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Synthetic biology opens up the possibility of creating circuits that would not survive in the natural world and studying their
behaviors in living cells, expanding our notion of biology. Based on this, we analyze on a synthetic biological system the effect
of coupling between two instability-generating mechanisms. The systems considered are two topologically equivalent synthetic
networks. In addition to simple periodic oscillations and stable steady state, the system can exhibit a variety of new modes of
dynamic behavior: coexistence between two stable periodic regimes (birhythmicity) and coexistence of a stable periodic regime
with a stable steady state (hard excitation). Birhythmicity and hard excitation have been proved to exist in biochemical networks.
Through bifurcation analysis on these two synthetic cellular networks, we analyze the function of network structure for the collapse
and revival of birhythmicity and hard excitation with the variation of parameters. The results have illustrated that the bifurcation
space can be divided into four subspaces for which the dynamical behaviors of the system are generically distinct. Our analysis
corroborates the results obtained by numerical simulation of the dynamics.

1. Introduction

The successful construction of the first synthetic oscillator in
2000 signaled the entry into the new era of artificial cellular
rhythms. Known as the repressilator, this oscillator, expressed
inE. coli, consists of a set of three repressors coupled cyclically
[1]. Having been shown to produce sustained oscillations
in neural networks, such regulatory structure is reminiscent
of recurrent cyclic inhibition [2]. Following this first suc-
cess, a series of synthetic oscillatory networks expressed in
bacteria or mammalian cells had been developed, mostly
based on genetic regulation [3–7]. These synthetic networks
exhibit oscillations with tunable frequencies covering a wide
range, different from tens of minutes up to 24 h. All these
synthetic oscillators are based on one form or another of
negative feedback, the realization of which is often highly
sophisticated. Since then, negative feedback has proved
the necessity of occurrence of oscillations. What interests
researchers the most in synthetic oscillators is that they

allow finely tuning the parameters that control the oscillatory
dynamics of the regulatory network. This contributes to a
detained understanding of the conditions in which periodic
bahavior arises in biological systems. Such endeavor could
be facilitated by the construction of synthetic oscillators
uncoupled from natural cellular rhythms, while the latter are
often intertwined.

As a result of interactions between numerous intracellular
or extracellular biomolecules, complex cellular behaviors
could be easily found, such as bistability [8–12], oscillation
[13–18], birhythmicity [19–24], hard excitation, and even
chaotic phenomena. Interestingly, originating from different
mechanisms based on distinct modes of cell regulation,
several rhythms of different periods in certain cells may
coexist.

Birhythmicity, namely, the coexistence between two sta-
ble regimes of limit cycle oscillations, had been reported in
the various types of complexCa2+ oscillationswhich can arise
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in a model based on the mechanism of Ca2+-induced Ca2+
release (CICR) that takes into account the Ca2+-stimulated
degradation of inositol 1,4,5-trisphosphate (InsP3) by a 3-
kinase [21]. Besides simple periodic behavior, this model
for cytosolic Ca2+ oscillations in nonexcitable cells shows
complex oscillatory phenomena like bursting or chaos. They
showed that the model also admitted a coexistence between
two stable regimes of sustained oscillations (birhythmicity).
And what is more, birhythmicity also had been discovered
in Drosophila; circadian oscillations in the levels of two
proteins, PER and TIM, result from the negative feedback
exerted by a PER-TIM complex on the expression of the
PER and TIM genes which code for these two proteins. On
the basis of these experimental observations, they recently
proposed a theoretical model for circadian oscillations of the
PER and TIM proteins in Drosophila. Here they showed that
for constant environmental conditions this model is capable
of displaying birhythmicity. Birhythmicity, even multirhyth-
micity, had been reported in synthetic multicellular systems
induced by cell-to-cell communication [25]. And induced
by communication, the two coupled synthetic repressila-
tors could also show inhomogeneous limit cycles [26, 27].
Inhomogeneous limit cycle, which is also named as hard
excitation, is defined as coexistence of a stable periodic
regime with a stable steady state.

Moreover, it is ubiquitous for coupled feedback loops
occurring in many contexts (such as metabolism, sig-
nalling, and development) to control important aspects of
cell physiology, for example, circadian rhythms [16–18],
DNA synthesis, mitosis, and the development of somites in
vertebrate embryos. For the sake of interactions between
numerous intracellular or extracellular biomolecules, cells
exhibit complex behaviors.Therefore, in order to understand
complex cellular behaviors, it is important to investigate the
topology of cellular circuits and corresponding dynamical
characteristics. Recently, structures and functions of network
motifs have been investigated numerously. For example, neg-
ative feedback induces oscillation, positive feedback induces
tunability, and so on. The present researches on natural
network or synthetic networks all proved that feedback loops
play an important role in maintaining cellular homeostasis,
producing bistability,multistability, sustained oscillation, and
birhythmicity [24], and making critical decisions such as cell
fate and cell development decisions.

However, such feedback loops are usually found as a
coupled structure rather than a single isolated form in
various cellular circuits [28–30]. Although there have been
some studies on the coupled feedback loops for particular
cases, few unified investigations have been reported. Then,
questions appear. What are the advantages of such coupled
feedback loops, since they must have evolved to achieve
specific regulatory functions in natural cellular circuits. To
find the answer, we explore the dynamic characteristic of
the coupled feedback structures, which are composed of
one central negative feedback loop (three-node feedback
loop just like the repressilator) and one additional feedback
loop. In this paper, we consider the coupled feedback loops
that add only one node and two regulations to the central
three-node negative feedback loops. The all possible twelve

coupled network structures are divided into three types, and
the regular dynamics had been discussed [31]. According to
detailed investigation, we found two topologically equivalent
synthetic networks shown in Figure 1 could illustrate enor-
mous dynamical behaviors.

The central negative feedback loop consisting of three
repressors (𝑋,𝑌, and𝑍) has the potential function to generate
sustained oscillations. However, many biological oscillators
also have an additional positive or negative feedback loop,
raising the question of what advantages the extra feedback
loop imparts. For simplicity, the extra feedback loops are
composed of the original components of the central negative
feedback loop and one additional component, 𝑆, with two
regulations. Through computational analysis, we investigate
the dynamics behavior of all the twelve coupled feedback
structures. We analyze the birhythmicity and hard excitation
by means of bifurcation diagrams and locate the different
domains of complex oscillatory behavior in parameter space.
Through the investigation of the three types of coupled
feedback loops [31], only type (2) NN (a negative feedback
loop + a negative feedback loop) could show birhythmicity
and hard excitation in proper parameter intervals.

Based on our modeling method, we gave the mathe-
matical equation about the network shown in Figure 1(c) as
above. In the context of biological networks, we take 𝛼 as
the main bifurcation parameter. Here we choose [0, 200] as
the considering interval of parameter 𝛼 during the single
parameter bifurcation. Somewhat surprisingly we have found
that the two parameters bifurcation model incorporating the
formation of the two negative feedback loops not only can
account for regular oscillations in proper parameter intervals,
but also may give rise in other parameter intervals to more
complex oscillatory phenomena including birhythmicity and
hard excitation, the collapse and revival of which depend on
the parameters differently.

2. Mathematical Modeling

Since it is common for cellular networks composed of com-
plicated interconnections among components, those sub-
networks of particular functioning are often identified as
network motifs. Intriguingly, among such network motifs,
feedback loops are very often found as a coupled structure
in cellular circuits, which are thought of playing important
dynamical roles. Among these synthetic integrated genetic
circuits, we mainly focus on one negative feedback loop with
three repressors plus one additional feedback loop by adding
another regulator. The coupled feedback loops with different
topology structures are shown in Figure 1. In this paper we
investigate the function and dynamical behaviors of these two
topologically equivalent genetic circuits of coupled negative
feedback loops.

In order to investigate the potential dynamical behaviors
of cellular circuits, which are in general quite complicated
due to the nonlinear interaction among the components,
we model the interconnected negative feedback loops in
the present transcriptional regulatory network with Hill’s
kinetics without considering the kinetic equation of genes.
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Figure 1: Schematic diagrams of the coupled two negative feedback genetic circuits. Panel (a) is the transcriptional regulation networks for
two different coupled negative feedback loops. panel (b) is the simplified and separated schematic diagram of panel (a). In panel (b), the black
circle and the white circle are of opposite regulating functions, namely, “activation → + repression ⊣” shown in panel (c) or “repression ⊣ +
activation → ” shown in panel (d). Arrows denote activation and “⊣” symbols denote repression.The central negative feedback loop consists
of three components (𝑋, 𝑌, and 𝑍); meanwhile, the additional feedback loop consists of components𝑋, 𝑆, 𝑌, and 𝑍.

When component 𝑋 activates 𝑌, we describe the dynamics
as (𝑋/𝐾

𝑥𝑦
)
𝑛
/(1 + (𝑋/𝐾

𝑥𝑦
)
𝑛
); otherwise, when component 𝑋

inhibits𝑌, the kinetics equation iswritten as 1/(1+(𝑋/𝐾
𝑥𝑦
)
𝑛
).

Among the synthetic networks, the transcription processes
of gene 𝑦 are regulated by 𝑋 or 𝑆. The whole network is
composed of two negative feedback networks, where one
consists of components𝑋,𝑌, and𝑍 and the other one consists
of components 𝑋, 𝑆, 𝑌, and 𝑍. In Figure 1, the black and the
white circles show opposite regulating functions.

When the regulations among components 𝑋, 𝑆, and
𝑌 are “activation → + repression ⊣,” namely, 𝑋 activates
𝑆 and 𝑆 represses 𝑌, based on the above assumption, the
dimensionless ordinary differential equation (ODE) model
for the coupled negative feedback networks in Figure 1(c) is
described in (1). Then we use “CA1” (one central negative
feedback loop plus one additional feedback loop of compo-
nents 𝑋, 𝑆, 𝑌, and 𝑍, where regulations among components
𝑋, 𝑆, and𝑌 are “activation → + repression⊣”) to denote these
coupled negative feedback loops:
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Figure 2: Bifurcation diagram of component𝑋 versus parameter 𝛼
about model (1).

Otherwise, when the regulations among these three
components are “repression ⊣ + activation → ,” namely 𝑋
represses 𝑆 and 𝑆 activates𝑌, theODEmodel for Figure 1(d) is
described in (2). And these coupled negative feedback loops
are denoted by “CA2” in this paper:
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Figure 3: Typical time courses of state variable𝑋 for the five parameter ranges (from left to right): (a) 𝛼 = 14, single limit cycle oscillation for
initial values𝑋(0) = 95, 𝑌(0) = 96,𝑍(0) = 15, and 𝑆(0) = 97; (b) 𝛼 = 15.5, birhythmicity, coexistence of two regimes of sustained oscillations
corresponding to the large for initial values 𝑋(0) = 42, 𝑌(0) = 91, 𝑍(0) = 79, and 𝑆(0) = 95 and small amplitude periodic orbits for initial
values𝑋(0) = 25, 𝑌(0) = 16, 𝑍(0) = 11, and 𝑆(0) = 49; (c) 𝛼 = 18, hard excitation, coexistence of two regimes of stable steady state for initial
values 𝑋(0) = 85, 𝑌(0) = 34, 𝑍(0) = 58, and 𝑆(0) = 22 and sustained oscillation for initial values 𝑋(0) = 25, 𝑌(0) = 34, 𝑍(0) = 58, and
𝑆(0) = 22; (d) phase diagram of the state variables𝑋 and 𝑌 with the same parameter values and initial values in panel (b).
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In the above two mathematical models, 𝑏
𝑥,𝑦,𝑧,𝑠

, 𝑎
𝑥,𝑦,𝑧,𝑠

, 𝛼,
and 𝑑

𝑥,𝑦,𝑧,𝑠
denote basal, activation/inhibition, and degrada-

tion rates of the regulatory factors, respectively. The values
used in the simulation of parameters are 𝑎

𝑥
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= 100.

𝑛 indicates the sensitivity of one component with respect to
its regulators. 𝐾

𝑖𝑗
, (𝑖, 𝑗 = 𝑥, 𝑦, 𝑧, 𝑠) denote the threshold of 𝑖

inducing a significant response of 𝑗. These values are taken
based on those in [32, 33]. To see how the additional negative
feedback loop affects the dynamical behaviors of the central
negative feedback loop, we solve the differential equations

numerically and plot the bifurcation curves with the help of
software Matlab and XPPAUT.

3. Results

By using XPPAUT, we identify the ranges of the parameter,
𝛼, over which the system exhibits limit cycle oscillations,
birhythmicity, hard excitation, and so forth, by locating the
bifurcations point at which corresponding dynamics appear
and disappear. What is more, how these various dynamical
behaviors are influenced by two different parameters is inves-
tigated in detail with two parameters bifurcation analysis.

3.1. Bifurcation Analysis for Model (1). Themathematic equa-
tions for networks in Figures 1(c) and 1(d) are described as
model (1) and model (2). And values of parameters are just
as those given in Section 1. In examining the dynamics of
these twomodels, we choose𝛼 as a bifurcation parameter and
then identify the range of the parameter for corresponding
dynamical behaviors. To clearly investigate the evolving of



Journal of Applied Mathematics 5

10 15 20 25 30
0

100

200

300

400

500

SLC

SLC
HE

BR BR

SSS

𝛼

a
s

(a)

10 15 20 25 30
0

100

200

300

400

BR HE BR

SLC

SLC

SSS

𝛼

a
x

(b)

10 15 20 25
0

100

200

300

400

500

SSS

BR
BR

HESLC
SLC

𝛼

a
y

LP
HB

(c)

0 5 10 15 20 25 30
0

100

200

300

400

500

SLC
SLC

SSS

HE

BR BR

𝛼

a
z

LP
HB

(d)

Figure 4: Bifurcation diagrams of two parameters showing the domains of different dynamical behaviors for model (1). (a) 𝛼 and 𝑎
𝑠
, (b) 𝛼 and

𝑎
𝑥
, (c) 𝛼 and 𝑎

𝑦
, and (d) 𝛼 and 𝑎

𝑧
. Notations are SLC for single stable limit cycle, SSS for stable steady state, BR for birhythmicity, and HE for

hard excitation. Black solid lines stand for limit point bifurcation (LP); dot-dashed lines denote Hopf bifurcation (HB). All these notations
represent the same meaning in the following bifurcation diagrams about two parameters throughout the whole paper. The diagrams have
been established by numerical integration of (1) with the parameter values listed in Section 2.

the system’s dynamics, the coupled negative feedback loops
in Figure 1(c) are analyzed at first.

From Figure 2, it is easy to observe that simple stable
steady state (SSS), single limit circle (SLC), birhythmicity
(BR), and hard excitation (HE) exist by changing the values of
parameter 𝛼. For the sake of being observed clearly, the main
part, [12, 30], of the considered parameter interval, [0, 200],
is shown in Figure 2 with bifurcation processing exhibited.
Through numerical analysis with the help of XPPAUT, we
discover that the considered parameter interval, [0, 200], is
divided into five subintervals: (I–V). During the subintervals
I = [0, 14.91] and V = [21.32, 200], there are one unstable
steady state (the dashed lines shown in Figure 2) and one
stable limit cycle (the solid blue circles) about the system.
Points 𝛼 = 14.91 and 𝛼 = 21.32 are limit points, at which
bifurcations appear. In detail, in subintervals II = [14.91, 15.85]
and IV = [20.85, 21.32], the system exhibits various dynamical
behaviors: (1) an unstable steady state (the dashed lines);

(2) a small-amplitude stable periodic solution (the red solid
circles); (3) a middle-amplitude unstable periodic solution
(the black circles); and (4) a large-amplitude stable periodic
solution (the black solid circles). That is to say, birhythmicity
exists in subintervals (II) and (IV). Depending on the initial
values taken, one of the two stable periodic solutions is to
appear. Points 𝛼 = 15.85 and 𝛼 = 20.85 are Hopf bifurcation
points. Lastly, in the subinterval III = [15.85, 20.85], the
system shows hard excitation, namely, inhomogeneous limit
cycles: (1) one stable steady state (the black solid line); (2)
one unstable periodic solution (the black circles); and (3) one
stable large-amplitude periodic solution.

According to the investigation above, there are four
bifurcation points: two limit points 14.91 and 21.32; two Hopf
bifurcation points 15.85 and 20.85. As 𝛼 becomes at the
beginning of low values, the system shows single limit cycle;
then it shows birhythmicity as 𝛼 climbs to and crosses the
limit point 14.91, without jumping over the Hopf bifurcation
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Figure 5: Bifurcation diagram of parameter 𝛼 versus parameters 𝑏
𝑠
, 𝑏
𝑥
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, and 𝑏

𝑧
for model (1).

point 15.85. Between two Hopf bifurcation points 15.85 and
20.85, it shows hard excitation.With the values of𝛼 exceeding
the Hopf bifurcation point 20.85, the system provides almost
symmetrical dynamical phenomena, birhythmicity at first,
then returning back to single limit cycles.

What is more, in Figure 3, the time courses of state
variable𝑋 are illustrated for three examples of these different
dynamical behaviors: single stable limit cycle (SLC) at 𝛼 = 14;
two different amplitudes oscillations at 𝛼 = 15.5, achieved
by using different initial values; and hard excitation, namely,
one stable steady state and one stable periodic orbit at 𝛼 =
18. Phase diagrams of the two stable periodic orbits in
Figure 3(b) are shown in Figure 3(d). Figure 3(c) shows stable
steady state with 𝑋(0) = 85, 𝑌(0) = 34, 𝑍(0) = 58, and
𝑆(0) = 22 and oscillation with 𝑋(0) = 25, 𝑌(0) = 34,
𝑍(0) = 58, and 𝑆(0) = 22 as 𝛼 = 18.

Models of synthetic genetic applets usually either consist
of single synthetic units [1, 34] or exhibit different oscillatory
behaviors [35, 36]. There are many study results reported
recently describing different types of oscillation in networks
of synthetic genetic oscillators. In particular, their models
exhibit multistability, oscillation death, inhomogeneous limit
cycles, and inhomogeneous steady state. All of these have
been proved to exist for biologically realistic parameter
ranges. In this paperwe present a detailed bifurcation analysis

that allows us to determine the origin of the different solu-
tions and the scenarios of transitions between them, therefore
providing deeper qualitative and quantitative conclusions
about the structure and dynamical behavior of the system.

The further bifurcation analysis about two parameters
is performed using the XPPAUT and Matlab packages for
two topological equivalent coupled genetic oscillators and
shows that already two negative feedback loops provide a
large variety of possible regimes. Figures 4–7 and Figures 8–
11 illustrate the two parameter bifurcation domains for model
(1) and model (2), respectively.

FromFigure 4, it is easy to observe that the phenomena of
birhythmicity and hard excitation exist in U-shape domains,
dominated by the limit point bifurcation lines. Then the U-
shape domains are divided into several small domains by two
Hopf bifurcation lines. Nevertheless, the values of parameters
𝑎
𝑠
and 𝛼 on the U-shape lines are just the threshold for the

system illustrating birhythmicity and hard excitation. If the
values of 𝑎

𝑠
, 𝑎
𝑥
, 𝑎
𝑦
, and 𝑎

𝑧
are lower than the threshold values

(the values on the bottom lines of the U-shape), the system
just shows single stable limit cycle only or stable steady state
only. Moreover, no matter the values of 𝛼 are smaller than
the left threshold lines or larger than the right threshold
lines of the U-shape, the system just shows single stable
oscillations. All the threshold values for 𝑎

𝑠
, 𝑎
𝑥
, 𝑎
𝑦
, and 𝑎

𝑧
are
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Figure 6: Bifurcation diagram of parameter 𝛼 versus parameters 𝑑
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for model (1).

lower limit. However, there are minimum and maximum of
𝛼 for the system showing BR and HE. Moreover, the limit
point bifurcation lines andHopf bifurcation lineswill become
superposition as the values of 𝑎

𝑠
, 𝑎
𝑥
, 𝑎
𝑦
, and 𝑎

𝑧
increase.

Figure 5 shows the bifurcation diagrams of parameters 𝛼
versus 𝑏

𝑠
, 𝑏
𝑥
, 𝑏
𝑦
, and 𝑏

𝑧
separately in four subpanels. How-

ever, the situations of bifurcation domains for BR and HE
have the reverted U-shape compared to those above except
that the 𝛼-𝑏

𝑠
bifurcation domains still have the similar U-

shape to 𝛼-𝑎
𝑠
. The U-shape and reversed U-shape lines also

represent the limit point bifurcation lines. Then the U-shape
and the reversed U-shape domains are also divided into sev-
eral small domains by Hopf bifurcation lines. Nevertheless,
the values of parameters 𝑎

𝑠
and 𝛼 on the U-shape and the

reversed U-shape lines are just the threshold for the system
illustrating birhythmicity and hard excitation. If the values
of 𝑏
𝑥
, 𝑏
𝑦
, and 𝑏

𝑧
are lower than the threshold values (the

values on the top lines of the reversed U-shape), the system
just shows single stable limit cycle only or stable steady state
only. Moreover, no matter the values of 𝛼 are smaller than
the left threshold lines or larger than the right threshold lines
of the reversed U-shape, the system just shows single stable

oscillations. All the threshold values for 𝑎
𝑠
, 𝑎
𝑥
, 𝑎
𝑦
, and 𝑎

𝑧
are

lower limit. However, there are minimum andmaximum of 𝛼
for the system showingBR andHE.The exceptional situations
in Figure 5(a) are similar to those in Figure 4.

Figure 6 shows the bifurcation diagrams of parameters
𝛼 versus 𝑑

𝑠
, 𝑑
𝑥
, 𝑑
𝑦
, and 𝑑

𝑧
separately in four subpanels.

From Figure 6, it is easy to observe that the domains of
birhythmicity and hard excitation in Figures 6(c) and 6(d)
are all closed. In the closed domains dominated by the limit
point bifurcation lines, they are also divided into several small
domains byHopf bifurcation lines. Nevertheless, the values of
𝑑
𝑠
, 𝑑
𝑥
, 𝑑
𝑦
, 𝑑
𝑧
, and𝛼on theU-shape lines are just the threshold

for the system illustrating birhythmicity and hard excitation.
There are upper and lower limits for 𝑑

𝑥
, 𝑑
𝑦
, and 𝑑

𝑧
and only

upper limits for 𝑑
𝑠
since the system could show BR and HE.

Figure 7 shows the bifurcation diagrams of parameters
𝛼 versus 𝐾

𝑠𝑦
, 𝐾
𝑦𝑧
, 𝐾
𝑧𝑥
, 𝐾
𝑥𝑠
, 𝐾
𝑥𝑦
, and 𝑛 separately in six

subpanels. From Figure 7, it is easy to observe that the
domains of BR and HE are almost closed, where the shapes
of the closed domains are different from those in Figure 6.
The superposition of limit point bifurcation lines and Hopf
bifurcation lines also appears.
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Figure 7: Bifurcation diagram of parameter 𝛼 versus parameters 𝐾
𝑠𝑦
, 𝐾
𝑦𝑧
, 𝐾
𝑧𝑥
, 𝐾
𝑥𝑠
, 𝐾
𝑥𝑦
, and 𝑛 for model (1).

3.2. Bifurcation Analysis for Model (2). With the same anal-
ysis as above about the network shown in Figure 1(d), we
discover that the considered parameter interval [0, 200] of
𝛼 is also divided into five subintervals (the single parameter
bifurcation of 𝛼 is similar to that in Figure 2 and not shown
here): (I–V). During the subintervals I = [0, 16.06] and V =
[23.41, 200], there are one unstable steady state and one stable
limit cycle about the system. Points 𝛼 = 16.06 and 𝛼 = 23.41
are limit points, where bifurcations are present. In detail,
in subintervals II = [16.06, 16.62] and IV = [22.88, 23.41],
the system exhibits existence of many kinds of dynamic

behaviors: (1) an unstable steady state; (2) a small-amplitude
stable periodic solution; (3) a middle-amplitude unstable
periodic solution; and (4) a large-amplitude stable periodic
solution. Namely, birhythmicity exists in subintervals (II) and
(IV). Depending on the initial values, one of the two stable
periodic solutions appears. Points 𝛼 = 16.62 and 𝛼 = 22.88
are Hopf bifurcation points. Lastly, in the subinterval III =
[16.62, 22.88], the system shows hard excitation: (1) one stable
steady state; (2) one unstable periodic solution; and (3) one
stable large-amplitude periodic solution. The different time
courses of different rhythmicity are easily obtained and very
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Figure 8: Bifurcation diagrams of two parameters showing the domains of different dynamical behaviors for model (2). (a) 𝛼 and 𝑎
𝑠
, (b) 𝛼

and 𝑎
𝑥
, (c) 𝛼 and 𝑎

𝑦
, and (d) 𝛼 and 𝑎

𝑧
for model (2).

similar to those in Figure 3. Therefore, they are not shown
here.

In model (1), the additional regulations among 𝑋, 𝑆, and
𝑌 are “activation → + repression ⊣” shown in Figure 1(c)
while in model (2) the additional regulations are “repression
⊣ + activation → ” shown in Figure 1(d). As the central
negative feedback loop shows oscillation, the additional loops
should show oscillation or stable steady state for “CA1” and
“CA2” to exhibit birhythmicity and hard excitation. From
Figure 8, it is easy to observe that the phenomena of BR
and HE exist in U-shape domains in Figures 8(c) and 8(d),
dominated by the limit point bifurcation lines. These are
the same phenomena as those in model (1). However, in
Figure 8(a), the threshold shaped by limit point bifurcation
for parameters 𝛼 and 𝑎

𝑠
is different from that in Figure 4(a)

for model (1). To illustrate BR and HE, there is a lower limit
of parameter 𝑎

𝑠
for model (1) and an upper limit of 𝑎

𝑠
for

model (2).Then the reversed U-shape domains in Figure 8(a)
or U-shapes in Figures 8(b), 8(c), and 8(d) domains are
divided into several small domains by Hopf bifurcation lines.

Nevertheless, the values of parameters 𝑎
𝑠
and 𝛼 on the U-

shape lines are just the threshold for the system illustrating
birhythmicity and hard excitation. If the values of 𝑎

𝑠
are

higher than the threshold values (the values on the upper
lines of the reversed U-shape), the system just shows single
stable limit cycle only or stable steady state only. Moreover,
no matter the values of 𝛼 are smaller than the left threshold
lines or larger than the right threshold lines of the reversed
U-shape, the system just shows single stable oscillations. All
the threshold values for 𝑎

𝑠
are upper limit. However, there are

minimum andmaximum of 𝛼 for the system showing BR and
HE. Except for 𝛼 versus 𝑎

𝑠
, the bifurcation situations for 𝛼

versus 𝑎
𝑥
, 𝑎
𝑦
, and 𝑎

𝑧
are similar to those in model (1) shown

in Figure 4. Moreover, the limit point bifurcation lines and
Hopf bifurcation lines will also become superposition as the
values of 𝑎

𝑥
, 𝑎
𝑦
, and 𝑎

𝑧
increase and 𝑎

𝑠
decreases.

From Figure 9, it is easy to observe that the bifurcations
for 𝛼 versus 𝑏

𝑥
, 𝑏
𝑦
, and 𝑏

𝑧
are similar to those in model (1)

shown in Figure 5 with BR and HE existing in reversed U-
shape domains. However, the existing domains of BR andHE
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Figure 9: Bifurcation diagram of parameter 𝛼 versus parameters 𝑏
𝑠
, 𝑏
𝑥
, 𝑏
𝑦
, and 𝑏

𝑧
for model (2).

for 𝛼 versus 𝑏
𝑠
are U-shape in model (1) while being reversed

U-shape in model (2).
In Figure 10, the bifurcation of parameter 𝛼 versus 𝑑

𝑠
is

also different from that in model (1) shown in Figure 6, with
the other three panels having the similar phenomena.

From Figure 11, we obtain the same results as that com-
pared in models (1) and (2). Only the bifurcation parameters
about the additional component 𝑆 have contrary phenomena
between the two models.

4. Conclusion and Comment

Feedback loops are omnipresent in natural cellular circuits.
There have been a lot of functions reported for single
feedback loops in recent years; that is, negative feedback
loops could reduce response signal amplitude and response
time, maintain homeostasis, and are sufficient for oscillation,
especially the recent research synthesized oscillator, namely,
repressilator, in E. coli, whereas positive feedback loops
amplify signals, cause bistability or hysteresis, and elongate

response time. However, in natural cellular circuits, feedback
loops are usually coupled together rather than existing in
isolation.

In this paper, we have investigated the dynamics behav-
iors of coupled feedback loops. The coupled feedback loops
considered here are composed of one central negative feed-
back loop pluse another additional feedback loops. There
could be twelve topology structures for the coupled feedback
loops that are added by only one node and two regulations.
Based on the components’ number of the additional feedback
loops, we divide the twelve systems into three types. With
the help of XPPAUT andMatlab, we obtained the bifurcation
diagrams for every system. Through numerical analysis,
we find that the complex oscillatory phenomena including
birhythmicity and hard excitation exist in both of these two
models. By comparative analysis of two parameters bifurca-
tion, we proved that there are almost the same bifurcation
phenomena in models (1) and (2) except that the bifurcation
parameters about the additional component 𝑆 have contrary
bifurcation domain shapes between the two models.
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Figure 10: Bifurcation diagram of parameter 𝛼 versus parameters 𝑑
𝑠
, 𝑑
𝑥
, 𝑑
𝑦
, and 𝑑

𝑧
for model (2).

The present results on the occurrence of complex oscil-
latory phenomena in our synthetic model are of particular
interest for understanding the conditions in which birhyth-
micitymay arise in biological systems, such as Ca+ oscillation
and circadian rhythm. However, the relative smallness of
these domains raises doubts about the possible physiological
significance of birhythmicity in regard to circadian rhythm
generation and inhomogeneous limit cycles in complex
biological systems. Beyond the particular context of synthetic
regulatory coupled feedback loops we discuss the results in
the light of other mechanisms underlying birhythmicity and
inhomogeneous limit cycles in regulated biological systems.

Birhythmicity requires stringent conditions both on the
kinetics and on the parameter values. Thus, it is probably
less frequent than its well-known stationary counterpart,
bistability, in which two stable steady states coexist for a
given set of experimental conditions, as demonstrated for
several biochemical systems such as the peroxidase reaction.
Birhythmicity provides a new mode of physiological regula-
tion as it allows for a switch between two periodic regimes
upon suitable perturbation. It would be of interest to search
for this phenomenon not only in chemical or metabolic

oscillatory systems but also in the many rhythmic processes
occurring in the brain, which arise precisely from multiple
regulatory interactions between neurons.

Although the relative smallness of these domains raises
doubts about the possible physiological significance of
birhythmicity in regard to circadian rhythm generation,
beyond the particular context of circadian rhythms, we dis-
cuss the results in the light of other mechanisms underlying
birhythmicity and inhomogeneous limit cycles in regulated
biological systems. Furthermore, the development of artificial
cellular oscillators opens the way to pharmacological applica-
tions such as pulsatile drug delivery.
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