Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 703529, 7 pages
http://dx.doi.org/10.1155/2014/703529

Research Article

The “Congruence Class of the Solutions to a System of

Matrix Equations

Yu-Ping Zhang and Chang-Zhou Dong

School of Mathematics and Science, Shijiazhuang University of Economics, Shijiazhuang 050031, China

Correspondence should be addressed to Chang-Zhou Dong; dongchangzhou@gmail.com

Received 14 May 2014; Revised 18 August 2014; Accepted 20 August 2014; Published 3 September 2014

Academic Editor: Qing-Wen Wang

Copyright © 2014 Y.-P. Zhang and C.-Z. Dong. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

We present the “congruence class of the least-square and the minimum norm least-square solutions to the system of complex matrix
equation AX = C, XB = D by generalized singular value decomposition and canonical correlation decomposition.

1. Introduction

Throughout we denote the complex m x n matrix space by
C™". The symbols I, A*, and ||A| stand for the identity
matrix with the appropriate size, the conjugate transpose, and
the Frobenius norm of A € C™", respectively. Recall that
matrices X, Y € C™" are in the same *congruence class if
there is a nonsingular P € C™" such that X = P*YP [1].
Investigating the classical system of matrix equations
AX=C, XB=D 1)
has attracted many people’s attention and many results have
been obtained about system (1) with various constraints,
such as Hermitian, positive definite, positive semidefinite,
reflexive, and generalized reflexive solutions (see [2-10]).
Studying the least-square solutions of the system of matrix
equations (1) is also a very active research topic (see [11-16]).
It is well known that Hermitian, positive definite and positive
semidefinite matrices are the special case of "congruence.
Therefore investigating the “congruence class of a solution of
the matrix equation (1) is very meaningful.

In 2005, Horn et al. [1] studied the possible *congruence
class of a square solution when linear matrix equation
AX = B is solvable. In 2009, Zheng et al. [17] describe
“congruence class of least-square and minimum norm least-
square solutions of the equation AX = B when it is not
solvable and discuss a *congruence class of the solutions of
the system (1) when it is solvable. To our knowledge, so far

there has been little investigation of *congruence class of the
least-square and minimum norm least-square solutions to (1)
when it is not solvable.

Motivated by the work mentioned above, we investigate
the *congruence class of the least-square and the minimum
norm least-square solutions to the system of complex matrix
equation (1) by generalized singular value decomposition
(GSVD) and canonical correlation decomposition (CCD).

2. The *Congruence Class of
the Solutions to (1)

Lemma 1 (see [4]). Let A € C™" and B € C™P. Then the
GSVD of A and B* can be expressed as

A=UZ,P, B = VZgP, (2)

where U € C™"™ and V € CP*? are unitary matrices, P €
C™" is nonsingular matrix,

ZAeCmX”, ZBECPX", r=rank<;;*>,
<IA )
_ Sa 0
ZA— OA >
t s r—s—t n—r
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(3)

I, and I are identity matrices, O, and Oy are zero matrices,
and

S = diag (B,....B;)  (4)

withl > o 2 - >0, >0,0< f; <--- < B <1, and
ociz+ﬁi2=1(i=1,...,s).

S, = diag (o, ..., ),

For convenience, in the following theorem we denote
Xn X X Xy

PXP" = | X3 X X33 Xay |’ (5)

t s r—-s—-t n-r
6
Dy, Dy, D3 (©)
Dy, Dy, Dy
PDV = Dy, Ds, Ds;
Dy, Dy, Dy
p-r+t s r—s-—t

Theorem 2. Let A, C € C™", B, D € C"?, and the GSVD of
A and B* be expressed as (2), and then one has the following.

(a) The system of matrix equation (1) has a solution in C"™"
if and only if

Cy =0, D;; =0, (i=1,2,34),
—1
C,=D,Sz,  Cp; =Dy, 7)
-1 —1 —1
SA CZZ = Dzsz > SA C23 = D23’

(b) In that case, the general solutions of (1) are

Cll C12 C13 C14
S;xl C21 S;xl C22 D 23 Sgl C24
X31 DSZSI_Sl D33 X34
X41 D4231_31 D43 X44

X=p" (P, ®

where X5, X41, X34, and X, are arbitrary.

(c) For arbitrary X5, X4, X34, and Xy, there exists a
solution in C™" of (1) which is " congruent to

C11 C12 C13 C14
Sgl C21 Sgl C22 D23 S;xl C24
X31 DSZSISI D33 X34
X41 D4ZS;31 D43 X44

Y:
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(d) There exists a minimum norm solution in C™" of (1)
which is * congruent to

C11 C12 C13 C14
SaCy SiCy Dy S;'Cy
0 DypSg' Dy 0
0 DpS' Dy O

Y = 10)

Proof. Using the GSVD of A and B* given by (2), we get

AX=C & Uz,PX=C < X ,PXP" =U"CP",

n
XB=D & XP'S;V" =D < PXP"S} = PDV.

By (2) and (5), £,PXP" and PXP*X; have the following
matrix decomposition:

X X X3 Xy )
0 0 0 0

ZAPXP* = <SAX21 SAX22 SAX23 SAX24

12
0 X,Sp Xi3 12

0 X5Sp X»s
0 X385 X33
0 X485 Xys

PXP*3y, =
and we have that system (1) is equivalent to

Xn X X Xy Cy Cp C3 Cyy
SaXor SaXy SaXos SaXos |=(Cu Gy Cy Cy |,
0 0 0 0

C31 C32 C33 C34

0 XlZSB X13 Dll D12 D13
0 XZZSB X23 — D21 D22 D23 .
0 X3ZSB X33 D31 D32 D33 ’
0 X4ZSB X43 D41 D42 D43

(13)

obviously, the system of matrix equation (1) has a solution in
C™" if and only if

D, =0, SAXzi = Czi’

XS = Dp, Xy =Gy X3 =Dj, (14)

i

(i=1,2,3,4).

Therefore, (1) has a solution in C"" if and only if (7) holds,
and a general form of the solutions can be expressed as (8);
for arbitrary X5, X,;, X34, and X, there exists a solution in
C™" of (1) which is " congruent to (9), and the part (d) follows
from the definition of Frobenius norm. ]

Remark 3. In 2009, Zheng et al. [17] discuss a “congruence
class of the solutions of the system (1) when it is solvable.
Our result in Theorem 2 is different with the result mentioned
above.
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3. The “Congruence Class of
the Least-Square Solutions to (1)

Lemma 4 (see [18]). Let the CCD of matrix pair [A, C] with

A e C™" C e C™* rank A = g, and rank C = h be given
as
A=U(Z,L0)E!, C=U(c0EZ, (15

where U is a unitary matrix and

_ A I,
=1 0 - 0 |, Ze=|3g (16)

are nonsingular matrices with the same row partitioning, and
g=i+j+t,

Aj=diag(Aypsee i), 1> Ay 202 4> 0,
A =diag(Appe.nAy), 0>A, 2 2A,;> 1,
2 2 _

Aj+A].—Ij,

U= (uy uy  u Uy us  Ug)
i j h-i-j m-h-j-t j t

17)

Lemma 5 (see [18]). Given E, F € C™", then there exists a
unique matrix S € C"™" such that

IS = EI° + 1S = FII* = min, (18)
and S can be expressed as
S=E+F (19)

Lemma 6 (see [10]). Given E, F e C™" Q; =
diag(ay,...,a,,), Q, = diag(b;,...,b,),a >0 @G =1,...,m),
and b; > 0 (j = 1,...,n), then there exists a unique matrix
S € C™" such that

2,8 - E|* +|SQ, - F||* = min, (20)
and S can be expressed as
S=® % (QE+FQ,), (21)
where
O = <%> e C™", (22)
a; +b;

Using Lemmas 5 and 6, we can easily obtain the following.

Lemma 7. Given E, F, G € C™", O, = diag(ay,...,a,,),
Q, = diagb,,...,b,), I, = diag(,...,i,), aq > 0@ =
1,...,m), bj >0( =1....,m,andi, =1k =1,...,n),
then there exist unique matrices S and W such that

Q.S+ QW — E|* + IS = FI* + [W - G|* = min, (23)

and S and W can be expressed as

S=F W=0=x(Q,(4F-E)+G), (24)

1 mxn
O=| —5 | C™". (25)
(bf +’i)

Lemma 8. Given E, F € C™", Q, = diag(a,,...,a,,), Q, =
diag(by,...,b,), a; > 0(i = L,...,m), and b; > 0(j =
1,...,n), then there exist unique matrices S and W such that

where

2,8 + Q,W - E|* = min, (26)

and S and W can be expressed as

S=0, W=0)'E (27)
Let A,C € C™",B,D € C"™,andrank A = p > rank B =
q. According to Lemma 4, there exist a unitary matrix U €

C™" and nonsingular matrices R, € C™"™ and Ry € C™,
such that the CCD of matrix pair [A", B] is given as

A*=U(240)R,),  B=U(Z0R,, (28
where 2, € C™F, 3, € C™,
I. 0 0 I. 0 0
0 G, 0 01, 0
0 0 0 00 I
_ _ q-r-s
Za 000 | Zp 00 0 ’
0S 0 00 0
0 0 I, 00 0
(29)

where p=r+s+t,

Gs = dlag (gr+1""’gr+s)’ 1> Ir+1 22 Gr+s > 0,
Ss = dlag (wr+l""’wr+s)’ 0> Wyiq 22 W, s > L
G +S8 =1,
U= (1 U Uy us  Ug)
r s gq-r-—s n-q-s—t st
(30)

Without loss of generality, let p = g, and then we have the
following results.

Theorem 9. Let A, C € C™", B, D € C"™, and the CCD of
matrix pair [A*, B] be expressed as (28), and then one has the
following.

(a) The least-square solutions to the system (1) are



D21 D22
X=U D31 D32
D41 D42
Y51 Y52

Ds; + Dg; D3y + Dgy D3z + Des

where X5y, X35, Xago Xaw Xusr and Xy are arbitrary, Ys; =
® * (S(GD,; — Cy) + Ds), i = 1,2,3, @ = (1/(w?,, +¢})) €

r+]
C™,ande, =1, j=1,...,s, k=1,...,s

Ciu+Dyy Cp+Dyy Ci3+ Dy

D, Dy,
D D
Y= 31 32
Dy Dy
Y5 Ys,

Ds, + Dg; D3y + Dgy D33+ Des

where Yo; = @ % (S(GDy — Cy;) + D), i = 1,2,3, @ =
(1/(wf+j+e,2()) €eC™, ande,=1,j=1,....,s, k=1,...,s.

Ch+Dyy Cp+Dy, Ciz+Dys

Dy, Dy,
D D
Y= 31 32
Dy Dy
Y5 Ys,

Ds, + Dg; D3y + Dgy D33+ Des

where Yo; = @ % (S(GDy — Cy;) + Ds;), i = 1,2,3, @ =
(1/(wf+j+e,2c)) €eC™, ande,=1,j=1,....,5, k=1,...,s.

Proof. It follows from (28) that

zA) U'X=C

AX=C<=>(R;§)*<O

= (ZOA) U'X = (R,)°C,

XB =D & XU (24,0)R;' = D & XU (24,0) = DR,
(34)
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Cu Cis Cis
D, 0 0 0
Ds;, X34 X35 X36 U, (1)
Dy, X Xys X4s
Ys3 371C24 571C25 371C26
Cyy Css Css

(b) For arbitrary X5, X35, Xs6, Xua» Xas» and Xy, there
exists a least-square solution in C™" of (1) which is
*congruent to

C14 CIS C16
D,, 0 0 0
D33 X34 X35 X36 X (32)
D43 X44 X45 X46
Ys3 §'Cy §7'Cps §7'Cy
C34 C35 C36

(c) There exists a minimum norm least-square solution in
C™" of (1) which is " congruent to

C14 CIS C16
D,, 0 0 0
D 0 0 0
33 X (33)
Dy, 0 0 0
Y53 S_1C24 S_ICZS S_1C26
C34 C35 C36

Then,

IAX - CI* + |XB - D|I*

2
+||XU(25,0) - DRy

()es-m

5 (35)

H<20A> U*XU - (R,)’CU

+[|U* XU(Z4,0) - U DRy,
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Assume that

X X Xi3 Xy Xy5 X
Xo1 Xo Xp3 Xoy Xps Xog
Xa Xay Xan Xiay Xie X
U* XU = 31 A3 Az Asg Ass Ay | 36
Xy X Xyz Xy Xys Xy (36)
X5 X5y Xs3 Xsy Xs5 Xse
Xe1 Xer Xe3 Xoa Xos Xeg
Ci Gy G5 Gy G5 Cyg
* C C
(R,)'CU = 21 sz 23 Cag Cos Cos |
31 C3p Caz Cay Cy5 Cyg
Cu Cp Cy5 Cyy Cys Cyg
Dy, Dy, Dy3 Dy (37)
D,; Dy, Dy; Dy,
D D.. D
U*DR. = st Dsp Dyg Dy}
B Dy Dy, Dys Dy
Ds; Ds, Dsy Dsy
Dg; Dg, Dgz Dey
and then

" 2

I‘(ZOA> U"XU - (R)"CU| + [U"XU(Z,0) ~U" DRy
Xll XIZ e X16

_ GX21 + SX51 GX22 + SXSZ e GX26 + SX56
Xg Xe Xe6
0 0 v 0
2

Cll C12 C16

Xll X12 X13 0
X21 X22 X23 0
+ . . . .
X61 X62 X63 0
Dll D12 D13 D14 ?
D21 D22 D23 D24
D61 D62 D63 D64
= Xy, - C11”2 +[1X5, - Dll”2 +[1X, - C12||2
+ X1, - Du”2 + X5 - Cn"2 + X5 - Dls"2
+ | X1 ~ C31||2 + | X1 ~ Dsl"2 + | X2 ~ C32||2

+[| X6z — D62”2 + ]| Xes — Csa"2 + ]| Xes — Dss"2

5

+]1GX, + X5, = Cor|” + | X1 = Do |
+]|Xs1 = Dsy | + |GX oy + SXs5 - Cos |
+ [ X5 - Dzznz + [ X5, - Dszu2
+|GX 5 + SX55 = Cos|* + | X3 = D3
+ ]| Xs3 = Dss||* + | GX 4 + SX54 = Coa”
+]|GX s + X5 — Cos||” + |GX o6 + SX 55 — Cog||”
X = Cull” + X5 = Cusl” + %36 - Cugl”
+ [ Xes - C34||2 + [ Xes - C35”2 + [ Xes - Css”2
+ [ X5 - 1)31“2 + [ X5, - D32”2 + [ X35 - D33”2
+ Xy = D[]+ [ X2 = Dia[* + | X5 = D[

(38)

By Lemmas 5, 7, and 8, a general form of the least-square
solutions can be expressed as (31); for arbitrary X5, X5, X565
X4, X4s5, and X, there exists a least-square solution in C™"
of (1) which is *congruent to (32), and the part (c) follows
from the definition of Frobenius norm. O

4. An Algorithm and Numerical Examples

Based on the main results of this paper, we in this section
propose an algorithm for finding the least-square solutions
to the system (1). All the tests are performed by MATLAB 6.5

which has a machine precision of around 107*°.

Algorithm 1. (1) Input A € C™"and B € C™, and
compute U € C”", R;! € C™™ R ¢ C™,3,, 3, ¢
C™?,and G, S € C™ by the CCD of matrix pair [A", B].

(2) Input C € C™", D e C™, and compute Cy (i =
1,2,3,4 j = 1,2,3,4,5,6) and Dy, (I = 1,2,3,4,5,6; k
1,2,3,4) according to (37).

(3) Compute the least-square solutions of the system (1)
by (31).

(4) Compute the *congruence class of the least-square
and the minimum norm least-square solutions to the system
(1) according to (32) and (33).

Example 1. Suppose

-1.625 0 -0.6875; 0.875i 0.3438 0
A= -2 0 -05i 0875 025 0
-0.75 0 -0.125; 0.25i 0.0625 0|’
2.625 0 0.6875i -0.875i —0.3438 0
2 -2 0 -1
=5 6i 0 2
B= 31i -37i i —15i
0 0 0 0 |
0 0 0 O
0 0 0 O
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322115 -1.625 -2 -0.75 2.625
C= 4 i i —-i 31 R = 1.375 1 0.25 -1.375
1567 4 31} A 7 1-0.875 0 -0.25 0.875 |’
211 4 34 0375 0 0.25 -0.375
i -1 —il 5 5 0
23 14 31 _371 _115
41 2 3 R = N B
= B _ |
D=157 69 > =60 =2
9 7 5 6 -44 52 -1 21
b2 G=10 S=10.2
= 0.5/, = {0.25(,
) 0] [0.25]
Applying Algorithm 1, we obtain the following: > 3i . _3i. _91.. 4 5 )
(Ry)"CU = 14 -1+6i 1-6i —-19 11 1+ 10i
100 0 00 A - 32 =2+426i 2—-23i —22i 25 2+ 25i ?
00 - 000 53 —1+57i 1-50i —34i 38 1 +46i
U 0:i 0 0O00O0
= P 0.03 — 0.05i 0.02 —0.05; 0.04 —0.02i 0.02 —0.04i
8 8 8 8 (1) (’) ~0.51i ~0.27i ~0.33i ~0.25i
. 0.43i 0.21i 0.29i 0.2i
i U DRg = 0.41i 0.26i 0.25i 0.23i
000 100 1.35 0.67 0.78 0.62
1 0 0 100 —1.27i —0.71i —0.82i —0.651
0 05 0 010 (40)
0o 0 O 001
Za= 0o 0 of’ 2p = 000O0]|
0 0250 000
0 0 1 000 The least-square solutions to the system (1) are
5.03 -0.05; 0.02 +2.95i 0.04-3.02i -9i 4 5i
-0.51i ~0.27i ~0.33i 0o 0 0
- 0.43i 0.21i 0.29i X X5 Xag | "
0.41i 0.26i 0.25i Xy Xis  Xuo
2.02-0.06i 0.864—0.366i 0.498 +1.448i 76i 44 4+ 40i
—0.84i —-0.5i —0.53i —22i 25 24251
where X5, X35, X6, Xyg» Xys5, and X ¢ are arbitrary. For arbitrary X,,, X35, X6, X44> X 45, and X 4, there exists
aleast-square solution in C® * ® of (1) whichis *congruent to
5.03 -0.05; 0.02 +2.95i 0.04-3.02i -9 4 5i
~0.51i ~0.27i ~0.33i 0 0 0
0.43i 0.21i 0.29i Xy X X
Y = , . , S . (42)
0.41i 0.26i 0.25i Xy Xis  Xue
2.02 - 0.06i 0.864—0.366i 0.498+1.448i 76i 44 4+ 40i
—0.84i —-0.5i —0.53i -22i 25 2+25i
There exists a minimum norm least-square solution in C° *
of (1) which is *congruent to
5.03 -0.05; 0.02 +2.95i 0.04-3.02i -9 4 5i
-0.51i -0.27i -0.33i 0 0 0
0.431 0.217 0.291 0 o0 0
Y= 0.41i 0.26i 0.25i 0 o0 0 (43)

2.02 -0.06i 0.864 —0.366i 0.498 + 1.448i 76i 44 4+ 40i
—0.84i -0.5i —-0.53i =221 25 2+ 251
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