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The study of themechanical properties of the annulus fibrosus of the intervertebral discs is significant to the study on the diseases of
lumbar intervertebral discs in terms of both theoretical modelling and clinical application value. The annulus fibrosus tissue of the
human intervertebral disc (IVD) has a very distinctive structure and behaviour. It consists of a solid porous matrix, saturated with
water, which mainly contains proteoglycan and collagen fibres network. In this work a mathematical model for a fibred reinforced
material including the osmotic pressure contribution was developed. This behaviour was implemented in a finite element (FE)
model and numerical characterization and validation, based on experimental results, were carried out for the normal annulus tissue.
The characterization of the model for a degenerated annulus was performed, and this was capable of reproducing the increase of
stiffness and the reduction of its nonlinearmaterial response and of its hydrophilic nature. Finally, thismodel was used to reproduce
the degeneration of the L4L5 disc in a complete finite element lumbar spine model proving that a single level degenerationmodifies
the motion patterns and the loading of the segments above and below the degenerated disc.

1. Introduction

The annulus fibrosus (AF) of the human intervertebral disc
(IVD) presents a complex structure. Located on the radial
periphery of the IVD, the AF is believed to experience
a combination of compressive, tensile, and shear stresses
during weight-bearing and intervertebral joint motions [1, 2].
For these reasons, its structure combines a highly orientated
fibres network with a multiphasic behaviour [3–5]. Further-
more, the presence of osmotic forces, due to the hydrophilic
nature of the proteoglycans aggregates (PGs) [1, 2], ensures
that the fibre network of the tissue works under tensile
prestress and that the fluid inside the tissue is under pressure.
This is essential for the correct functioning of the tissue since

the fluid typically resists compression and fibres resist tension
[6].

In the last years several analytical and numerical models
have been developed to simulate the AF tissue behaviour.
Some of them, like those proposed by Simon and coworkers
[7], implemented its poroelastic behaviour and swelling. Oth-
ers authors, like Lai et al. [8] and Sun et al. [9], or Frijns et al.
[10] and van Loon et al. [11], developed multiphasic mixture
models that permit a good modelling of poromechanics
of the tissue. All these models, nevertheless, neglected the
mechanical behaviour of the extracellular matrix related to
collagen network. In this regard, others authors [12, 13], who
considered that the fibres network implies a linear viscoelastic
response, did not consider the high nonlinearity behaviour of
the fibres, though.
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Furthermore, in spite of the fact thatAF tissue is subjected
to several changes during life [1, 14–16], there are not many
models to simulate the effects of degeneration. Some of them
[17] simply removed some elements from the annulus. Oth-
ers, like Rohlmann et al. [18], Polikeit et al. [19], andNatarajan
et al. [20], showed the influence of geometrical, mechanical,
or poromechanical parameters on disc behaviour but did
not show clearly how the mechanical properties change with
degeneration. More recently, Schmidt et al. [21] developed
a poroelastic finite element model of the lumbar spine to
investigate spinal response during physiological activities.
In any case, nobody of the aforementioned authors has
directly validated the influence of these changes on AF tissue
behaviour.

On the other hand, the degenerative disc disease seems
to be related to the modification of the biomechanical
functioning of the spine. Abnormal mechanical loads and/or
motion patterns have been related to risk of injury to the
spine [22, 23]. Despite numerous studies on the mechanics
of the degenerated disc, there is limited data on how this
condition affects the adjacent caudal and cephalic segments
or the lumbar spine stability contributing to the progression
of disc degeneration [1, 4, 14, 15, 18, 20, 24–28]. The results of
these studies vary considerably. Similarly to Kirkaldy-Willis
and Farfan [29], some authors report instability during the
early stages of degeneration [30, 31] while others rather show
the opposite [32, 33]. These partial contradictive results are
probably enforced by the relative small number of specimens.
Recently, Kettler et al. [34] analyze the influence of the
degree of disc degeneration on the flexibility of lumbar
spine segments based on the data from a large in vitro
database. There are several studies that numerically analyze
the degeneration of the adjacent levels after lumbar fusion
[35, 36] but not much has been done to computationally
reproduce the influence of a single-level lumbar degenerative
disc disease on the behaviour of the adjacent segments except
from the work of Ruberte et al. [37].

In this work a constitutivemodel to describe themechan-
ical behaviour of the normal and degenerated AF tissue of
human IVD has been developed.The complete mathematical
formulation is presented with particular focusing on the
PGs behaviour modelling. Then, complete characterization
and validation of the osmotic and elastic response for a
normal and degeneratedAFhave been carried out [4, 38–40].
Afterwards, a complete finite element model of the lumbar
spinewas analyzed inferring themechanical consequences on
the overall behaviour of the spine taking into account some
degree of degeneration at a single-level.

2. Methods

The annulus fibrosus (AF) of human IVD presents a very
particular structure. It consists of a solid porous matrix,
saturated with water, which mainly contains proteoglycans
and collagen fibres. To simulate its behaviour a 3D osmo-
hyperelastic model reinforced with two families of fibres was
constructed and implemented. Several validation tests were

performed in order to validate the accuracy of this model
and its ability of reproducing some of the consequences of
degeneration.

2.1. Constitutive Modeling of the Annulus Fibrosus. The strain
energy density function (1), initially presented by Eberlein
et al. [17] to characterize fiber reinforcedmaterials extensively
used for biological tissues, was modified to introduce the
contribution of the osmotic pressure. This term takes into
account the effect of the electric charged proteoglycans and
it can be coupled with biphasic formulation.

As widely known, the Helmholtz free energy function Ψ

can be divided into different components corresponding to
the ground substance, the fibres network, and the material
compressibility (see Nomenclature for notation). In this case
it can be written as

Ψ (C,A1,A2) = Ψgs (C) + Ψ𝑓 (C,A1,A2) + Ψvol (𝐽)
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It can be seen that in (5), the term relative to the material
compressibility has beenmodified to incorporate the osmotic
pressure contribution. Thus, in agreement with Wilson et al.
[13, 40], the water chemical potential 𝜇𝑓 can be defined as

𝜇𝑓 = 𝑝 − ΔΠ (6)
while the osmotic pressure gradient ΔΠ is calculated by
means of the external and internal osmotic pressure:

ΔΠ = Πint − Πext. (7)
Both external and internal osmotic pressures depend on the
external and internal osmotic coefficients, respectively, and
on the external salt concentration, while the internal osmotic
pressure depends also on the fixed charged density that is
related to the proteoglycans content,

Πext = 2𝜙ext𝑅𝑇𝑐ext, (8)

Πint = 𝜙int𝑅𝑇√𝑐
2
𝐹 + 4𝑐2ext. (9)

Furthermore in (9), the fixed charged density 𝑐𝐹 associated
with the affinity to water is calculated as:

𝑐𝐹 = 𝑐𝐹,0 (

𝑛𝑓,0

𝑛𝑓,0 − 1 + 𝐽
) . (10)

Finally, it can be considered that the hydraulic permeability 𝑘
of the ground substance matrix also decreases as the tissue is
compressed. It can be assumed to be dependent on porosity
changes in the following way [41]; therefore,

𝑘 = 𝑘0(
𝑛

𝑛0

)

𝑚

, (11)

where𝑚 is a positive coefficient equal to 15.

2.2. Material and Testing Simulations for Healthy Annulus
Fibrosus Tissue. To characterize and validate the model
presented in the previous section, we reproduced in silico
some in vitro experimental results available in the literature
for healthy samples of annulus.

2.2.1. Osmotic Swelling Behaviour. To point out the principal
effects of the osmotic swelling on the behaviour of soft
hydrated tissues, the most common validation test to assess
the contribution of electrochemical effects to the response of
the tissue is a pure swelling test.

A 1D simplified numerical model was run in ABAQUS
6.11 (Figure 1(a)). The constitutive equations were imple-
mented in a user defined UMAT subroutine. A specimen of
tissue (ℎ = 0.5mm), equilibrated in a NaCl solution with a
salt concentration of 𝑐ext, was placed inside an impermeable
confined compression chamber (Figure 1(b)). After an equi-
librium phase, at 𝑡 = 0 the external salt concentration was
changed to 𝑐

∗ (Figure 1(c)) and, at 𝑡 = 𝑡
∗, the external salt

concentration was returned to 𝑐ext. To simulate the swelling
effect, only the axial displacements were allowed for all nodes
while free flux condition (𝑝 = 0 bar) was assumed only at the
lower nodes. See Table 1 for material properties.

2.2.2. Characterization of the Normal IVD Annulus Tissue.
To characterize the solid matrix AF behaviour, the poly-
nomial strain energy function shown before was used. The
values of the elastic constants (𝐶10, 𝐶20, 𝐷,𝐾1, and 𝐾2) were
determined using the stress-strain response under a traction
axial load for a specimen with two families of fibres, placed
at ±30∘ [42]. The theoretical model behaviour was fitted to
experimental data presented by Ebara et al. [38] usingMatLab
v.7.1. It can be observed (Figure 2) how the resultant curve can
be considered a good average fit of experimental data of the
whole annulus [17, 43, 44]. These constants are summarized
in Table 2. Here, we have to point out that each part of the
disc could have been considered with different mechanical
properties but we were interested in the overall behaviour of
the annulus.

To validate the global behaviour of the proposed model
two different compression tests were performed in order to
compare our results with previous data in the literature [4,
39]. A 3D finite element (FE) mesh was created (Figure 3(a)).
The chosen geometry was in agreement with that proposed
byWilson et al. [13]. Each family of fibres was placed radially
with an angle orientation 𝜙 of ±30∘ with respect to the 𝑥𝑧-
plane [39, 42] (Figure 3(b)). In both tests the displacements
for the lower nodes were restricted in the 𝑧-direction while
for lateral perimetric nodes the radial displacements were
confined. In the first test, a zero pore pressure condition
was imposed at the top while the remaining surfaces were
assumed to be impermeable. In this case, the loading protocol
implied that the mesh was axially compressed by 5% strain
followed by a relaxation period (Figure 3(c)). The second test
was conducted following the guidelines proposed by Iatridis
et al. [4]. In this case, free flux condition (𝑝 = 0 bar) was
assumed on the bottom surface. Initially a compression strain
of 10% (velocity strain ratio 0.001 s−1) was applied on top
followed by 2500 s of relaxation at fixed displacement. Then,
this loading cycle was repeated three times adding a 5% of
deformation strain at each increment (Figure 3(d)).

2.3.Material and Testing Simulations for Degenerated Annulus
Fibrosus Tissue. Several experimental studies have shown
how degeneration process produces serious changes on AF
tissue behaviour [14, 15, 24, 28]. Particularly, Iatridis et al. [4]
showed that the residual stress at the equilibrium point under
a compression strain of 20% for the degenerated (grade IV)
AF tissue was nearly twice in comparison with the normal AF
tissue. Therefore, the same test procedure made for normal
tissue was done for the degenerated one.

Some authors [4, 15, 27] agree with relating the reduction
of proteoglycans content to disc degeneration. In our simula-
tions, this phenomenon was taken into account reducing the
tissue initial fixed charge density 𝑐𝐹,0. Furthermore, AF tissue
permeability 𝑘0 has also shown a decrease with degeneration
process [4] that also was considered into this model.

For sure, also the elastic behaviour of the AF would be
subjected to changes [4, 14, 24]. In particular, an increase
of the stiffness has been addressed [4, 24]. However, it has
been seen that annulus fibrosus stiffening is not due to
the reduction of water content which slightly changes with
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Figure 1: Finite element model (24 poroelastic three-dimensional elements of ABAQUS, C3D8P) for the free-swelling test (a), applied
boundary conditions (b), and external salt concentration history (c).

Table 1: Material properties of the reference case [40].

Material parameters Input value Description
𝑐𝐹,0 [meq/mm3] 2.0 × 10

−4 Initial fix charge density
𝑐ext [mmol/mm3] 1.5 × 10

−4 Initial external salt concentration
𝑐
∗ [mmol/mm3] 1.0 × 10

−4 External salt concentration at 𝑡 = 0

𝑘0 [m
4/Ns] 1.0 × 10

−15 Initial permeability
𝑛𝑓,0 0.75 Initial fluid fraction

degeneration [15]. Furthermore, other experimental works
[45] have shown that this stiffening is not related either
to fibres behaviour. Therefore, one reasonable assumption
would be to suppose that this increase could be related
to the ground substance material behaviour. To simulate
this phenomenon the value of the elastic constant 𝐶10 was
modified in order to reproduce a stress increase of 100% for a
compression strain of −0.20 at equilibrium [4] (see Table 2).

To validate these assumptions the same test procedure as
for healthy AF was done for the degenerated one following
Iatridis et al. [4] simulating a Grade IV degeneration.

2.4. FE Simulation of the Complete Lumbar Spine. A complete
finite element of the lumbar spine (see [43] for model
details) was used.Thismodel is composed of the lumbosacral
segment (L1-S1) including the five intervertebral discs and
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Figure 2: Comparison between experimental data, measured by
Ebara et al. [38], and the response of the present model under a
traction axial load (AO = anterior outer annulus; PO = posterior
outer annulus; AI = anterior inner annulus; PI = posterior inner
annulus).

the most important ligaments. The validation of this model
with experimental data of the literature is presented [46].The
degeneration of the AF of the L4L5 disc as in the previous
section was simulated and the movement and tensional
response of the overall spine were compared with those of the
healthy one during flexion-extension loading (see Figure 4).

The mechanical properties of the different tissues
involved are summarized in Tables 3 and 4. It can be seen
that degeneration of L4L5 disc has been considered by
modifying the permeability, the void ratio, and the stiffness
of the annulus fibrosus as in previous section.

3. Results

3.1. Healthy Annulus Fibrosus. Regarding the free swelling
test, an excellent agreement between these calculations and
those presented by Wilson et al. [40] for human cartilage
was achieved (Figure 5). It can be seen that our simulations
are almost equal to the mechanoelectrochemical model of
Wilson et al. [40]. Only a slight difference can be appreciated
in the swelling part of the test, since the shrinking part
perfectly fits.

For the complete validation set described in Section 2.2.2,
two different simulations were performed. In the first, a
relaxation test, the stress-time behaviour, was compared with
experimental results presented by Schroeder et al. [39]. The
trends of the numerical and experimental curves showed
a very good agreement (Figure 6(a)). It can be noted how
the numerical curve is almost completely falling within
the experimental interval found by Schroeder et al. [39].
The differences between numerical and experimental results
could be related to the permeability value not measured in
the experimental set-up and the neglecting of the intrinsic
viscoelasticity of the matrix and collagen fibres in our
numerical model.

Table 2: Material properties used for the normal and degenerated
AF [4, 15, 17, 26, 39, 43, 44, 47].

Normal Degenerated
Biphasic material parameters

𝑐𝐹,0 [meq/mm3] 1.8 × 10
−4

0.9 × 10
−4

𝑘0 [m
4/Ns] 1.924 × 10

−16
1.5 × 10

−16

𝑛𝑓,0 0.75 0.7
𝑒 (void ratio) 3.0 2.33

Elastic material parameters
𝐶10 [MPa] 0.1 0.45
𝐶20 [MPa] 2.5
𝐷 [MPa−1] 4.8
𝐾1 [MPa] 1.8
𝐾2 11.0

The second test, which implies a cycled loading to the
sample, was conducted following the guidelines proposed
by Iatridis et al. [4]. In this test, the normalized stress-time
behaviour of the material was recorded. The comparison
between the experimental results, reported by Iatridis et al.
[4], and our calculations are shown in Figure 7(b). In general
a good agreement can be found. Furthermore, if we consider
the ratio between the pick and the valley of each cycle, it can
be noted that it is quite perfect for the second cycle (exp. 4.07,
FE 4.11) while the maximal difference was found for the last
cycle (exp. 2.55, FE 3.13).

3.2. Degenerated Annulus Fibrosus. Using the same consti-
tutive equations for healthy AF but taking into account
some modifications of different constants as mentioned in
Section 2.3, the same experimental test performed by Iatridis
et al. [4] was numerically reproduced.The equilibrium elastic
stress-stretch responses of a normal and degenerated model
are shown in Figure 8. The numerical results showed a
good fit with experimental data, and these prove the matrix
stiffening with degeneration.

Subsequently, the stress-strain curves in traction for
normal and degenerated cases are plotted in Figure 9. The
results showed an increase of the elastic modulus (+91%)

in the first part of the curve but no important changes are
observed in the second part (+7%). These results were in
agreement with the experimental ones found by Guerin and
Elliott [24], who obtained an increase of +124% and −0.8%,
respectively.

3.3. Finite Element Simulation of Healthy and Degenerated
Lumbar Spine. First of all the finite element model of the
healthy lumbar spine [43] was validated using data from the
literature.Thedegree of rotation of the different segmentswas
compared with Guan et al. [46]. It can be seen in Figure 10
how this model mimics the behaviour of the healthy spine
both under flexion and extensionmoments.The relative rota-
tion between each pair of vertebrae is plotted and compared
with the experimental results obtained from the literature. It
can be seen that the response of the numerical simulation fits
within the dispersion limits of the experimental protocol.
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Figure 3: (a) 3D finite element model mesh (16800 hexaedrical porous elements C3D8P). 𝑟0 = 1.5mm ℎ0 = 1.281mm. (b) Fibres direction
in the 𝑥-𝑧 plane. (c) Mesh axially compressed by 5% strain followed by a relaxation period. (d) Compression strain of 10% followed by 2500 s
of relaxation, loading cycle repeated three times adding a 5% of deformation at each increment.

Now the influence of the degeneration of the disc at the
L4L5 level is analyzed. First of all, the movement of the
spine when the D45 disc is degenerated is compared with the
healthy spine shown before. The comparison between both
models is presented in Figure 11. It can be seen that the effect
of degeneration is not only located at the damaged level L45
since the adjacent levels are also modified with respect to the
healthy scenario. It can be appreciated that with degeneration
the pair L4L5 gets stiffer and the degree of rotation is smaller
in both flexion and extension. This effect also extends to the
adjacent levels (L3L4 and L5S1) but the loss of rotation is less
pronounced.

Moreover, the stresses in the discs can also be analyzed
to prove the influence of the degeneration of one disc on the
overall behaviour of the spine. In Figure 12 themaximum and
minimum principal stresses are plotted at the levels affected
by the degeneration of D45. The remaining discs, D12 and
D23, are not shown because these are not affected by the
degeneratedD45.The stresses are shown for the posterior and
anterior part of each disc taking into account both the flexion
and extensionmoment. It can be seen that the stresses are not
very different in any case, but it is interesting to highlight that
the stresses are more similar in D45 disc between healthy and
degenerated situation than in D34 and D51 which are only
influenced by degeneration in L4L5 level.

4. Discussion

The goal of this work was to construct a suitable constitutive
model to characterize the mechanical behaviour of normal
and degenerated annulus fibrosus of the IVD. This model
takes into account the biphasic nature and also the clear
preferential orientation of the collagen fibres in the annulus.
The phenomenon of swelling, indeed, is really important for a
correct simulation of the stress-strain behaviour of cartilage
as it has evidently shown in previous numerical [7, 40] and
experimental works [39, 47, 51]. Furthermore, it plays an
important role in the stress relaxation, in fluid regulation and
therefore in tissue permeability. Here, the model for fibred
reinforced materials, originally proposed by Holzapfel [52],
was modified to incorporate the swelling contribution due to
the PGs being coupled with the biphasic formulation.

Due to the hydrophilic behaviour of cartilage, an increase
of PG’s concentration (e.g., due to a compression of the
tissue) produces an influx of fluid into the cartilage. This
implies an increase of the internal pressure giving the tissue
more capacity to absorb loads. To simulate this effect, the
component of the 2nd Piola-Kirchhoff stress tensor related
to the material compressibility was modified introducing the
osmotic gradient pressure. This term considers the tissue
fixed charge density as a function of the volume variation
[26, 40].
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Table 3: Material properties, geometrical parameters, and elements number of the lumbosacral spine ligaments [42, 48–50].

Ligament 𝐸1 (MPa) 𝐸2 𝜖12 Number of elements Area (mm2)
ALL 7.8 20.0 0.12 5 32.4
PLL 1.0 2.0 0.11 5 5.2
LF 1.5 1.9 0.062 3 84.2
ITL 10.0 59 0.18 4 1.8
SSL 3.0 5.0 0.20 3 25.2
Ligament Spine level Area (mm2) Poisson’s ratio ] Number of elements Stiffness 𝑘 (N/mm)

JC

L1-L2

43.8 0.4 6

42.5 ± 0.8

L2-L3 33.9 ± 19.2

L3-L4 32.3 ± 3.3

L4-L5 30.6 ± 1.5

L5-S1 29.9 ± 22.0

ISL

L1-L2

35.1 0.4 6

10.0 ± 5.2

L2-L3 9.6 ± 4.8

L3-L4 18.1 ± 15.9

L4-L5 8.7 ± 6.5

L5-S1 16.3 ± 15.0

Finally, a strain dependent permeability function was
implemented in the model. A power-low function of the por-
osity rate change was chosen relating the actual and the initial
permeability [53].The equivalence between this function and
an exponential one [54] was demonstrated by Riches et al.
[41].

To validate the behaviour of the poromechanical part of
the model a 1D free swelling test was reproduced in silico.
Because of the lack of data regarding the AF tissue free
swelling behaviour, human cartilage tissue behaviour was
simulated and compared with previous results found in the
literature. Since this tissue did not present a fibred structure,
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Table 4: Material properties and element types of the finite element model.

Component Element type Number of
elements Material constants Notes

Bone R3D3 73016 Rigid body

Nucleus C3D8 10106

𝐶1 = 0.16MPa
𝐷 = 0.024MPa −1

𝑐𝐹,0 = 1.810
−4meq/mm3

𝑘0 = 1.92410
−16m4/Ns

𝑛𝑓,0 = 0.8

𝑒 = 4.8

Porohyperelastic NeoHookean
[44]

Annulus C3D8 19421 see Table 2
Porohyperelastic Fibre

reinforced material (𝛼 = ±30
∘)

[17]
Ligaments T3D2 180 see Table 1 Tension only truss
Posterior processes
contact GAP 30
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Figure 5: Evolution of the strain during 1D swelling test. Compari-
son with Wilson et al. [40].

no fibres were considered in the model in agreement with
Wilson et al. [40]. The response of the model showed an
excellent agreement with these authors [40].

Once the model was validated for free swelling, different
tests were performed to guarantee the accuracy of the results.
The material constants of the annulus fibrosus related to the
fluid and ionic contribution (𝑘0, 𝑛0, 𝑐𝐹,0) were obtained from
the literature [4, 26, 40, 47]. On the other hand, we were
not interested in detecting differences across the zones of
the annulus (anterior, posterior, inner, or outer). Therefore,
only one set of elastic constant values (𝐶10, 𝐶20, 𝐷,𝐾1, and
𝐾2) was fitted to the experimental data by Ebara et al. [38]
representing a good average behaviour for the whole annulus.
This assumption was fully demonstrated in a previous work
[43].

First, the experimental confined compression test pro-
posed by Schroeder et al. [39] for the healthy AF tissue was
reproduced in silico.The FEmodel showed a good agreement
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Figure 8: Comparison between experimental data reported by
Iatridis et al. [4] and the present numerical model for normalized
stress-stretch at equilibrium.

with the experimental results. The numerical curve, in fact,
fills within the experimental curves range. Furthermore this
first analysis showed that ourmodel was capable of predicting
values of stresses equivalent to those measured experimen-
tally. However, the found value of stress at the end of the
relaxation period was rather different in comparison with the
average value reported in the literature. Many explanations
could be made for this behaviour. For example the PGs
content, or equivalently the fixed charge density, strongly
influences the material response [9, 25, 55]. Also the distri-
bution and orientation of the fibres direction could influence
the behaviour of the tissue [39, 52].

Then, a transient response behaviour analysis as proposed
by Iatridis and coworkers [4] was carried out. Since the
experimental curve presented by Iatridis et al. [4] is only
related to a specific specimen and not to an average curve;
the value of force was normalised and compared. This
procedure, furthermore, is in agreement with that proposed
by DiSilvestro and Suh [56] and Wilson et al. [13]. From the
other hand, the results obtained with the experimental result
proposed by Schroeder and coworkers [39] are adequate to
guarantee the goodness of found internal stress values. The
results showed a good accordance with experimental data. In
particular the model showed the ability to recover the value
of the stress with the same velocity of experimental data.

In Section 4 a criterion to define a degenerated AF tissue
behaviour was defined. In particular the experimental evi-
dences of Iatridis et al. [4] were used to modify the constant
values of the model. In Figure 8 the normalised value of the
stress was compared between experimental and numerical
results for normal and degenerated AF tissue. It can be
noted how the proposed procedure was able to reproduce the
effects of degeneration: increase of stiffness and reduction of
nonlinearity of the behaviour. Iatridis et al. [4] mentioned
that the increase in the elastic modulus with degeneration
is likely related to an increase in tissue density resulting
from the loss of water content. However, the reduction
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in nonlinearity behaviour with degeneration could suggest
a diminished compaction effect of the degenerate tissues
at large deformations which could be related to structural
changes in matrix. Besides, the effect of the increase of the
ground substance elastic modulus was analysed under a pure
axial tensile load. The obtained results are also in agreement
with the experimental behaviour showed by Guerrin et al.
[24]. Experimental results, in fact, showed an increase of the
elastic modulus in the toe part, before fibres act, but when the
fibres act there is no additional stiffening.

Finally, the constitutive model that has been presented
here has been applied to a complete finite element model
of the lumbar spine and degeneration of one disc has been
provoked by modifying its mechanical properties. In this
analysis it has been obtained that the degeneration of one level
affects the biomechanics of the adjacent levels; in particular
a decrease of the range of motion in flexion/extension has
been seen. These results are in agreement with Kettler et
al. [34] who analyzed 203 lumbar spine segments obtaining
that the range of motion decreased with degeneration. This
same result was radiographically shown by Mimura et al.
[33] for flexion/extension moments. Regarding the stress
distributions in the discs, there is no much data to compare.
As mentioned in the introduction, only the work of Ruberte
et al. [37] analyzed the influence of single-level lumbar degen-
erative disc disease on the behaviour of the adjacent levels
using the finite element model. However, the conclusions
of their study are opposite to what we have obtained here
and other experimental results [30, 31]. They obtained that
as degeneration progresses the stiffness increased but was
significantly less than the healthy model; however it seems
that the clinical evidence proves our results. With respect to
the stresses distribution, our results showed that there is a
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Figure 10: Relative rotation of each pair of vertebrae both in flexion and extension. Comparison between numerical simulation and
experimental measures of Guan et al. [46].
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Figure 11: Relative rotation of each pair of vertebrae. Comparison between healthy spine (continuous line) and damaged spine (dashed line)
in which D45 disc has been degenerated.
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Figure 12: Maximum and minimum principal stresses in the anterior and posterior part of D34, D45, and D51 discs. Plots in continuous line
correspond to the healthy spine, and plots in dashed lines correspond to the degenerated model.

slight modification on the adjacent levels when one single
level is degenerated. However, this data cannot be transferred
to the clinical evidence because it is not quantitatively known
to what extent loading changes involve degenerative changes.

5. Assumptions and Limitations

The numerical model for the degeneration of the annulus
fibrosus has several limitations. First, only the swelling effect

has been introduced to describe its behaviour.There aremore
effects related to the electrochemical nature of cartilage that
will be taken into account in further developments. As shown
in Figure 6, the viscoelastic nature of the solid matrix can
affect the overall response of the tissue and it should be
included to improve this model. Numerical predictions have
been compared with experimental results; however, there is a
lack of data in the literature about the poromechanics of the
healthy or degenerated AF and therefore more experimental
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data would be required to better guarantee our results. On
the other hand, the stiffening of the annulus fibrosus has
been reproduced by modifying the mechanical behaviour
of the matrix. It is known that with degeneration, collagen
fibers are reoriented and broken.This contribution should be
introduced in future works.

With respect to the lumbar spine finite element model
there are also limitations and underlying assumptions. The
most important one is that the same finite element model
has been used for healthy and damaged spine. It is known
that the height of the discs is modified with degeneration
and also the internal structure of the disc but here only
the mechanical properties of the degenerated disc have been
modified.Notwithstanding the fact that the height of the discs
can modify the biomechanical response of the spine, it has
been seen [57] that when the disc height is reduced, flexibility
of themotion segment decreased.Therefore, this effect would
contribute in the same direction to the results that have been
obtained here.

6. Conclusions

In conclusion, the developed model is capable of simulating
the poromechanical behaviour of normal anddegeneratedAF
tissue with a good approximation. The most important fea-
ture of thismodel is related to the coupling between a strongly
fibredmatrix and its intrinsic affinity to water regulated by its
ionic nature. On the other hand, the degeneration of cartilage
is a very complex process that has been here simplified for AF
tissue with accurate predictions.

Moreover, the present study provides a qualitative anal-
ysis of the influence of single level disc degeneration on the
mechanics of the adjacent segments under flexion/extension
moments. It has been seen that degeneration modified the
degree of motion and loading of both the degenerated disc
and adjacent levels. These changes could increase the risk of
progression of degeneration to the nearest segments of the
spine.

Nomenclature

Ψ: Helmholtz free energy function
Ψgs: Ground substance Helmholtz free energy

function
Ψ𝑓: Fibres behaviour Helmholtz free energy

function
Ψvol: Material compressibility Helmholtz free

energy function
C: Right Cauchy-Green tensor
C: Modified right Cauchy-Green tensor
𝐽: Relative volume change detC1/2
A𝑛: Structural tensor of the fibre direction
a𝑛: Fiber direction
S: 2nd Piola-Kirchhoff stress tensor
Sgs: Ground substance 2nd Piola-Kirchhoff

stress tensor
S𝑓: Fibres behaviour 2nd Piola-Kirchhoff

stress tensor

Svol: Material compressibility 2nd
Piola-Kirchhoff stress tensor

P: Project tensor
I: Fourth-order unite tensor
𝐶𝑖𝑗: Ground substance material constants
𝐾𝑛: Collagen fibres behaviour constants
𝐷: Tissue incompressibility modulus
𝐼1: First invariant trC
𝐼
∗

𝑛 : Fibres invariants a0𝑛 ⋅ Ca
0
𝑛

𝜇𝑓: Water chemical potential
𝑝: Fluid pressure
ΔΠ: Osmotic pressure gradient
Πext: External osmotic pressure
Πint: Internal osmotic pressure
𝑅: Universal gas constant
𝑇: Absolute temperature
𝜙int: Internal osmotic coefficient
𝜙ext: External osmotic coefficient
𝑐ext: External salt concentration
𝑐𝐹: Fixed charge density
𝑐𝐹,0: Initial fixed charge density
𝑛𝑓,0: Initial fluid fraction
𝑘: Permeability
𝑘0: Initial permeability
𝑛: Porosity
𝑛0: Initial porosity
𝑚: Positive coefficient.
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