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The identification of a class of linear-in-parametersmultiple-input single-output systems is considered. By using the iterative search,
a least-squares based iterative algorithm and a gradient based iterative algorithm are proposed. A nonlinear example is used to verify
the effectiveness of the algorithms, and the simulation results show that the least-squares based iterative algorithmcanproducemore
accurate parameter estimates than the gradient based iterative algorithm.

1. Introduction

Parameter estimation plays an important role in adaptive
forecasting [1], system modeling [2–6], system control [7–9],
and adaptive control [10–15]. For decades, many identifica-
tion methods have been developed [16–20], for example, the
bias compensation based least-squares methods [21–23] and
the iterative identification methods [24–26]. These methods
can be used for identifying linear systems and nonlinear
systems. In the literature, Ding presented a decomposition
based fast least-squares algorithm for output error systems
[27]. Recursive algorithms and iterative algorithms are two
types of parameter estimation algorithms. The recursive
algorithms use the data as it becomes available [28], whereas
the iterative algorithms tend to exploit the advantage of pro-
cessing a complete batch of available data, which can provide
highly accurate parameter estimation. Iterative methods can
also be used for solving matrix equations [29–31]. In the
literature, Ding proposed a two-stage least-squares based
iterative parameter estimation algorithm for CARARMA
systems using the decomposition technique [32].

As a basic class of multivariable systems, multiple-input
single-output (MISO) systems have lots of applications in

industrial processes. Several works on MISO system iden-
tification have been reported [33]. For example, in order
to improve the convergence rate, Liu et al. developed a
stochastic gradient algorithm for MISO systems using the
multi-innovation theory [34].The least-squares methods can
also be found in the literature.

Recently, Wang and Tang studied the identification algo-
rithms for a class of linear-in-parameters single-input single-
output (SISO) systemswith colored noises using the recursive
least-squares method [35]. In this work, we extend these
results from SISO systems into a class of linear-in-parameters
MISO systems with the colored noises shown in Figure 1
[36, 37]. Consider
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Figure 1: The linear-in-parameters multiple-input single-output
output error moving average systems.
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, and 𝜗T

𝑗
are the unknown parameters to be estimated.

The superscript T denotes the matrix/vector transpose. It is
worth noting that themodels in (1) include but are not limited
to linear MISO systems; that is, when 𝜗
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system (1) denotes an MISO output error moving average
system. When 𝜂
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(4)

system (1) denotes a nonlinear MISO system.
On the basis of the iterative algorithms for linear-in-

parameters SISO systems [37, 38], this paper develops the
least-squares based and gradient based iterative identification
algorithms to improve the parameter estimation accuracy for
a class of linear-in-parameters MISO output error moving
average systems. Compared with the gradient based iterative
algorithm, the least-squares based iterative algorithm can
provide more accurate parameter estimates.

The remainder of this paper is organized as follows.
Section 2 introduces the identification model. Section 3
derives the least-squares based iterative algorithm. Section 4
proposes a gradient based iterative algorithm. Section 5
presents an illustrative example to show the effectiveness of
the algorithms. Finally, concluding remarks are offered in
Section 6.

2. The Identification Model

Let us define some symbols.The symbol I
𝑛
denotes an identity

matrix of order 𝑛; 1
𝑛
denotes an 𝑛-dimensional column

vector whose elements are 1; 𝜆max[X] and X−1 represent the
maximum eigenvalue and the inverse of the square matrixX.

To further develop new identification algorithms for
estimating the parameter vector 𝜗
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(𝑡), 𝑦(𝑡) : 𝑡 = 1, 2, . . .}, we derive an identification model
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and define the information vectors as follows:
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Then we can express (5) as

𝑥
𝑗
(𝑡) = 𝜑

T
𝐽
(𝑡) 𝜃
𝑗
,

𝑤 (𝑡) = 𝜑
T
n (𝑡) 𝜃n + V (𝑡) ,

(8)
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Equation (9) is the identification model of system (1), and
parameter vector 𝜃 contains all the parameters of the system.

3. The Least-Squares Based
Iterative Algorithm

Consider the newest 𝑝 data from 𝑡 − 𝑝 + 1 to 𝑡 and define the
quadratic criterion function as follows:

𝐽 (𝜃) :=

𝑝−1

∑

𝑖=0

[𝑦 (𝑡 − 𝑖) − 𝜑
T
(𝑡 − 𝑖) 𝜃]

2

. (10)

By minimizing 𝐽(𝜃) and letting the derivative of 𝐽(𝜃) with
respect to 𝜃 be zero, we can obtain the least-squares estimate
of 𝜃 as
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The above estimate �̂�(𝑡) is impossible to implement due to the
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𝑗
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items V(𝑡 − 𝑖) in 𝜑(𝑡). Here, the difficulties are solved by using
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𝑘
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𝑗
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iteration 𝑘. Replacing 𝜑(𝑡 − 𝑖) in (11) with its corresponding
estimate �̂�

𝑘
(𝑡 − 𝑖), we can obtain the following least-squares

based iterative algorithm forMISO systems in (1) (theMISO-
LSI algorithm for short) into:
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The steps of computing �̂�
𝑘
(𝑡) involved in the algorithm are

summarized as follows.

(1) Given 𝑝, let 𝑡 = 𝑝 and collect the input-output data
{𝑢
𝑗
(𝑖), 𝑦(𝑖) : 𝑖 = 0, 1, . . . , 𝑝 − 1}.

(2) Collect the present input-output data 𝑢
𝑗
(𝑡) and 𝑦(𝑡).

(3) To initialize, let 𝑘 = 1, 𝑥
𝑗,0

(𝑡 − 𝑖) = random
number, and V̂

0
(𝑡 − 𝑖) = random number, 𝑖 =

1, 2, . . . ,max[𝑛
𝑗
, 𝑛
𝑑
].

(4) Form �̂�s,𝑘(𝑡 − 𝑖) using (15) and �̂�n,𝑘(𝑡 − 𝑖) using (17),
and form �̂�

𝑗,𝑘
(𝑡 − 𝑖) using (16) and �̂�

𝑘
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(5) Update the parameter estimate �̂�
𝑘
(𝑡) using (13).

(6) Compute 𝑥
𝑗,𝑘

(𝑡 − 𝑖) using (18) and V̂
𝑘
(𝑡 − 𝑖) using (19).
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𝑘
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𝑘−1
(𝑡)‖ ⩽ 𝜀 (a given small number), obtain

the iterative time 𝑘 and the parameter estimate �̂�
𝑘
(𝑡);

let �̂�
0
(𝑡 + 1) = �̂�

𝑘
(𝑡), increase 𝑡 by 1, and go to Step 2;

otherwise, increase 𝑘 by 1 and go to Step 4.

4. The Gradient Based Iterative Algorithm

By minimizing 𝐽(𝜃) through the negative gradient search,
we obtain the following recursive relation of computing the
estimate of 𝜃 at iteration 𝑘:
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𝑘
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(24)

where 𝜇
𝑘
(𝑡) is the step-size or the convergence factor to be

given later. The same difficulties arise in that the noise-free
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outputs 𝑥
𝑗
(𝑡 − 𝑖) in 𝜑s(𝑡) and the noise items V(𝑡 − 𝑖) in

𝜑n(𝑡) of 𝜑(𝑡) on the right-hand side of (24) are unknown.
Here we apply the same scheme used in the previous section,
replacing the unknown vectors with their corresponding
iterative estimates. Referring to the method in [38], replacing
𝜑(𝑡− 𝑖) in (24) with �̂�

𝑘
(𝑡− 𝑖), we can summarize the following

gradient based iterative algorithm for MISO systems in (1)
(the MISO-GI algorithm for short):
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,

(28)

�̂�n,𝑘 (𝑡) = [V̂
𝑘
(𝑡 − 1) , V̂

𝑘
(𝑡 − 2) , . . . , V̂

𝑘
(𝑡 − 𝑛

𝑑
)]

T
, (29)

𝑥
𝑗,𝑘

(𝑡 − 𝑖) = �̂�
T
𝑗,𝑘

(𝑡 − 𝑖) �̂�
𝑗,𝑘

(𝑡) , (30)

V̂
𝑘
(𝑡 − 𝑖) = 𝑦 (𝑡 − 𝑖) − �̂�

T
𝑘
(𝑡 − 𝑖) �̂�

𝑘
(𝑡) , (31)

𝜇
𝑘
(𝑡) ⩽ 2𝜆

−1

max [

𝑝−1

∑

𝑖=0

�̂�
𝑘
(𝑡 − 𝑖) �̂�

T
𝑘
(𝑡 − 𝑖)] , (32)

�̂�
𝑘
(𝑡) = [�̂�

T
s,𝑘(𝑡), �̂�

T
n,𝑘(𝑡)]

T
, (33)

�̂�s,𝑘 (𝑡) = [�̂�
T
1,𝑘

(𝑡) , �̂�
T
2,𝑘

(𝑡) , . . . , �̂�
T
𝑟,𝑘

(𝑡)]

T
, (34)

�̂�n,𝑘 (𝑡) = [𝑑
1,𝑘

(𝑡) , 𝑑
2,𝑘

(𝑡) , . . . , 𝑑
𝑛𝑑 ,𝑘

(𝑡)]
T
, (35)

�̂�
𝑗,𝑘

(𝑡) := [𝑎
𝑗1,𝑘

(𝑡) , 𝑎
𝑗2,𝑘

(𝑡) , . . . , 𝑎
𝑗𝑛𝑗 ,𝑘

(𝑡) , �̂�
T
𝑗,𝑘

(𝑡)]

T
. (36)

The steps of computing �̂�
𝑘
(𝑡) involved in the algorithm are

summarized as follows.

(1) Given 𝑝, let 𝑡 = 𝑝 and collect the input-output data
{𝑢
𝑗
(𝑖), 𝑦(𝑖) : 𝑖 = 0, 1, . . . , 𝑝 − 1} set �̂�

0
(𝑡) = 1

𝑛0
/𝑝
0
,

𝑝
0
= 10
6.

(2) Collect the present input-output data 𝑢
𝑗
(𝑡) and 𝑦(𝑡).

(3) To initialize, let 𝑘 = 1, 𝑥
𝑗,0

(𝑡−𝑖) = 1/𝑝
0
, and V̂

0
(𝑡−𝑖) =

1/𝑝
0
, 𝑖 = 1, 2, . . . ,max[𝑛

𝑗
, 𝑛
𝑑
].

(4) Form �̂�s,𝑘(𝑡 − 𝑖) using (27) and �̂�n,𝑘(𝑡 − 𝑖) using (29),
and form �̂�

𝑗,𝑘
(𝑡 − 𝑖) using (28).

(5) Choose an appropriate step-size 𝜇
𝑘
(𝑡) using (32) and

update the parameter estimate �̂�
𝑘
(𝑡) using (25).

(6) Compute 𝑥
𝑗,𝑘

(𝑡 − 𝑖) using (30) and V̂
𝑘
(𝑡 − 𝑖) using (31).

(7) If ‖�̂�
𝑘
(𝑡)− �̂�

𝑘−1
(𝑡)‖ ⩽ 𝜀 (a given small number), obtain

the iterative time 𝑘 and the parameter estimate �̂�
𝑘
(𝑡);

let �̂�
0
(𝑡 + 1) = �̂�

𝑘
(𝑡), increase 𝑡 by 1, and go to Step 2;

otherwise, increase 𝑘 by 1 and go to Step 4.

5. Example

Consider the following nonlinear multiple-input single-
output simulation system:

𝑦 (𝑡) =
𝜗
T
1
𝜂
1
(𝑢
1
(𝑡))

𝐴
1
(𝑧)

+
𝜗
T
2
𝜂
2
(𝑢
2
(𝑡))

𝐴
2
(𝑧)

+ 𝐷 (𝑧) V (𝑡) ,

𝐴
1
(𝑧) = 1 + 𝑎

1
𝑧
−1

= 1 − 0.38𝑧
−1

,

𝐴
2
(𝑧) = 1 + 𝑎

2
𝑧
−1

= 1 − 0.44𝑧
−1

,

𝐷 (𝑧) = 1 + 𝑑
1
𝑧
−1

= 1 + 0.69𝑧
−1

,

𝜂
1
(𝑢
1
(𝑡)) = 𝑢

1
(𝑡 − 1) ,

𝜂
2
(𝑢
2
(𝑡)) = 𝑢

2

2
(𝑡 − 1) ,

𝜗
1
= 𝑏
1
= 1.48,

𝜗
2
= 𝑏
2
= 1.58,

𝜃 = [𝑎
1
, 𝑏
1
, 𝑎
2
, 𝑏
2
, 𝑑
1
]
T

= [−0.38, 1.48, −0.44, 1.58, 0.69]
T
.

(37)

Here, the inputs {𝑢
1
(𝑡)} and {𝑢

2
(𝑡)} are taken as uncorrelated

persistent excitation signal sequences with zero means and
unit variances and {V(𝑡)} as a white noise sequence with zero
mean.

Using 𝑡 = 𝑝 = 1000 data and applying the MISO-GI
algorithm in (25)–(32) and the MISO-LSI algorithm in (13)–
(19) to estimate the parameters of this nonlinear system, the
parameter estimates of each algorithm and their errors with
noise variance 𝜎

2

= 0.50
2 are shown in Table 1; the parameter

estimation errors 𝛿 := ‖�̂�
𝑘
(𝑡) − 𝜃‖/‖𝜃‖ versus 𝑘 of each

algorithm are illustrated in Figure 2. We also investigate the
performance of two algorithms under a relatively high noise
level with noise variance 𝜎

2

= 1.00
2, and the corresponding

simulation results are illustrated in Table 2 and Figure 3.
From the simulation results in Tables 1 and 2 and Figures

2 and 3, we can draw the following conclusions.
(i) The parameter estimation errors are getting smaller as

the iterative variable 𝑘 increases.
(ii) Both algorithms can produce highly accurate param-

eter estimates under different noise variances.
(iii) The MISO-LSI algorithm converges faster than the

MISO-GI algorithm does; however, due to the use
of a batch of data, the MISO-LSI algorithm involves
many matrix computations, resulting in the high
computational complexity. One possible solution for
reducing the computational load of the MISO-LSI
algorithm with large 𝑝 is using the decomposition
technique [27], which is widely adopted in the least-
squares based iterative algorithms.
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Table 1: The MISO-GI and MISO-LSI estimates and errors (𝜎2 = 0.50
2).

Algorithm 𝑘 𝑎
1

𝑏
1

𝑎
2

𝑏
2

𝑑
1

𝛿 (%)

MISO-GI

1 0.01462 1.27390 0.09679 0.89451 −0.07066 52.82221
2 −0.23411 1.31836 −0.13385 1.15839 0.62397 24.24129
5 −0.33873 1.45005 −0.48982 1.43125 0.77055 7.82671
8 −0.35503 1.47142 −0.47912 1.46594 0.73773 5.64270
10 −0.35781 1.47633 −0.47364 1.48458 0.72409 4.65183
20 −0.36024 1.48089 −0.45659 1.54144 0.69498 1.99007

MISO-LSI

1 0.03460 1.41912 −0.00027 2.25122 −0.02164 49.09578
2 −0.37155 1.46913 −0.44592 1.58467 0.41478 11.75374
5 −0.36086 1.48239 −0.44390 1.58413 0.68642 0.87072
8 −0.36082 1.48242 −0.44387 1.58420 0.68670 0.87077
10 −0.36082 1.48242 −0.44387 1.58420 0.68670 0.87077
20 −0.36082 1.48242 −0.44387 1.58420 0.68670 0.87077

True values −0.38000 1.48000 −0.44000 1.58000 0.69000

Table 2: The MISO-GI and MISO-LSI estimates and errors (𝜎2 = 1.00
2).

Algorithm 𝑘 𝑎
1

𝑏
1

𝑎
2

𝑏
2

𝑑
1

𝛿 (%)

MISO-GI

1 0.02747 1.25718 0.09726 0.89934 −0.06054 52.75453
2 −0.13980 1.28713 −0.06373 1.08128 0.58629 30.02651
5 −0.31243 1.44812 −0.49633 1.42666 0.73252 7.87070
8 −0.33623 1.47067 −0.48609 1.46212 0.68840 5.72438
10 −0.33927 1.47574 −0.48043 1.48105 0.68211 4.89225
20 −0.34152 1.48130 −0.46229 1.54025 0.68242 2.56420

MISO-LSI

1 0.04885 1.40155 0.00051 2.26283 −0.00903 49.33764
2 −0.36198 1.46011 −0.45714 1.57034 0.44031 10.74006
5 −0.34220 1.48370 −0.44808 1.58781 0.68523 1.70082
8 −0.34214 1.48373 −0.44804 1.58792 0.68545 1.70303
10 −0.34214 1.48373 −0.44804 1.58792 0.68545 1.70303
20 −0.34214 1.48373 −0.44804 1.58792 0.68545 1.70303

True values −0.38000 1.48000 −0.44000 1.58000 0.69000
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0

0.1

0.2

0.3
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0.5

MISO-LSI
MISO-GI

t

𝛿

Figure 2: The parameter estimation errors 𝛿 versus 𝑡 (𝜎2 = 0.50
2).

6. Conclusions

In this work, we have presented two iterative identification
algorithms, a least-squares based iterative algorithm and
a gradient based iterative algorithm, for a class of linear-
in-parameters multiple-input single-output output error

MISO-LSI
MISO-GI

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

t

𝛿

Figure 3: The parameter estimation errors 𝛿 versus 𝑡 (𝜎2 = 1.00
2).

moving average systems. The illustrative example shows that
both algorithms can provide more accurate parameter esti-
mates. The proposed methods can be extended to study the
identification problems of linear multivariable systems [39,
40] or multirate or nonuniformly sampled systems [41, 42].
Themethods in this paper can combine the multi-innovation
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identification methods [43–50], the iterative identification
methods [51, 52], and other identificationmethods [53–56] to
present new identification algorithms for nonlinear systems
[57–59] and can also be applied in other fields [60–67].
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