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This paper addresses a new performance measure for scheduling problems, entitled “biased tardiness penalty.” We study the
approximability of minimum biased tardiness on a single machine, provided that all the due dates are equal. Two heuristic
algorithms are developed for this problem, and it is shown that one of them has a worst-case ratio bound of 2. Then, we propose a
dynamic programming algorithm and use it to design an FPTAS.The FPTAS is generated by cleaning up some states in the dynamic
programming algorithm, and it requires 𝑂 (𝑛

3
/𝜀) time.

1. Introduction

In this paper, we study a single machine scheduling problem
of minimizing total biased tardiness about a common due
date. Every job 𝑖 (1 ≤ 𝑖 ≤ 𝑛) has a processing time 𝑝

𝑖
, a

weight tardiness factor 𝑤
𝑖
, and a base tardiness factor 𝑢

𝑖
. The

machine is available at time zero and can process at most one
job at a time.The jobs have a common due date 𝑑. The biased
tardiness penalty of job 𝑖 is defined as

𝑍
𝑖
= {

0, if 𝐶
𝑖
≤ 𝑑

𝑢
𝑖
+ 𝑤

𝑖
(𝐶
𝑖
− 𝑑) , if 𝐶

𝑖
> 𝑑,

(1)

where 𝐶
𝑖
is the completion time of job 𝑖. Figure 1 shows the

biased tardiness penalty of job 𝑖 based on its completion time
in a sequence. The resulting problem is denoted by 1 | 𝑑

𝑖
=

𝑑 | BTP, where BTP means “biased tardiness penalty.”
Biased tardiness penalty is a kind of performance mea-

sures that, according to our observations, has not been
studied in the literature in spite of its wide use in practical
situations. One of the most common applications of biased
tardiness is in designing delivery contracts. In many of
delivery contracts, once an order is delivered later than its
due date, a fixed penalty must be paid, and when the delivery
becomes tardier, the related penalty will increase as well.

Many of the practical conditions support this assumption;
for example, consider a company where just one day delay in
receiving raw materials will break down its production line.
In this case, the initial damage caused by late delivery is huge
while if the delay increases, the additional damage is relatively
small. Another application for biased tardiness penalty is in
transportation systems where we must pay extra money for
solo-transporting a piece of goods if it is not ready to be
carried with other orders.

Problem 1 ‖ ∑𝑤
𝑖
𝑇
𝑖
is NP-hard in the strong sense if

the tardiness weights are not all equal [1, 2] and is optimally
solvable in pseudo-polynomial time for a fixed number of
distinct due dates [3]. Cheng et al. [4] have shown that
the schedule that minimizes max

𝑗
𝑤
𝑗
𝑇
𝑗
gives an (𝑛 − 1)-

approximation for this problem. Kolliopoulos and Steiner
[3] design pseudo-polynomial algorithms for the case that
there is only a fixed number of different due dates. They also
develop an FPTAS if, in addition, the tardiness weights are
bounded by a polynomial function of 𝑛. Karakostas et al.
[5] consider the same problem, design a pseudo-polynomial
algorithm, and apply a rounding scheme to obtain the desired
approximation scheme.

In a special case of problem 1 ‖ ∑𝑤
𝑖
𝑇
𝑖
where the

due date is common for all jobs, the resulting problem is
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Figure 1: Biased tardiness penalty for job 𝑖.

proved to be NP-hard in the ordinary sense by Yuan [6],
and Lawler and Moore [7] provide a pseudo-polynomial
dynamic programming algorithm in 𝑂(𝑛

2
𝑑) time. Fathi and

Nuttle [8] develop a 2-approximation algorithm that requires
𝑂(𝑛

2
) time. Kellerer and Strusevich [9] propose an FPTAS

of 𝑂(𝑛6 log𝑊/𝜀
3
) time complexity, where 𝑊 is the sum of

tardiness weights; later, Kacem [10] studies the same problem
and develops another approach to obtain a more effective
FPTAS in 𝑂(𝑛2/𝜀) time.

If the tardiness weights are equal, problem 1 ‖ ∑𝑇
𝑖
is

NP-hard in the ordinary sense as proved by Du and Leung
[11], and it is solvable by a pseudo-polynomial dynamic
programming algorithm proposed by Lawler [1]. For this
problem, Lawler [12] proposes a dynamic programming
algorithm and converts it into an FPTAS of 𝑂(𝑛7/𝜀) time
complexity. Koulamas [13] provides a faster FPTAS running
in𝑂(𝑛5 log 𝑛+𝑛5/𝜀) time by applying an alternative rounding
scheme in conjunction with implementing Kovalyov’s [14]
bound improvement procedure. Della Croce et al. [15] con-
sider some popular constructive and decomposition heuris-
tics and conclude that none of them guarantees a constant
worst-case ratio bound. Kovalyov and Werner [16] study the
approximability of this problem on parallel machines with a
common due date.

To examine the complexity of problem 1 | 𝑑
𝑖
= 𝑑 |

BTP,we compare it with the problemofminimizingweighted
tardiness on a single machine and common due date. If we
set 𝑢

𝑖
= 0 for all jobs 𝑖, the considered problem transforms

to problem 1 | 𝑑
𝑖
= 𝑑 | ∑𝑤

𝑖
𝑇
𝑖
that is shown in [1, 2] to be

NP-hard in the ordinary sense.
The remainder of this paper is organized as follows. In

Sections 2 and 3, we describe two heuristic algorithms for
problem 1 | 𝑑

𝑖
= 𝑑 | BTP and prove their worst-case

ratio bounds. Section 4 describes a dynamic programming
algorithm that, in Section 5, we convert to an FPTAS using
the technique of structuring the execution of an algorithm.
Concluding remarks are given in Section 6.

2. SPT Algorithm

In this heuristic algorithm, jobs are sequenced according to
a nondecreasing order of processing times, and, hence, it can
be implemented in 𝑂(𝑛 log 𝑛) time.

Theorem 1. Let 𝑤min and 𝑤max be, respectively, the smallest
and largest weight tardiness factors, and let 𝑢min and 𝑢max be
the smallest and largest base tardiness factors. Then, one has

𝑍
SPT

𝑍∗
≤ max{

𝑢max
𝑢min

,
𝑤max
𝑤min

} , (2)

where 𝑍SPT is the penalty created by SPT algorithm and 𝑍
∗

shows the optimal penalty for problem 1 | 𝑑
𝑖
= 𝑑 | BTP.

Proof. Consider two ordered sets {𝐴
𝑤
} and {𝐴

𝑢
} that include

a nondecreasing order of the weight tardiness factors and
base tardiness factors, respectively. Suppose that we create 𝑛
dummy jobs by pairing processing times in SPT ordering and
tardiness factors according to their reverse order in sets {𝐴

𝑤
}

and {𝐴
𝑢
}. It can be easily verified that the associated total

penalty, called LB∗, is a lower bound on the total penalty of
any sequence for real jobs.

Similarly, create another set of 𝑛 dummy jobs by pairing
processing times in SPT ordering but tardiness factors con-
sistent with the order of sets {𝐴

𝑤
} and {𝐴

𝑢
}. It can be easily

tested that if we sequence these dummy jobs according to SPT
ordering, the related total penalty, called UBSPT, is an upper
bound on𝑍SPT for the real jobs. Let 𝑛

𝑇
be the number of tardy

jobs under SPT ordering. Also, let𝐴[𝑟]
𝑤
and𝐴[𝑟]

𝑢
denote the 𝑟th

job in sets {𝐴
𝑤
} and {𝐴

𝑢
}, respectively. Also, let 𝐶SPT

[𝑟]
denote

the completion time of 𝑟th job in SPT ordering.Thus, we have

UBSPT
= 𝐴

[𝑛−𝑛𝑇+1]

𝑤
(𝐶

SPT
[𝑛−𝑛𝑇+1]

− 𝑑) + ⋅ ⋅ ⋅ + 𝐴
[𝑛]

𝑤
(𝐶

SPT
[𝑛]

− 𝑑)

+ 𝐴
[𝑛]

𝑢
+ ⋅ ⋅ ⋅ + 𝐴

[𝑛−𝑛𝑇+1]

𝑢
,

LB∗ = 𝐴
[𝑛𝑇]

𝑤
(𝐶

SPT
[𝑛−𝑛𝑇+1]

− 𝑑) + ⋅ ⋅ ⋅ + 𝐴
[1]

𝑤
(𝐶

SPT
[𝑛]

− 𝑑)

+ 𝐴
[1]

𝑢
+ ⋅ ⋅ ⋅ + 𝐴

[𝑛𝑇]

𝑢
.

(3)

From (3) and the fact that the values are nondecreasingly
ordered in sets {𝐴

𝑤
} and {𝐴

𝑢
}, we get

UBSPT
≤ 𝑤max [(𝐶

SPT
[𝑛−𝑛𝑇+1]

− 𝑑) + ⋅ ⋅ ⋅ + (𝐶
SPT
[𝑛]

− 𝑑)]

+ 𝑢max𝑛𝑇,

LB∗ ≥ 𝑤min [(𝐶
SPT
[𝑛−𝑛𝑇+1]

− 𝑑) + ⋅ ⋅ ⋅ + (𝐶
SPT
[𝑛]

− d)]

+ 𝑢min𝑛𝑇.

(4)

And if we signify the term (𝐶
SPT
[𝑛−𝑛𝑇+1]

− 𝑑) + ⋅ ⋅ ⋅ + (𝐶
SPT
[𝑛]

− 𝑑)

by 𝑇SPT, then

UBSPT

LB∗
≤
𝑤max𝑇

SPT
+ 𝑢max𝑛𝑇

𝑤min𝑇
SPT + 𝑢min𝑛𝑇

≤ max{
𝑤max
𝑤min

,
𝑢max
𝑢min

} ,

(5)

which completes the proof.
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Table 1: Jobs’ parameters in Example 2.

Job 𝑖 𝑝
𝑖

𝑤
𝑖

𝑢
𝑖

1 100 100 20
2 10 20 4

The following example illustrates that the worst-case ratio
bound obtained by SPT ordering is tight for problem1 | 𝑑

𝑖
=

𝑑 | BTP.

Example 2. Suppose that we have two jobs with parameters
given in Table 1 and a common due date 𝑑 = 100.

SPT ordering generates the sequence (2-1) with total
penalty equal to 1020, while the optimal sequence for this
example is (1-2) with the total penalty of 204. So,

𝑍
SPT

𝑍∗
=
1020

204
= 5,

max{
𝑢max
𝑢min

,
𝑤max
𝑤min

} = max {20
4
,
100

20
} = 5.

(6)

3. Algorithm MPR (Minimum Penalty Rate)

In this section, we present another heuristic algorithm for
problem 1 | 𝑑

𝑖
= 𝑑 | BTP and show that the worst-case

ratio bound of this algorithm is 2. Let𝐺 = (𝑔
[1]
, 𝑔
[2]
, . . . , 𝑔

[𝑛]
)

denote the sequence generated by MPR algorithm, where 𝑔
[𝑖]

represents the 𝑖th job within this sequence. This algorithm
requires at most 𝑛 iterations and during its 𝑟th iteration the
(𝑛 − 𝑟 + 1)th element of 𝐺, 𝑔

[𝑛−𝑟+1]
, will be determined. Also,

if there are some unscheduled jobs at each iteration filling
the whole remaining period through due date (remaining
tardiness period), we will choose the one making the min-
imum penalty and save the related sequence, 𝐺, beside the
main sequence𝐺. Finally, the algorithm sorts tardy jobs in the
main and secondary sequences according toWSPT (weighted
shortest processing time) ordering and returns the sequence
with smaller penalty.

Let 𝑍
𝑔[𝑟,𝑛]

denote sum penalties related to the jobs from
𝑟th position through the last job in sequence 𝐺. So, the
algorithm is as follows.

Algorithm MPR.

(1) Let 𝑈 = {1, 2, . . . , 𝑛} be the set of unscheduled jobs
and let 𝑟 be the counter index of positions in the
sequence. Set 𝐶

[𝑛]
= 𝑃sum = ∑

𝑛

𝑖=1
𝑝
𝑖
and 𝑟 = 𝑛.

(2) Define 𝑈̂ = {𝑖 ∈ 𝑈 | 𝑝
𝑖
≥ 𝐶

[𝑛]
− 𝑑}. If 𝑈̂ is empty, then

𝑍best = ∞; else, consider the job with the minimum
penalty in 𝑈̂ as job 𝑖̂ that is calculated by 𝑍best = 𝑢

𝑖̂
+

𝑤
𝑖̂
(𝐶
[𝑛]
−𝑑) = min

𝑖∈𝑈̂
{𝑢
𝑖
+𝑤

𝑖
(𝐶
[𝑛]
−𝑑)} and also 𝑔

[𝑛]
=

𝑖̂.

Table 2: Jobs’ parameters in Example 3.

Job 𝑖 𝑝
𝑖

𝑤
𝑖

𝑢
𝑖

1 7 8 18
2 6 4 16
3 4 2 24
4 6 5 17

(3) For all jobs 𝑖 ∈ 𝑈, calculate 𝜃
𝑖
values by (7) and select a

job 𝑘 such that 𝜃
𝑘
= min

𝑖∈𝑈
{𝜃
𝑖
}. If there is a tie, select

the job with the smaller processing time;

𝜃
𝑖
=
𝑢
𝑖
+ 𝑤

𝑖
(𝐶
[𝑟]
− 𝑑)

min (𝑝
𝑖
, 𝐶
[𝑟]
− 𝑑)

. (7)

(4) Set 𝑈 = 𝑈/{𝑘}, 𝑔
[𝑟]

= 𝑘, and 𝐶
[𝑟−1]

= 𝐶
[𝑟]
− 𝑝

𝑘
.

(5) If 𝑈̂ = {𝑖 ∈ 𝑈 | 𝑝
𝑖
≥ 𝐶

[𝑟−1]
− 𝑑} is not empty,

then calculate the value 𝑍 = 𝑢
𝑖̂
+ 𝑤

𝑖̂
(𝐶
[𝑟−1]

− 𝑑) =

min
𝑖∈𝑈̂

{𝑢
𝑖
+𝑤

𝑖
(𝐶
[𝑟−1]

−𝑑)}. If𝑍+𝑍
𝑔[𝑟,𝑛]

< 𝑍best, then
set 𝑍best = 𝑍 + 𝑍

𝑔[𝑟,𝑛]
, 𝑔
[𝑟−1]

= 𝑖̂, and 𝑔
[𝑖]
= 𝑔

[𝑖]
∀𝑖 =

𝑟, . . . , 𝑛.
(6) If 𝐶

[𝑟−1]
> 𝑑, then 𝑟 = 𝑟 − 1 and go back to step 3.

(7) Schedule the remaining jobs at the beginning of
sequences 𝐺 and 𝐺.

(8) Sort the tardy jobs in sequences𝐺 and𝐺 according to
the nonincreasing order of 𝑤

𝑖
/𝑝
𝑖
ratios.

(9) If 𝑍
𝐺

≤ 𝑍
𝐺, then return the sequence 𝐺 =

(𝑔
[1]
, 𝑔
[2]
, . . . , 𝑔

[𝑛]
) with 𝑍

𝑔[1,𝑛]
penalty, and, else,

return the sequence 𝐺 = (𝑔
[1]
, 𝑔
[2]
, . . . , 𝑔

[𝑛]
) with

penalty equal to 𝑍
𝑔[1,𝑛]

.

It can be easily seen that MPR algorithm runs in 𝑂(𝑛
2
)

time. The following example illustrates the implementation
of MPR algorithm on a simple problem.

Example 3. Suppose a problemwith four jobs and a common
due date 𝑑 = 10. Table 2 shows the jobs’ parameters.

At first, 𝐶
[4]

= 23, 𝑍best = ∞, and 𝑈̂ is empty. At the
first iteration of running the algorithm (𝑟 = 4), we have 𝜃

1
=

17.43, 𝜃
2
= 11.33, 𝜃

3
= 12.5, and 𝜃

4
= 13.67, where job 2

has the minimum value, and, hence, it is sequenced at the last
position of 𝐺. Also, 𝐶

[3]
= 17, 𝑈̂ = {1}, and 𝑍 = 74, and

considering 𝑍
𝑔[4,4]

= 68, we get 𝑍best = 142. So, 𝑔
[4]

= 2 and
𝑔
[3]

= 1.
At the second iteration (𝑟 = 3), we have 𝜃

1
= 10.57, 𝜃

3
=

9.5, and 𝜃
4
= 8.67, where job 4 has the minimum value, and,

hence,𝑔
[3]

= 4.The algorithmcalculates𝐶
[2]

= 11, 𝑈̂ = {1, 3},
and 𝑍 = 26, and considering 𝑍 + 𝑍

𝑔[3,4]
= 146 > 𝑍best, the

value of𝑍best will remain unchanged. At the last iteration (𝑟 =
2), we have 𝜃

1
= 26 and 𝜃

3
= 26, and the algorithm sequences

job 3 at the second position of sequence𝐺. Also, 𝐶
[1]

= 7 and
𝑈̂ is empty.

After arbitrary scheduling the remaining jobs at the
beginning of sequences 𝐺 and 𝐺, we get 𝐺 = (1, 3, 4, 2)
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Time

Penalty

Z𝜎󳰀

Z𝜎󳰀1

p𝜎󳰀𝑚

C𝜎󳰀1
C𝜎󳰀2

C𝜎1
C𝜎2

d C𝜎𝑚
= C𝜎󳰀

𝑚󳰀
= DC𝜎3

Z𝜎1

Z𝜎3

Z𝜎

Slope =
Z𝜎󳰀1

min(p𝜎󳰀1 , C𝜎󳰀1
− d)

C𝜎𝑚−1

Figure 2: Penalties related to sequences 𝜎 and 𝜎󸀠.

and 𝐺
󸀠
= (3, 4, 1, 2). These sequences are modified to 𝐺 =

(1, 4, 2, 3) and𝐺󸀠 = (3, 4, 1, 2) after implementing step 8. Also,
𝑍
𝐺
= 134 and 𝑍𝐺 = 142, which forces the algorithm to select

sequence 𝐺 as the final output.

Here, we present two theorems about problem 1 | 𝑑
𝑖
= 𝑑 |

BTPwhich are used for proving the worst-case ratio bound of
MPR algorithm.

Theorem 4. Consider a problem 1 | 𝑑
𝑖
= 𝑑 | BTP. Define

two sequences 𝜎 = (𝜎
1
, . . . , 𝜎

𝑚
) and 𝜎󸀠 = (𝜎

󸀠

1
, . . . , 𝜎

󸀠

𝑚
󸀠) on a

common time interval, where the relation𝑍
𝑖
/min(𝑝

𝑖
, 𝐶
𝑖
−𝑑) ≤

𝑍
𝑗
/min(𝑝

𝑗
, 𝐶
𝑗
− 𝑑) holds for all jobs 𝑖 in 𝜎 and jobs 𝑗 in 𝜎

󸀠.
Then, 𝑍𝜎 ≤ 𝑍

𝜎
󸀠

.

Proof. Consider two sequences 𝜎 and 𝜎
󸀠 with tardiness

penalties shown in Figure 2. Suppose that 𝜃𝜎(𝑡) and 𝜃
𝜎
󸀠

(𝑡)

denote the slope of the functions related to sequences 𝜎 and
𝜎
󸀠, respectively; then, according to the theorem’s assumption,

we have 𝜃𝜎(𝑡) ≤ 𝜃
𝜎
󸀠

(𝑡) for all 𝑡 ∈ [𝑑, 𝐷]. It is obvious that
for all 𝑡 ∈ [𝑑, 𝐷] (especially for point 𝑑) the function related
to sequence 𝜎 falls under the function related to sequence 𝜎󸀠

and, hence, ∑𝑚
𝑖=1

𝑍
𝜎𝑖
≤ ∑

𝑚
󸀠

𝑗=1
𝑍
𝜎
󸀠

𝑗

. A similar conclusion can be
made for the case where 𝐶

𝜎𝑚
< 𝐶

𝜎
󸀠

𝑚
󸀠

holds.

Theorem 5. In any optimal sequence for problem 1 | 𝑑
𝑖
= 𝑑 |

BTP, the tardy jobs with start time greater than or equal to 𝑑
must be sequenced in WSPT ordering. This means that

∀𝑖, 𝑗 ∈ 𝑍
∗
: 𝑑 ≤ 𝐶

𝑖
− 𝑝

𝑖
< 𝐶

𝑗
− 𝑝

𝑗
󳨐⇒

𝑝
𝑖

𝑤
𝑖

≤
𝑝
𝑗

𝑤
𝑗

. (8)

Proof. The proof is easily done by swapping each pair of the
adjacent tardy jobs.

Table 3: Jobs’ parameters in Example 7.

Job 𝑖 𝑝
𝑖

𝑤
𝑖

𝑢
𝑖

1 n 𝑛 + 1/𝑛 𝑛

2 to 𝑛 + 1 1 1 + 1/𝑛 1

Theorem 6. Algorithm MPR gives a 2-approximation for
problem 1 | 𝑑

𝑖
= 𝑑 | BTP.

Proof. See the appendix.

The following example illustrates that the worst-case ratio
bound obtained byMPR is tight for problem 1 | 𝑑

𝑖
= 𝑑 | BTP.

Example 7. Suppose that we have 𝑛 + 1 jobs with parameters
given in Table 3 and a common due date 𝑑 = 𝑛.

Algorithm MPR gives the sequence (2, 3, . . . , 𝑛, 1) with
𝑛
2
+𝑛+ 1 total penalty, while the optimal penalty is (1/2)𝑛2 +

2𝑛 + 1/2 related to the sequence (1, 2, . . . , 𝑛). Thus,

𝑍
𝐺

𝑍∗
=

𝑛
2
+ 𝑛 + 1

(1/2) 𝑛2 + 2𝑛 + 1/2
󳨐⇒ lim

𝑛→∞

𝑍
𝐺

𝑍∗
= 2. (9)

4. Dynamic Programming (DP) Algorithm

Without loss of generality, we consider that jobs are indexed
according to the WLPT ordering. For problem 1 | 𝑑

𝑖
= 𝑑 |

BTP, an optimal schedule belongs to the class of schedules
in which the early jobs are processed starting at time zero
and are followed by a straddling job, called job 𝛼, that starts
no later than time 𝑑 and is completed after time 𝑑; in turn,
the straddling job is followed by the block of tardy jobs. The
early jobs can be processed in any order, while, according to
Theorem5, tardy jobs that start at or after the due datemust be
processed according to WSPT numbering. Let us introduce
the following notations.
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(1) For each 𝛼 = {1, 2, . . . , 𝑛}

(1.1) Set ](𝛼)
0

= {[0, 0]}

(1.2) For each 𝑘 = {1, 2, . . . , 𝛼 − 1, 𝛼 + 1 , . . . , 𝑛}

(i) Consider every state [𝑡, 𝑓] in ](𝛼)
𝑘−1

(a) If 𝑡 + 𝑝
𝑘
≤ 𝑑 then add [𝑡 + 𝑝

𝑘
, 𝑓] to ](𝛼)

𝑘

(b) If 𝑃sum − ∑
𝑘

𝑖=1
𝑝
𝑖
+ 𝑡 > 𝑑 then add [𝑡, 𝑓 + 𝑢

𝑘
+ 𝑤

𝑘
(𝑃sum − ∑

𝑘−1

𝑖=1
𝑝
𝑖
+ 𝑡 − 𝑑)] to ](𝛼)

𝑘

(ii) Delete the state space ](𝛼)
𝑘−1

(1.3) Set 𝑍∗
𝛼
= min

[𝑡,𝑓]∈](𝛼)𝑛
{𝑓 + 𝑢

𝛼
+ 𝑤

𝛼
(𝑡 + 𝑝

𝛼
− 𝑑)}

(2) Calculate the optimal value from 𝑍
∗
= min

𝛼|𝑍
∗
𝛼 ̸= 0

𝑍
∗

𝛼

Algorithm 1: DP algorithm.

[𝑡, 𝑓] is a state in the state space, where 𝑡 denotes the
total processing time of early jobs and 𝑓 is the total
penalty of state.

](𝛼)
𝑘

is a set of states for the first 𝑘 jobs, except for job
𝛼.
𝑍
∗

𝛼
is theminimumpenalty value for problem 1 | 𝑑

𝑖
=

𝑑 | BTP with a fixed straddling job 𝛼.
𝑃sum is the total processing time of all jobs.

This DP algorithm schedules early jobs starting from
time zero and the tardy jobs so that they become complete
exactly at time 𝑃sum. According to this, the algorithm can be
described as in Algorithm 1.

Let UB∗ be an upper bound on the optimal penalty, and
since 𝑓 ≤ UB∗ and 𝑡 ≤ 𝑑, we can restrict the number of
states ](𝛼)

𝑘
by 𝑑 × UB∗. The complexity of substep 1.2 of the

DP algorithm is proportional to∑𝑛
𝑘=1

|](𝛼)
𝑘
| that leads to𝑂(𝑛 ⋅

𝑑 ⋅ UB∗) time. However, this complexity can be reduced to
𝑂(𝑛 ⋅ 𝑑) by selecting a state [𝑡, 𝑓] with the smallest value of
𝑓 at each iteration 𝑘 and for every 𝑡. Similarly, we can get the
complexity of substep 1.3 as 𝑂(𝑑), and so, the complexity of
step 1 is 𝑂(𝑛2 ⋅ 𝑑). Step 2 requires 𝑂(𝑛) time, and the final
complexity of DP algorithm will be calculated as 𝑂(𝑛2 ⋅ 𝑑).
The following example illustrates the details of DP algorithm.

Example 8. Consider an instance of problem 1 | 𝑑
𝑖
= 𝑑 | BTP

with 3 jobs. The parameters of the jobs are given in Table 4,
and the common due date is given as 𝑑 = 6 in this example.

Table 5 shows the states generated in each states space
regarding the selected straddling jobs as well as subsequences
coupled with these states. The optimal value is 𝑍

∗
=

min{57, 56, 58} = 56 related to sequence (3, 2, 1) which
is obtained by inserting straddling job 𝛼 = 2 into the
subsequence (3, , 1).

5. FPTAS Algorithm

One of the standard approaches to generate an FPTAS is the
technique of structuring the execution of an algorithm. Here,
the main idea is to take the exact but slow DP algorithm
described in Section 4 and to interact with it while it is
working. If the algorithm generates a lot of auxiliary states
during its execution, then we may remove some of these

Table 4: Jobs’ parameters in Example 8.

Job 𝑖 𝑝
𝑖

𝑤
𝑖

𝑢
𝑖

1 5 2 12
2 7 3 14
3 3 4 9

states and clean up the algorithm’s memory.This method was
introduced by Ibarra and Kim [17] for solving the knapsack
problem, and in the recent years numerous scheduling
problems have applied such an approach (see [18–22]). First,
let us introduce the following notations.

𝜀 is the error bound of FPTAS algorithm.

](𝛼)#
𝑘

is a set of states generated by FPTAS for the first
𝑘 jobs, except for job 𝛼.

𝑍
#
𝛼
is the minimum penalty generated by FPTAS for

problem 1 | 𝑑
𝑖
= 𝑑 | BTP with a fixed straddling job

𝛼.

𝑍
# is the minimum penalty generated by FPTAS for

problem 1 | 𝑑
𝑖
= 𝑑 | BTP.

Consider the penalty of algorithm MPR, called 𝑍
𝐻
, as

an upper bound for the problem. To reduce the number of
states in each iteration, we split the feasible interval [0, 𝑍

𝐻
]

related to the second coordinate of state [𝑡, 𝑓] into 𝐿+1 equal
subintervals 𝐼

𝑚
= [(𝑚 − 1)Δ,𝑚Δ) 1 ≤ 𝑚 ≤ 𝐿 + 1 of length

Δ. For each of the resulting subintervals 𝐼
𝑚
, we keep at most

one state with the smallest value 𝑡. Given an arbitrary 𝜀 > 0,
define

LB =
𝑍
𝐻

2
, 𝐿 = ⌈

2𝑛

𝜀
⌉ , Δ =

𝑍
𝐻

𝐿
. (10)

The FPTAS algorithm works on the reduced state space
](𝛼)#
𝑘

instead of ](𝛼)
𝑘

and can be described as in Algorithm 2.

5.1. Worst-Case Analysis of the FPTAS Algorithm. The worst-
case analysis is based on comparing the execution of DP and
FPTAS algorithms. First, a lemma is provided that will be
used to prove the worst-case ratio bound of FPTAS.
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(1) For each 𝛼 = {1, 2, . . . , 𝑛}

(1.1) Set ](𝛼)#
0

= {[0, 0]}

(1.2) For each 𝑘 = {1, 2, . . . , 𝛼 − 1, 𝛼 + 1 , . . . , 𝑛}

(i) Consider every state [𝑡, 𝑓] in ](𝛼)#
𝑘−1

(a) If 𝑡 + 𝑝
𝑘
≤ 𝑑 then add [𝑡 + 𝑝

𝑘
, 𝑓] to ](𝛼)#

𝑘

(b) If 𝑃sum − ∑
𝑘

𝑖=1
𝑝
𝑖
+ 𝑡 > 𝑑 then add [𝑡, 𝑓 + 𝑢

𝑘
+ 𝑤

𝑘
(𝑃sum − ∑

𝑘−1

𝑖=1
𝑝
𝑖
+ 𝑡 − 𝑑)] to ](𝛼)#

𝑘

(ii) Delete the state space ](𝛼)#
𝑘−1

(iii) Let [𝑡, 𝑓]
𝑚
be a state in ](𝛼)#

𝑘
such that 𝑓 ∈ 𝐼

𝑚
with the smallest 𝑡 (break ties

by choosing the state of the smallest 𝑓). Set ](𝛼)#
𝑘

= {[𝑡, 𝑓]
𝑚
| 1 ≤ 𝑚 ≤ 𝐿 + 1}

(1.3) Set 𝑍#
𝛼
= min

[𝑡,𝑓]∈](𝛼)#𝑛
{𝑓 + 𝑢

𝛼
+ 𝑤

𝛼
(𝑡 + 𝑝

𝛼
− 𝑑)}

(2) Calculate the final solution of FPTAS from 𝑍
#
= min

𝛼|𝑍
#
𝛼
̸= 0
𝑍

#
𝛼

Algorithm 2: FPTAS algorithm.

Table 5: Procedure of DP algorithm in Example 8.

V(𝛼)
0

V(𝛼)
1

V(𝛼)
2 𝑍

∗

𝛼State Sequence State Sequence State Sequence
𝛼 = 1 [0, 0] ( , , ) [0, 41] ( , , 2) [3, 41] (3, , 2) 41 + 16 = 57

𝛼 = 2 [0, 0] ( , , ) [5, 0]
[0, 30]

(1, , )
( , , 1)

[5, 45]
[3, 30]
[0, 55]

(1, , 3)
(3, , 1)
( , 3, 1)

min
{{

{{

{

45 + 32

30 + 26

55 + 17

}}

}}

}

= 56

𝛼 = 3 [0, 0] ( , , ) [5, 0]
[0, 30]

(1, , )
( , , 1) [5, 41] (1, , 2) 41 + 17 = 58

Lemma 9. Let [𝑡, 𝑓] be an arbitrary state in ](𝛼)
𝑘
. The FPTAS

algorithm generates at least one state [𝑡#, 𝑓#
] in ](𝛼)#

𝑘
such that

𝑡
#
≤ 𝑡 and 𝑓#

≤ 𝑓 + 𝑘Δ.

Proof. The proof is done by induction on 𝑘. For 𝑘 = 0,
obviously we have ](𝛼)#

0
= ](𝛼)

0
. Suppose that the lemma is

valid up to 𝑘 − 1 and we want to show its validity for iteration
𝑘. Let [𝑡, 𝑓] be a state in ](𝛼)

𝑘
generated by the DP algorithm

from a feasible state [𝑡󸀠, 𝑓󸀠] at iteration 𝑘 − 1. Here, two cases
can be distinguished. In the first case [𝑡, 𝑓] = [𝑡

󸀠
+ 𝑝

𝑘
, 𝑓
󸀠
]

and in the second case [𝑡, 𝑓] = [𝑡
󸀠
, 𝑓
󸀠
+𝑢

𝑘
+𝑤

𝑘
max{0, 𝑃sum −

∑
𝑘−1

𝑖=1
𝑝
𝑖
+ 𝑡

󸀠
− 𝑑}] holds. We prove the statement for iteration

𝑘 in these two cases.

Case 1 ([𝑡, 𝑓] = [𝑡
󸀠
+𝑝

𝑘
, 𝑓
󸀠
]). Since [𝑡󸀠, 𝑓󸀠] ∈ ](𝛼)

𝑘−1
, there exists

a state [𝑡󸀠#, 𝑓󸀠#] ∈ ](𝛼)#
𝑘−1

such that 𝑡󸀠# ≤ 𝑡
󸀠 and 𝑓

󸀠#
≤ 𝑓

󸀠
+

(𝑘 − 1)Δ. Therefore, the FPTAS algorithm generates the state
[𝑡
󸀠#
+ 𝑝

𝑘
, 𝑓
󸀠#
] that may be eliminated when cleaning up the

state subset. Let [𝜆, 𝜇] be the remaining state in ](𝛼)#
𝑘

that is in
the same interval as [𝑡󸀠# + 𝑝

𝑘
, 𝑓
󸀠#
]. Thus, we drive that

𝜆 ≤ 𝑡
󸀠#
+ 𝑝

𝑘
≤ 𝑡

󸀠
+ 𝑝

𝑘
= 𝑡,

𝜇 ≤ 𝑓
󸀠#
+ Δ ≤ 𝑓

󸀠
+ (𝑘 − 1) Δ + Δ = 𝑓 + 𝑘Δ.

(11)

Consequently, the lemma holds for iteration 𝑘 in this case.

Case 2 ([𝑡, 𝑓] = [𝑡
󸀠
, 𝑓
󸀠
+ 𝑢

𝑘
+ 𝑤

𝑘
max{0, 𝑃sum − ∑

𝑘−1

𝑖=1
𝑝
𝑖
+

𝑡
󸀠
− 𝑑}]). Since [𝑡󸀠, 𝑓󸀠] ∈ ](𝛼)

𝑘−1
, there exists a state [𝑡󸀠#, 𝑓󸀠#] ∈

](𝛼)#
𝑘−1

such that 𝑡󸀠# ≤ 𝑡
󸀠 and 𝑓

󸀠#
≤ 𝑓

󸀠
+ (𝑘 − 1). Therefore,

the FPTAS algorithm generates the state [𝑡
󸀠#
, 𝑓
󸀠#

+ 𝑢
𝑘
+

𝑤
𝑘
max{0, 𝑃sum − ∑

𝑘−1

𝑖=1
𝑝
𝑖
+ 𝑡

󸀠#
− 𝑑}] at iteration 𝑘 that may

be eliminated during the cleaning up procedure. Let [𝜆󸀠, 𝜇󸀠]
be the remaining state in ](𝛼)#

𝑘
that is in the same interval as

[𝑡
󸀠#
, 𝑓
󸀠#
+𝑢

𝑘
+𝑤

𝑘
max{0, 𝑃sum−∑

𝑘−1

𝑖=1
𝑝
𝑖
+𝑡
󸀠#
−𝑑}]. So, we have

𝜆
󸀠
≤ 𝑡

󸀠#
≤ 𝑡

󸀠
= 𝑡,

𝜇
󸀠
≤ 𝑓

󸀠#
+ 𝑢

𝑘
+ 𝑤

𝑘
max{0, 𝑃sum −

𝑘−1

∑

𝑖=1

𝑝
𝑖
+ 𝑡

󸀠#
− 𝑑} + Δ

≤ 𝑓
󸀠
+ (𝑘 − 1) Δ + 𝑢

𝑘

+ 𝑤
𝑘
max{0, 𝑃sum −

𝑘−1

∑

𝑖=1

𝑝
𝑖
+ 𝑡

󸀠#
− 𝑑} + Δ

≤ 𝑓
󸀠
+ (𝑘 − 1) Δ + 𝑢

𝑘

+ 𝑤
𝑘
max{0, 𝑃sum −

𝑘−1

∑

𝑖=1

𝑝
𝑖
+ 𝑡

󸀠
− 𝑑} + Δ

= 𝑓 + 𝑘Δ.

(12)

Thus, the lemma is proved for iteration 𝑘 in this case, too.
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Theorem 10. Given an arbitrary 𝜀 > 0, the FPTAS algorithm
outputs a sequence with 𝑍# penalty such that 𝑍#

≤ (1 + 𝜀)𝑍
∗.

Proof. There exists a straddling job, called 𝛼∗, in the optimal
sequence for problem 1 | 𝑑

𝑖
= 𝑑 | BTP. Since the FPTAS

algorithm checks all jobs as straddling, then obviously job 𝛼∗
will be selected in one of its iterations.

By definition, the optimal sequence can be related to a
state [𝑡∗

𝛼
∗ , 𝑓

∗

𝛼
∗] in ](𝛼

∗
)

𝑛
. According to Lemma 9, the FPTAS

algorithm generates a state [𝑡#
𝛼∗
, 𝑓

#
𝛼∗
] in ](𝛼

∗
)#

𝑛
such that 𝑡#

𝛼
∗ ≤

𝑡
∗

𝛼
∗ and

𝑓
#
𝛼
∗ ≤ 𝑓

∗

𝛼
∗ + 𝑛Δ

= 𝑓
∗

𝛼
∗ + 𝑛

𝑍
𝐻

𝐿
= 𝑓

∗

𝛼
∗ + 𝑛

𝑍
𝐻

⌈2𝑛/𝜀⌉

≤ 𝑓
∗

𝛼
∗ + 𝑛

𝑍
𝐻

2𝑛/𝜀
= 𝑓

∗

𝛼
∗ + 𝜀 ⋅ LB.

(13)

It is clear that 𝑍∗ ≥ LB. Let 𝑇∗
𝛼
∗ and 𝑇

#
𝛼
∗ denote the

tardiness of job 𝛼
∗ in the optimal and FPTAS solutions,

respectively. From 𝑓
∗

𝛼
∗ + 𝑇

∗

𝛼
∗ = 𝑍

∗, we have

𝑡
#
𝛼
∗ ≤ 𝑡

∗

𝛼
∗ 󳨐⇒ 𝑇

#
𝛼
∗ ≤ 𝑇

∗

𝛼
∗

󳨐⇒ 𝑓
#
𝛼
∗ + 𝑇

#
𝛼
∗ ≤ 𝑓

∗

𝛼
∗ + 𝜀 ⋅ LB + 𝑇∗

𝛼
∗

󳨐⇒ 𝑍
#
≤ (1 + 𝜀) 𝑍

∗
.

(14)

This will complete the proof.

5.2. Complexity of the FPTAS Algorithm. MPR algorithm
runs in 𝑂(𝑛

2
) time as the initial phase of FPTAS. The state

space ](𝛼)#
𝑘

(𝑘 = {1, 2, . . . , 𝑛}) is generated at each iteration of
substep 1.2 and in 𝑂(𝑛2) time. Since |](𝛼)#

𝑘
| ≤ 𝐿, we have

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
](𝛼#)
𝑘

󵄨󵄨󵄨󵄨󵄨
≤ 𝑛𝐿 = 𝑛 ⌈

2𝑛

𝜀
⌉ ≤ 𝑛 (

2𝑛

𝜀
+ 1) . (15)

According to this, substep 1.2 requires 𝑂(𝑛
2
/𝜀) time.

Noting that step 1 iterates 𝑛 times for every selection of 𝛼
values, the complexity of this step is 𝑂(𝑛3/𝜀). Finally, step 2
requires 𝑂(𝑛) time, and the final complexity of the FPTAS
algorithm is computed as 𝑂(𝑛3/𝜀).

6. Conclusion

In this paper, we presented a new performance measure for
scheduling problems, called biased tardiness penalty. Accord-
ing to this performance measure, two kinds of penalties are
assigned to each tardy job: one fixed penalty and the other
that linearly increases by the increase in tardiness value. Two
approximation algorithms were designed with the polyno-
mial running times. The first approximation algorithm, SPT,
gives a worst-case ratio bound linking to size of instances,
while the second approximation algorithm, MPR, has a
constant worst-case ratio bound of 2. Next, we developed

a dynamic programming algorithm and converted it to an
FPTAS using the method of structuring the execution of an
algorithm. The resulting FPTAS runs in 𝑂(𝑛3/𝜀) time.

Appendix

Proof of Theorem 6

We consider two main cases for the sequence of tardy jobs
and prove the worst-case ratio bound in both cases. Recall
that 𝑍𝐺 and 𝑍∗ denote the penalties from MPR and optimal
sequences, respectively. Let 𝑝

𝜎
indicate the sum processing

times of jobs in a sequence 𝜎 and let 𝐶𝜎
𝑖
indicate completion

time of job 𝑖 in a sequence 𝜎. Also, 𝑍𝜎
(𝑡)

shows the penalty of
sequence 𝜎 if it ends at time 𝑡.
Case 1.The first tardy job inMPR sequence before the sorting
phase (step 8) is also tardy in optimal sequence.

AlgorithmMPR schedules jobs from the end of sequence
to the beginning, while some of the selected tardy jobs are
also tardy in the optimal sequence and some others are not.
According to this, we can show the sequence of tardy jobs
before the sorting phase (step 8) as in Figure 3. In this figure,
sets 𝐻󸀠 contain the jobs that only are tardy in the heuristic
sequence and sets 𝐵󸀠 contain the jobs that are tardy in both
heuristic and optimal sequences. Without loss of generality,
suppose that each set 𝐵󸀠

𝑖
contains a single job because sets

𝐻
󸀠 can be empty. Let sequence 𝐺󸀠 begin with a job in 𝐵

󸀠

𝑘

from tardy jobs in optimal sequence. Put other tardy jobs
in optimal sequence into set 𝐵󸀠

𝑘+1
. Here, two subcases are

identified.
Subcase 1.1 (𝐵󸀠

𝑘+1
is empty). In this case, sets 𝐵󸀠

1
to 𝐵󸀠

𝑘
contain

all tardy jobs in the optimal sequence. Figure 4 shows the
sequence of tardy jobs after execution of the sorting phase
(step 8). FromTheorem 5, the jobs included in sets 𝐵 have the
same order in both sequencesG and the optimal sequence. So,
we have

𝑍
𝐺
≤ 𝑍

∗
− [𝑤

𝐵1
𝑝
𝐻1

+ 𝑤
𝐵2

2

∑

𝑖=1

𝑝
𝐻𝑖
+ ⋅ ⋅ ⋅ + 𝑤

𝐵𝑘

𝑘

∑

𝑖=1

𝑝
𝐻𝑖
]

+

𝑘

∑

𝑗=1

[

[

∑

𝑔[𝑖]∈𝐻𝑗

(𝑢
𝑔[𝑖]

+ 𝑤
𝑔[𝑖]

(

𝑘

∑

𝑟=𝑗

𝑝
𝐵𝑟
+

𝑘

∑

𝑟=𝑗+1

𝑝
𝐻𝑟

+

𝑔[𝑛𝑗]

∑

𝑟=𝑔[𝑖]+1

𝑝
𝑟
))]

]

,

(A.1)

where the second term shows the decrease in penalty values of
𝐵
1
to 𝐵

𝑘
in sequence𝐺 compared with the related penalties in

optimal sequence. The second term indicates penalty related
to sets𝐻

1
to𝐻

𝑘
in the heuristic sequence.
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B󳰀
k = H󳰀

k =

pB󳰀2

B󳰀
2 =

pH󳰀
2

H󳰀
2 = B󳰀

1 =

pH󳰀
1

H󳰀
1 =

pB󳰀
𝑘

pH󳰀
𝑘

pB󳰀1

CG󳰀

B󳰀
𝑘

CG󳰀

H󳰀
𝑘

CG󳰀

B󳰀2
CG󳰀

B󳰀1
CG󳰀

H󳰀
1
= PsumCG󳰀

H󳰀
2

· · ·

(g󳰀[n𝑘], . . . , g󳰀[n𝑘−1+2]) (g󳰀[n2+1]) (g󳰀
[n2]
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Figure 3: Sequence of tardy jobs in Case 1 before sorting phase.
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Figure 4: Sequence of tardy jobs in Case 1 after sorting phase.

Regarding the fact that all the jobs in sequence 𝐺 which
are included in some sets𝐻

𝑗
come after the job in 𝐵

𝑗
, we get

𝑤
𝑖

𝑝
𝑖

≤

𝑤
𝐵𝑗

𝑝
𝐵𝑗

󳨐⇒ 𝑤
𝑖
≤

𝑤
𝐵𝑗

𝑝
𝐵𝑗

⋅ 𝑝
𝑖
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𝑤
𝑖
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𝑤
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𝑝
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𝑤
𝑖
≤ 𝑤

𝐵𝑗
⋅ ∑

𝑖∈𝐻𝑗

𝑝
𝑖

∀𝑖 ∈ 𝐻
𝑗
.

(A.2)

From (A.1) and (A.2),

𝑍
𝐺

≤ 𝑍
∗

+

𝑘

∑

𝑗=1

[

[

∑

𝑔[𝑖]∈𝐻𝑗

(𝑢
𝑔[𝑖]

+ ∑

𝑔[𝑖]∈𝐻𝑗

𝑤
𝑔[𝑖]

(

𝑘

∑

𝑟=𝑗+1

𝑝
𝐻𝑟
+

𝑔[𝑚𝑗]

∑

𝑟=𝑔[𝑖]+1

𝑝
𝑟
))]

]

,

(A.3)

𝑍
𝐺
≤ 𝑍

∗
+ 𝑍

[𝐻𝑘 ,...,𝐻1]

(𝑑+∑
𝑘

𝑖=1
𝑝𝐻𝑖
)
. (A.4)

Before the sorting phase (step 8), jobs are sequenced accord-
ing to the nondecreasing order of 𝜃

𝑖
’s, and MPR algorithm in

step 8 considers all the jobs filling the whole tardiness period
in each iteration; thus,

𝑘

∑

𝑖=1

𝑝
𝐻
󸀠

𝑖

+

𝑘−1

∑

𝑖=1

𝑝
𝐵
󸀠

𝑖

< 𝑃sum − 𝑑

𝑘

∑

𝑖=1

𝑝
𝐵
󸀠

𝑖

≥ 𝑃sum − 𝑑

}}}}}

}}}}}

}

󳨐⇒

𝑘

∑

𝑖=1

𝑝
𝐻
󸀠

𝑖

< 𝑝
𝐵
󸀠

𝑘

. (A.5)

Now, from Theorem 4 and (A.5) and the fact that the job in
𝐵
󸀠

𝑘
is selected at the last iteration of algorithm, we conclude

that

𝑍
[𝐻
󸀠

𝑘
,...,𝐻
󸀠

1
]

(𝑑+∑
𝑘

𝑖=1
𝑝
𝐻
󸀠

𝑖

)

≤ 𝑍
[𝐵
󸀠

𝑘
]

(𝑑+∑
𝑘

𝑖=1
𝑝
𝐻
󸀠

𝑖

)

. (A.6)

FromTheorem 5, we get

𝑍
[𝐻𝑘,...,𝐻1]
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𝑘

𝑖=1
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󸀠
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1
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𝑘
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𝑖

)

. (A.7)

Also, by (A.4), (A.6), and (A.7), it follows that

𝑍
𝐺
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∗
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𝑘
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]
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𝑘
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𝑝
𝐻
󸀠

𝑖

)

≤ 𝑍
∗
+ 𝑍

[𝐵
󸀠

𝑘
]

(𝑑+∑
𝑘

𝑖=1
𝑝
𝐻
󸀠

𝑖

)

.

(A.8)
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Figure 5: Sequence of tardy jobs in Case 2.

Finally, noting that 𝐶∗
𝐵
󸀠

𝑘

≥ 𝑃sum −∑
𝑘−1

𝑖=1
𝑝
𝐵
󸀠

𝑖

and 𝑑 +∑𝑘
𝑖=1

𝑝
𝐻
󸀠

𝑖

+

∑
𝑘−1

𝑖=1
𝑝
𝐵
󸀠

𝑖

≤ 𝑃sum we conclude that 𝑑 + ∑
𝑘

𝑖=1
𝑝
𝐻
󸀠

𝑖

≤ 𝐶
∗

𝐵
󸀠

𝑘

and
(A.8) leads to the proof of 𝑍𝐺 ≤ 2𝑍

∗ in this case.

Subcase 1.2 (𝐵󸀠
𝑘+1

is not empty). Similar to Subcase 1.1, we can
show that 𝑍𝐺 ≤ 𝑍

∗
+ 𝑍

[𝐻𝑘,...,𝐻1]

(𝑑+∑
𝑘

𝑖=1
𝑝𝐻𝑖
)
. Substitute the job in 𝐵

󸀠

𝑘

by two dummy jobs, a tardy job having the same tardiness
factors as 𝐵󸀠

𝑘
and a processing time 𝐶𝐺
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generality of the proof because the penalty of sequence G󸀠
remains unchangedunder this substitution,while the optimal
penalty cannot increase. So,
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}}}}}

}}}}}

}

󳨐⇒
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𝑝
𝐻
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𝑖

< 𝑝
𝐵
󸀠
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. (A.9)

From Theorem 4 and (A.9) and the fact that the heuristic
algorithm has not selected any job in 𝐵󸀠

𝑘+1
, it follows that

Z[𝐻
󸀠

𝑘
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󸀠

1
]

(d+∑𝑘
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. (A.10)

According to 𝑍
[𝐻𝑘 ,...,𝐻1]

(𝑑+∑
𝑘

𝑖=1
𝑝𝐻𝑖
)
≤ 𝑍

[𝐻
󸀠

𝑘
,...,𝐻
󸀠

1
]

(𝑑+∑
𝑘

𝑖=1
𝑝
𝐻
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𝑖

)
, we conclude that

𝑍
𝐺
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∗
+ 𝑍

[𝐵
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𝑘+1
]

(𝑑+∑
𝑘
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𝑝
𝐻
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)
. According to 𝐶∗

𝐵
󸀠

𝑘+1

≥ 𝑃sum − ∑
𝑘
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𝐵
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𝑖
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𝑝
𝐻
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𝑖

+∑
𝑘

𝑖=1
𝑝
𝐵
󸀠

𝑖
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𝑘
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𝑝
𝐻
󸀠

𝑖

≤ 𝐶
∗

𝐵
󸀠

𝑘+1

which results in the proof of the theorem in this subcase.

Case 2. The first tardy job before sorting phase (step 8) is not
tardy in optimal sequence.

Figure 5 shows the sequence of tardy jobs before and
after sorting in step 8. Assume that 𝐵󸀠

𝑘
contains tardy jobs

in optimal sequence that are not tardy in sequence 𝐺󸀠. 𝐵󸀠
𝑘

cannot be empty because in that condition jobs in 𝐵
󸀠

1
to

𝐵
󸀠

𝑘−1
must fill the whole tardiness period from 𝑑 to 𝑃sum,

and considering ∑𝑘−1
𝑖=1

𝑝
𝐵
󸀠

𝑖

≥ 𝑃sum − 𝑑, there is no need that
the heuristic algorithm selects tardy jobs in𝐻󸀠

𝑘
. Without loss

of generality, the first job in 𝐻
󸀠

𝑘
can be substituted by two

dummy jobs, a tardy job having the same tardiness factors
as the first job in𝐻󸀠

𝑘
and processing time𝐶𝐺

󸀠

𝐻
󸀠

𝑘

−𝑑 and an early
job having tardiness factors equal to zero and processing time
∑
𝑖∈𝐻
󸀠

𝑘

𝑝
𝑖
−(𝐶

𝐺
󸀠

𝐻
󸀠

𝑘

−𝑑).This substitution gets𝐻󸀠

𝑘
to exactly fill the

tardiness period while it has no effect on the heuristic penalty
and will not increase the optimal penalty.

From Figure 5 and (A.2), we can show the relation
between the optimal and heuristic sequences as follows:
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∑
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,
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)
.

(A.11)

Finally, according to ∑𝑘
𝑖=1

𝑝
𝐻
󸀠

𝑖

< 𝑝
𝐵
󸀠

𝑘

and 𝑑 + ∑
𝑘

𝑖=1
𝑝
𝐻
󸀠

𝑖

≤ 𝐶
∗

𝐵
󸀠

𝑘

we conclude the proof of the theorem in this case.
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