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This paper investigates the exponential synchronization between two nonlinearly coupled complex networks with time-varying
delay dynamical nodes. Based on the Lyapunov stability theory, some criteria for the exponential synchronization are derived with
adaptive control method. Moreover, the presented results here can also be applied to complex dynamical networks with single
time delay case. Finally, numerical analysis and simulations for two nonlinearly coupled networks which are composed of the
time-delayed Lorenz chaotic systems are given to demonstrate the effectiveness and feasibility of the proposed complex network
synchronization scheme.

1. Introduction

Generally speaking, a complex network consists of a large
number of interconnected nodes by edges, where a node is
a fundamental unit having specific contents and exhibiting
dynamical behavior, typically. As we all have known, the
complex network models widely exist in real world, such
as Internet, World Wide Web, biological neural networks,
social connection networks, global economic markets, and
ecosystems. Since the discovery of some typical complex net-
works such as the random networks, small-world networks
and scale-free networks, many scientists and engineers from
various fields, for instance, mathematics, physics, engineer-
ing, and biology, have paid increasing attention to the studies
of complex networks.

In past few decades, the control and synchronization
problem of networks coupled with complex dynamical
systems, especially chaotic systems, has been extensively
investigated in various fields due to its many potential
applications [1–10].Many kinds of synchronization have been
proposed, such as complete synchronization, lag synchro-
nization, cluster synchronization, projective synchronization,
and generalized synchronization. Since chaotic systems defy

synchronization, how to design effective controllers for syn-
chronizing coupled chaotic systems becomes an important
and challenging problem. Many effective methods including
pinning control [11–14], adaptive control [15–20], impulsive
control [21–26], and intermittent control [27–29] have been
adopted to design proper controllers. Inner synchronization,
that is, the synchronization of all the nodes within a network,
has been investigated recently. As a matter of fact, there exist
other kinds of network synchronization in real world, for
example, the synchronization phenomenon between two or
more complex networks, whichwas called outer synchroniza-
tion [30]. Therefore, how to synchronize between different
networks is an interesting and challenging work. Li et al. [30]
pioneered in studying the outer synchronization between
two unidirectionally coupled complex networks and derived
analytically a criterion for them having the identical topolog-
ical structures. Tang et al. [31] discussed the synchronization
between two complex dynamical networks with nonidentical
topological structures via using adaptive control method. Li
et al. [32] studied the synchronization between two networks
with different topology structures and different dynamical
behaviors with open-plus-closed-loop method. Wu et al. [33]
studied the problem of generalized outer synchronization
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between two complex dynamical networks with different
topologies and diverse node dynamics. Li et al. [34] dis-
cussed the outer synchronization of coupled discrete-time
network. The adaptive-impulsive synchronization between
two complex networkswith nondelayed and delayed coupling
was discussed in [35], but the delay is constant; moreover,
the inner connecting function is linear and the delay in the
dynamical nodes is ignored. In the real world, time delays
are ubiquitous in natural and artificial systems. In much of
the literature, time delays in the couplings are considered;
however, the time delays in the dynamical nodes, which are
more complex, are still relatively unexplored. To the best of
our knowledge, the problem of synchronization between two
nonlinearly coupled complex networks with time-delayed
dynamical nodes is seldom discussed.

Motivated by the above discussions, the aim of this paper
is to discuss the problem of exponential synchronization
between two nonlinearly coupled dynamical networks with
identical time-delayed dynamical nodes via adaptive control.
Particularly, the coupling matrices are not assumed to be
symmetric or irreducible. Based on the Lyapunov function
method and mathematical analysis, synchronization criteria
are derived analytically. Numerical examples are used finally
to illustrate the usefulness of synchronization conditions.
The above proposed scheme herein will be very useful for
practical engineering applications.

The rest of this paper is organized as follows. In Section 2,
model description and preliminaries are given. In Section 3,
some sufficient conditions for the exponential synchroniza-
tion are derived with the adaptive method. In Section 4, one
illustrative example is given for supporting the theoretical
results. Finally, conclusions are given in Section 5.

2. Model Description and Preliminaries

In this paper, consider two complex dynamical networks each
consisting of 𝑁 nonlinearly and diffusively coupled identical
nodes, with each node being an 𝑛-dimensional dynamical
system, respectively. One of the networks is characterized by

𝑥̇
𝑖 (𝑡) = 𝑓 (𝑡, 𝑥

𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜏 (𝑡))) +

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
ℎ (𝑥
𝑗 (𝑡))

+

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
𝑔 (𝑥
𝑗 (𝑡 − 𝜏 (𝑡))) ,

(1)

where, 𝑖 = 1, 2, . . . , 𝑁, 𝑥
𝑖
(𝑡) = (𝑥

𝑖1
(𝑡), 𝑥
𝑖2
(𝑡), . . . , 𝑥

𝑖𝑛
(𝑡))
𝑇

∈

𝑅
𝑛 is the state vector of the 𝑖th node, 𝑓 : 𝑅 × 𝑅

𝑛
×

𝑅
𝑛

→ 𝑅
𝑛 is a smooth nonlinear function, 𝜏(𝑡) is the time-

varying delay. ℎ(⋅) ∈ 𝑅
𝑛 and 𝑔(⋅) ∈ 𝑅

𝑛 are the inner
connecting functions in each node. While 𝐵 = (𝑏

𝑖𝑗
)
𝑁×𝑁

∈

𝑅
𝑁×𝑁

, 𝐶 = (𝑐
𝑖𝑗
)
𝑁×𝑁

∈ 𝑅
𝑁×𝑁 are the weight configuration

matrices. If there is a connection from node 𝑖 to node
𝑗 (𝑗 ̸= 𝑖), then the coupling 𝑏

𝑖𝑗
̸= 0, 𝑐
𝑖𝑗

̸= 0; otherwise, 𝑏
𝑖𝑗

=

𝑐
𝑖𝑗

= 0 (𝑗 ̸= 𝑖), and the diagonal elements of matrix 𝐵, 𝐶 are
defined as 𝑏

𝑖𝑖
= −∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
𝑏
𝑖𝑗
, 𝑐
𝑖𝑖

= −∑
𝑁

𝑗=1,𝑗 ̸= 𝑖
𝑐
𝑖𝑗
. Here, the

configuration matrices are not assumed to be symmetric or
irreducible.

We refer to model (1) as the drive complex dynamical
network, and the response complex network with control can
be rewritten in the following form:

̇𝑦
𝑖 (𝑡) = 𝑓 (𝑡, 𝑦

𝑖 (𝑡) , 𝑦𝑖 (𝑡 − 𝜏 (𝑡))) +

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
ℎ (𝑦
𝑗 (𝑡))

+

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
𝑔 (𝑦
𝑗 (𝑡 − 𝜏 (𝑡))) + 𝑢

𝑖
,

(2)

where 𝑦
𝑖
(𝑡) = (𝑦

𝑖1
(𝑡), 𝑦
𝑖2
(𝑡), . . . , 𝑦

𝑖𝑛
(𝑡))
𝑇
∈ 𝑅
𝑛 is the response

state vector of the 𝑖th node and 𝑢
𝑖
(𝑖 = 1, 2, . . . , 𝑁) are the

controllers to be designed later.
Before presenting the derivation of the main results, the

definition, the assumptions, and lemmas are introduced as
follows.

Definition 1 (see [36]). The networks (1) and (2) are said to
be globally exponentially asymptotically synchronous if there
exist constants 𝑀 > 0 and 𝜌 > 0, such that for any initial
condition

󵄩󵄩󵄩󵄩𝑦𝑖 (𝑡) − 𝑥
𝑖 (𝑡)

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)

󵄩󵄩󵄩󵄩 ≤ 𝑀𝑒
−𝜌𝑡

. (3)

Assumption 2. Time delay 𝜏(𝑡) is a differential function with
0 ≤ 𝜏(𝑡) ≤ 𝜏

𝑀
and 0 ≤ ̇𝜏(𝑡) ≤ 𝜀 < 1. Clearly, this assumption

includes constant delay as a special case.

Assumption 3 (see [37]). For the vector valued function
𝑓(𝑡, 𝑥

𝑖
(𝑡), 𝑥
𝑖
(𝑡 − 𝜏(𝑡))), assume that there exist positive con-

stants 𝛾
1
> 0, 𝛾

2
> 0 such that 𝑓 satisfies the semi-Lipschitz

condition

(𝑥(𝑡) − 𝑦(𝑡))
𝑇
(𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏 (𝑡)))

−𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏 (𝑡))))

≤ 𝛾
1
(𝑥(𝑡) − 𝑦(𝑡))

𝑇
(𝑥 (𝑡) − 𝑦 (𝑡))

+𝛾
2
(𝑥(𝑡−𝜏(𝑡))−𝑦(𝑡−𝜏(𝑡)))

𝑇
(𝑥 (𝑡−𝜏 (𝑡))−𝑦 (𝑡 − 𝜏 (𝑡))) ,

(4)

for all 𝑥, 𝑦 ∈ 𝑅
𝑛 and 𝑡 ≥ 0.

Remark 4. Assumption 3 gives some requirements for the
dynamics of isolated node in network. It is easy to verify
that many chaotic systems with delays or without delays
satisfy Assumption 3, for example, Chua’s oscillator, Rössler’s
system, the Lorenz system, Chen’s system, and Lü’s system as
well as the delayed Lorenz system, delayed Hopfield neural
networks, and delayed cellular neural networks, and so on.

Lemma 5 (see [38]). For any vectors 𝑥, 𝑦 ∈ 𝑅
𝑛 and positive

definite matrix 𝑄 ∈ 𝑅
𝑛×𝑛, the following matrix inequality

holds: 𝑥𝑇𝑦 ≤ (1/2)(𝑥
𝑇
𝑄𝑥 + 𝑦

𝑇
𝑄
−1
𝑦).
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3. Exponential Synchronization Criteria

In this section, we will make drive-response complex dynam-
ical networks with nondelayed and delayed coupling achiev-
ing global exponential synchronization by using adaptive
controlling method.

Define the synchronization errors 𝑒
𝑖
(𝑡) = 𝑦

𝑖
(𝑡) − 𝑥

𝑖
(𝑡)

(𝑖 = 1, 2, . . . , 𝑁); the following errors dynamics system is
obtained:

̇𝑒
𝑖
= 𝑓 (𝑡, 𝑦

𝑖 (𝑡) , 𝑦𝑖 (𝑡 − 𝜏 (𝑡))) − 𝑓 (𝑡, 𝑥
𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜏 (𝑡)))

+

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
ℎ (𝑒
𝑗 (𝑡)) +

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
𝑔 (𝑒
𝑗 (𝑡 − 𝜏 (𝑡))) + 𝑢

𝑖
,

(5)

where ℎ(𝑒
𝑗
(𝑡)) = ℎ(𝑦

𝑗
(𝑡))−ℎ(𝑥

𝑗
(𝑡)), 𝑔(𝑒

𝑗
(𝑡−𝜏(𝑡))) = 𝑔(𝑦

𝑗
(𝑡−

𝜏(𝑡))) − 𝑔(𝑥
𝑗
(𝑡 − 𝜏(𝑡))).

Theorem 6. Suppose Assumptions 2 and 3 hold. The response
network (2) can globally exponentially asymptotically synchro-
nize with the driven network (1) if the controllers are designed
as follows:

𝑢
𝑖
=

{{{{{{{{

{{{{{{{{

{

−𝑑
𝑖
𝑒
𝑖 (𝑡) −

𝑁
󵄩󵄩󵄩󵄩󵄩
ℎ (𝑒
𝑖 (𝑡))

󵄩󵄩󵄩󵄩󵄩

2

2
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)

󵄩󵄩󵄩󵄩

2
𝑒
𝑖 (𝑡)

−
𝑁𝑒
𝜌𝜏𝑀󵄩󵄩󵄩󵄩𝑔 (𝑒

𝑖 (𝑡))
󵄩󵄩󵄩󵄩

2

2 (1 − 𝜀)
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)

󵄩󵄩󵄩󵄩

2
𝑒
𝑖 (𝑡) ,

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)
󵄩󵄩󵄩󵄩 ̸= 0,

0,
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)

󵄩󵄩󵄩󵄩 = 0,

(6)

where

̇𝑑
𝑖
= 𝑘
𝑖
𝑒
𝜌(𝑡−𝜏𝑀)󵄩󵄩󵄩󵄩𝑒𝑖(𝑡)

󵄩󵄩󵄩󵄩

2 (7)

with 𝑘
𝑖
being the known adjustable positive constants.

Proof. We construct the Lyapunov function as follows:

𝑉 (𝑡) =
1

2
𝑒
𝜌(𝑡−𝜏𝑀)

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡)

+
1

2

𝑁

∑

𝑖=1

1

𝑘
𝑖

(𝑑
𝑖
− 𝑑
∗

𝑖
)
2

+
𝛾
2

1 − 𝜀

𝑁

∑

𝑖=1

∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝜌𝜃
𝑒
𝑇

𝑖
(𝜃) 𝑒𝑖 (𝜃) 𝑑𝜃

+
𝑁

2 (1 − 𝜀)

𝑁

∑

𝑖=1

∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝜌𝜃
𝑔
𝑇
(𝑒
𝑖 (𝜃)) 𝑔 (𝑒

𝑖 (𝜃)) 𝑑𝜃,

(8)

where 𝑑
∗

𝑖
is sufficiently large positive constants to be deter-

mined.

Calculate the derivative of (8) along the trajectories of (5),
and with adaptive controllers (6). Thus, we obtain

𝑉̇ =
1

2
𝜌𝑒
𝜌(𝑡−𝜏𝑀)

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡)

+ 𝑒
𝜌(𝑡−𝜏𝑀)

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) [

[

𝑓 (𝑡, 𝑦
𝑖 (𝑡) , 𝑦𝑖 (𝑡 − 𝜏 (𝑡)))

− 𝑓 (𝑡, 𝑥
𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜏 (𝑡)))

+

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
ℎ (𝑒
𝑗 (𝑡))

+

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
𝑔 (𝑒
𝑗 (𝑡 − 𝜏 (𝑡))) + 𝑢

𝑖
]

]

+

𝑁

∑

𝑖=1

1

𝑘
𝑖

(𝑑
𝑖
− 𝑑
∗

𝑖
) ̇𝑑
𝑖
+

𝛾
2

1 − 𝜀

𝑁

∑

𝑖=1

𝑒
𝜌𝑡
𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡)

−
𝛾
2 (1 − ̇𝜏 (𝑡))

1 − 𝜀

𝑁

∑

𝑖=1

𝑒
𝜌(𝑡−𝜏(𝑡))

𝑒
𝑇

𝑖
(𝑡 − 𝜏 (𝑡)) 𝑒𝑖 (𝑡 − 𝜏 (𝑡))

+
𝑁

2 (1 − 𝜀)

𝑁

∑

𝑖=1

𝑒
𝜌𝑡
𝑔
𝑇
(𝑒
𝑖 (𝑡)) 𝑔 (𝑒

𝑖 (𝑡))

−
𝑁 (1− ̇𝜏 (𝑡))

2 (1−𝜀)

𝑁

∑

𝑖=1

𝑒
𝜌(𝑡−𝜏(𝑡))

𝑔
𝑇
(𝑒
𝑖 (𝑡−𝜏 (𝑡))) 𝑔 (𝑒

𝑖 (𝑡−𝜏 (𝑡))) .

(9)

From Assumption 2, we get
1

2
≤

1 − ̇𝜏 (𝑡)

2 (1 − 𝜀)
, 𝑒

𝜌(𝜏𝑀−𝜏(𝑡)) ≥ 1. (10)

We have

𝑉̇ ≤ 𝑒
𝜌(𝑡−𝜏𝑀) [

1

2
𝜌

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡) + 𝛾

1

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡)

+
𝛾
2

1 − 𝜀

𝑁

∑

𝑖=1

𝑒
𝜌𝜏𝑀𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡)

+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
𝑒
𝑇

𝑖
(𝑡) ℎ (𝑒

𝑗 (𝑡))

+

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
𝑒
𝑇

𝑖
(𝑡) 𝑔 (𝑒

𝑗 (𝑡 − 𝜏 (𝑡)))

−

𝑁

∑

𝑖=1

𝑑
∗

𝑖

󵄩󵄩󵄩󵄩𝑒𝑖(𝑡)
󵄩󵄩󵄩󵄩

2
−

𝑁

2

𝑁

∑

𝑖=1

ℎ
𝑇

(𝑒
𝑖 (𝑡)) ℎ (𝑒

𝑖 (𝑡))

−
𝑁

2

𝑁

∑

𝑖=1

𝑔
𝑇
(𝑒
𝑖 (𝑡 − 𝜏 (𝑡))) 𝑔 (𝑒

𝑖 (𝑡 − 𝜏 (𝑡)))] .

(11)
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From Lemma 5, we have
𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
𝑒
𝑇

𝑖
(𝑡) ℎ (𝑒

𝑗 (𝑡)) ≤
𝑁
2

2
max
1≤𝑖≤𝑁

(𝑏
2

𝑖𝑖
)

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡)

+
𝑁

2

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
ℎ (𝑒
𝑖 (𝑡))

󵄩󵄩󵄩󵄩󵄩

2

,

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
𝑒
𝑇

𝑖
(𝑡) 𝑔 (𝑒

𝑗 (𝑡 − 𝜏 (𝑡))) ≤
𝑁
2

2
max
1≤𝑖≤𝑁

(𝑐
2

𝑖𝑖
)

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡)

+
𝑁

2

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑔 (𝑒
𝑖 (𝑡 − 𝜏 (𝑡)))

󵄩󵄩󵄩󵄩

2
.

(12)

Thus, we obtain

𝑉̇ ≤ 𝑒
𝜌(𝑡−𝜏𝑀)

𝑁

∑

𝑖=1

[
1

2
𝜌 + 𝛾
1
+

𝛾
2
𝑒
𝜌𝜏𝑀

1 − 𝜀
+

𝑁
2

2
max
1≤𝑖≤𝑁

(𝑎
2

𝑖𝑖
)

+
𝑁
2

2
max
1≤𝑖≤𝑁

(𝑐
2

𝑖𝑖
) − 𝑑
∗

𝑖
] 𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡) .

(13)

It is obvious that the constants 𝑑
∗

𝑖
(𝑖 = 1, 2, . . . , 𝑁) can

be properly chosen to make (1/2)𝜌 + 𝛾
1
+ 𝛾
2
𝑒
𝜌𝜏𝑀/(1 − 𝜀) +

(𝑁
2
/2)max

1≤𝑖≤𝑁
(𝑎
2

𝑖𝑖
)+ (𝑁

2
/2)max

1≤𝑖≤𝑁
(𝑐
2

𝑖𝑖
)−𝑑
∗

𝑖
< 0, namely,

𝑉̇ ≤ 0, and then 𝑉(𝑡) ≤ 𝑉(0), for any 𝑡 ≥ 0.
On the other hand, we have

𝑒
𝜌(𝑡−𝜏𝑀)

1

2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡) ≤ 𝑉 (𝑡) ≤ 𝑉 (0) . (14)

Therefore, one has
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)

󵄩󵄩󵄩󵄩 ≤ √2𝑉 (0)𝑒
−(𝜌/2)(𝑡−𝜏𝑀). (15)

Thus, the errors vector 𝑒(𝑡) → 0, that is, the network
(1) and network (2), are globally exponentially asymptotically
synchronous.

In a special case, when the networks are all linearly
coupled, that is, ℎ(𝑥

𝑖
(𝑡)) = Γ

1
𝑥
𝑖
(𝑡), 𝑔(𝑥

𝑖
(𝑡 − 𝜏(𝑡))) = Γ

2
𝑥
𝑗
(𝑡 −

𝜏(𝑡)), the network (1) degenerates into the following:

𝑥̇
𝑖 (𝑡) = 𝑓 (𝑡, 𝑥

𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜏 (𝑡))) +

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ
1
𝑥
𝑗 (𝑡)

+

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ
2
𝑥
𝑗 (𝑡 − 𝜏 (𝑡))

(16)

and the response complex network with control is given by

̇𝑦
𝑖 (𝑡) = 𝑓 (𝑡, 𝑦

𝑖 (𝑡) , 𝑦𝑖 (𝑡 − 𝜏 (𝑡))) +

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
Γ
1
𝑦
𝑗 (𝑡)

+

𝑁

∑

𝑗=1

𝑐
𝑖𝑗
Γ
2
𝑦
𝑗 (𝑡 − 𝜏 (𝑡)) + 𝑢

𝑖
.

(17)

We have Corollary 7 for the networks (16) and (17), due
to the inequality

󵄩󵄩󵄩󵄩ℎ (𝑥
𝑖 (𝑡))

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩Γ1

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡)
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑔 (𝑥
𝑖 (𝑡 − 𝜏 (𝑡)))

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩Γ2

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡 − 𝜏 (𝑡))
󵄩󵄩󵄩󵄩 .

(18)

Corollary 7. Consider the complex networks (16) and (17),
if Assumptions 2 and 3 hold. Use the following adaptive
controllers and updated laws:

𝑢
𝑖
=

{{{{{

{{{{{

{

−𝑑
𝑖
𝑒
𝑖 (𝑡) −

𝑁

2

󵄩󵄩󵄩󵄩Γ1
󵄩󵄩󵄩󵄩

2
𝑒
𝑖 (𝑡)

−
𝑁𝑒
𝜌𝜏𝑀

2 (1 − 𝜀)

󵄩󵄩󵄩󵄩Γ2
󵄩󵄩󵄩󵄩

2
𝑒
𝑖 (𝑡) ,

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)
󵄩󵄩󵄩󵄩 ̸= 0,

0,
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)

󵄩󵄩󵄩󵄩 = 0,

̇𝑑
𝑖
= 𝑘
𝑖
𝑒
𝜌(𝑡−𝜏𝑀)󵄩󵄩󵄩󵄩𝑒𝑖(𝑡)

󵄩󵄩󵄩󵄩

2
,

(19)

where 𝑑
𝑖
are the feedback strength and 𝑘

𝑖
> 0 are arbitrary

constants. Then, the drive-response networks can globally
exponentially asymptotically synchronize.

If the time-varying delay in the network (1) is the constant
delay, we can obtain the following results.

Theorem 8. Suppose Assumptions 2 and 3 hold. Use the
following adaptive controllers and updated laws:

𝑢
𝑖
=

{{{{{{{{

{{{{{{{{

{

−𝑑
𝑖
𝑒
𝑖 (𝑡) −

𝑁
󵄩󵄩󵄩󵄩󵄩
ℎ (𝑒
𝑖 (𝑡))

󵄩󵄩󵄩󵄩󵄩

2

2
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)

󵄩󵄩󵄩󵄩

2
𝑒
𝑖 (𝑡)

−
𝑁𝑒
𝜌𝜏󵄩󵄩󵄩󵄩𝑔 (𝑒

𝑖 (𝑡))
󵄩󵄩󵄩󵄩

2

2
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)

󵄩󵄩󵄩󵄩

2
𝑒
𝑖 (𝑡) ,

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)
󵄩󵄩󵄩󵄩 ̸= 0,

0,
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)

󵄩󵄩󵄩󵄩 = 0,

̇𝑑
𝑖
= 𝑘
𝑖
𝑒
𝜌(𝑡−𝜏)󵄩󵄩󵄩󵄩𝑒𝑖(𝑡)

󵄩󵄩󵄩󵄩

2
,

(20)

where 𝑑
𝑖
are the feedback strength and 𝑘

𝑖
> 0 are arbitrary

constants. Then, the drive-response networks can globally
exponentially asymptotically synchronize.

Proof. We construct the Lyapunov function as follows:

𝑉 (𝑡) =
1

2
𝑒
𝜌(𝑡−𝜏)

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡) +

1

2

𝑁

∑

𝑖=1

1

𝑘
𝑖

(𝑑
𝑖
− 𝑑
∗

𝑖
)
2

+
𝛾
2

1 − 𝜀

𝑁

∑

𝑖=1

∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝜌𝜃
𝑒
𝑇

𝑖
(𝜃) 𝑒𝑖 (𝜃) 𝑑𝜃

+
𝑁

2 (1 − 𝜀)

𝑁

∑

𝑖=1

∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝜌𝜃
𝑔
𝑇
(𝑒
𝑖 (𝜃)) 𝑔 (𝑒

𝑖 (𝜃)) 𝑑𝜃,

(21)

where 𝑑
∗

𝑖
is a positive constants to be determined. The rest

of the proof is similar to that of Theorem 6 and is omitted
here.

Similar to Corollary 7, we have Corollary 9.
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Corollary 9. Suppose Assumptions 2 and 3 hold. Use the
following adaptive controllers and updated laws:

𝑢
𝑖
=

{{{{

{{{{

{

−𝑑
𝑖
𝑒
𝑖 (𝑡) −

𝑁

2

󵄩󵄩󵄩󵄩Γ1
󵄩󵄩󵄩󵄩

2
𝑒
𝑖 (𝑡)

−
𝑁𝑒
𝜌𝜏

2

󵄩󵄩󵄩󵄩Γ2
󵄩󵄩󵄩󵄩

2
𝑒
𝑖 (𝑡) ,

󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)
󵄩󵄩󵄩󵄩 ̸= 0,

0,
󵄩󵄩󵄩󵄩𝑒𝑖 (𝑡)

󵄩󵄩󵄩󵄩 = 0,

̇𝑑
𝑖
= 𝑘
𝑖
𝑒
𝜌(𝑡−𝜏)󵄩󵄩󵄩󵄩𝑒𝑖(𝑡)

󵄩󵄩󵄩󵄩

2
,

(22)

where 𝑑
𝑖
are the feedback strength and 𝑘

𝑖
> 0 are arbitrary

constants. Then, the drive-response network can globally expo-
nentially asymptotically synchronize.

Remark 10. It is noted that the configuration matrices 𝐵 and
𝐶 do not need to be symmetric, diffusive, or irreducible.
This means that the networks can be undirected or directed
networks and may also contain isolated nodes or clusters.
Therefore, the network structures here are very general and
the results can be applied to a great many complex dynamical
networks.

Remark 11. The feedback strengths 𝑑
𝑖
are automatically

adapted to the suitable constant, which depends on the
initial values. The constants 𝑘

𝑖
can be chosen properly to

adjust the synchronization speed. The larger the constants 𝑘
𝑖

the faster the achievement of synchronization of the drive-
response nonlinearly coupled networks with time-varying
delayed dynamical nodes.

Remark 12. Some stability criteria for the exponential syn-
chronization between drive and response nonlinearly cou-
pled networks with time-varying delays are derived, which
can also be applied to the complex network with single
time delay. Thus, the results presented in this paper improve
and generalize the corresponding results of recent works.
Moreover, our designed synchronization controller is not
only robust but also easy to implement.

4. Numerical Simulation

In this section, numerical simulation is given to verify and
demonstrate the effectiveness of the proposed method for
exponentially synchronizing two nonlinearly coupled com-
plex networks with time-delayed dynamical nodes. Consider
the time-delayed Lorenz chaotic system as node dynamics. It
is described by

𝑓 (𝑡, 𝑥
𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜏 (𝑡)))

= (

𝑎 (𝑥
𝑖2
− 𝑥
𝑖1
)

𝑟𝑥
𝑖1
+ (𝑐 − 1) 𝑥𝑖2 − 𝑥

𝑖1
𝑥
𝑖3
+ 𝑐𝑥
𝑖2 (𝑡 − 𝜏 (𝑡))

−𝑏𝑥
𝑖3
+ 𝑥
𝑖1
𝑥
𝑖2

),

(23)

which has a chaotic attractor when 𝑎 = 10, 𝑏 = 8/3, 𝑟 = 28,
and 𝑐 = 5. See Figure 1.
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Figure 1: Chaos phase portrait of the time-delayed Lorenz system.

Rewrite (16) as

𝑓 (𝑡, 𝑥
𝑖 (𝑡) , 𝑥𝑖 (𝑡−𝜏 (𝑡)))=𝐴

0
𝑥
𝑖 (𝑡)+𝜙 (𝑡, 𝑥

𝑖 (𝑡) , 𝑥𝑖 (𝑡−𝜏 (𝑡))) ,

(24)

where

𝐴
0
= (

−𝑎 𝑎 0

𝑟 𝑐 − 1 0

0 0 −𝑏

) ,

𝜙 (𝑡, 𝑥
𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜏 (𝑡))) = (

0

−𝑥
𝑖1
𝑥
𝑖3
+ 𝑐𝑥
𝑖2 (𝑡 − 𝜏 (𝑡))

𝑥
𝑖1
𝑥
𝑖2

) .

(25)

For any state vectors𝑥
𝑖
of the time-delayed Lorenz chaotic

system, there exists a constant 𝑀 satisfying ‖𝑥
𝑖
‖ ≤ 𝑀 since

chaotic attractor is bounded.
To satisfy Assumption 3, consider that one can always

find 𝜂 > 0 such that |𝑥𝑦| ≤ 𝜂(𝑥
2
/2) + 𝑦

2
/2𝜂, and then we

have

𝑒
𝑇

𝑖
(𝑡) [𝑓 (𝑡, 𝑦

𝑖 (𝑡) , 𝑦𝑖 (𝑡 − 𝜏 (𝑡))) − 𝑓 (𝑡, 𝑥
𝑖 (𝑡) , 𝑥𝑖 (𝑡 − 𝜏 (𝑡)))]

= 𝑒
𝑇

𝑖
𝐴
0
𝑒
𝑖
+ 𝑒
𝑖1
𝑒
𝑖3
𝑥
𝑖2
− 𝑒
𝑖1
𝑒
𝑖2
𝑥
𝑖3
+ 5𝑒
𝑖2
𝑒
𝑖2 (𝑡 − 𝜏 (𝑡))

≤ (−10 + 𝜂
1

38 + 𝑀

2
+

𝜂
2
𝑀

2
) 𝑒
2

𝑖1

+ (4 +
38 + 𝑀

2𝜂
1

+
5𝜂
3

2
) 𝑒
2

𝑖2

+ (
𝑀

2𝜂
2

−
8

3
) 𝑒
2

𝑖3
+

𝑀

2𝜂
3
𝑒
2

𝑖2
(𝑡 − 𝜏 (𝑡))

≤ 𝛾
1
𝑒
𝑇

𝑖
𝑒
𝑖
+ 𝛾
2
𝑒
𝑇

𝑖
(𝑡 − 𝜏 (𝑡)) 𝑒𝑖 (𝑡 − 𝜏 (𝑡)) ,

(26)

where 𝛾
1
, 𝛾
2
can be determined by choosing appropriate

parameters 𝜂
𝑖
> 0, 𝑖 = 1, 2, 3.

Now, we consider two nonlinearly coupled complex
dynamical networks (1) and (2) with coupling delay
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Figure 2: Errors of the drive-response coupled networks: (a) 𝑒
𝑖1
; (b) 𝑒

𝑖2
; (c) 𝑒

𝑖3
.

consisting of 6 identical time delayed chaotic systems. Take
the weight configuration coupling matrices

𝐵 = (

(

−4 3 0 0 1 0

1 −6 2 0 0 3

2 1 −3 0 0 0

0 3 0 −7 4 0

0 0 0 4 −4 0

1 0 1 0 0 −2

)

)

,

𝐶 = (

(

−6 3 2 0 1 0

3 −4 1 0 0 0

2 1 −3 0 0 0

1 0 0 −2 0 1

0 0 0 0 −5 5

0 1 0 0 0 −1

)

)

.

(27)

For simplicity, in the numerical simulations, we assume
the time-varying delay 𝜏(𝑡) = 𝑒

𝑡
/(1 + 𝑒

𝑡
); then ̇𝜏(𝑡) =

𝑒
𝑡
/(1 + 𝑒

𝑡
)
2

∈ (0, 1/2] satisfies Assumption 2. The initial
values of the drive systems and the response systems are
chosen as 𝑥

𝑖
(0) = (0.1 + 0.1𝑖, 0.2 + 0.2𝑖, 0.3 + 0.3𝑖)

𝑇, 𝑦
𝑖
(0) =

(−0.2 + 0.1𝑖, −0.3 + 0.2𝑖, −0.4 + 0.3𝑖)
𝑇, the positive constants

𝑘
𝑖

= 1; let ℎ(𝑥) = sin(𝑥) + 3𝑥 and 𝑔(𝑥) = − cos(𝑥) +

3𝑥. Based on Theorem 6, the global exponential synchro-
nization can be achieved. The synchronization errors are
shown, respectively, in Figure 2. Figure 3 displays the state
subvariables for node 𝑖 = 3 of the drive network and
response networks. Figure 4 plots the total synchronization
errors ‖𝑒(𝑡)‖ = √∑

6

𝑖=1
[𝑒
2

𝑖1
(𝑡) + 𝑒

2

𝑖2
(𝑡) + 𝑒

2

𝑖3
(𝑡)] with different

𝑘
𝑖
(𝑖 = 1, 2, . . . , 6). As described in Figure 4, the larger

the constants 𝑘
𝑖
the faster the convergence to synchro-

nization. The numerical results show that adaptive scheme
for the exponential synchronization of the drive-response
nonlinearly coupled complex networks is effective in all the
theorems and corollaries.
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Figure 3: State subvariables for node 𝑖 = 3 between the drive and response coupled networks.

5. Conclusion

In this paper, the adaptive controllers have been proposed to
study the global exponential synchronization between two
nonlinearly coupled complex networks with time-varying
delay dynamical nodes. By constructing the appropriate
Lyapunov functions, some criteria are derived. In particular,
the coupling matrices are not symmetric and irreducible.
Numerical results demonstrate that the proposed approach
is effective and feasible. In the analysis and simulation study
of this paper, we fully considered the impact of the time
delay element to the exponential synchronization of the

drive-response coupled networks. In order to obtain the
synchronization criteria, we did not take into account the
environment factors, for example, noise, on the networks,
which often affects the synchronization process of the drive-
response coupled dynamical networks.Therefore, in the near
future work, we will further investigate the exponential syn-
chronization problem of drive-response nonlinearly coupled
dynamical network with noise.
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