁 = 200.

Iterative methods NM SM ZM PM4
Number of iterations 9 17 5 7
The residual norm 2.56 × 10

−110
1.24 × 10

−126
5.66 × 10

−75
2.13 × 10

−107

COC 1.97 2.00 2.69 3.97
The elapsed time 5.95 8.59 23.23 4.95

where its solution is the vector x∗ =

(0.57735, 3.0000, 0.57735, 3.0000, . . . , 0.57735, 3.0000)
𝑇.

We report the numerical results for solving Tests 1–3 in
Tables 1–3 based on the initial values. Note that an important
aspect in implementing iterative method for solving nonlin-
ear systems is to find a robust initial guess to guarantee the
convergence. Some discussions regarding this are given in
[16, 17].

The residual norm along with the number of iterations
and computational time using the command Timing in
Mathematica 8 [18] is reported in Tables 1–3. The com-
puter specifications are Microsoft Windows XP Intel(R),
Pentium(R) 4 CPU, and 3.20GHz with 4GB of RAM.

An efficient way to observe the behavior of the order
of convergence is to use the local computational order of
convergence (COC) that can be defined by 𝜌 ≈ ln(‖
𝐹(x(𝑛+1)) ‖ / ‖ 𝐹(x(𝑛)) ‖)/ ln(‖ 𝐹(x(𝑛)) ‖ / ‖ 𝐹(x(𝑛−1)) ‖),
in the 𝑁-dimensional case. We have used this index in the
numerical comparisons listed in Tables 1–3 for each different
method to illustrate their numerical orders.

In numerical comparisons, we have chosen
the fixed point arithmetic to be 200 using the
command SetAccuarcy[expr,200] in the written
codes. Note that, for some iterative methods, their residual
norm at the specified iteration will exceed the bound of
10
−200; thus, we consider such approximations as the exact

solution and denoted the residual norm by 0 in some cells of
the tables.

Results in Table 1 show that the new scheme can be
considered for complex solutions of hard nonlinear systems.

In this test, due to the fact that the dimension of the nonlinear
system is low, we have used the LU decomposition to
prevent the computation of 3 linear systems. Computational
time reported in Table 1 verifies the fact that derivative-free
methods with few number of divided difference operators are
reliable. Note that Figure 4(a) reveals the residual fall of (22)
for solving Test 1. It also reveals a quadratic convergence in
the obtained residuals per full cycle.

In order to tackle large scale nonlinear systems, we have
included Tests 2 and 3 in this work. As could be seen from
Tables 2 and 3, the cases for 99 × 99 and 200 × 200 are
considered, respectively. It is obvious that for large scale
nonlinear systemswe have twodifficulties in implementation;
first the LU decomposition takes time to be attained and
second finding the numeric values of the Jacobian matrix in
the Newton-type methods is costly. However, to have a fair
comparison, we have not defined the pattern of the Jacobian
in the computations and used LU decomposition in solving
the considered linear systems.

Test 4. Consider the mixed Hammerstein integral equation
[8]:

𝑥 (𝑠) = 1 +

1

5

∫

1

0

𝐺 (𝑠, 𝑡) 𝑥(𝑡)
3
𝑑𝑡, (26)

where 𝑥 ∈ 𝐶[0, 1], 𝑠, 𝑡 ∈ [0, 1] and the kernel 𝐺 is given by

𝐺 (𝑠, 𝑡) = {

(1 − 𝑠) 𝑡, 𝑡 ≤ 𝑠,

𝑠 (1 − 𝑡) , 𝑡 > 𝑠.
(27)
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Figure 4: Using 𝛽 = 0.0001 in (22) so as to solve different tests.

In order to solve this nonlinear integral equation, we trans-
form the above equation into a finite-dimensional prob-
lem by using Gauss-Legendre quadrature formula given as
∫

1

0
𝑓(𝑡)𝑑𝑡 ≈ Σ

𝑡

𝑗=1
𝑤
𝑗
𝑓(𝑡
𝑗
), where the abscissas 𝑡

𝑗
and the

weights 𝑤
𝑗
are determined for 𝑡 = 50 by Gauss-Legendre

quadrature formula. Denoting the approximation of 𝑥(𝑡
𝑖
)

by 𝑥
𝑖
(𝑖 = 1, 2, . . . , 𝑡), we obtain the system of nonlinear

equations

5𝑥
𝑖
− 5 −

𝑡

∑

𝑗=1

𝑎
𝑖𝑗
𝑥
3

𝑗
= 0, (28)

where, for 𝑖 = 1, 2, . . . , 𝑡, we have

𝑎
𝑖𝑗
= {

𝑤
𝑗
𝑡
𝑗
(1 − 𝑡
𝑖
) , if 𝑗 ≤ 𝑖,

𝑤
𝑗
𝑡
𝑖
(1 − 𝑡

𝑗
) , if 𝑖 < 𝑗,

(29)

wherein the abscissas 𝑡
𝑗
and the weights 𝑤

𝑗
are known.

Using the initial approximation x(0) = (0.5, . . . , 0.5)
𝑇,

we apply the proposed method (22) which is multiplication-
rich to find the final solution vector of the nonlinear integral
equation (28). Figure 4(b) puts on show the residual fall for
solving the nonlinear integral equation (26) using (22) when
𝑡 = 50 is the size of the nonlinear system of equations.

From numerical results in this section, it is clear that the
accuracy in successive iterations increases, showing stable
nature of the methods. Also, like the existing methods, the
presented method shows consistent convergence behavior.
From the calculation of computational order of convergence,
it is also verified that order of convergence is preserved.

7. Concluding Summary

We have presented a class of iterative methods for finding
the solution of nonlinear systems. The construction of the
suggested scheme let us achieve high convergence order by
avoiding the computation of the Jacobian matrix, whose
evaluation takes time for large scale nonlinear systems.

Some different numerical tests have been used to compare
the consistency and stability of the proposed iterations in
contrast to the existing methods. The numerical results
obtained in Section 6 reverified the theoretical aspects of the
paper. We have also revealed that the methods can efficiently
be used for complex zeros as well.

Further modifications could be done tomake themethod
hybrid so as to have a trust region. In sum, we can conclude
that the novel iterative methods have an acceptable perfor-
mance in solving systems of nonlinear equations.
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