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We present the ∗congruence class of the least-square and theminimumnorm least-square solutions to the system of complexmatrix
equation 𝐴𝑋 = 𝐶,𝑋𝐵 = 𝐷 by generalized singular value decomposition and canonical correlation decomposition.

1. Introduction

Throughout we denote the complex 𝑚 × 𝑛 matrix space by
C𝑚×𝑛. The symbols 𝐼, 𝐴∗, and ‖𝐴‖ stand for the identity
matrix with the appropriate size, the conjugate transpose, and
the Frobenius norm of 𝐴 ∈ C𝑚×𝑛, respectively. Recall that
matrices 𝑋, 𝑌 ∈ C𝑛×𝑛 are in the same ∗congruence class if
there is a nonsingular 𝑃 ∈ C𝑛×𝑛 such that𝑋 = 𝑃

∗

𝑌𝑃 [1].
Investigating the classical system of matrix equations

𝐴𝑋 = 𝐶, 𝑋𝐵 = 𝐷 (1)

has attracted many people’s attention and many results have
been obtained about system (1) with various constraints,
such as Hermitian, positive definite, positive semidefinite,
reflexive, and generalized reflexive solutions (see [2–10]).
Studying the least-square solutions of the system of matrix
equations (1) is also a very active research topic (see [11–16]).
It is well known that Hermitian, positive definite and positive
semidefinite matrices are the special case of ∗congruence.
Therefore investigating the ∗congruence class of a solution of
the matrix equation (1) is very meaningful.

In 2005, Horn et al. [1] studied the possible ∗congruence
class of a square solution when linear matrix equation
𝐴𝑋 = 𝐵 is solvable. In 2009, Zheng et al. [17] describe
∗congruence class of least-square and minimum norm least-
square solutions of the equation 𝐴𝑋 = 𝐵 when it is not
solvable and discuss a ∗congruence class of the solutions of
the system (1) when it is solvable. To our knowledge, so far

there has been little investigation of ∗congruence class of the
least-square andminimum norm least-square solutions to (1)
when it is not solvable.

Motivated by the work mentioned above, we investigate
the ∗congruence class of the least-square and the minimum
norm least-square solutions to the system of complex matrix
equation (1) by generalized singular value decomposition
(GSVD) and canonical correlation decomposition (CCD).

2. The ∗Congruence Class of
the Solutions to (1)

Lemma 1 (see [4]). Let 𝐴 ∈ C𝑚×𝑛 and 𝐵 ∈ C𝑛×𝑝. Then the
GSVD of 𝐴 and 𝐵∗ can be expressed as

𝐴 = 𝑈Σ
𝐴
𝑃, 𝐵

∗

= 𝑉Σ
𝐵
𝑃, (2)

where 𝑈 ∈ C𝑚×𝑚 and 𝑉 ∈ C𝑝×𝑝 are unitary matrices, 𝑃 ∈

C𝑛×𝑛 is nonsingular matrix,

Σ
𝐴
∈ C
𝑚×𝑛

, Σ
𝐵
∈ C
𝑝×𝑛

, 𝑟 = rank(𝐴
𝐵
∗) ,

Σ
𝐴
=

(

𝐼
𝐴

⋅

𝑆
𝐴

⋅ 0

𝑂
𝐴

⋅

)

𝑡 𝑠 𝑟 − 𝑠 − 𝑡 𝑛 − 𝑟

,
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Σ
𝐵
=

(

𝑂
𝐵

⋅

𝑆
𝐵

⋅ 0

𝐼
𝐵

⋅

)

𝑡 𝑠 𝑟 − 𝑠 − 𝑡 𝑛 − 𝑟

,

(3)

𝐼
𝐴
and 𝐼
𝐵
are identity matrices, 𝑂

𝐴
and 𝑂

𝐵
are zero matrices,

and

𝑆
𝐴
= diag (𝛼

1
, . . . , 𝛼

𝑠
) , 𝑆

𝐵
= diag (𝛽

1
, . . . , 𝛽

𝑠
) (4)

with 1 > 𝛼
1
≥ ⋅ ⋅ ⋅ ≥ 𝛼

𝑠
> 0, 0 < 𝛽

1
≤ ⋅ ⋅ ⋅ ≤ 𝛽

𝑠
< 1, and

𝛼
2

𝑖
+ 𝛽
2

𝑖
= 1 (𝑖 = 1, . . . , 𝑠).

For convenience, in the following theorem we denote

𝑃𝑋𝑃
∗

=

(

𝑋
11

𝑋
12

𝑋
13

𝑋
14

𝑋
21

𝑋
22

𝑋
23

𝑋
24

𝑋
31

𝑋
32

𝑋
33

𝑋
34

𝑋
41

𝑋
42

𝑋
43

𝑋
44

),

𝑡 𝑠 𝑟 − 𝑠 − 𝑡 𝑛 − 𝑟

(5)

𝑈
∗

𝐶𝑃
∗

=

(

𝐶
11

𝐶
12

𝐶
13

𝐶
14

𝐶
21

𝐶
22

𝐶
23

𝐶
24

𝐶
31

𝐶
32

𝐶
33

𝐶
34

) ,

𝑡 𝑠 𝑟 − 𝑠 − 𝑡 𝑛 − 𝑟

𝑃𝐷𝑉 =

(

𝐷
11

𝐷
12

𝐷
13

𝐷
21

𝐷
22

𝐷
23

𝐷
31

𝐷
32

𝐷
33

𝐷
41

𝐷
42

𝐷
43

)

𝑝 − 𝑟 + 𝑡 𝑠 𝑟 − 𝑠 − 𝑡

.

(6)

Theorem 2. Let 𝐴, 𝐶 ∈ C𝑚×𝑛, 𝐵,𝐷 ∈ C𝑛×𝑝, and the GSVD of
𝐴 and 𝐵∗ be expressed as (2), and then one has the following.

(a) The system ofmatrix equation (1) has a solution inC𝑛×𝑛
if and only if

𝐶
3𝑖
= 0, 𝐷

𝑖1
= 0, (𝑖 = 1, 2, 3, 4) ,

𝐶
12
= 𝐷
12
𝑆
−1

𝐵
, 𝐶

13
= 𝐷
13
,

𝑆
−1

𝐴
𝐶
22
= 𝐷
22
𝑆
−1

𝐵
, 𝑆

−1

𝐴
𝐶
23
= 𝐷
23
.

(7)

(b) In that case, the general solutions of (1) are

𝑋 = 𝑃
−1

(

𝐶
11

𝐶
12

𝐶
13

𝐶
14

𝑆
−1

𝐴
𝐶
21

𝑆
−1

𝐴
𝐶
22

𝐷
23

𝑆
−1

𝐴
𝐶
24

𝑋
31

𝐷
32
𝑆
−1

𝐵
𝐷
33

𝑋
34

𝑋
41

𝐷
42
𝑆
−1

𝐵
𝐷
43

𝑋
44

)(𝑃
−1

)

∗

, (8)

where𝑋
31
,𝑋
41
,𝑋
34
, and 𝑋

44
are arbitrary.

(c) For arbitrary 𝑋
31
, 𝑋
41
, 𝑋
34
, and 𝑋

44
, there exists a

solution in C𝑛×𝑛 of (1) which is ∗congruent to

𝑌 = (

𝐶
11

𝐶
12

𝐶
13

𝐶
14

𝑆
−1

𝐴
𝐶
21

𝑆
−1

𝐴
𝐶
22

𝐷
23

𝑆
−1

𝐴
𝐶
24

𝑋
31

𝐷
32
𝑆
−1

𝐵
𝐷
33

𝑋
34

𝑋
41

𝐷
42
𝑆
−1

𝐵
𝐷
43

𝑋
44

). (9)

(d) There exists a minimum norm solution in C𝑛×𝑛 of (1)
which is ∗congruent to

𝑌 = (

𝐶
11

𝐶
12

𝐶
13

𝐶
14

𝑆
−1

𝐴
𝐶
21

𝑆
−1

𝐴
𝐶
22

𝐷
23

𝑆
−1

𝐴
𝐶
24

0 𝐷
32
𝑆
−1

𝐵
𝐷
33

0

0 𝐷
42
𝑆
−1

𝐵
𝐷
43

0

) . (10)

Proof. Using the GSVD of 𝐴 and 𝐵∗ given by (2), we get

𝐴𝑋 = 𝐶 ⇐⇒ 𝑈Σ
𝐴
𝑃𝑋 = 𝐶 ⇐⇒ Σ

𝐴
𝑃𝑋𝑃
∗

= 𝑈
∗

𝐶𝑃
∗

,

𝑋𝐵 = 𝐷 ⇐⇒ 𝑋𝑃
∗

Σ
∗

𝐵
𝑉
∗

= 𝐷 ⇐⇒ 𝑃𝑋𝑃
∗

Σ
∗

𝐵
= 𝑃𝐷𝑉.

(11)

By (2) and (5), Σ
𝐴
𝑃𝑋𝑃
∗ and 𝑃𝑋𝑃

∗

Σ
∗

𝐵
have the following

matrix decomposition:

Σ
𝐴
𝑃𝑋𝑃
∗

= (

𝑋
11

𝑋
12

𝑋
13

𝑋
14

𝑆
𝐴
𝑋
21

𝑆
𝐴
𝑋
22

𝑆
𝐴
𝑋
23

𝑆
𝐴
𝑋
24

0 0 0 0

) ,

𝑃𝑋𝑃
∗

Σ
∗

𝐵
= (

0 𝑋
12
𝑆
𝐵
𝑋
13

0 𝑋
22
𝑆
𝐵
𝑋
23

0 𝑋
32
𝑆
𝐵
𝑋
33

0 𝑋
42
𝑆
𝐵
𝑋
43

),

(12)

and we have that system (1) is equivalent to

(

𝑋
11

𝑋
12

𝑋
13

𝑋
14

𝑆
𝐴
𝑋
21

𝑆
𝐴
𝑋
22

𝑆
𝐴
𝑋
23

𝑆
𝐴
𝑋
24

0 0 0 0

) = (

𝐶
11

𝐶
12

𝐶
13

𝐶
14

𝐶
21

𝐶
22

𝐶
23

𝐶
24

𝐶
31

𝐶
32

𝐶
33

𝐶
34

) ,

(

0 𝑋
12
𝑆
𝐵
𝑋
13

0 𝑋
22
𝑆
𝐵
𝑋
23

0 𝑋
32
𝑆
𝐵
𝑋
33

0 𝑋
42
𝑆
𝐵
𝑋
43

) =(

𝐷
11

𝐷
12

𝐷
13

𝐷
21

𝐷
22

𝐷
23

𝐷
31

𝐷
32

𝐷
33

𝐷
41

𝐷
42

𝐷
43

);

(13)

obviously, the system of matrix equation (1) has a solution in
C𝑛×𝑛 if and only if

𝐶
3𝑖
= 0, 𝐷

𝑖1
= 0, 𝑆

𝐴
𝑋
2𝑖
= 𝐶
2𝑖
,

𝑋
𝑖2
𝑆
𝐵
= 𝐷
𝑖2
, 𝑋

1𝑖
= 𝐶
1𝑖
, 𝑋

𝑖3
= 𝐷
𝑖3
,

(𝑖 = 1, 2, 3, 4) .

(14)

Therefore, (1) has a solution in C𝑛×𝑛 if and only if (7) holds,
and a general form of the solutions can be expressed as (8);
for arbitrary𝑋

31
,𝑋
41
,𝑋
34
, and𝑋

44
, there exists a solution in

C𝑛×𝑛 of (1) which is ∗congruent to (9), and the part (d) follows
from the definition of Frobenius norm.

Remark 3. In 2009, Zheng et al. [17] discuss a ∗congruence
class of the solutions of the system (1) when it is solvable.
Our result inTheorem 2 is different with the resultmentioned
above.
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3. The ∗Congruence Class of
the Least-Square Solutions to (1)

Lemma 4 (see [18]). Let the CCD of matrix pair [𝐴, 𝐶] with
𝐴 ∈ C𝑚×𝑛, 𝐶 ∈ C𝑚×𝑘, rank𝐴 = 𝑔, and rank𝐶 = ℎ be given
as

𝐴 = 𝑈 (Σ
𝐴
, 0) 𝐸
−1

𝐴
, 𝐶 = 𝑈 (Σ

𝐶
, 0) 𝐸
−1

𝐶
, (15)

where 𝑈 is a unitary matrix and

Σ
𝐴
=(

𝐼
𝑖

Λ
𝑗

0 − 0

Δ
𝑗

𝐼
𝑡

), Σ
𝐶
= (

𝐼
ℎ

0

) (16)

are nonsingular matrices with the same row partitioning, and
𝑔 = 𝑖 + 𝑗 + 𝑡,

Λ
𝑗
= diag (𝜆

𝑖+1
, . . . , 𝜆

𝑖+𝑗
) , 1 > 𝜆

𝑖+1
≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝑖+𝑗
> 0,

Δ
𝑗
= diag (Δ

𝑖+1
, . . . , Δ

𝑖+𝑗
) , 0 > Δ

𝑖+1
≥ ⋅ ⋅ ⋅ ≥ Δ

𝑖+𝑗
> 1,

Λ
2

𝑗
+ Δ
2

𝑗
= 𝐼
𝑗
,

𝑈 =

(𝑢
1

𝑢
2

𝑢
3

𝑢
4

𝑢
5

𝑢
6
)

𝑖 𝑗 ℎ − 𝑖 − 𝑗 𝑚 − ℎ − 𝑗 − 𝑡 𝑗 𝑡

.

(17)

Lemma 5 (see [18]). Given 𝐸, 𝐹 ∈ C𝑚×𝑛, then there exists a
unique matrix 𝑆 ∈ C𝑚×𝑛 such that

‖𝑆 − 𝐸‖
2

+ ‖𝑆 − 𝐹‖
2

= min, (18)

and 𝑆 can be expressed as

𝑆 = 𝐸 + 𝐹. (19)

Lemma 6 (see [10]). Given 𝐸, 𝐹 ∈ C𝑚×𝑛, Ω
1

=

diag(𝑎
1
, . . . , 𝑎

𝑚
), Ω
2
= diag(𝑏

1
, . . . , 𝑏

𝑛
), 𝑎
𝑖
> 0 (𝑖 = 1, . . . , 𝑚),

and 𝑏
𝑗
> 0 (𝑗 = 1, . . . , 𝑛), then there exists a unique matrix

𝑆 ∈ C𝑚×𝑛 such that
󵄩
󵄩
󵄩
󵄩
Ω
1
𝑆 − 𝐸

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝑆Ω
2
− 𝐹

󵄩
󵄩
󵄩
󵄩

2

= min, (20)

and 𝑆 can be expressed as

𝑆 = Φ ∗ (Ω
1
𝐸 + 𝐹Ω

2
) , (21)

where

Φ = (

1

𝑎
2

𝑖
+ 𝑏
2

𝑗

) ∈ C
𝑚×𝑛

. (22)

Using Lemmas 5 and 6, we can easily obtain the following.

Lemma 7. Given 𝐸, 𝐹, 𝐺 ∈ C𝑚×𝑛, Ω
1
= diag(𝑎

1
, . . . , 𝑎

𝑚
),

Ω
2
= diag(𝑏

1
, . . . , 𝑏

𝑚
), 𝐼
𝑛
= diag(𝑖

1
, . . . , 𝑖

𝑛
), 𝑎
𝑖
> 0 (𝑖 =

1, . . . , 𝑚), 𝑏
𝑗
> 0 (𝑗 = 1, . . . , 𝑚), and 𝑖

𝑘
= 1 (𝑘 = 1, . . . , 𝑛),

then there exist unique matrices 𝑆 and𝑊 such that
󵄩
󵄩
󵄩
󵄩
Ω
1
𝑆 + Ω

2
𝑊− 𝐸

󵄩
󵄩
󵄩
󵄩

2

+ ‖𝑆 − 𝐹‖
2

+ ‖𝑊 − 𝐺‖
2

= min, (23)

and 𝑆 and𝑊 can be expressed as

𝑆 = 𝐹, 𝑊 = Φ ∗ (Ω
2
(Ω
1
𝐹 − 𝐸) + 𝐺) , (24)

where

Φ = (

1

𝑏
2

𝑗
+ 𝑖
2

𝑘

) ∈ C
𝑚×𝑛

. (25)

Lemma 8. Given 𝐸, 𝐹 ∈ C𝑚×𝑛, Ω
1
= diag(𝑎

1
, . . . , 𝑎

𝑚
), Ω
2
=

diag(𝑏
1
, . . . , 𝑏

𝑛
), 𝑎
𝑖
> 0 (𝑖 = 1, . . . , 𝑚), and 𝑏

𝑗
> 0 (𝑗 =

1, . . . , 𝑛), then there exist unique matrices 𝑆 and𝑊 such that

󵄩
󵄩
󵄩
󵄩
Ω
1
𝑆 + Ω

2
𝑊− 𝐸

󵄩
󵄩
󵄩
󵄩

2

= min, (26)

and 𝑆 and𝑊 can be expressed as

𝑆 = 0, 𝑊 = Ω
−1

2
𝐸. (27)

Let𝐴,𝐶 ∈ C𝑚×𝑛,𝐵,𝐷 ∈ C𝑛×𝑙, and rank𝐴 = 𝑝 ≥ rank𝐵 =
𝑞. According to Lemma 4, there exist a unitary matrix 𝑈 ∈

C𝑛×𝑛 and nonsingular matrices 𝑅
𝐴
∈ C𝑚×𝑚 and 𝑅

𝐵
∈ C𝑙×𝑙,

such that the CCD of matrix pair [𝐴∗, 𝐵] is given as

𝐴
∗

= 𝑈 (Σ
𝐴
, 0) 𝑅
−1

𝐴
, 𝐵 = 𝑈 (Σ

𝐵
, 0) 𝑅
−1

𝐵
, (28)

where Σ
𝐴
∈ C𝑛×𝑝, Σ

𝐵
∈ C𝑛×𝑞,

Σ
𝐴
=
(

(

𝐼
𝑟

0 0

0 𝐺
𝑠
0

0 0 0

0 0 0

0 𝑆
𝑠
0

0 0 𝐼
𝑡

)

)

, Σ
𝐵
=
(

(

𝐼
𝑟
0 0

0 𝐼
𝑠

0

0 0 𝐼
𝑞−𝑟−𝑠

0 0 0

0 0 0

0 0 0

)

)

,

(29)

where 𝑝 = 𝑟 + 𝑠 + 𝑡,

𝐺
𝑠
= diag (𝑔

𝑟+1
, . . . , 𝑔

𝑟+𝑠
) , 1 > 𝑔

𝑟+1
≥ ⋅ ⋅ ⋅ ≥ 𝑔

𝑟+𝑠
> 0,

𝑆
𝑠
= diag (𝑤

𝑟+1
, . . . , 𝑤

𝑟+𝑠
) , 0 > 𝑤

𝑟+1
≥ ⋅ ⋅ ⋅ ≥ 𝑤

𝑟+𝑠
> 1,

𝐺
2

𝑠
+ 𝑆
2

𝑠
= 𝐼
𝑠
,

𝑈 =

(𝑢
1
𝑢
2

𝑢
3

𝑢
4

𝑢
5

𝑢
6
)

𝑟 𝑠 𝑞 − 𝑟 − 𝑠 𝑛 − 𝑞 − 𝑠 − 𝑡 𝑠 𝑡

.

(30)

Without loss of generality, let 𝑝 = 𝑞, and then we have the
following results.

Theorem 9. Let 𝐴, 𝐶 ∈ C𝑚×𝑛, 𝐵, 𝐷 ∈ C𝑛×𝑙, and the CCD of
matrix pair [𝐴∗, 𝐵] be expressed as (28), and then one has the
following.

(a) The least-square solutions to the system (1) are
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𝑋 = 𝑈

(

(

(

(

(

(

𝐶
11
+ 𝐷
11

𝐶
12
+ 𝐷
12

𝐶
13
+ 𝐷
13

𝐶
14

𝐶
15

𝐶
16

𝐷
21

𝐷
22

𝐷
23

0 0 0

𝐷
31

𝐷
32

𝐷
33

𝑋
34

𝑋
35

𝑋
36

𝐷
41

𝐷
42

𝐷
43

𝑋
44

𝑋
45

𝑋
46

𝑌
51

𝑌
52

𝑌
53

𝑆
−1

𝐶
24

𝑆
−1

𝐶
25

𝑆
−1

𝐶
26

𝐷
31
+ 𝐷
61

𝐷
32
+ 𝐷
62

𝐷
33
+ 𝐷
63

𝐶
34

𝐶
35

𝐶
36

)

)

)

)

)

)

𝑈
∗

, (31)

where 𝑋
34
, 𝑋
35
, 𝑋
36
, 𝑋
44
, 𝑋
45
, and 𝑋

46
are arbitrary, 𝑌

5𝑖
=

Φ ∗ (𝑆(𝐺𝐷
2𝑖
− 𝐶
2𝑖
) + 𝐷
5𝑖
), 𝑖 = 1, 2, 3, Φ = (1/(𝑤

2

𝑟+𝑗
+ 𝑒
2

𝑘
)) ∈

C𝑠×𝑠, and 𝑒
𝑘
= 1, 𝑗 = 1, . . . , 𝑠, 𝑘 = 1, . . . , 𝑠.

(b) For arbitrary 𝑋
34
, 𝑋
35
, 𝑋
36
, 𝑋
44
, 𝑋
45
, and 𝑋

46
, there

exists a least-square solution in C𝑛×𝑛 of (1) which is
∗congruent to

𝑌 =

(

(

(

(

(

(

𝐶
11
+ 𝐷
11

𝐶
12
+ 𝐷
12

𝐶
13
+ 𝐷
13

𝐶
14

𝐶
15

𝐶
16

𝐷
21

𝐷
22

𝐷
23

0 0 0

𝐷
31

𝐷
32

𝐷
33

𝑋
34

𝑋
35

𝑋
36

𝐷
41

𝐷
42

𝐷
43

𝑋
44

𝑋
45

𝑋
46

𝑌
51

𝑌
52

𝑌
53

𝑆
−1

𝐶
24

𝑆
−1

𝐶
25

𝑆
−1

𝐶
26

𝐷
31
+ 𝐷
61

𝐷
32
+ 𝐷
62

𝐷
33
+ 𝐷
63

𝐶
34

𝐶
35

𝐶
36

)

)

)

)

)

)

, (32)

where 𝑌
5𝑖

= Φ ∗ (𝑆(𝐺𝐷
2𝑖
− 𝐶
2𝑖
) + 𝐷

5𝑖
), 𝑖 = 1, 2, 3, Φ =

(1/(𝑤
2

𝑟+𝑗
+ 𝑒
2

𝑘
)) ∈ C𝑠×𝑠, and 𝑒

𝑘
= 1, 𝑗 = 1, . . . , 𝑠, 𝑘 = 1, . . . , 𝑠.

(c) There exists a minimum norm least-square solution in
C𝑛×𝑛 of (1) which is ∗congruent to

𝑌 =

(

(

(

(

(

(

𝐶
11
+ 𝐷
11

𝐶
12
+ 𝐷
12

𝐶
13
+ 𝐷
13

𝐶
14

𝐶
15

𝐶
16

𝐷
21

𝐷
22

𝐷
23

0 0 0

𝐷
31

𝐷
32

𝐷
33

0 0 0

𝐷
41

𝐷
42

𝐷
43

0 0 0

𝑌
51

𝑌
52

𝑌
53

𝑆
−1

𝐶
24

𝑆
−1

𝐶
25

𝑆
−1

𝐶
26

𝐷
31
+ 𝐷
61

𝐷
32
+ 𝐷
62

𝐷
33
+ 𝐷
63

𝐶
34

𝐶
35

𝐶
36

)

)

)

)

)

)

, (33)

where 𝑌
5𝑖

= Φ ∗ (𝑆(𝐺𝐷
2𝑖
− 𝐶
2𝑖
) + 𝐷

5𝑖
), 𝑖 = 1, 2, 3, Φ =

(1/(𝑤
2

𝑟+𝑗
+ 𝑒
2

𝑘
)) ∈ C𝑠×𝑠, and 𝑒

𝑘
= 1, 𝑗 = 1, . . . , 𝑠, 𝑘 = 1, . . . , 𝑠.

Proof. It follows from (28) that

𝐴𝑋 = 𝐶 ⇐⇒ (𝑅
−1

𝐴
)

∗

(

Σ
∗

𝐴

0

)𝑈
∗

𝑋 = 𝐶

⇐⇒ (

Σ
∗

𝐴

0

)𝑈
∗

𝑋 = (𝑅
𝐴
)

∗

𝐶,

𝑋𝐵 = 𝐷 ⇐⇒ 𝑋𝑈(Σ
𝐵
, 0) 𝑅
−1

𝐵
= 𝐷 ⇐⇒ 𝑋𝑈(Σ

𝐵
, 0) = 𝐷𝑅

𝐵
.

(34)

Then,

‖𝐴𝑋 − 𝐶‖
2

+ ‖𝑋𝐵 − 𝐷‖
2

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(

Σ
∗

𝐴

0

)𝑈
∗

𝑋 − (𝑅
𝐴
)

∗

𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝑋𝑈(Σ

𝐵
, 0) − 𝐷𝑅

𝐵

󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(

Σ
∗

𝐴

0

)𝑈
∗

𝑋𝑈 − (𝑅
𝐴
)

∗

𝐶𝑈

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝑈
∗

𝑋𝑈(Σ
𝐵
, 0) − 𝑈

∗

𝐷𝑅
𝐵

󵄩
󵄩
󵄩
󵄩

2

.

(35)
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Assume that

𝑈
∗

𝑋𝑈 =
(

(

𝑋
11

𝑋
12

𝑋
13

𝑋
14

𝑋
15

𝑋
16

𝑋
21

𝑋
22

𝑋
23

𝑋
24

𝑋
25

𝑋
26

𝑋
31

𝑋
32

𝑋
33

𝑋
34

𝑋
35

𝑋
36

𝑋
41

𝑋
42

𝑋
43

𝑋
44

𝑋
45

𝑋
46

𝑋
51

𝑋
52

𝑋
53

𝑋
54

𝑋
55

𝑋
56

𝑋
61

𝑋
62

𝑋
63

𝑋
64

𝑋
65

𝑋
66

)

)

, (36)

(𝑅
𝐴
)

∗

𝐶𝑈 = (

𝐶
11

𝐶
12

𝐶
13

𝐶
14

𝐶
15

𝐶
16

𝐶
21

𝐶
22

𝐶
23

𝐶
24

𝐶
25

𝐶
26

𝐶
31

𝐶
32

𝐶
33

𝐶
34

𝐶
35

𝐶
36

𝐶
41

𝐶
42

𝐶
43

𝐶
44

𝐶
45

𝐶
46

),

𝑈
∗

𝐷𝑅
𝐵
=
(

(

𝐷
11

𝐷
12

𝐷
13

𝐷
14

𝐷
21

𝐷
22

𝐷
23

𝐷
24

𝐷
31

𝐷
32

𝐷
33

𝐷
34

𝐷
41

𝐷
42

𝐷
43

𝐷
44

𝐷
51

𝐷
52

𝐷
53

𝐷
54

𝐷
61

𝐷
62

𝐷
63

𝐷
64

)

)

,

(37)

and then

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(

Σ
∗

𝐴

0

)𝑈
∗

𝑋𝑈 − (𝑅
𝐴
)
∗

𝐶𝑈

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝑈
∗

𝑋𝑈(Σ
𝐵
, 0) − 𝑈

∗

𝐷𝑅
𝐵

󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(

𝑋
11

𝑋
12

⋅ ⋅ ⋅ 𝑋
16

𝐺𝑋
21
+ 𝑆𝑋
51

𝐺𝑋
22
+ 𝑆𝑋
52

⋅ ⋅ ⋅ 𝐺𝑋
26
+ 𝑆𝑋
56

𝑋
61

𝑋
62

⋅ ⋅ ⋅ 𝑋
66

0 0 ⋅ ⋅ ⋅ 0

)

− (

𝐶
11

𝐶
12

⋅ ⋅ ⋅ 𝐶
16

𝐶
21

𝐶
22

⋅ ⋅ ⋅ 𝐶
26

𝐶
31

𝐶
32

⋅ ⋅ ⋅ 𝐶
36

𝐶
41

𝐶
42

⋅ ⋅ ⋅ 𝐶
46

)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(

𝑋
11

𝑋
12

𝑋
13

0

𝑋
21

𝑋
22

𝑋
23

0

...
...

...
...

𝑋
61

𝑋
62

𝑋
63

0

)

− (

𝐷
11

𝐷
12

𝐷
13

𝐷
14

𝐷
21

𝐷
22

𝐷
23

𝐷
24

...
...

...
...

𝐷
61

𝐷
62

𝐷
63

𝐷
64

)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩
𝑋
11
− 𝐶
11

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝑋
11
− 𝐷
11

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝑋
12
− 𝐶
12

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝑋
12
− 𝐷
12

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝑋
13
− 𝐶
13

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝑋
13
− 𝐷
13

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝑋
61
− 𝐶
31

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝑋
61
− 𝐷
61

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝑋
62
− 𝐶
32

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝑋
62
− 𝐷
62

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝑋
63
− 𝐶
33

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝑋
63
− 𝐷
63

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝐺𝑋
21
+ 𝑆𝑋
51
− 𝐶
21

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑋
21
− 𝐷
21

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝑋
51
− 𝐷
51

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝐺𝑋
22
+ 𝑆𝑋
52
− 𝐶
22

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑋
22
− 𝐷
22

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑋
52
− 𝐷
52

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝐺𝑋
23
+ 𝑆𝑋
53
− 𝐶
23

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝑋
23
− 𝐷
23

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑋
53
− 𝐷
53

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝐺𝑋
24
+ 𝑆𝑋
54
− 𝐶
24

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝐺𝑋
25
+ 𝑆𝑋
55
− 𝐶
25

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝐺𝑋
26
+ 𝑆𝑋
56
− 𝐶
26

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑋
14
− 𝐶
14

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑋
15
− 𝐶
15

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑋
16
− 𝐶
16

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝑋
64
− 𝐶
34

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝑋
65
− 𝐶
35

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝑋
66
− C
36

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑋
31
− 𝐷
31

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑋
32
− 𝐷
32

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑋
33
− 𝐷
33

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝑋
41
− 𝐷
41

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝑋
42
− 𝐷
42

󵄩
󵄩
󵄩
󵄩

2

+

󵄩
󵄩
󵄩
󵄩
𝑋
43
− 𝐷
43

󵄩
󵄩
󵄩
󵄩

2

.

(38)

By Lemmas 5, 7, and 8, a general form of the least-square
solutions can be expressed as (31); for arbitrary𝑋

34
,𝑋
35
,𝑋
36
,

𝑋
44
,𝑋
45
, and𝑋

46
, there exists a least-square solution inC𝑛×𝑛

of (1) which is ∗congruent to (32), and the part (c) follows
from the definition of Frobenius norm.

4. An Algorithm and Numerical Examples

Based on the main results of this paper, we in this section
propose an algorithm for finding the least-square solutions
to the system (1). All the tests are performed byMATLAB 6.5
which has a machine precision of around 10−16.

Algorithm 1. (1) Input 𝐴 ∈ C𝑚×𝑛and 𝐵 ∈ C𝑛×𝑙, and
compute 𝑈 ∈ C𝑛×𝑛, 𝑅−1

𝐴
∈ C𝑚×𝑚, 𝑅−1

𝐵
∈ C𝑙×𝑙, Σ

𝐴
, Σ
𝐵
∈

C𝑛×𝑝, and𝐺, 𝑆 ∈ C𝑠×𝑠 by the CCD of matrix pair [𝐴∗, 𝐵].
(2) Input 𝐶 ∈ C𝑚×𝑛, 𝐷 ∈ C𝑛×𝑙, and compute 𝐶

𝑖𝑗
(𝑖 =

1, 2, 3, 4; 𝑗 = 1, 2, 3, 4, 5, 6) and 𝐷
𝑙𝑘
(𝑙 = 1, 2, 3, 4, 5, 6; 𝑘 =

1, 2, 3, 4) according to (37).
(3) Compute the least-square solutions of the system (1)

by (31).
(4) Compute the ∗congruence class of the least-square

and the minimum norm least-square solutions to the system
(1) according to (32) and (33).

Example 1. Suppose

𝐴 =

[

[

[

[

−1.625 0 −0.6875𝑖 0.875𝑖 0.3438 0

−2 0 −0.5𝑖 0.875𝑖 0.25 0

−0.75 0 −0.125𝑖 0.25𝑖 0.0625 0

2.625 0 0.6875𝑖 −0.875𝑖 −0.3438 0

]

]

]

]

,

𝐵 =

[

[

[

[

[

[

[

[

2 −2 0 −1

−5𝑖 6𝑖 0 2𝑖

31𝑖 −37𝑖 𝑖 −15𝑖

0 0 0 0

0 0 0 0

0 0 0 0

]

]

]

]

]

]

]

]

,
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𝐶 =

[

[

[

[

3 2 2 1 1 5

4 𝑖 𝑖 −𝑖 3 1

5 6 7 4 3 1

2 1 1 4 3 4

]

]

]

]

,

𝐷 =

[

[

[

[

[

[

[

[

𝑖 −𝑖 −𝑖 1

2 3 1 4

4 1 2 3

5 7 6 9

9 7 5 6

1 2 3 2

]

]

]

]

]

]

]

]

.

(39)

Applying Algorithm 1, we obtain the following:

𝑈 =

[

[

[

[

[

[

[

[

1 0 0 0 0 0

0 0 −𝑖 0 0 0

0 𝑖 0 0 0 0

0 0 0 0 0 𝑖

0 0 0 0 1 0

0 0 0 −𝑖 0 0

]

]

]

]

]

]

]

]

,

Σ
𝐴
=

[

[

[

[

[

[

[

[

1 0 0

0 0.5 0

0 0 0

0 0 0

0 0.25 0

0 0 1

]

]

]

]

]

]

]

]

, Σ
𝐵
=

[

[

[

[

[

[

[

[

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

]

]

]

]

]

]

]

]

,

𝑅
−1

𝐴
=

[

[

[

[

−1.625 −2 −0.75 2.625

1.375 1 0.25 −1.375

−0.875 0 −0.25 0.875

0.375 0 0.25 −0.375

]

]

]

]

,

𝑅
−1

𝐵
=

[

[

[

[

2 −2 0 −1

31 −37 1 −15

5 −6 0 −2

−44 52 −1 21

]

]

]

]

,

𝐺 = [0.5] , 𝑆 = [0.25] ,

(𝑅
𝐴
)

∗

𝐶𝑈 = (

5 3𝑖 −3𝑖 −9𝑖 4 5𝑖

14 −1 + 6𝑖 1 − 6𝑖 −19𝑖 11 1 + 10𝑖

32 −2 + 26𝑖 2 − 23𝑖 −22𝑖 25 2 + 25𝑖

53 −1 + 57𝑖 1 − 50𝑖 −34𝑖 38 1 + 46𝑖

) ,

𝑈
∗

𝐷𝑅
𝐵
= (

0.03 − 0.05𝑖 0.02 − 0.05𝑖 0.04 − 0.02𝑖 0.02 − 0.04𝑖

−0.51𝑖 −0.27𝑖 −0.33𝑖 −0.25𝑖

0.43𝑖 0.21𝑖 0.29𝑖 0.2𝑖

0.41𝑖 0.26𝑖 0.25𝑖 0.23𝑖

1.35 0.67 0.78 0.62

−1.27𝑖 −0.71𝑖 −0.82𝑖 −0.65𝑖

).

(40)

The least-square solutions to the system (1) are

𝑋 = 𝑈

(

(

(

5.03 − 0.05𝑖 0.02 + 2.95𝑖 0.04 − 3.02𝑖 −9𝑖 4 5𝑖

−0.51𝑖 −0.27𝑖 −0.33𝑖 0 0 0

0.43𝑖 0.21𝑖 0.29𝑖 𝑋
34

𝑋
35

𝑋
36

0.41𝑖 0.26𝑖 0.25𝑖 𝑋
44

𝑋
45

𝑋
46

2.02 − 0.06𝑖 0.864 − 0.366𝑖 0.498 + 1.448𝑖 76𝑖 44 4 + 40𝑖

−0.84𝑖 −0.5𝑖 −0.53𝑖 −22𝑖 25 2 + 25𝑖

)

)

)

𝑈
∗

, (41)

where𝑋
34
,𝑋
35
,𝑋
36
,𝑋
44
,𝑋
45
, and𝑋

46
are arbitrary. For arbitrary𝑋

34
,𝑋
35
,𝑋
36
,𝑋
44
,𝑋
45
, and𝑋

46
, there exists

a least-square solution inC6 × 6 of (1) which is ∗congruent to

𝑌 =

(

(

(

5.03 − 0.05𝑖 0.02 + 2.95𝑖 0.04 − 3.02𝑖 −9𝑖 4 5𝑖

−0.51𝑖 −0.27𝑖 −0.33𝑖 0 0 0

0.43𝑖 0.21𝑖 0.29𝑖 𝑋
34

𝑋
35

𝑋
36

0.41𝑖 0.26𝑖 0.25𝑖 𝑋
44

𝑋
45

𝑋
46

2.02 − 0.06𝑖 0.864 − 0.366𝑖 0.498 + 1.448𝑖 76𝑖 44 4 + 40𝑖

−0.84𝑖 −0.5𝑖 −0.53𝑖 −22𝑖 25 2 + 25𝑖

)

)

)

. (42)

There exists a minimum norm least-square solution in C6 × 6

of (1) which is ∗congruent to

𝑌 =
(

(

5.03 − 0.05𝑖 0.02 + 2.95𝑖 0.04 − 3.02𝑖 −9𝑖 4 5𝑖

−0.51𝑖 −0.27𝑖 −0.33𝑖 0 0 0

0.43𝑖 0.21𝑖 0.29𝑖 0 0 0

0.41𝑖 0.26𝑖 0.25𝑖 0 0 0

2.02 − 0.06𝑖 0.864 − 0.366𝑖 0.498 + 1.448𝑖 76𝑖 44 4 + 40𝑖

−0.84𝑖 −0.5𝑖 −0.53𝑖 −22𝑖 25 2 + 25𝑖

)

)

. (43)
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