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The drive system can synchronize with the response system by the scaling factor in the traditional projective synchronization.This
paper proposes a novel adaptive hybrid dislocated synchronization with uncertain parameters scheme for chaos synchronization
using the Lyapunov stability theory.The drive system is synchronized by the sumof hybrid dislocated state variables for the response
system. By designing effective hybrid dislocated adaptive controller and hybrid dislocated adaptive law of the parameters estimation,
we investigate the synchronization of two identical memristor chaotic oscillator systems and two different memristor chaotic
oscillator systems with uncertain parameters. Finally, the numerical simulation examples are provided to show the effectiveness
of our method.

1. Introduction

A chaotic system has complex dynamical behaviors that
possess some special features such as being extremely sen-
sitive to tiny variations of initial conditions and having
bounded trajectories in the phase space with a positive
leading Lyapunov exponent and so on. Pecora and Carroll
[1] have realized chaos synchronization in 1990, many types
of synchronization methods have been investigated in the
past 10 years. Based on the Lyapunov stability theory, some
kinds of synchronization have been intensively studied and
a lot of theoretical results have been obtained, such as
complete synchronization [1], partial synchronization [2],
anti-synchronization [3], generalized synchronization [4–7],
phase synchronization [8], anti-phase synchronization [9],
lag synchronization [10], projective synchronization [11–14],
time scale synchronization [15], combination synchroniza-
tion [16–19], and compound synchronization [20]. In this
period, several theoretical methods have been developed to
realize chaos synchronization such as OGY method [21],
feedback controlmethod [22–24], active controlmethod [25],

backstepping method [26], adaptive control method [27],
sliding mode control method [28], impulsive control method
[29, 30], coupling control method [31], and observer control
method [32], and so on.

In recent years, projective synchronization receivedmany
attractions, which characterizes that the state vectors of
synchronized systems become proportional with a scaling
factor. Mainieri and Rehacek have studied projective syn-
chronization in coupled partially linear chaotic systems such
as the Lorenz system [11]. Projective synchronization in
general class of chaotic systems including nonpartially-linear
chaotic system has been achieved with nonlinear observer
control [33]. More recently, a new synchronization method
referred to as “modified projective synchronization” has
been proposed in [34, 35], where the chaotic systems can
synchronize up to a constant scaling matrix. The above
projective synchronization is confined to three-dimensional
chaotic systems, the projective synchronization problem for
a class of four-dimensional chaotic systems is concerned
[36, 37].
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The abovemethods realize the projective synchronization
whose scaling factor is a constant or a function for the
corresponding state variable. Xu et al. has realized the general
hybrid projective dislocated synchronization between two
chaotic nonlinear systems, which includes complete dis-
located synchronization, dislocated antisynchronization,
and projective dislocated synchronization as its special
items [38]. The transmitted signals are such complex and
unpredictable that they may have stronger antiattack ability
and antitranslated capability than that transmitted by the
usual transmission model. In our paper, the drive system is
synchronized by the sum of hybrid dislocated state variables
for the response system. What is more, the memristor
chaotic oscillator system is a new four-dimensional (4D)
autonomous chaotic system and can produce novel rich
and complex dynamic activities, which is different from the
traditional chaotic systems for the unique memory of the
memristor initial state. Motivated by the existing works, we
focus on not only the identification of parameters but also the
novel adaptive hybrid dislocated control synchronization.

In this paper, the problem of chaos synchronization to
memristor chaotic oscillator system with uncertain param-
eters is considered. At first, we give a general scheme descrip-
tion for synchronization with uncertain parameters between
two identical and two different chaotic systems. Then the
chaos synchronization of the systems is proved by the
Lyapunov stability theory. Finally, the numerical simulation
examples are given to show the effectiveness of our method.

2. Chaos Synchronization

The section will discuss hybrid dislocated adaptive method
to achieve synchronization for memristor chaotic oscillator
systemswith uncertain parameters. Synchronization between
two identical chaotic systems and two different chaotic
systems are considered, respectively.

2.1. Chaos Synchronization between Two Identical Chaotic
Systems. A drive system is given by

𝑥̇ = 𝑓 (𝑥) + 𝑔 (𝑥) 𝛼, (1)

and the corresponding response system is written by

̇𝑦 = 𝑓 (𝑦) + 𝑔 (𝑦) 𝛼̃ + 𝑢, (2)

where 𝑥 = (𝑥
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can hold true, such that the drive system (1) and the
corresponding response system (2) have realized hybrid pro-
jective complete dislocated synchronization with uncertain
parameters.

Specifically, the error dynamics system of general hybrid
projective complete dislocated synchronization with uncer-
tain parameters is given by
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Lyapunov function is designed as follows:
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where𝑃 and𝑄 are the positive definite constantmatrices.The
time derivative of 𝑉 along the trajectories of (5) is written by
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If there exists suitable feedback control law 𝑢(𝑥, 𝑦) ∈

𝑅

𝑚 and constants 𝑑
𝑖𝑗
to make ̇

𝑉 < 0 hold true, based on
the Lyapunov stability theorem, the drive system (1) and the
response system (2) have completed general hybrid projective
complete dislocated synchronization with uncertain parame-
ters.
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projective complete dislocated synchronization will become
into projective dislocated synchronization.

2.1.1. Main Results. Memristor chaotic oscillator system [39]
is described by
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where 𝑥
1
, 𝑥
2
, 𝑥
3
, and 𝑥

4
are state variables of the drive system
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system (7). 𝑞(𝑤) is a piecewise linear function of the form:

𝑞 (𝑤) = 18𝑤 − 1.75 (|𝑤 + 1| − |𝑤 − 1|) , (8)
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Figure 1: Chaotic attractors of memristor chaotic oscillator system
described by (7).

where 𝑤 is state variable. 𝜑(𝑤) is given as the following
expression:

𝜑 (𝑤) =

𝑑𝑞 (𝑤)

𝑑𝑤

= {

0.1, |𝑤| < 1,

18, |𝑤| > 1.

(9)

Actually, system (7) shows chaotic when 𝑎

1
= 0.31, 𝑎

2
=

0.35, 𝑎
3

= 0.29, and 𝑎

4
= 0.41 as shown in Figure 1.

Two identical memristor chaotic oscillator systems are given,
where the drive systemwith the variable𝑥 drives the response
system having identical equations denoted the variable𝑦.The
drive system is (7), the response system is described by
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The update rules for unknown parameters 𝑏
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2
− 𝑦

1
− 𝑏

4
𝑦

3
+ 𝑢

3
) + 𝑑

24
(𝑦

1
+ 𝑢

4
) ,

̇𝑒

3
= 𝑥̇

3
+ 𝑑

31
[𝑏

1
(𝑦

3
− 𝜑 (𝑦

4
) 𝑦

1
) + 𝑢

1
]

+ 𝑑

32
(𝑏

2
𝑦

2
− 𝑏

3
𝑦

3
+ 𝑢

2
) + 𝑑

34
(𝑦

1
+ 𝑢

4
) ,

̇𝑒

4
= 𝑥̇

4
+ 𝑑

41
[𝑏

1
(𝑦

3
− 𝜑 (𝑦

4
) 𝑦

1
) + 𝑢

1
]

+ 𝑑

42
(𝑏

2
𝑦

2
− 𝑏

3
𝑦

3
+ 𝑢

2
) + 𝑑

43
(𝑦

2
− 𝑦

1
− 𝑏

4
𝑦

3
+ 𝑢

3
) .

(17)

Substituting (12), (13), and (15) into (17), we get

̇𝑒

1
= 𝑥̇

1
+ 𝑑

12
(𝑏

2
𝑦

2
− 𝑏

3
𝑦

3
) + 𝑑

13
(𝑦

2
− 𝑦

1
− 𝑏

4
𝑦

3
)

+ 𝑑

14
𝑦

1
+ 𝐴,

̇𝑒

2
= 𝑥̇

2
+ 𝑑

21
𝑏

1
(𝑦

3
− 𝜑 (𝑦

4
) 𝑦

1
)

+ 𝑑

23
(𝑦

2
− 𝑦

1
− 𝑏

4
𝑦

3
) + 𝑑

24
𝑦

1
+ 𝐵,

̇𝑒

3
= 𝑥̇

3
+ 𝑑

31
𝑏

1
(𝑦

3
− 𝜑 (𝑦

4
) 𝑦

1
)

+ 𝑑

32
(𝑏

2
𝑦

2
− 𝑏

3
𝑦

3
) + 𝑑

34
𝑦

1
+ 𝐶,

̇𝑒

4
= 𝑥̇

4
+ 𝑑

41
𝑏

1
(𝑦

3
− 𝜑 (𝑦

4
) 𝑦

1
)

+ 𝑑

42
(𝑏

2
𝑦

2
− 𝑏

3
𝑦

3
) + 𝑑

43
(𝑦

2
− 𝑦

1
− 𝑏

4
𝑦

3
) + 𝐷.

(18)

Substituting (7), (10), and (14) into (18), it is easy to gain the
error dynamics as follows:

̇𝑒

1
= (𝑏

1
− 𝑎

1
)

− [𝑥

1
+ 𝑑

12
(𝑏

2
𝑦

2
− 𝑏

3
𝑦

3
+ 𝑢

2
)

+𝑑

13
(𝑦

2
− 𝑦

1
− 𝑏

4
𝑦

3
+ 𝑢

3
) + 𝑑

14
(𝑦

1
+ 𝑢

4
)] ,

̇𝑒

2
= (𝑏

2
− 𝑎

2
)

− {𝑥

2
+ 𝑑

21
[𝑏

1
(𝑦

3
− 𝜑 (𝑦

4
) 𝑦

1
) + 𝑢

1
]

+𝑑

23
(𝑦

2
− 𝑦

1
− 𝑏

4
𝑦

3
+ 𝑢

3
) + 𝑑

24
(𝑦

1
+ 𝑢

4
)} ,

̇𝑒

3
= (𝑏

3
− 𝑎

3
)

− {𝑥

3
+ 𝑑

31
[𝑏

1
(𝑦

3
− 𝜑 (𝑦

4
) 𝑦

1
) + 𝑢

1
]

+𝑑

32
(𝑏

2
𝑦

2
− 𝑏

3
𝑦

3
+ 𝑢

2
) + 𝑑

34
(𝑦

1
+ 𝑢

4
)} ,

̇𝑒

4
= (𝑏

4
− 𝑎

4
)

− {𝑥

4
+ 𝑑

41
[𝑏

1
(𝑦

3
− 𝜑 (𝑦

4
) 𝑦

1
) + 𝑢

1
]

+ 𝑑

42
(𝑏

2
𝑦

2
− 𝑏

3
𝑦

3
+ 𝑢

2
)

+𝑑

43
(𝑦

2
− 𝑦

1
− 𝑏

4
𝑦

3
+ 𝑢

3
)} .

(19)

The following Lyapunov candidate is chosen by

𝑉 =

1

2

(𝑒

2

1
+ 𝑒

2

2
+ 𝑒

2

3
+ 𝑒

2

4
+ 𝑒

2

𝑎
1

+ 𝑒

2

𝑎
2

+ 𝑒

2

𝑎
3

+ 𝑒

2

𝑎
4

) , (20)

where

𝑒

𝑎
1

= 𝑏

1
− 𝑎

1
, 𝑒

𝑎
2

= 𝑏

2
− 𝑎

2
,

𝑒

𝑎
3

= 𝑏

3
− 𝑎

3
, 𝑒

𝑎
4

= 𝑏

4
− 𝑎

4
.

(21)

Then the differential of the Lyapunov function along the
trajectory of error system (19) is

̇

𝑉 (𝑒

1
, 𝑒

2
, 𝑒

3
, 𝑒

4
, 𝑒

𝑎
1

, 𝑒

𝑎
2

, 𝑒

𝑎
3

, 𝑒

𝑎
4

)

= ̇𝑒

1
𝑒

1
+ ̇𝑒

2
𝑒

2
+ ̇𝑒

3
𝑒

3
+ ̇𝑒

4
𝑒

4
+ ̇𝑒

𝑎
1

𝑒

𝑎
1

+ ̇𝑒

𝑎
2

𝑒

𝑎
2

+ ̇𝑒

𝑎
3

𝑒

𝑎
3

+ ̇𝑒

𝑎
4

𝑒

𝑎
4

= {(𝑏

1
− 𝑎

1
)

− [𝑥

1
+ 𝑑

12
(𝑏

2
𝑦

2
− 𝑏

3
𝑦

3
+ 𝑢

2
)

+𝑑

13
(𝑦

2
− 𝑦

1
− 𝑏

4
𝑦

3
+ 𝑢

3
) + 𝑑

14
(𝑦

1
+ 𝑢

4
)]} 𝑒

1

+ {(𝑏

2
− 𝑎

2
)

− {𝑥

2
+ 𝑑

21
[𝑏

1
(𝑦

3
− 𝜑 (𝑦

4
) 𝑦

1
) + 𝑢

1
]

+𝑑

23
(𝑦

2
− 𝑦

1
− 𝑏

4
𝑦

3
+ 𝑢

3
) + 𝑑

24
(𝑦

1
+ 𝑢

4
)}} 𝑒

2

+ {(𝑏

3
− 𝑎

3
)

− {𝑥

3
+ 𝑑

31
[𝑏

1
(𝑦

3
− 𝜑 (𝑦

4
) 𝑦

1
) + 𝑢

1
]

+𝑑

32
(𝑏

2
𝑦

2
− 𝑏

3
𝑦

3
+ 𝑢

2
) + 𝑑

34
(𝑦

1
+ 𝑢

4
)}} 𝑒

3

+ {(𝑏

4
− 𝑎

4
)

− {𝑥

4
+ 𝑑

41
[𝑏

1
(𝑦

3
− 𝜑 (𝑦

4
) 𝑦

1
) + 𝑢

1
]

+ 𝑑

42
(𝑏

2
𝑦

2
− 𝑏

3
𝑦

3
+ 𝑢

2
)

+𝑑

43
(𝑦

2
− 𝑦

1
− 𝑏

4
𝑦

3
+ 𝑢

3
)}} 𝑒

4

− (𝑏

1
− 𝑎

1
) 𝑒

1
− (𝑏

2
− 𝑎

2
) 𝑒

2

− (𝑏

3
− 𝑎

3
) 𝑒

3
− (𝑏

4
− 𝑎

4
) 𝑒

4
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= (𝑏

1
− 𝑎

1
− 𝑒

1
) 𝑒

1
− (𝑏

2
− 𝑎

2
− 𝑒

2
) 𝑒

2

− (𝑏

3
− 𝑎

3
− 𝑒

3
) 𝑒

3
− (𝑏

4
− 𝑎

4
− 𝑒

4
) 𝑒

4

− (𝑏

1
− 𝑎

1
) 𝑒

1
− (𝑏

2
− 𝑎

2
) 𝑒

2

− (𝑏

3
− 𝑎

3
) 𝑒

3
− (𝑏

4
− 𝑎

4
) 𝑒

4

= −𝑒

2

1
− 𝑒

2

2
− 𝑒

2

3
− 𝑒

2

4
.

(22)

Since ̇

𝑉 is negative semidefinite, we cannot immediately
obtain that the origin of error system (19) is asymptotically
stable. In fact, as ̇

𝑉 ≤ 0, then 𝑒

1
, 𝑒

2
, 𝑒

3
, 𝑒

4
∈ ℓ

∞
and 𝑒

𝑎
1

, 𝑒

𝑎
2

,

𝑒

𝑎
3

, 𝑒

𝑎
4

∈ ℓ

∞
. From the error system (10), we get ̇𝑒

1
, ̇𝑒

2
, ̇𝑒

3
, ̇𝑒

4
∈

ℓ

∞
, ̇𝑒

𝑎
1

, ̇𝑒

𝑎
2

, ̇𝑒

𝑎
3

, ̇𝑒

𝑎
4

∈ ℓ

∞
. So we have

∫

𝑡

0

‖𝑒‖

2
𝑑𝑡 ≤ ∫

𝑡

0

𝑒

𝑇
𝑒𝑑𝑡

≤ ∫

𝑡

0

−

̇

𝑉𝑑𝑡 = 𝑉 (0) − 𝑉 (𝑡) ≤ 𝑉 (0) < ∞,

(23)

where 𝑒 = [𝑒

1
, 𝑒

2
, 𝑒

3
, 𝑒

4
, 𝑒

𝑎
1

, 𝑒

𝑎
2

, 𝑒

𝑎
3

, 𝑒

𝑎
4

]

𝑇. Thus 𝑒
1
, 𝑒

2
, 𝑒

3
, 𝑒

4
∈

ℓ

2
and 𝑒
𝑎
1

, 𝑒

𝑎
2

, 𝑒

𝑎
3

, 𝑒

𝑎
4

∈ ℓ

2
. According to the Barbalat’s lemma,

we have 𝑒

1
, 𝑒

2
, 𝑒

3
, 𝑒

4
→ 0 and 𝑒

𝑎
1

, 𝑒

𝑎
2

, 𝑒

𝑎
3

, 𝑒

𝑎
4

→ 0 (𝑡 →

∞). Therefore, the response system (10) synchronizes the
drive system (7) by the controller (15). This completes the
proof.

Remark 4. A chaotic system with unknown parameters
cannot be known in advance, but it has a given geometric
topology structure. The control laws 𝑢

1
, 𝑢
2
, 𝑢
3
, and 𝑢

4

are too complex to realize the synchronization control; the
reasonable design of 𝑢

1
, 𝑢
2
, 𝑢
3
, and 𝑢

4
are the key factors to a

successful method.

2.1.2. Simulation and Results. In the numerical simulations,
the fourth-order Runge-Kutta method is applied to solve the
systems with time step size 0.001. It is assumed that the initial
condition, (𝑥

1
(0), 𝑥

2
(0), 𝑥

3
(0), 𝑥

4
(0)) = (10

−2
, 2 ∗ 10

−2
, 2 ∗

10

−2
, 8 ∗ 10

−2
) and (𝑦

1
(0), 𝑦

2
(0), 𝑦

3
(0), 𝑦

4
(0)) = (10

−2
, 2 ∗

10

−2
, 2∗10

−2
, 8∗10

−2
) are employed. Parameters are designed

as𝑑
11
= −0.002,𝑑

12
= 0.003,𝑑

13
= 0.001,𝑑

21
= −0.002,𝑑

22
=

0.003, 𝑑
23

= 0.001, 𝑑
31

= −0.002, 𝑑
32

= 0.003, 𝑑
33

= 0.001,
𝑑

41
= −0.002, 𝑑

42
= 0.003, 𝑑

43
= 0.001. Synchronization of

the systems (7) and (10) by hybrid dislocated adaptive control
law (15) and (16) with the initial estimated parameters 𝑎

1
= 8,

𝑎

2
= 4, 𝑎

3
= 2, and 𝑎

4
= 1 are displayed in Figures 2 and 3.

Figure 2 displays synchronization errors of systems (7) and
(10). Figure 3 shows that the estimated values of the unknown
parameters 𝑎

1
, 𝑎
2
, 𝑎
3
, and 𝑎

4
that can converge to 𝑎

1
= 0.31,

𝑎

2
= 0.35, 𝑎

3
= 0.29, and 𝑎

4
= 0.41.

Remark 5. In the simulation, parameters 𝑑
𝑖𝑗
(𝑖 = 1, 2, 3, 4, 𝑗 =

1, 2, 3, 4, 𝑖 ̸= 𝑗) are chosen to make the following condition
𝑑

13
𝑑

24
𝑑

31
𝑑

42
− 𝑑

12
𝑑

24
𝑑

31
𝑑

43
− 𝑑

14
𝑑

23
𝑑

31
𝑑

42
− 𝑑

13
𝑑

21
𝑑

34
𝑑

42
−

𝑑

14
𝑑

21
𝑑

32
𝑑

43
+ 𝑑

12
𝑑

21
𝑑

34
𝑑

43
− 𝑑

13
𝑑

24
𝑑

32
𝑑

41
+ 𝑑

14
𝑑

23
𝑑

32
𝑑

41
−

𝑑

12
𝑑

23
𝑑

34
𝑑

41
̸= 0 hold true.

0 2000 4000 6000 8000 10000 12000 14000
−1

0

1

2

3

4

5

Times

e1
e2

e3
e4

Figure 2: Synchronization errors 𝑒
1
, 𝑒
2
, 𝑒
3
, and 𝑒

4
coupled memris-

tor chaotic oscillator systems.

0 2000 4000 6000 8000 10000 12000 14000
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0

1

2

3

4
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6

7

8
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a1
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a4

Figure 3: Estimated parameters of the controlledmemristor chaotic
oscillator systems.

2.2. Chaos Synchronization between Two Different Systems. A
drive system is described by

𝑥̇ = 𝑓

1
(𝑥) + 𝑔

1
(𝑥) 𝛼, (24)

and the corresponding response system is defined as follows:

̇𝑦 = 𝑓

2
(𝑦) + 𝑔

2
(𝑦) 𝛽 + 𝑢, (25)

where 𝑥 = (𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
)

𝑇
∈ 𝑅

𝑛 and 𝑦 = (𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑛
)

𝑇
∈

𝑅

𝑛 are state vectors,𝑓 : 𝑅

𝑛
→ 𝑅

𝑛 and𝑔 : 𝑅

𝑛
→ 𝑅

𝑛×𝑚 are two
continuous functions, the estimated parameter vectors of the
vectors 𝛼 = (𝛼

1
, . . . , 𝛼

𝑚
)

𝑇
∈ 𝑅

𝑚 and 𝛽 = (𝛽

1
, . . . , 𝛽

𝑚
)

𝑇
∈ 𝑅

𝑚



6 Abstract and Applied Analysis

are 𝛼̃ = (𝛼̃

1
, . . . , 𝛼̃

𝑚
)

𝑇
∈ 𝑅

𝑚 and ̃

𝛽 = (

̃

𝛽

1
, . . . ,

̃

𝛽

𝑚
)

𝑇

∈ 𝑅

𝑚, and
𝑢 is a control law to be designed.

Definition 6. For the drive system (24) and response system
(25), let the vector error state be

𝑒 = 𝐴𝑌 + 𝐵𝑋, (26)

where 𝑒 = [𝑒

1
, 𝑒

2
, . . . , 𝑒

𝑚
]

𝑇, 𝑌 = [𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑚
]

𝑇, 𝑋 = [𝑥

1
,

𝑥

2
, . . . , 𝑥

𝑛
]

𝑇, 𝐴 = (𝑑

𝑖𝑗
)

𝑚×𝑚
, and 𝐵 = (𝑑

𝑖𝑗
)

𝑚×𝑛
.

Suppose

𝑑

𝑖𝑠
= 0, 𝑑

𝑖𝑡
̸= 0,

𝑑

𝑖𝑠
̸= 0, 𝑑

𝑖𝑡
= 0.

(27)

Two kinds of cases (I) 𝑛 ≥ 𝑚 and (II) 𝑛 < 𝑚 are discussed
for the further research.

Case I (𝑛 ≥ 𝑚). The order of the drive system is not lower
than that of the response system. When 𝑠 ∈ 𝑆, 𝑆 ⊂ 𝑀,
𝑀 = {1, 2, . . . , 𝑚}, 𝑡 ∈ 𝑇, 𝑇 ∩ 𝑆 = 𝜙, and 𝑇 ∪ 𝑆 =

𝑀, such that the system (24) and system (25) are general
hybrid projective complete dislocated synchronization with
uncertain parameters.

Case II (𝑛 < 𝑚). The order of the drive system is lower
than that of the response system. When 𝑠 ∈ 𝑆, 𝑆 ⊂ 𝑁,
𝑁 = {1, 2, . . . , 𝑛}, 𝑡 ∈ 𝑇, 𝑇 ∩ 𝑆 = 𝜙, and 𝑇 ∪ 𝑆 =

𝑁, such that the system (24) and system (25) are general
hybrid projective complete dislocated synchronization with
uncertain parameters.

Then there exists suitable feedback control law 𝑢(𝑥, 𝑦) ∈

𝑅

𝑚
and 𝐴 = (𝑑

𝑖𝑗
)

𝑚×𝑚
, 𝐵 = (𝑑

𝑖𝑗
)

𝑚×𝑛
, so as to

lim
𝑡→∞

‖𝑒 (𝑡)‖ = 0. (28)

In the following, we will give a principle to find suitable
feedback control law𝑢(𝑥, 𝑦) such that the two chaotic systems
are hybrid projective complete dislocated synchronization
with uncertain parameters. Construct a dynamical Lyapunov
function:

𝑉 =

1

2

𝑒

𝑇
𝑃𝑒 +

1

2

𝑒

𝑇

𝛼
𝑄𝑒

𝛼
+

1

2

𝑒

𝑇

𝛽
𝑅𝑒

𝛽
, (29)

where 𝑃,𝑄, and 𝑅 are the positive definite constant matrices.
The time derivative of 𝑉 along the trajectories of (29) is

̇

𝑉 =

1

2

( ̇𝑒

𝑇
𝑃𝑒 + 𝑒

𝑇
𝑃 ̇𝑒) +

1

2

( ̇𝑒

𝑇

𝛼
𝑄𝑒

𝛼
+ 𝑒

𝑇

𝛼
𝑄 ̇𝑒

𝛼
)

+

1

2

( ̇𝑒

𝑇

𝛽
𝑅𝑒

𝛽
+ 𝑒

𝑇

𝛽
𝑅 ̇𝑒

𝛽
) .

(30)

A reasonable control law 𝑢(𝑥, 𝑦) is designed such that ̇

𝑉

is negative definite. Then based on the Lyapunov’s function
method, the general hybrid projective complete dislocated
synchronization with uncertain parameters of chaotic sys-
tems (24) and (25) is realized by the given designed feedback
control law 𝑢(𝑥, 𝑦).

−15 −10 −5 0 5 10 15
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

y1

y
2

Figure 4: Chaotic attractors of memristor chaotic oscillator system
described by (31).

2.2.1. Main Results. Here, an example is given to show
the effectiveness of above method. The memristor chaotic
oscillator system described by (7) drives the other memristor
chaotic oscillator system [40]:

̇𝑦

1
= 𝑏

1
𝑦

2
+ 𝑏

2
𝑦

1
− 𝑦

1
𝑦

2

4
+ 𝑢

1
,

̇𝑦

2
= 𝑦

1
− 𝑦

2
+ 𝑦

3
+ 𝑢

2
,

̇𝑦

3
= −𝑏

3
𝑦

2
− 𝑏

4
𝑦

3
+ 𝑢

3
,

̇𝑦

4
= 𝑦

1
+ 𝑢

4
,

(31)

where the memristor chaotic oscillator system exhibits a
chaotic attractor at parameters 𝑏

1
= 16.4, 𝑏

2
= 3.2, 𝑏

3
= 15,

and 𝑏
4
= 0.5 as Figure 4.

Let

𝑒

1
= 𝑑

11
𝑦

1
+ 𝑑

12
𝑦

2
+ 𝑑

13
𝑥

3
+ 𝑑

14
𝑥

4
,

𝑒

2
= 𝑑

21
𝑦

2
+ 𝑑

22
𝑦

3
+ 𝑑

23
𝑥

1
+ 𝑑

24
𝑥

4
,

𝑒

3
= 𝑑

31
𝑦

3
+ 𝑑

32
𝑦

4
+ 𝑑

33
𝑥

1
+ 𝑑

34
𝑥

2
,

𝑒

4
= 𝑑

41
𝑦

4
+ 𝑑

42
𝑦

1
+ 𝑑

43
𝑥

2
+ 𝑑

44
𝑥

3
,

(32)

where 𝑑
𝑖𝑗
(𝑖 = 1, 2, 3, 4, 𝑗 = 1, 2, 3, 4) are real constants.

Let the control law be as follows:

𝑢

1
=

𝐴

1

𝐸

, 𝑢

2
=

𝐴

2

𝐸

,

𝑢

3
=

𝐴

3

𝐸

, 𝑢

4
=

𝐴

4

𝐸

.

(33)

Let

𝐸 = 𝑑

11
𝑑

21
𝑑

31
𝑑

41
− 𝑑

12
𝑑

22
𝑑

32
𝑑

42
, (34)
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𝐴

1
= 𝑑

21
𝑑

31
𝑑

41
𝐴 − 𝑑

12
𝑑

31
𝑑

41
𝐵 + 𝑑

12
𝑑

22
𝑑

41
𝐶

− 𝑑

12
𝑑

22
𝑑

32
𝐷,

𝐴

2
= −𝑑

22
𝑑

32
𝑑

42
𝐴 + 𝑑

11
𝑑

31
𝑑

41
𝐵 − 𝑑

11
𝑑

22
𝑑

41
𝐶

+ 𝑑

11
𝑑

22
𝑑

32
𝐷,

𝐴

3
= 𝑑

21
𝑑

32
𝑑

21
𝐴 − 𝑑

12
𝑑

32
𝑑

42
𝐵 + 𝑑

11
𝑑

21
𝑑

41
𝐶

− 𝑑

11
𝑑

21
𝑑

32
𝐷,

𝐴

4
= −𝑑

21
𝑑

31
𝑑

42
𝐴 + 𝑑

12
𝑑

31
𝑑

41
𝐵 − 𝑑

12
𝑑

22
𝑑

42
𝐶

+ 𝑑

11
𝑑

21
𝑑

31
𝐷,

(35)

𝐴 = (𝑎

1
− 𝑎

∗

1
+ 𝑏

1
− 𝑏

∗

1
) − (𝑑

11
𝑦

1
+ 𝑑

12
𝑦

2
+ 𝑑

13
𝑥

3
+ 𝑑

14
𝑥

4
)

− 𝑑

11
(𝑏

1
𝑦

2
+ 𝑏

2
𝑦

1
− 𝑦

1
𝑦

2

4
) − 𝑑

12
(𝑦

1
− 𝑦

2
+ 𝑦

3
)

− 𝑑

13
(𝑥

2
− 𝑥

1
− 𝑎

4
𝑥

3
) − 𝑑

14
𝑥

1
,

𝐵 = (𝑎

2
− 𝑎

∗

2
+ 𝑏

2
− 𝑏

∗

2
) − (𝑑

21
𝑦

2
+ 𝑑

22
𝑦

3
+ 𝑑

23
𝑥

1
+ 𝑑

24
𝑥

4
)

− 𝑑

21
(𝑦

1
− 𝑦

2
+ 𝑦

3
) − 𝑑

22
(−𝑏

3
𝑦

2
− 𝑏

4
𝑦

3
)

− 𝑑

23
(𝑎

1
(𝑥

3
− 𝜑 (𝑤) 𝑥

1
)) − 𝑑

24
𝑥

1
,

𝐶 = (𝑎

3
− 𝑎

∗

3
+ 𝑏

3
− 𝑏

∗

3
) − (𝑑

31
𝑦

3
+ 𝑑

32
𝑦

4
+ 𝑑

33
𝑥

1
+ 𝑑

34
𝑥

2
)

− 𝑑

31
(−𝑏

3
𝑦

2
− 𝑏

4
𝑦

3
) − 𝑑

32
𝑦

4
− 𝑑

33
𝑎

1
(𝑥

3
− 𝜑 (𝑤) 𝑥

1
)

− 𝑑

34
(𝑎

2
𝑥

2
− 𝑎

3
𝑥

3
) ,

𝐷 = (𝑎

4
− 𝑎

∗

4
+ 𝑏

4
− 𝑏

∗

4
) − (𝑑

41
𝑦

4
+ 𝑑

42
𝑦

1
+ 𝑑

43
𝑥

1
+ 𝑑

44
𝑥

3
)

− 𝑑

41
𝑦

4
− 𝑑

42
(𝑏

1
𝑦

2
+ 𝑏

2
𝑦

1
− 𝑦

1
𝑦

2

4
)

− 𝑑

43
(𝑎

2
𝑥

2
− 𝑎

3
𝑥

3
) − 𝑑

44
(𝑥

2
− 𝑥

1
− 𝑎

4
𝑥

3
) .

(36)

The update laws for unknown parameters 𝑎∗
1
, 𝑎∗
2
, 𝑎∗
3
, 𝑎∗
4
,

𝑏

∗

1
, 𝑏∗
2
, 𝑏∗
3
, and 𝑏∗

4
are given as follows:

̇𝑎

∗

1
= −𝑒

1
, ̇𝑎

∗

2
= −𝑒

2
,

̇𝑎

∗

3
= −𝑒

3
, ̇𝑎

∗

4
= −𝑒

4
,

̇

𝑏

∗

1
= −𝑒

1
,

̇

𝑏

∗

2
= −𝑒

2
,

̇

𝑏

∗

3
= −𝑒

3
,

̇

𝑏

∗

4
= −𝑒

4
.

(37)

Theorem 7. The drive system (7) and the response system (31)
can realize the hybrid projective complete dislocated synchro-
nization for any initial conditions (𝑥

1
(0), 𝑥

2
(0), 𝑥

3
(0), 𝑥

4
(0))

and (𝑦
1
(0), 𝑦

2
(0), 𝑦

3
(0), 𝑦

4
(0)) by the control law (33) and the

update laws (37).

Proof. It is easy to see that the error dynamics can be obtained
as follows:

̇𝑒

1
= 𝑑

11
̇𝑦

1
+ 𝑑

12
̇𝑦

2
+ 𝑑

13
𝑥̇

3
+ 𝑑

14
𝑥̇

4
,

̇𝑒

2
= 𝑑

21
̇𝑦

2
+ 𝑑

22
̇𝑦

3
+ 𝑑

23
𝑥̇

1
+ 𝑑

24
𝑥̇

4
,

̇𝑒

3
= 𝑑

31
̇𝑦

3
+ 𝑑

32
̇𝑦

4
+ 𝑑

33
𝑥̇

1
+ 𝑑

34
𝑥̇

2
,

̇𝑒

4
= 𝑑

41
̇𝑦

4
+ 𝑑

42
̇𝑦

1
+ 𝑑

43
𝑥̇

2
+ 𝑑

44
𝑥̇

3
.

(38)

Substituting (7) and (31) into (38), we have

̇𝑒

1
= 𝑑

11
(𝑏

1
𝑦

2
+ 𝑏

2
𝑦

1
− 𝑦

1
𝑦

2

4
+ 𝑢

1
) + 𝑑

12
(𝑦

1
− 𝑦

2
+ 𝑦

3
+ 𝑢

2
)

+ 𝑑

13
(𝑥

2
− 𝑥

1
− 𝑎

4
𝑥

3
) + 𝑑

14
𝑥

1
,

̇𝑒

2
= 𝑑

21
(𝑦

1
− 𝑦

2
+ 𝑦

3
+ 𝑢

2
) + 𝑑

22
(−𝑏

3
𝑦

2
− 𝑏

4
𝑦

3
+ 𝑢

3
)

+ 𝑑

23
𝑎

1
(𝑥

3
− 𝜑 (𝑥

4
) 𝑥

1
) + 𝑑

24
𝑥

1
,

̇𝑒

3
= 𝑑

31
(−𝑏

3
𝑦

2
− 𝑏

4
𝑦

3
+ 𝑢

3
) + 𝑑

32
(𝑦

1
+ 𝑢

4
)

+ 𝑑

33
𝑎

1
(𝑥

3
− 𝜑 (𝑥

4
) 𝑥

1
) + 𝑑

34
(𝑎

2
𝑥

2
− 𝑎

3
𝑥

3
) ,

̇𝑒

4
= 𝑑

41
(𝑦

1
+ 𝑢

4
) + 𝑑

42
(𝑏

1
𝑦

2
+ 𝑏

2
𝑦

1
− 𝑦

1
𝑦

2

4
+ 𝑢

1
)

+ 𝑑

43
(𝑎

2
𝑥

2
− 𝑎

3
𝑥

3
) + 𝑑

44
(𝑥

2
− 𝑥

1
− 𝑎

4
𝑥

3
) .

(39)

Substituting (33), (34), and (35) into (39), we get

̇𝑒

1
= 𝑑

11
(𝑏

1
𝑦

2
+ 𝑏

2
𝑦

1
− 𝑦

1
𝑦

2

4
) + 𝑑

12
(𝑦

1
− 𝑦

2
+ 𝑦

3
)

+ 𝑑

13
(𝑥

2
− 𝑥

1
− 𝑎

4
𝑥

3
) + 𝑑

14
𝑥

1
+ 𝐴,

̇𝑒

2
= 𝑑

21
(𝑦

1
− 𝑦

2
+ 𝑦

3
) + 𝑑

22
(−𝑏

3
𝑦

2
− 𝑏

4
𝑦

3
)

+ 𝑑

23
𝑎

1
(𝑥

3
− 𝜑 (𝑥

4
) 𝑥

1
) + 𝑑

24
𝑥

1
+ 𝐵,

̇𝑒

3
= 𝑑

31
(−𝑏

3
𝑦

2
− 𝑏

4
𝑦

3
) + 𝑑

32
𝑦

1

+ 𝑑

33
𝑎

1
(𝑥

3
− 𝜑 (𝑥

4
) 𝑥

1
) + 𝑑

34
(𝑎

2
𝑥

2
− 𝑎

3
𝑥

3
) + 𝐶,

̇𝑒

4
= 𝑑

41
𝑦

1
+ 𝑑

42
(𝑏

1
𝑦

2
+ 𝑏

2
𝑦

1
− 𝑦

1
𝑦

2

4
)

+ 𝑑

43
(𝑎

2
𝑥

2
− 𝑎

3
𝑥

3
) + 𝑑

44
(𝑥

2
− 𝑥

1
− 𝑎

4
𝑥

3
) + 𝐷.

(40)

Substituting (7), (31), and (36) into (40), it is easy to gain the
error dynamics as follows:

̇𝑒

1
= (𝑎

1
− 𝑎

∗

1
+ 𝑏

1
− 𝑏

∗

1
)

− {𝑑

11
(𝑏

1
𝑦

2
+ 𝑏

2
𝑦

1
− 𝑦

1
𝑦

2

4
+ 𝑢

1
)

+ 𝑑

12
(𝑦

1
− 𝑦

2
+ 𝑦

3
+ 𝑢

2
) + 𝑑

13
𝑥

3
+ 𝑑

14
𝑥

4
} ,

̇𝑒

2
= (𝑎

2
− 𝑎

∗

2
+ 𝑏

2
− 𝑏

∗

2
)

− [𝑑

21
(𝑦

1
− 𝑦

2
+ 𝑦

3
+ 𝑢

2
)

+ 𝑑

22
(𝑦

1
𝑦

2
− 𝑏

3
𝑦

3
+ 𝑢

3
) + 𝑑

23
𝑥

1
+ 𝑑

24
𝑥

4
] ,

̇𝑒

3
= (𝑎

3
− 𝑎

∗

3
+ 𝑏

3
− 𝑏

∗

3
)

− [𝑑

31
(𝑦

1
𝑦

2
− 𝑏

3
𝑦

3
+ 𝑢

3
)

+ 𝑑

32
(𝑦

1
+ 𝑢

4
) + 𝑑

33
𝑥

1
+ 𝑑

34
𝑥

2
] ,

̇𝑒

4
= (𝑎

4
− 𝑎

∗

4
+ 𝑏

4
− 𝑏

∗

4
)

− {𝑑

41
(𝑦

1
+ 𝑢

4
) + 𝑑

42
(𝑏

1
𝑦

2
+ 𝑏

2
𝑦

1
− 𝑦

1
𝑦

2

4
+ 𝑢

1
)

+ 𝑑

43
𝑥

2
+ 𝑑

44
𝑥

3
} .

(41)
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The following Lyapunov candidate is chosen:

𝑉 =

1

2

(𝑒

2

1
+ 𝑒

2

2
+ 𝑒

2

3
+ 𝑒

2

4
+ 𝑒

2

𝑎
1

+ 𝑒

2

𝑎
2

+ 𝑒

2

𝑎
3

+ 𝑒

2

𝑎
4

+𝑒

2

𝑏
1

+ 𝑒

2

𝑏
2

+ 𝑒

2

𝑏
3

+ 𝑒

2

𝑏
4

) ,

(42)

where
𝑒

𝑎
1

= 𝑎

∗

1
− 𝑎

1
, 𝑒

𝑎
2

= 𝑎

∗

2
− 𝑎

2
,

𝑒

𝑎
3

= 𝑎

∗

3
− 𝑎

3
, 𝑒

𝑎
4

= 𝑎

∗

4
− 𝑎

4
,

𝑒

𝑏
1

= 𝑏

∗

1
− 𝑏

1
, 𝑒

𝑏
2

= 𝑏

∗

2
− 𝑏

2
,

𝑒

𝑏
3

= 𝑏

∗

3
− 𝑏

3
, 𝑒

𝑏
4

= 𝑏

∗

4
− 𝑏

4
.

(43)

Then, the differential of the Lyapunov function along the
trajectory of error system (32) is gained by
̇

𝑉 (𝑒

1
, 𝑒

2
, 𝑒

3
, 𝑒

𝑎
1

, 𝑒

𝑎
2

, 𝑒

𝑎
3

, 𝑒

𝑎
4

, 𝑒

𝑏
1

, 𝑒

𝑏
2

, 𝑒

𝑏
3

, 𝑒

𝑏
4

)

= ̇𝑒

1
𝑒

1
+ ̇𝑒

2
𝑒

2
+ ̇𝑒

3
𝑒

3
+ ̇𝑒

4
𝑒

4
+ ̇𝑒

𝑎
1

𝑒

𝑎
1

+ ̇𝑒

𝑎
2

𝑒

𝑎
2

+ ̇𝑒

𝑎
3

𝑒

𝑎
3

+ ̇𝑒

𝑎
4

𝑒

𝑎
4

+ ̇𝑒

𝑏
1

𝑒

𝑏
1

+ ̇𝑒

𝑏
2

𝑒

𝑏
2

+ ̇𝑒

𝑏
3

𝑒

𝑏
3

+ ̇𝑒

𝑏
4

𝑒

𝑏
4

= {(𝑎

1
− 𝑎

∗

1
+ 𝑏

1
− 𝑏

∗

1
)

− {𝑑

11
(𝑏

1
𝑦

2
+ 𝑏

2
𝑦

1
− 𝑦

1
𝑦

2

4
+ 𝑢

1
)

+ 𝑑

12
(𝑦

1
− 𝑦

2
+ 𝑦

3
+ 𝑢

2
) + 𝑑

13
𝑥

3
+ 𝑑

14
𝑥

4
}} 𝑒

1

+ {(𝑎

2
− 𝑎

∗

2
+ 𝑏

2
− 𝑏

∗

2
)

− [𝑑

21
(𝑦

1
− 𝑦

2
+ 𝑦

3
+ 𝑢

2
) + 𝑑

22
(𝑦

1
𝑦

2
− 𝑏

3
𝑦

3
+ 𝑢

3
)

+𝑑

23
𝑥

1
+ 𝑑

24
𝑥

4
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Figure 5: Synchronization errors 𝑒
1
, 𝑒
2
, 𝑒
3
, and 𝑒

4
between memris-

tor chaotic oscillator system and hyperchaotic Lü system.

Since ̇

𝑉 is negative semidefinite, we cannot immediately
obtain that the origin of error system (32) is asymptotically
stable. In fact, as ̇

𝑉 ≤ 0, then 𝑒
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(32), we have ̇𝑒
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where 𝑒 = [𝑒
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According to the Barbalat’s lemma, we have 𝑒
1
, 𝑒

2
, 𝑒

3
, 𝑒

4
→
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→ 0(𝑡 →

∞). Therefore, the response system (31) synchronizes the
drive system (7) by the control law (33). This completes the
proof.

2.2.2. Simulation and Results. In the numerical simulations,
the fourth-order Runge-Kutta method is also used to solve
the systems with time step size 0.001. The initial condition,
(𝑥

1
(0), 𝑥

2
(0), 𝑥

3
(0), 𝑥

4
(0)) = (10

−2
, 2∗10

−2
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−2
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−2
)
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2
(0), 𝑦

3
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4
(0)) = (10

−2
, 2 ∗ 10

−2
, 2 ∗ 10

−2
),

are employed. Parameters are chosen as 𝑑
11

= −0.002, 𝑑
12

=

0.003, 𝑑
13

= 0.002, 𝑑
14

= 0.002, 𝑑
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= −0.002, 𝑑
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= 0.003,
𝑑

23
= 0.002, 𝑑

24
= 0.002, 𝑑
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= −0.002, 𝑑

32
= 0.003,

𝑑

33
= 0.002, 𝑑

34
= 0.002, 𝑑

41
= −0.002, 𝑑

42
= 0.003,

𝑑

43
= 0.002, and 𝑑

44
= 0.002. Synchronization of the systems

(7) and (31) the control law (33) and the update laws (37) with
the initial estimated parameters 𝑎

1
= 0.5, 𝑎

2
= 0.5, 𝑎

3
= 0.5,

and 𝑎

4
= 0.5 and 𝑏

1
= 17, 𝑏

2
= 9, 𝑏

3
= −1, and 𝑏

4
= −5.1,

are shown in Figures 5–7. Figure 5 displays synchronization
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Figure 6: Estimated parameters of memristor chaotic oscillator
system (7).
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Figure 7: Estimated parameters of memristor chaotic oscillator
system (31).

errors of systems (7) and (31). Figures 6 and 7 show that the
estimated values of the unknown parameters 𝑎

1
, 𝑎
2
, 𝑎
3
, and 𝑎

4

and 𝑏

1
, 𝑏
2
, 𝑏
3
, and 𝑏

4
of the unknown parameters converge to

𝑎

1
= 0.31, 𝑎

2
= 0.35, 𝑎

3
= 0.29, and 𝑎

4
= 0.41 and 𝑏

1
= 16.4,

𝑏

2
= 3.2, 𝑏

3
= 15, and 𝑏

4
= 0.5, respectively.

Remark 8. In the simulations, 𝑑
𝑖𝑗
(𝑖 = 1, 2, 3, 4, 𝑗 = 1, 2) are

chosen to make 𝑑
11
𝑑

21
𝑑

31
𝑑

41
− 𝑑

12
𝑑

22
𝑑

32
𝑑

42
̸= 0 hold true.

3. Conclusion

In this paper, based on adaptive synchronization and general
hybrid projective dislocated synchronization, we propose a

novel hybrid dislocated adaptive synchronization scheme
for asymptotic chaos synchronization using the Lyapunov
stability theory. Complete dislocated synchronization, dis-
located anti-synchronization, projective dislocated synchro-
nization, and parameter identification are considered as its
special items. In this way, we investigate the synchronization
between two identical memristor chaotic oscillator systems
and two different memristor chaotic oscillator systems with
four uncertain parameters. Finally, two numerical simulation
examples are provided to show the effectiveness and correct-
ness of our method.
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