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The aim of this paper is to present the fundamental inequalities for convex functions on Euclidean spaces.The work is based on the
geometry of the simplest convex sets and properties of convex functions. Some obtained inequalities are applied to demonstrate a
natural way of generalizing the Hermite-Hadamard inequality.

1. Introduction

LetX be a real linear (vector) space, 𝑎
𝑖
∈ X points (vectors),

and 𝛼
𝑖
∈ R coefficients (scalars). The combination

𝑐 =

𝑛

∑

𝑖=1

𝛼
𝑖
𝑎
𝑖 (1)

belongs to the linear subspace L = lin{𝑎
𝑖
} as the smallest

linear space that contains all 𝑎
𝑖
, and it is called the linear

combination. If ∑𝑛
𝑖=1
𝛼
𝑖
= 1, the combination in (1) belongs

to the affine hull A = aff{𝑎
𝑖
} as the smallest translated

linear space that contains all 𝑎
𝑖
, and it is called the affine

combination. If ∑𝑛
𝑖=1
𝛼
𝑖
= 1 and all 𝛼

𝑖
∈ [0, 1], the

combination in (1) belongs to the convex hull C = conv{𝑎
𝑖
}

as the smallest convex point set that contains all 𝑎
𝑖
, and it is

called the convex combination. The point 𝑐 itself is called the
center of the observed combination.

A function 𝑓 : X → R is affine if the equality

𝑓 (𝑐) =

𝑛

∑

𝑖=1

𝛼
𝑖
𝑓 (𝑎
𝑖
) (2)

holds for all affine combinations in (1), and 𝑓 is convex if the
inequality

𝑓 (𝑐) ≤

𝑛

∑

𝑖=1

𝛼
𝑖
𝑓 (𝑎
𝑖
) (3)

holds for all convex combinations in (1).The formulasmay be
referred to for 𝑛 = 2 and then by applying the mathematical

induction extended to any positive integer 𝑛. The important
Jensen’s inequality in (3) was just so proven in [1].

Jensen’s inequality was extended to special affine combi-
nations and their centers in [2], generalizing Mercer’s variant
of Jensen’s inequality obtained in [3].The connection between
discrete and integral forms was observed in [4]; the integral
forms were studied in [5], and the Jensen type inequalities for
𝑄-class functions were investigated in [6]. Different variants
and forms can be found in [7, 8].

2. Convex Functions on the Line

Known results are presented in this section, in a way that
can be generalized. Convex combinations of the line segment
and affine combinations of the convex cone represent the
backbone of the work. Theorem 3 is the most important in
terms of scope of its content.

If 𝑎, 𝑏 ∈ R are different numbers, then every number 𝑥 ∈
R can be uniquely presented as the affine combination

𝑥 = 𝛼𝑎 + 𝛽𝑏, (4)

where

𝛼 =

󵄨
󵄨
󵄨
󵄨

𝑥 1

𝑏 1

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨

𝑎 1

𝑏 1

󵄨
󵄨
󵄨
󵄨

, 𝛽 = −

󵄨
󵄨
󵄨
󵄨

𝑥 1

𝑎 1

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨

𝑎 1

𝑏 1

󵄨
󵄨
󵄨
󵄨

. (5)

The above binomial combination is convex if and only if
the number 𝑥 belongs to the interval conv{𝑎, 𝑏}. Given the
function 𝑓 : R → R, let 𝑓line

{𝑎,𝑏}
: R → R be the function of
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the line passing through the points (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏)) of
the graph of 𝑓. Using the affinity of 𝑓line

{𝑎,𝑏}
, we get

𝑓
line
{𝑎,𝑏}

(𝑥) = 𝛼𝑓 (𝑎) + 𝛽𝑓 (𝑏) . (6)

Let C
𝑎
be the convex cone (half-line) with the vertex at

𝑎 spanned by 𝑎 − 𝑏 containing binomial affine combinations
𝑥 = 𝑎 + 𝑝(𝑎 − 𝑏) = (1 + 𝑝)𝑎 − 𝑝𝑏, where 𝑝 ≥ 0; that is,

C
𝑎
= {(1 + 𝑝) 𝑎 − 𝑝𝑏 : 𝑝 ≥ 0} . (7)

Convex coneC
𝑏
is defined similarly.Thatmeans that if 𝑎 < 𝑏,

then C
𝑎
= (−∞, 𝑎] and C

𝑏
= [𝑏, +∞). The consequence

of the representations in (4) and (6) is the well-known
characterization of convex functions with one variable, as
specified in the following lemma.

Lemma 1. If 𝑎, 𝑏 ∈ R are the line segment endpoints, then
every convex function 𝑓 : R → R satisfies the inequality

𝑓 (𝑥) ≤ 𝑓
𝑙𝑖𝑛𝑒

{𝑎,𝑏}
(𝑥) 𝑓𝑜𝑟 𝑥 ∈ conv{𝑎, 𝑏} (8)

and the reverse inequality

𝑓 (𝑥) ≥ 𝑓
𝑙𝑖𝑛𝑒

{𝑎,𝑏}
(𝑥) 𝑓𝑜𝑟 𝑥 ∈ C

𝑎
∪C
𝑏
. (9)

Using combinations 𝑥 = (1 + 𝑝)𝑎 − 𝑝𝑏 with 𝑝 ≥ 0, the
inequality in (9) takes the form

𝑓 ((1 + 𝑝) 𝑎 − 𝑝𝑏) ≥ (1 + 𝑝) 𝑓 (𝑎) − 𝑝𝑓 (𝑏) . (10)

Example 2. Let 𝑎, 𝑏 and 𝑥 = (1 + 𝑝)𝑎 − 𝑝𝑏 ∈ C
𝑎
be positive

real numbers.
Substituting the values of the convex power function

𝑓(𝑥) = 𝑥
𝑟 with the exponent 𝑟 ∈ (−∞, 0] ∪ [1, +∞) in the

inequality in (10), we get the inequality

[(1 + 𝑝) 𝑎 − 𝑝𝑏]
𝑟
≥ (1 + 𝑝) 𝑎

𝑟
− 𝑝𝑏
𝑟 (11)

and the reverse inequality by substituting the values of the
concave power function with the exponent 𝑟 ∈ [0, 1].

Substituting the values of the concave logarithmic func-
tion 𝑓(𝑥) = ln𝑥 in the inequality in (10) and rearranging
them, it follows the inequality

𝑎
1+𝑝
𝑏
−𝑝
≥ (1 + 𝑝) 𝑎 − 𝑝𝑏. (12)

Combining the application of Lemma 1 and Jensen’s
inequality to the convex combinations 𝑥 = ∑

𝑛

𝑖=1
𝛼
𝑖
𝑎
𝑖
, it

follows

𝑓 (𝑥) ≤

𝑛

∑

𝑖=1

𝛼
𝑖
𝑓 (𝑎
𝑖
) ≤ 𝑓

line
{𝑎,𝑏}

(𝑥) (13)

if all 𝑎
𝑖
∈ conv{𝑎, 𝑏} and

𝑛

∑

𝑖=1

𝛼
𝑖
𝑓 (𝑎
𝑖
) ≥ 𝑓 (𝑥) ≥ 𝑓

line
{𝑎,𝑏}

(𝑥) (14)

if all 𝑎
𝑖
∈ C
𝑎
or all 𝑎

𝑖
∈ C
𝑏
.

Convex combinations with the common center are con-
sidered in the following theorem.

Theorem 3. Let 𝑎, 𝑏 ∈ R be the line segment endpoints.
Let ∑𝑛

𝑖=1
𝛼
𝑖
𝑎
𝑖
be a convex combination of the points 𝑎

𝑖
∈

conv {𝑎, 𝑏}, and let ∑𝑚
𝑗=1
𝛽
𝑗
𝑏
𝑗
be a convex combination of the

points 𝑏
𝑗
∈ C
𝑎
∪C
𝑏
.

If the center equality

𝑐 =

𝑛

∑

𝑖=1

𝛼
𝑖
𝑎
𝑖
=

𝑚

∑

𝑗=1

𝛽
𝑗
𝑏
𝑗 (15)

is valid, then the inequality

𝑓 (𝑐) ≤

𝑛

∑

𝑖=1

𝛼
𝑖
𝑓 (𝑎
𝑖
) ≤

𝑚

∑

𝑗=1

𝛽
𝑗
𝑓 (𝑏
𝑗
) (16)

holds for every convex function 𝑓 : R → R.

Proof. The first inequality in (16) is the Jensen inequality.The
last inequality follows from the series of inequalities

𝑛

∑

𝑖=1

𝛼
𝑖
𝑓 (𝑎
𝑖
) ≤

𝑛

∑

𝑖=1

𝛼
𝑖
𝑓
line
{𝑎,𝑏}

(𝑎
𝑖
) = 𝑓

line
{𝑎,𝑏}

(

𝑛

∑

𝑖=1

𝛼
𝑖
𝑎
𝑖
)

= 𝑓
line
{𝑎,𝑏}

(

𝑚

∑

𝑗=1

𝛽
𝑗
𝑏
𝑗
) =

𝑚

∑

𝑗=1

𝛽
𝑗
𝑓
line
{𝑎,𝑏}

(𝑏
𝑗
)

≤

𝑚

∑

𝑗=1

𝛽
𝑗
𝑓 (𝑏
𝑗
)

(17)

derived by applying the inequality in (8) to 𝑎
𝑖
and the

inequality in (9) to 𝑏
𝑗
.

The geometric insight to the inequality in (16) presented
in Figure 1 shows that the point 𝑃

1
(𝑐, 𝑓(𝑐)) is below the point

𝑃
2
(𝑐,

𝑛

∑

𝑖=1

𝛼
𝑖
𝑓 (𝑎
𝑖
)) ∈ conv {(𝑎

1
, 𝑓 (𝑎
1
)) , . . . , (𝑎

𝑛
, 𝑓 (𝑎
𝑛
))} ,

(18)

and the point 𝑃
2
is below the point

𝑃
3
(𝑐,

𝑚

∑

𝑗=1

𝛽
𝑗
𝑓 (𝑏
𝑗
)) ∈ conv {(𝑏

1
, 𝑓 (𝑏
1
)) , . . . , (𝑏

𝑚
, 𝑓 (𝑏
𝑚
))} .

(19)

Corollary 4. Let 𝑎, 𝑏 ∈ R be the line segment endpoints.
Let ∑𝑛

𝑖=1
𝛼
𝑖
𝑎
𝑖
be a convex combination of the points 𝑎

𝑖
∈

conv {𝑎, 𝑏}, and let 𝛼𝑎 + 𝛽𝑏 be the convex combination such
that

𝑐 =

𝑛

∑

𝑖=1

𝛼
𝑖
𝑎
𝑖
= 𝛼𝑎 + 𝛽𝑏. (20)

Then the inequality

𝑓 (𝑐) ≤

𝑛

∑

𝑖=1

𝛼
𝑖
𝑓 (𝑎
𝑖
) ≤ 𝛼𝑓 (𝑎) + 𝛽𝑓 (𝑏) (21)

holds for every convex function 𝑓 : conv {𝑎, 𝑏} → R.
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P3

P2

P1

Figure 1: Geometric representation of the inequality in (16).

3. Main Results: Convex Functions on
the Plane

We assume that R2 is the real vector space with the standard
coordinate addition (𝑥

1
, 𝑦
1
)+(𝑥
2
, 𝑦
2
) = (𝑥

1
+𝑥
2
, 𝑦
1
+𝑦
2
) and

the scalar multiplication 𝛼(𝑥, 𝑦) = (𝛼𝑥, 𝛼𝑦).
If 𝐴(𝑥

𝐴
, 𝑦
𝐴
), 𝐵(𝑥

𝐵
, 𝑦
𝐵
), and 𝐶(𝑥

𝐶
, 𝑦
𝐶
) are the planar

points that do not belong to one line, then every point
𝑃(𝑥, 𝑦) ∈ R2 can be presented by the unique affine combi-
nation:

𝑃 = 𝛼𝐴 + 𝛽𝐵 + 𝛾𝐶, (22)

where

𝛼 =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥 𝑦 1

𝑥𝐵 𝑦𝐵 1

𝑥𝐶 𝑦𝐶 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥𝐴 𝑦𝐴 1

𝑥𝐵 𝑦𝐵 1

𝑥𝐶 𝑦𝐶 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, 𝛽 = −

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥 𝑦 1

𝑥𝐴 𝑦𝐴 1

𝑥𝐶 𝑦𝐶 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥𝐴 𝑦𝐴 1

𝑥𝐵 𝑦𝐵 1

𝑥𝐶 𝑦𝐶 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

, 𝛾 =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥 𝑦 1

𝑥𝐴 𝑦𝐴 1

𝑥𝐵 𝑦𝐵 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥𝐴 𝑦𝐴 1

𝑥𝐵 𝑦𝐵 1

𝑥𝐶 𝑦𝐶 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(23)

The above trinomial combination is convex if and only if
point 𝑃 belongs to the triangle conv{𝐴, 𝐵, 𝐶}. Given the
function 𝑓 : R2 → R, let 𝑓plane

{𝐴,𝐵,𝐶}
: R2 → R be the function

of the plane passing through the points (𝐴, 𝑓(𝐴)), (𝐵, 𝑓(𝐵)),
and (𝐶, 𝑓(𝐶)) of the graph of 𝑓. Because of the affinity of
𝑓
plane
{𝐴,𝐵,𝐶}

, it follows

𝑓
plane
{𝐴,𝐵,𝐶}

(𝑃) = 𝛼𝑓 (𝐴) + 𝛽𝑓 (𝐵) + 𝛾𝑓 (𝐶) . (24)

Let C
𝐴
be the convex cone with the vertex at 𝐴 spanned

by the vectors 𝐴 − 𝐵 and 𝐴 − 𝐶 containing trinomial affine
combinations 𝑃 = 𝐴 + 𝑝(𝐴 − 𝐵) + 𝑞(𝐴 − 𝐶) = (1 + 𝑝 + 𝑞)𝐴 −
𝑝𝐵 − 𝑞𝐶, where 𝑝, 𝑞 ≥ 0; that is,

C
𝐴
= {(1 + 𝑝 + 𝑞)𝐴 − 𝑝𝐵 − 𝑞𝐶 : 𝑝, 𝑞 ≥ 0} . (25)

Cones C
𝐵
and C

𝐶
are defined in the same way, and all tree

cones can be seen in Figure 2.
Using the cones, we achieve the generalization of

Lemma 1 to convex functions on the plane as follows.

A

B

C

𝒞A

𝒞B

𝒞C

Figure 2: Triangle with cones.

Lemma 5. If 𝐴, 𝐵, 𝐶 ∈ R2 are the triangle vertices, then every
convex function 𝑓 : R2 → R satisfies the inequality

𝑓 (𝑃) ≤ 𝑓
𝑝𝑙𝑎𝑛𝑒

{𝐴,𝐵,𝐶}
(𝑃) 𝑓𝑜𝑟 𝑃 ∈ conv{𝐴, 𝐵, 𝐶} , (26)

and the reverse inequality

𝑓 (𝑃) ≥ 𝑓
𝑝𝑙𝑎𝑛𝑒

{𝐴,𝐵,𝐶}
(𝑃) 𝑓𝑜𝑟 𝑃 ∈ C

𝐴
∪C
𝐵
∪C
𝐶
. (27)

Proof. If 𝑃 ∈ conv{𝐴, 𝐵, 𝐶}, the combination in (22) is
convex, and the inequality in (26) follows from the convexity
of 𝑓 and the equality in (24).

If 𝑃 ∈ C
𝐴
∪ C
𝐵
∪ C
𝐶
, say 𝑃 ∈ C

𝐴
and 𝑃 ̸= 𝐴, we can

represent the point 𝑃 as the binomial affine combination:

𝑃 = (1 + 𝑝 + 𝑞)𝐴 − 𝑝𝐵 − 𝑞𝐶 (28)

= (1 + 𝑝 + 𝑞)𝐴 − (𝑝 + 𝑞) (

𝑝

𝑝 + 𝑞

𝐵 +

𝑞

𝑝 + 𝑞

𝐶) . (29)

Applying the inequality in (10) to the combination in (29),
then using the convexity of 𝑓 and the affinity of 𝑓plane

{𝐴,𝐵,𝐶}
, we

get the series of inequalities:

𝑓 (𝑃) ≥ (1 + 𝑝 + 𝑞) 𝑓 (𝐴) − (𝑝 + 𝑞) 𝑓(

𝑝

𝑝 + 𝑞

𝐵 +

𝑞

𝑝 + 𝑞

𝐶)

≥ (1 + 𝑝 + 𝑞) 𝑓 (𝐴) − 𝑝𝑓 (𝐵) − 𝑞𝑓 (𝐶)

= 𝑓
plane
{𝐴,𝐵,𝐶}

((1 + 𝑝 + 𝑞)𝐴 − 𝑝𝐵 − 𝑞𝐶) = 𝑓
plane
{𝐴,𝐵,𝐶}

(𝑃)

(30)

which includes the inequality in (27).

The area outside the triangle and outside the cones (the
white area in Figure 2) cannot be generally covered with one
inequality. Such area does not exist in the previous one-
dimensional case.

Applying Lemma 5 and Jensen’s inequality to the planar
convex combinations 𝑃 = ∑𝑛

𝑖=1
𝛼
𝑖
𝐴
𝑖
, we get the inequality

𝑓 (𝑃) ≤

𝑛

∑

𝑖=1

𝛼
𝑖
𝑓 (𝐴
𝑖
) ≤ 𝑓

plane
{𝐴,𝐵,𝐶}

(𝑃) (31)
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if all 𝐴
𝑖
∈ conv{𝐴, 𝐵, 𝐶} and the inequality

𝑛

∑

𝑖=1

𝛼
𝑖
𝑓 (𝐴
𝑖
) ≥ 𝑓 (𝑃) ≥ 𝑓

plane
{𝐴,𝐵,𝐶}

(𝑃) (32)

if all 𝐴
𝑖
∈ C
𝐴
, or all 𝐴

𝑖
∈ C
𝐵
, or all 𝐴

𝑖
∈ C
𝐶
.

The following are planar convex combinations with the
common center.

Theorem 6. Let 𝐴, 𝐵, 𝐶 ∈ R2 be the triangle vertices.
Let ∑𝑛

𝑖=1
𝛼
𝑖
𝐴
𝑖
be a convex combination of the points 𝐴

𝑖
∈

conv {𝐴, 𝐵, 𝐶}, and let ∑𝑚
𝑗=1
𝛽
𝑗
𝐵
𝑗
be a convex combination of

the points 𝐵
𝑗
∈ C
𝐴
∪C
𝐵
∪C
𝐶
.

If the center equality

𝑃 =

𝑛

∑

𝑖=1

𝛼
𝑖
𝐴
𝑖
=

𝑚

∑

𝑗=1

𝛽
𝑗
𝐵
𝑗 (33)

is valid, then the inequality

𝑓 (𝑃) ≤

𝑛

∑

𝑖=1

𝛼
𝑖
𝑓 (𝐴
𝑖
) ≤

𝑚

∑

𝑗=1

𝛽
𝑗
𝑓 (𝐵
𝑗
) (34)

holds for every convex function 𝑓 : R2 → R.

Proof. We employ the proof of Theorem 3 using 𝑓plane
{𝐴,𝐵,𝐶}

instead of 𝑓line
{𝑎,𝑏}

.

If (33) is valid, and if all points 𝐴
𝑖
and 𝐵

𝑗
are the triangle

vertices, then the equality

𝑛

∑

𝑖=1

𝛼
𝑖
𝑓 (𝐴
𝑖
) =

𝑚

∑

𝑗=1

𝛽
𝑗
𝑓 (𝐵
𝑗
) (35)

holds.The reverse statement is true if the function𝑓 is strictly
convex.

Corollary 7. Let 𝐴, 𝐵, 𝐶 ∈ R2 be the triangle vertices.
Let ∑𝑛

𝑖=1
𝛼
𝑖
𝐴
𝑖
be a convex combination of the points 𝐴

𝑖
∈

conv {𝐴, 𝐵, 𝐶}, and let𝛼𝐴+𝛽𝐵+𝛾𝐶 be the convex combination
such that

𝑃 =

𝑛

∑

𝑖=1

𝛼
𝑖
𝐴
𝑖
= 𝛼𝐴 + 𝛽𝐵 + 𝛾𝐶. (36)

Then the inequality

𝑓 (𝑃) ≤

𝑛

∑

𝑖=1

𝛼
𝑖
𝑓 (𝐴
𝑖
) ≤ 𝛼𝑓 (𝐴) + 𝛽𝑓 (𝐵) + 𝛾𝑓 (𝐶) (37)

holds for every convex function 𝑓 : conv {𝐴, 𝐵, 𝐶} → R.

4. Generalization to Higher Dimensions

Let 𝑃
1
, . . . , 𝑃

𝑁+1
∈ R𝑁 be the points so that the vectors

𝑃
1
− 𝑃
2
, . . . , 𝑃

1
− 𝑃
𝑁+1

be linearly independent. In this case,
the convex hull conv{𝑃

1
, . . . , 𝑃

𝑁+1
} is called the𝑁-simplex in

R𝑁 with the vertices 𝑃
1
, . . . , 𝑃

𝑁+1
. All of the simplex vertices

cannot belong to the same hyperplane in R𝑁. Every point
𝑃 ∈ R𝑁 can be presented by the unique affine combination:

𝑃 =

𝑁+1

∑

𝑘=1

𝛼
𝑘
𝑃
𝑘
, (38)

where the coefficients

𝛼
𝑘
= (−1)

𝑘+1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥1 ⋅⋅⋅ 𝑥𝑁 1

𝑥11 ⋅⋅⋅ 𝑥1𝑁 1

.

.

. d
.
.
.
.
.
.

𝑥𝑘−1 1 ⋅⋅⋅ 𝑥𝑘−1 𝑁 1

𝑥𝑘+1 1 ⋅⋅⋅ 𝑥𝑘+1 𝑁 1

.

.

. d
.
.
.
.
.
.

𝑥𝑁+1 1 ⋅⋅⋅ 𝑥𝑁+1 𝑁 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥11 ⋅⋅⋅ 𝑥1𝑁 1

.

.

. d
.
.
.
.
.
.

𝑥𝑘−1 1 ⋅⋅⋅ 𝑥𝑘−1 𝑁 1

𝑥𝑘1 ⋅⋅⋅ 𝑥𝑘𝑁 1

𝑥𝑘+1 1 ⋅⋅⋅ 𝑥𝑘+1 𝑁 1

.

.

. d
.
.
.
.
.
.

𝑥𝑁+1 1 ⋅⋅⋅ 𝑥𝑁+1 𝑁 1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

(39)

are determined generalizing the coefficients in (23). The
combination in (38) is convex if and only if the point 𝑃
belongs to the𝑁-simplex conv{𝑃

1
, . . . , 𝑃

𝑁+1
}.

Given the function 𝑓 : R𝑁 → R, let 𝑓hyperplane
{𝑃1,...,𝑃𝑁+1}

:

R𝑁 → R be the function of the hyperplane (in R𝑁+1)
passing through the points (𝑃

𝑘
, 𝑓(𝑃
𝑘
)) of the graph of 𝑓.

Therefore

𝑓
hyperplane
{𝑃1,...,𝑃𝑁+1}

(𝑃) =

𝑁+1

∑

𝑘=1

𝛼
𝑘
𝑓 (𝑃
𝑘
) . (40)

Let C
𝑘
(𝑘 = 1, . . . , 𝑁 + 1) be the convex cone with

the vertex at 𝑃
𝑘
spanned by the vectors 𝑃

𝑘
− 𝑃
𝑗
for 𝑘 ̸=

𝑗 = 1, . . . , 𝑁 + 1 containing (𝑁 + 1)-membered affine
combinations𝑃 = 𝑃

𝑘
+∑
𝑁+1

𝑘 ̸=𝑗=1
𝑝
𝑗
(𝑃
𝑘
−𝑃
𝑗
) = (1+∑

𝑁+1

𝑘 ̸=𝑗=1
𝑝
𝑗
)𝑃
𝑘
−

∑
𝑁+1

𝑘 ̸=𝑗=1
𝑝
𝑗
𝑃
𝑗
, where all 𝑝

𝑗
≥ 0; that is,

C
𝑘
=

{

{

{

(1 +

𝑁+1

∑

𝑘 ̸=𝑗=1

𝑝
𝑗
)𝑃
𝑘
−

𝑁+1

∑

𝑘 ̸=𝑗=1

𝑝
𝑗
𝑃
𝑗
: 𝑝
𝑗
≥ 0

}

}

}

. (41)

Lemma 8. If 𝑃
1
, . . . , 𝑃

𝑁+1
∈ R𝑁 are the 𝑁-simplex vertices,

then every convex function 𝑓 : R𝑁 → R satisfies the
inequality

𝑓 (𝑃) ≤ 𝑓
ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒

{𝑃1,...,𝑃𝑁+1}
(𝑃) 𝑓𝑜𝑟 𝑃 ∈ conv{𝑃

1
, . . . , 𝑃

𝑁+1
}

(42)

and the reverse inequality

𝑓 (𝑃) ≥ 𝑓
ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒

{𝑃1,...,𝑃𝑁+1}
(𝑃) 𝑓𝑜𝑟 𝑃 ∈ C

1
∪ ⋅ ⋅ ⋅ ∪C

𝑁+1
. (43)

Proof. The proof is similar to that of Lemma 5. We sketch the
arguments briefly as follows.

To prove (42), we firstly apply Jensen’s inequality to the
convex combination 𝑃 = ∑

𝑁+1

𝑘=1
𝛼
𝑘
𝑃
𝑘
∈ conv{𝑃

1
, . . . , 𝑃

𝑁+1
}

and then use (40).
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To prove (43) for 𝑃 ∈ C
𝑘
other than 𝑃

𝑘
, we firstly imple-

ment the inequality in (10) to the binomial affine combina-
tion:

𝑃 = (1 +

𝑁+1

∑

𝑘 ̸=𝑗=1

𝑝
𝑗
)𝑃
𝑘
−

𝑁+1

∑

𝑘 ̸=𝑗=1

𝑝
𝑗
𝑃
𝑗

= (1 + 𝑝) 𝑃
𝑘
− 𝑝𝑄
𝑘
,

(44)

where 𝑝 = ∑
𝑁+1

𝑘 ̸=𝑗=1
𝑝
𝑗
and 𝑄

𝑘
= ∑
𝑁+1

𝑘 ̸=𝑗=1
(𝑝
𝑗
/𝑝)𝑃
𝑗
and then

apply Jensen’s inequality to the convex combination of 𝑄
𝑘
,

thus obtaining

𝑓 (𝑃) ≥ (1 +

𝑁+1

∑

𝑘 ̸=𝑗=1

𝑝
𝑗
)𝑓 (𝑃

𝑘
) −

𝑁+1

∑

𝑘 ̸=𝑗=1

𝑝
𝑗
𝑓 (𝑃
𝑗
)

= 𝑓
hyperplane
{𝑃1,...,𝑃𝑁+1}

(𝑃)

(45)

as the desired inequality.

Using the inequality in (45) with power and logarithmic
functions, the inequalities of Example 2 can be generalized as
follows.

Example 9. Let 𝑃
𝑗
(𝑥
𝑗1
, . . . , 𝑥

𝑗𝑁
) ∈ R𝑁 for 𝑗 = 1, . . . , 𝑁 + 1

be the 𝑁-simplex vertices with all coordinates 𝑥
𝑗𝑖
> 0. Let

𝑃(𝑥
1
, . . . , 𝑥

𝑁
) ∈ C

𝑘
be a point with all coordinates 𝑥

𝑖
= (1 +

𝑝)𝑥
𝑘𝑖
− ∑
𝑁+1

𝑘 ̸=𝑗=1
𝑝
𝑗
𝑥
𝑗𝑖
> 0, where 𝑝 = ∑𝑁+1

𝑘 ̸=𝑗=1
𝑝
𝑗
.

Including the values of the convex power sum function

𝑓 (𝑥
1
, . . . , 𝑥

𝑁
) =

𝑁

∑

𝑖=1

𝑥
𝑟𝑖

𝑖
with all 𝑟

𝑖
∈ (−∞, 0] ∪ [1, +∞)

(46)

in the inequality in (45), we get the inequality

𝑁

∑

𝑖=1

[

[

(1 + 𝑝)𝑥
𝑘𝑖
−

𝑁+1

∑

𝑘 ̸=𝑗=1

𝑝
𝑗
𝑥
𝑗𝑖
]

]

𝑟𝑖

≥

𝑁

∑

𝑖=1

[

[

(1 + 𝑝) 𝑥
𝑟𝑖

𝑘𝑖
−

𝑁+1

∑

𝑘 ̸=𝑗=1

𝑝
𝑗
𝑥
𝑟𝑖

𝑗𝑖
]

]

(47)

and the reverse inequality by including the values of the
concave power sum function with all 𝑟

𝑖
∈ [0, 1].

Including the values of the concave logarithmic sum
function

𝑓 (𝑥
1
, . . . , 𝑥

𝑁
) =

𝑁

∑

𝑖=1

ln𝑥
𝑖
= ln
𝑁

∏

𝑖=1

𝑥
𝑖

(48)

in the inequality in (45) and rearranging them, it follows the
inequality

𝑁

∏

𝑖=1

[

[

𝑥
1+𝑝

𝑘𝑖

𝑁+1

∏

𝑘 ̸=𝑗=1

𝑥

−𝑝𝑗

𝑗𝑖
]

]

≥

𝑁

∏

𝑖=1

[

[

(1 + 𝑝) 𝑥
𝑘𝑖
−

𝑁+1

∑

𝑘 ̸=𝑗=1

𝑝
𝑗
𝑥
𝑗𝑖
]

]

.

(49)

Applying Lemma 8 and Jensen’s inequality to the convex
combinations 𝑃 = ∑𝑛

𝑖=1
𝛼
𝑖
𝐴
𝑖
, we get the inequality

𝑓 (𝑃) ≤

𝑛

∑

𝑖=1

𝛼
𝑖
𝑓 (𝐴
𝑖
) ≤ 𝑓

hyperplane
{𝑃1,...,𝑃𝑁+1}

(𝑃) (50)

if all 𝐴
𝑖
∈ conv{𝑃

1
, . . . , 𝑃

𝑁+1
} and the inequality

𝑛

∑

𝑖=1

𝛼
𝑖
𝑓 (𝐴
𝑖
) ≥ 𝑓 (𝑃) ≥ 𝑓

hyperplane
{𝑃1,...,𝑃𝑁+1}

(𝑃) (51)

if all 𝐴
𝑖
belong to the same coneC

𝑘
.

Relying on Lemma 8, we reach the conclusion written in
the next theorem.

Theorem 10. Let 𝑃
1
, . . . , 𝑃

𝑁+1
∈ R𝑁 be the 𝑁-simplex

vertices. Let ∑𝑛
𝑖=1
𝛼
𝑖
𝐴
𝑖
be a convex combination of the points

𝐴
𝑖
∈ conv {𝑃

1
, . . . , 𝑃

𝑁+1
}, and let ∑𝑚

𝑗=1
𝛽
𝑗
𝐵
𝑗
be a convex

combination of the points 𝐵
𝑗
∈ C
1
∪ ⋅ ⋅ ⋅ ∪C

𝑁+1
.

If the center equality

𝑃 =

𝑛

∑

𝑖=1

𝛼
𝑖
𝐴
𝑖
=

𝑚

∑

𝑗=1

𝛽
𝑗
𝐵
𝑗 (52)

is valid, then the inequality

𝑓 (𝑃) ≤

𝑛

∑

𝑖=1

𝛼
𝑖
𝑓 (𝐴
𝑖
) ≤

𝑚

∑

𝑗=1

𝛽
𝑗
𝑓 (𝐵
𝑗
) (53)

holds for every convex function 𝑓 : R𝑁 → R.

Corollary 11. Let 𝑃
1
, . . . , 𝑃

𝑁+1
∈ R𝑁 be the 𝑁-simplex

vertices. Let ∑𝑛
𝑖=1
𝛼
𝑖
𝐴
𝑖
be a convex combination of the points

𝐴
𝑖
∈ conv {𝑃

1
, . . . , 𝑃

𝑁+1
}, and let ∑𝑁+1

𝑗=1
𝛽
𝑗
𝑃
𝑗
be the convex

combination such that

𝑃 =

𝑛

∑

𝑖=1

𝛼
𝑖
𝐴
𝑖
=

𝑁+1

∑

𝑗=1

𝛽
𝑗
𝑃
𝑗
. (54)

Then the inequality

𝑓 (𝑃) ≤

𝑛

∑

𝑖=1

𝛼
𝑖
𝑓 (𝐴
𝑖
) ≤

𝑁+1

∑

𝑗=1

𝛽
𝑗
𝑓 (𝑃
𝑗
) (55)

holds for every convex function𝑓 : conv {𝑃
1
, . . . , 𝑃

𝑁+1
} → R.

5. Application to the
Hermite-Hadamard Inequality

Applying the integral method with the convex combinations
to the inequalities obtained in the theorems, we get their
integral forms. Using the Jensen type inequalities, we briefly
demonstrate the generalization of the Hermite-Hadamard
inequality (for essentials on this inequality see [9] or [10]).

Let 𝑓 : [𝑎, 𝑏] → R be a convex function. Given the
positive integer 𝑛, wemake the partition [𝑎, 𝑏] = ∪𝑛

𝑖=1
[𝑎
𝑛𝑖
, 𝑏
𝑛𝑖
],

where all subsegments have the same length (𝑏 − 𝑎)/𝑛, and
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the adjacent subsegments have a common endpoint. If we
take subsegment centers 𝑥

𝑛𝑖
= (𝑎
𝑛𝑖
+ 𝑏
𝑛𝑖
)/2, then we have the

convex combination equality:

𝑐 =

𝑛

∑

𝑖=1

𝑏
𝑛𝑖
− 𝑎
𝑛𝑖

𝑏 − 𝑎

𝑥
𝑛𝑖
=

𝑎 + 𝑏

2

. (56)

Applying the inequality in (21) to the above convex combina-
tion, it follows

𝑓(

𝑎 + 𝑏

2

) ≤

𝑛

∑

𝑖=1

𝑏
𝑛𝑖
− 𝑎
𝑛𝑖

𝑏 − 𝑎

𝑓 (𝑥
𝑛𝑖
) ≤

𝑓 (𝑎) + 𝑓 (𝑏)

2

, (57)

and letting 𝑛 to infinity, we obtain the classic Hermite-
Hadamard inequality:

𝑓(

𝑎 + 𝑏

2

) ≤

1

𝑏 − 𝑎

∫

[𝑎,𝑏]

𝑓 (𝑥) 𝑑𝑥 ≤

𝑓 (𝑎) + 𝑓 (𝑏)

2

. (58)

The transition to the planar case can be done using
Corollary 7. Let 𝑓 : △ → R be a convex function, where
△ = conv{𝐴, 𝐵, 𝐶} is the triangle with vertices 𝐴, 𝐵, and 𝐶.
Given the positive integer 𝑛, we use the partition△ = ∪

𝑛
2

𝑖=1
△
𝑖

with congruent subtriangles △
𝑖
= conv{𝐴

𝑛𝑖
, 𝐵
𝑛𝑖
, 𝐶
𝑛𝑖
} having

a common edge or endpoint if they are adjacent. So, the area
ar(△
𝑖
) of each subtriangle△

𝑖
is equal to ar(△)/𝑛2. If we take

subtriangle centers 𝑃
𝑛𝑖
= (𝐴
𝑛𝑖
+𝐵
𝑛𝑖
+𝐶
𝑛𝑖
)/3, then we have the

convex combination equality:

𝑃 =

𝑛
2

∑

𝑖=1

ar (△
𝑖
)

ar (△)
𝑃
𝑛𝑖
=

𝐴 + 𝐵 + 𝐶

3

. (59)

Applying the inequality in (37) to the above convex combina-
tion, it follows

𝑓(

𝐴 + 𝐵 + 𝐶

3

) ≤

𝑛
2

∑

𝑖=1

ar (△
𝑖
)

ar (△)
𝑃
𝑛𝑖
≤

𝑓 (𝐴) + 𝑓 (𝐵) + 𝑓 (𝐶)

3

,

(60)

and letting 𝑛 to infinity, we obtain the planar Hermite-
Hadamard inequality:

𝑓(

𝐴 + 𝐵 + 𝐶

3

)

≤

1

ar (△)
∫

△

𝑓 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 ≤

𝑓 (𝐴) + 𝑓 (𝐵) + 𝑓 (𝐶)

3

.

(61)

The transition to any dimension 𝑁 suggests Corollary 11
using the 𝑁-simplex △ = conv{𝑃

1
, . . . , 𝑃

𝑁+1
}. Applying the

previous procedure to△, we reach the conclusion that every
convex function 𝑓 : △ → R satisfies the inequality

𝑓(

1

𝑁 + 1

𝑁+1

∑

𝑘=1

𝑃
𝑘
) ≤

1

vol (△)
∫

△

𝑓 (𝑥
1
, . . . , 𝑥

𝑁
) 𝑑𝑥
1
⋅ ⋅ ⋅ 𝑑𝑥

𝑁

≤

1

𝑁 + 1

𝑁+1

∑

𝑘=1

𝑓 (𝑃
𝑘
) .

(62)
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