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We show that a local minimizer of Φ in the 𝐶
1 topology must be a local minimizer in the 𝐻

1
∩ 𝐿
𝑝 topology, under suitable

assumptions for the functional Φ = (1/2)∫
Ω

|∇𝑢|
2

+ (1/𝑝)∫
Ω

|𝑢|
𝑝

− ∫
Ω

𝐹(𝑥, 𝑢) with supercritical exponent 𝑝 > 2
∗

= 2𝑛/(𝑛 − 2). This
result can be used to establish a solution to the corresponding equation admitting sub- and supersolution. Hence, we extend the
conclusion proved by Brezis and Nirenberg (1993), the subcritical and critical case.

1. Main Results for Supercritical Exponent

We consider the following functional:

Φ =
1

2
∫

Ω

|∇𝑢|
2
+

1

𝑝
∫

Ω

|𝑢|
𝑝

− ∫

Ω

𝐹 (𝑥, 𝑢) , (1)

whereΩ ⊂ R𝑛 with smooth boundary, supercritical exponent
𝑝 > 2

∗
= 2𝑛/(𝑛 − 2), and𝐹(𝑥, 𝑢) = ∫

𝑢

0
𝑓(𝑥, 𝑠)𝑑𝑠 satisfies the

growth condition:

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑢)
󵄨󵄨󵄨󵄨 ⩽ 𝐶 (1 + |𝑢|

ℓ
) with ℓ < 𝑝, (2)

as well as the usual assumptions that𝑓 is measurable in 𝑥 and
continuous in 𝑢.

Our main results are the following.

Theorem 1. Assuming that 𝑢
0

∈ 𝐻
1

0
(Ω) ∩ 𝐿

𝑝
(Ω) is a local

minimizer of Φ in the 𝐶
1 topology, there is some 𝑟 > 0, such

that

Φ(𝑢
0
) ⩽ Φ (𝑢

0
+ V) , ∀V ∈ 𝐶

1

0
(Ω) 𝑤𝑖𝑡ℎ ‖V‖𝐶1 ⩽ 𝑟. (3)

Then 𝑢
0
is also a local minimizer of Φ in the 𝐻

1

0
(Ω) ∩ 𝐿

𝑝
(Ω)

topology; that is, there exists 𝜖
0
> 0, such that

Φ(𝑢
0
) ⩽ Φ (𝑢

0
+ V) , ∀V ∈ 𝐻

1

0
(Ω) ∩ 𝐿

𝑝
(Ω)

𝑤𝑖𝑡ℎ ‖V‖𝐻1
0
(Ω)∩𝐿

𝑝
(Ω)

⩽ 𝑟,

(4)

where the topology 𝑋 ≜ 𝐻
1

0
(Ω) ∩ 𝐿

𝑝
(Ω) given by ‖ ⋅ ‖

𝑋
=

‖ ⋅ ‖
𝐻
1

0
(Ω)

+ ‖ ⋅ ‖
𝐿
𝑝
(Ω)

.

It will be noted that an 𝑋 neighbourhood is much bigger
than a 𝐶

1

0
neighbourhood. The proof depends on the special

structure of Φ, and the claim clearly would be false for a
general function Φ.

In order to prove this theorem, the following preparatory
steps are critical. We begin with a theorem concerning the
topology of 𝑋.

Theorem 2. Let 𝑋 be defined as in the above theorem; then 𝑋

is a reflexive and strictly convex Banach space with the duality
𝑋
∗

⊂ 𝐻
−1

(Ω) ⊕ 𝐿
𝑞
(Ω)((1/𝑝) + (1/𝑞) = 1).

Proof of Theorem 2. Now we give a detailed proof for the
reader’s convenience.

At first we show that the definition of ‖ ⋅ ‖
𝑋
is actually a

norm. Obviously, separate points are as follows: if ‖𝑥‖
𝑋

= 0,
that is, ‖𝑥‖

𝐻
1

0
(Ω)

+ ‖𝑥‖
𝐿
𝑝
(Ω)

= 0, then 𝑥 = 0. And pos-
itive homogeneity is ‖𝛼𝑥‖

𝑋
= ‖𝛼𝑥‖

𝐻
1

0
(Ω)

+ ‖𝛼𝑥‖
𝐿
𝑝
(Ω)

=

|𝛼|[‖𝑥‖
𝐻
1

0
(Ω)

+ ‖𝑥‖
𝐿
𝑝
(Ω)

] = |𝛼|‖𝑥‖
𝑋
. The triangle inequality

is, for any 𝑥, 𝑦 ∈ 𝑋,
󵄩󵄩󵄩󵄩𝑥 + 𝑦

󵄩󵄩󵄩󵄩𝑋
=

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩𝐻1
0
(Ω)

+
󵄩󵄩󵄩󵄩𝑥 + 𝑦

󵄩󵄩󵄩󵄩𝐿𝑝(Ω)

⩽ [‖𝑥‖𝐻1
0
(Ω)

+ ‖𝑥‖𝐿𝑝(Ω)]

+ [
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝐻1
0
(Ω)

+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝐿𝑝(Ω)
] = ‖𝑥‖𝑋 +

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩𝑋

.

(5)
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And then it shows that the space 𝑋 is complete; that is to
say, any cauchy sequence {𝑢

𝑛
} in ‖ ⋅ ‖

𝑋
will converge. From

the definition of the norm ‖ ⋅ ‖
𝑋
, we know that 𝑢

𝑛
is also the

cauchy sequence in 𝐻
1

0
(Ω) and 𝐿

𝑝
(Ω). By the completion of

the Banach space 𝐻
1

0
(Ω) and 𝐿

𝑝
(Ω), we know that 𝑢

𝑛
will

converge to 𝑢
1
in 𝐻
1

0
(Ω) and 𝑢

𝑛
will converge to 𝑢

2
in 𝐿
𝑝
(Ω).

And, since𝐻
1

0
(Ω) 󳨅→ 𝐿

2
(Ω), we know that 𝑢

𝑛
→ 𝑢
1
in𝐿
2
(Ω)

and also, due to 𝐿
𝑝
(Ω) ⊆ 𝐿

2
(Ω), we also know that 𝑢

𝑛
→ 𝑢
2

in 𝐿
2
(Ω), and, based on the uniqueness of the limit in 𝐿

2
(Ω),

we have 𝑢
1

= 𝑢
2
(denoted by 𝑢). With this result, we have 𝑢

𝑛

converge to 𝑢 in 𝑋, which implies that 𝑋 is complete. Thus,
𝑋 is a Banach space.

For strictly convex, which is based on the definition of
the strictly convex of Banach space, we need to show that if
𝑥 ̸= 𝑦 and ‖𝑥‖

𝐻
1

0
(Ω)

+ ‖𝑥‖
𝐿
𝑝
(Ω)

= ‖𝑦‖
𝐻
1

0
(Ω)

+ ‖𝑦‖
𝐿
𝑝
(Ω)

= 1, then
‖𝑥 + 𝑦‖

𝐻
1

0
(Ω)

+ ‖𝑥 + 𝑦‖
𝐿
𝑝
(Ω)

< 2, which can be done by the
following inequality:

󵄩󵄩󵄩󵄩𝑥 + 𝑦
󵄩󵄩󵄩󵄩𝐻1
0
(Ω)

+
󵄩󵄩󵄩󵄩𝑥 + 𝑦

󵄩󵄩󵄩󵄩𝐿𝑝(Ω)

⩽ (‖𝑥‖𝐻1
0
(Ω)

+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝐻1
0
(Ω)

) + (‖𝑥‖𝐿𝑝(Ω) +
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝐿𝑝(Ω)
)

= (‖𝑥‖𝐻1
0
(Ω)

+ ‖𝑥‖𝐿𝑝(Ω)) + (
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝐻1
0
(Ω)

+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩𝐿𝑝(Ω)
)

= 2.

(6)

And the fact “=” in (6) is true if and only if 𝑥 = 𝑐𝑦 with the
constant 𝑐 > 0 in consequence of the uniformly convex space
𝐻
1

0
(Ω) and 𝐿

𝑝
(Ω)(1 < 𝑝 < ∞) (P97 [1]). And, combining

with ‖𝑥‖
𝑋

= ‖𝑦‖
𝑋

= 1, we can get the constant 𝑐 =

1, which contradicts the assumption 𝑥 ̸= 𝑦. Therefore, the
Banach space 𝑋 is strictly convex.

For the reflexive, we need the following lemmas (see P63,
P105 [2]).

Lemma 3. Let𝑋
1
,. . .,𝑋

𝑛
be normed space.Then𝑋

1
⊕⋅ ⋅ ⋅⊕𝑋

𝑛

is a Banach spaces if and only if each 𝑋
𝑗
is a Banach space;

furthermore, 𝑋
1
⊕ ⋅ ⋅ ⋅ ⊕ 𝑋

𝑛
is reflexive if and only if each 𝑋

𝑗
is

reflexive.

Lemma 4. Every closed subspace of a reflexive space is reflex-
ive.

Therefore, setting a space 𝐸 = 𝐻
1

0
(Ω) ⊕ 𝐿

𝑝
(Ω) with the

norm ‖ ⋅ ‖
𝑋

= ‖ ⋅ ‖
𝐻
1

0
(Ω)

+ ‖ ⋅ ‖
𝐿
𝑝
(Ω)

. It follows from Lemma 3
that 𝐸 is a reflexive Banach space. Obviously, our space 𝑋 =

𝐻
1

0
(Ω) ∩ 𝐿

𝑝
(Ω)(1 < 𝑝 < ∞) with the norm ‖ ⋅ ‖

𝑋
=

‖ ⋅ ‖
𝐻
1

0
(Ω)

+ ‖ ⋅ ‖
𝐿
𝑝
(Ω)

can be seen as a closed subspace of 𝐸 by
the embedded mapping 𝑢 → (𝑢, 𝑢) (denoting (𝑢, 𝑢) by 𝑖(𝑢)

in the following). Thus, based on Lemma 4, 𝑋 is a reflexive
Banach space.

For the dual, we need the following lemma (see P91 [2]).

Lemma 5. Let 𝑋
1
, . . . , 𝑋

𝑛
be normed spaces. Then there is an

isometric isomorphism that identifies (𝑋
1

⊕ ⋅ ⋅ ⋅ ⊕ 𝑋
𝑛
)
∗ with

𝑋
∗

1
⊕ ⋅ ⋅ ⋅ ⊕ 𝑋

∗

𝑛
, such that, if the element 𝑦∗ of (𝑋

1
⊕ ⋅ ⋅ ⋅ ⊕ 𝑋

𝑛
)
∗

is identified with the element 𝑥∗
1
, . . . , 𝑥

∗

𝑛
of 𝑋∗
1

⊕ ⋅ ⋅ ⋅ 𝑋
∗

𝑛
, then

𝑦
∗
(𝑥
1
, . . . , 𝑥

𝑛
) =

𝑛

∑

𝑗=1

𝑥
∗

𝑗
𝑥
𝑗 (7)

whenever (𝑥
1
, . . . , 𝑥

𝑛
) ∈ 𝑋
1
⊕ ⋅ ⋅ ⋅ ⊕ 𝑋

𝑛
.

From the Lemma 5, we know that the dual space 𝐸
∗ of

𝐸 = 𝐻
1

0
(Ω) ⊕ 𝐿

𝑝
(Ω) will be 𝐸

∗
= 𝐻
−1

(Ω) ⊕ 𝐿
𝑞
(Ω) with

(1/𝑝) + (1/𝑞) = 1. And, if our space 𝑋 = 𝐻
1

0
(Ω) ∩ 𝐿

𝑝
(Ω) can

be seen as a closed subspace of 𝐸, then,𝑋∗ ⊆ 𝐻
−1

(Ω)⊕𝐿
𝑞
(Ω)

(in the sense of restriction). At the same time, from theHahn-
Banach theorem, we know that, for any 𝑓 ∈ 𝑋

∗, we can
extend 𝑓 to be a bounded linear functional 𝑓 on 𝐸, such that

⟨𝑓, 𝑖 (𝑢)⟩
𝐸
∗
,𝐸

= ⟨𝑓, 𝑢⟩
𝑋
∗
,𝑋

∀𝑢 ∈ 𝑋. (8)

And, from (7), we have

⟨𝑓, 𝑖 (𝑢)⟩
𝐸
∗
,𝐸

= ⟨𝑓
1
, 𝑢⟩
𝐻
−1
(Ω),𝐻

1

0
(Ω)

+ ⟨𝑓
2
, 𝑢⟩
𝐿
𝑞
(Ω),𝐿
𝑝
(Ω)

. (9)

Hence,

⟨𝑓, 𝑢⟩
𝑋
∗
,𝑋

= ⟨𝑓, 𝑖 (𝑢)⟩
𝐸
∗
,𝐸

= ⟨𝑓
1
, 𝑢⟩
𝐻
−1
(Ω),𝐻

1

0
(Ω)

+ ⟨𝑓
2
, 𝑢⟩
(𝐿
𝑞
Ω),𝐿
𝑝
(Ω)

(10)

which implies that 𝑓 ∈ 𝐸
∗. Therefore, 𝑋∗ ⊂ 𝐻

−1
(Ω) ⊕ 𝐿

𝑞
(Ω)

and the proof of Theorem 2 is completely finished.

Also, for the property of weak converge in𝑋, we have the
following.

Lemma 6. If 𝑢
𝑛

⇀ V in 𝑋 as 𝑛 → ∞, then

𝑢
𝑛

⇀ V 𝑖𝑛 𝐻
1

0
(Ω) , 𝑢

𝑛
⇀ V 𝑖𝑛 𝐿

𝑝
(Ω) 𝑎𝑠 𝑛 󳨀→ ∞

(11)

𝑢
𝑛

󳨀→ V 𝑖𝑛 𝐿
𝑡
(Ω) ∀2 ⩽ 𝑡 < 𝑝 𝑎𝑠 𝑛 󳨀→ ∞ (12)

Proof. In fact, for (11), fromTheorem 2, we know that, for any
𝑓 ∈ 𝑋

∗, there exists 𝑓
1
∈ 𝐻
−1

(Ω) and 𝑓
2
∈ 𝐿
𝑞
(Ω), such that

⟨𝑓, 𝑢⟩
𝑋
∗
,𝑋

= ⟨𝑓
1
, 𝑢⟩
𝐻
−1
(Ω),𝐻

1

0
(Ω)

+ ⟨𝑓
2
, 𝑢⟩
𝐿
𝑞
(Ω),𝐿
𝑝
(Ω)

. (13)

Now, choosing 𝑓
2

= 0 in (13) (noting the fact that 𝐻
−1

(Ω) ×

{0} ⊂ 𝑋
∗) and combining with 𝑢

𝑛
⇀ V in 𝑋, we know that,

for any 𝑓
1
∈ 𝐻
−1

(Ω),

⟨𝑓, 𝑢
𝑛
⟩
𝑋
∗
,𝑋

= ⟨𝑓
1
, 𝑢
𝑛
⟩
𝐻
−1
(Ω),𝐻

1

0
(Ω)

+ ⟨0, 𝑢
𝑛
⟩
𝐿
𝑞
(Ω),𝐿
𝑝
(Ω)

= ⟨𝑓
1
, 𝑢
𝑛
⟩
𝐻
−1
(Ω),𝐻

1

0
(Ω)

󳨀→ ⟨𝑓
1
, V⟩
𝐻
−1
(Ω),𝐻

1

0
(Ω)

(14)

which implies that 𝑢
𝑛

⇀ V in𝐻
1

0
(Ω). Similarly, choosing𝑓

1
=

0 in (13) (also noting the fact that {0} × 𝐿
𝑞
(Ω) ⊂ 𝑋

∗), we can
get 𝑢
𝑛

⇀ V in 𝐿
𝑝
(Ω) and finish the proof of (11).
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And, for (12), from the interpolation inequality,

‖𝑢 − V‖
𝐿
𝑡
(Ω)

⩽ ‖𝑢 − V‖𝜃
𝐿
2
(Ω)

‖𝑢 − V‖1−𝜃
𝐿
𝑝
(Ω)

(15)

and 𝐻
1

0
(Ω) 󳨅→ 𝐿

2
(Ω) with (11), it is easy to prove (12) and

complete the proof of Lemma 6.

For the operators generated by (1), we have, for any 𝑝 > 1

Lemma 7. Both of operators −Δ : 𝑢 → −Δ𝑢 from 𝐻
1

0
(Ω)

to 𝐻
−1

(Ω) and 𝐹 : 𝑢 → |𝑢|
𝑝−2

𝑢 from 𝐿
𝑝
(Ω) to 𝐿

𝑝
󸀠

(Ω) =

𝐿
𝑝/(𝑝−1)

(Ω) are bijective, where ‖𝑢‖
2

𝐻
1

0

= ∫
Ω

∇𝑢∇𝑢.

Proof. First, for any 𝑢 ∈ 𝐻
1

0
, it follows that −Δ𝑢 ∈ 𝐻

−1 from

⟨−Δ𝑢, V⟩𝐻−1,𝐻1
0

= ∫

Ω

∇𝑢∇V, ∀V ∈ 𝐻
1

0
. (16)

If 𝑢 ̸= V ∈ 𝐻
1

0
, it follows from the maximum principle (see

P179Theorem 8.1 [3]) that −Δ𝑢 ̸= − ΔV ∈ 𝐻
−1, which implies

that it is an injection. Whereas, by Riesz’s Lemma, we know
that, for any 𝑓 ∈ 𝐻

−1, there exists a 𝑢 ∈ 𝐻
1

0
(Ω), such that

‖𝑓‖
𝐻
−1 = ‖𝑢‖

𝐻
1

0

and

⟨𝑓, V⟩
𝐻
−1
,𝐻
1

0

= (𝑢, V)
𝐻
1

0

= ∫

Ω

∇𝑢∇V = ∫

Ω

−Δ𝑢V ∀V ∈ 𝐻
1

0
(Ω)

(17)

which implies that 𝑓 = −Δ𝑢 and ‖ − Δ𝑢‖
𝐻
−1 = ‖𝑓‖

𝐻
−1 =

‖𝑢‖
𝐻
1

0

. Hence −Δ : 𝐻
1

0
(Ω) → 𝐻

−1
(Ω) is bijective (indeed,

isometric).
Secondly, the map 𝐹 : 𝑢 → |𝑢|

𝑝−2
𝑢 is clearly bounded,

continuous, and also injective; namely, if 𝑢 ̸= V ∈ 𝐿
𝑝
(Ω),

then |𝑢|
𝑝−2

𝑢 ̸= |V|𝑝−2V ∈ 𝐿
𝑝
󸀠

, which can be obtained by the
following inequality ⟨|𝑢|

𝑝−2
𝑢− |V|𝑝−2V, 𝑢−V⟩ ⩾ (1/𝑝)|𝑢 − V|𝑝.

For surjective, by applying the James Theorem in Banach
space (see [4]) to the strictly convex space 𝐿

𝑝 and 𝐿
𝑝
󸀠

, for any
‖𝑤‖
𝐿
𝑝
󸀠 = 1, there is only one unique supporting functional

‖𝑢‖
𝐿
𝑝 = 1, such that ⟨𝑤, 𝑢⟩ = 1, which implies that 𝑤 =

|𝑢|
𝑝−2

𝑢. So 𝐹 is bijective.

For the regularity of solution of (1), we have the following.

Lemma 8. Assuming 𝑢
0
∈ 𝑋 satisfies in the weak sense

−Δ𝑢 + |𝑢|
𝑟−2

𝑢 = 𝑓 (𝑥, 𝑢) 𝑖𝑛 Ω

𝑢 = 0 𝑜𝑛 𝜕Ω

(18)

then one has 𝑢
0
∈ 𝐶
1,𝛼

(Ω), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛼 < 1.

Proof. Indeed, we set the corresponding evolution equation

𝑢
𝑡
− Δ𝑢 + |𝑢|

𝑟−2
𝑢 = 𝑓 (𝑥, 𝑢) in Ω

𝑢 = 0 on 𝜕Ω

(19)

and apply the same argument by the Moser iteration as
Lemma 5.20 in [5], and, with the fact that the solution of (18)
is the equilibrium point of (19), it is easy to show Lemma 8.

Now, we are in a position to proveTheorem 1.

Proof. Suppose the conclusion (3) does not hold. Then

∀𝜖 > 0, ∃V
𝜖
∈ 𝐵
𝜖

such that Φ(V
𝜖
) < Φ (0) (20)

where 𝐵
𝜖
= {𝑢 ∈ 𝑋; ‖𝑢‖

𝑋
⩽ 𝜖}.

Claim 1. min
𝐵
𝜖

Φ is achieved at some point (still denoted by
V
𝜖
).
Indeed, it is clear that there exists a constant 𝐶, such

that ‖Φ(𝑢)‖ ⩽ 𝐶 for all 𝑢 ∈ 𝐵
𝜖
. Hence, there exists a

minimizing sequence 𝑢
𝑛

∈ 𝐵
𝜖
, and there is by Lemma 6

a subsequence (also denoted by 𝑢
𝑛
) such that 𝑢

𝑛
⇀ 𝑢

in 𝐻
1

0
(Ω), 𝐿

𝑝
(Ω). Combining with the lower semicontinu-

ity of norm, we have lim inf
𝑛→∞

‖𝑢
𝑛
‖
𝐻
1

0
(Ω)

⩾ ‖𝑢‖
𝐻
1

0
(Ω)

,
lim inf

𝑛→∞
‖𝑢
𝑛
‖ ⩾ ‖𝑢‖

𝐿
𝑝
(Ω)

, and lim
𝑛→∞

𝐹(𝑥, 𝑢
𝑛
) →

𝐹(𝑥, 𝑢). Hence, lim inf
𝑛→∞

Φ(𝑢
𝑛
) ⩾ Φ(𝑢) and Claim 1 is

completely proved.
Now we will prove that V

𝜖
→ 0 in 𝐶

1, but (3) and
(20) are contradictory (also see [6]).The corresponding Euler
equation for V

𝜖
involves a Lagrangemultiplier 𝜇

𝜖
⩽ 0; namely,

V
𝜖
satisfies

⟨Φ
󸀠
(V
𝜖
) , 𝜁⟩
𝑋
∗
,𝑋

= 𝜇
𝜖
⟨𝑖 (V
𝜖
) , 𝜁⟩
𝑋
∗
,𝑋

, ∀𝜁 ∈ 𝑋, (21)

where 𝑖(V
𝜖
) = −2ΔV

𝜖
+ 𝑝|V
𝜖
|
𝑝−2V
𝜖
due to Lemma 7.

That is,

∫

Ω

∇V
𝜖
∇𝜁 + ∫

Ω

󵄨󵄨󵄨󵄨V𝜖
󵄨󵄨󵄨󵄨

𝑝−2V
𝜖
𝜁 − ∫

Ω

𝑓 (𝑥, V
𝜖
) 𝜁

= 2𝜇
𝜖
∫

Ω

∇V
𝜖
∇𝜁 + 𝜇

𝜖
𝑝∫

Ω

󵄨󵄨󵄨󵄨V𝜖
󵄨󵄨󵄨󵄨

𝑝−2V
𝜖
𝜁.

(22)

This means that

− (1 − 2𝜇
𝜖
) ΔV
𝜖
+ (1 − 𝑝𝜇

𝜖
)
󵄨󵄨󵄨󵄨
V
𝜖

󵄨󵄨󵄨󵄨

𝑝−2V
𝜖
= 𝑓 (𝑥, V

𝜖
) . (23)

Recalling that 𝜇
𝜖

⩽ 0 and combining with Lemma 8,
one may bootstrap the bound ‖V

𝜖
‖
𝑋

⩽ 𝐶 to ‖V
𝜖
‖
𝐶
1 ⩽ 𝐶

(independent of 𝜖), since V
𝜖

→ 0 in 𝑋, V
𝜖

→ 0 in 𝐶
1 (by

Ascoli). This concludes the proof.

2. Application of Theorem 1

Next, we present a simple and useful application of
Theorem 1.

Considering Φ in Theorem 1 with 𝑓, such that, for some
constant 𝑘,

𝑓 (𝑥, 𝑢) + 𝑘𝑢 is nondecreasing 𝑢 for a.e. 𝑥. (24)

Assume that there are 𝐶(Ω) sub- and supersolutions 𝑢 and 𝑢;
that is, in the distribution sense,

− Δ𝑢 +
󵄨󵄨󵄨󵄨𝑢

󵄨󵄨󵄨󵄨

𝑝−2

𝑢 − 𝑓 (𝑥, 𝑢)

⩽ 0 ⩽ −Δ𝑢 + |𝑢|
𝑝−2

𝑢 − 𝑓 (𝑥, 𝑢) in Ω

𝑢 ⩽ 0 ⩽ 𝑢 on 𝜕Ω.

(25)

Moreover, neither 𝑢 nor 𝑢 is a solution to (18).
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Theorem 9. Under the assumption (2) there is a solution 𝑢
0
to

(18), 𝑢 < 𝑢
0
< 𝑢, such that, in addition, 𝑢

0
is a local minimum

of Φ in 𝑋.

The proof relies onTheorem 1 as well as on the following.

Theorem 10. Let Ω be a bounded domain in R𝑛 with smooth
boundary 𝜕Ω. Let 𝑢 ∈ 𝐿

𝑝−1

loc (Ω) and assume that, for some 𝑘 ⩾

0, 𝑢 satisfies

−Δ𝑢 + |𝑢|
𝑝−2

𝑢 + 𝑘𝑢 ⩾ 0 𝑖𝑛 Ω.

𝑢 ⩾ 0 𝑜𝑛 Ω

(26)

Then either 𝑢 ≡ 0 or there exists 𝜖 > 0, such that

𝑢 (𝑥) ⩾ 𝜖 dist (𝑥, 𝜕Ω) 𝑖𝑛 Ω. (27)

Moreover, if 𝑘 is replaced by the nonnegative continuous
function 𝑐(𝑥) ∈ 𝐶(Ω), then the conclusion is also valid.

Proof. Themeasure 𝜇 = −Δ𝑢+ |𝑢|
𝑝−2

𝑢+𝑘𝑢 is nonnegative in
Ω. We may assume 𝑢 ̸≡ 0.

Case 1. Consider 𝜇 ≡ 0. In this case, 𝑢 ∈ 𝐶
∞

(Ω) by induction
applies to Lemma 8:

−Δ𝑢 + |𝑢|
𝑝−2

𝑢 + 𝑘𝑢 = 0, 𝑢 ⩾ 0 in Ω. (28)

Since 𝑢 ̸≡ 0, we have 𝑢 ⩾ 𝛿 > 0 in some closed ball 𝐵

in Ω. Let Ω
𝑗
be an expanding sequence of subdomains of Ω

with smooth boundaries and ⋃
𝑗
Ω
𝑗

= Ω; suppose 𝐵 ⊂ Ω
𝑗
,

for all 𝑗. Let ℎ
𝑗
be the solution in Ω

𝑗
\ 𝐵 of

−Δℎ
𝑗
+

󵄨󵄨󵄨󵄨󵄨
ℎ
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝−2

ℎ
𝑗
+ 𝑘ℎ
𝑗
= 0, ℎ

𝑗
⩾ 0 in Ω

𝑗
\ 𝐵

ℎ
𝑗
= 𝛿 on 𝜕𝐵

ℎ
𝑗
= 0 on 𝜕Ω.

(29)

In order to compare 𝑢 with ℎ
𝑗
, we need the following

comparison principle for the operator 𝐿 = −Δ + | ⋅ |
𝑝−2

⋅

defined in Lemma 7

Lemma 11. Let 𝑢, V ∈ 𝐶
1,𝛼

(Ω) satisfy, for some 𝑘 ⩾ 0,

𝐿𝑢 + 𝑘𝑢 ⩾ 𝐿V + 𝑘V 𝑖𝑛 Ω

𝑢 ⩾ V 𝑜𝑛 𝜕Ω;

(30)

then, 𝑢 ⩾ V in Ω.

Proof. Indeed, setting

𝐿𝑢 − 𝐿V = −Δ𝑢 + |𝑢|
𝑝−2

− (−ΔV + |V|𝑝−2V) (31)

and defining 𝑤 = 𝑢 − V, it is noted that the derivative
expression (|𝑠|

𝑝−2
𝑠)
󸀠

= (𝑝 − 1)|𝑠|
𝑝−2

⩾ 0. Then, by the mean
value theorem, there is 𝜉 = 𝜃𝑢+ (1−𝜃)V(0 < 𝜃 < 1) satisfying

−Δ𝑤 + (𝑝 − 2)
󵄨󵄨󵄨󵄨𝜉

󵄨󵄨󵄨󵄨

𝑝−2

𝑤 + 𝑘𝑤 ⩾ 0 in Ω

𝑤 ⩾ 0 on 𝜕Ω.

(32)

Applying the weakmaximumprinciple,Theorem 8.1 P179
[3] by choosing 𝑐(𝑥) = (𝑝 − 2)|𝜉|

𝑝−2, we know that 𝑤 ⩾ 0 and
complete the proof.

Since 𝑢(𝑥), ℎ(𝑥) ∈ 𝐶
1,𝛼

(Ω
𝑗
\ 𝐵) in Lemma 8, then, by the

virtue of Lemma 11, 𝑢 ⩾ ℎ
𝑗
in Ω
𝑗
\ 𝐵. As 𝑗 → ∞, we find

𝑢 ⩾ ℎ in Ω \ 𝐵, (33)

when ℎ solves

−Δℎ + |ℎ|
𝑝−2

ℎ + 𝑘ℎ = 0, ℎ ⩾ 0 in Ω \ 𝐵

ℎ = 𝛿 on 𝜕𝐵

ℎ = 0 on 𝜕Ω.

(34)

By the Hopf lemma 3.4 P34 [3] with 𝑐(𝑥) = |ℎ|
𝑝−2

+ 𝑘, one
obtains for some 𝜖 > 0

ℎ (𝑥) ⩾ 𝜖 dist (𝑥, 𝜕Ω) in Ω \ 𝐵. (35)

The conclusion of Theorem 10 then follows directly.

Case 2. Consider 𝜇 ̸≡ 0. Let 𝜁 ∈ 𝐶
∞

0
(Ω) be a cutoff function,

0 ⩽ 𝜁 ⩽ 1, such that 𝜁𝜇 ̸≡ 0. Let V be the solution of

(𝐿 + 𝑘) V = 𝜁𝜇 in Ω

V = 0 on 𝜕Ω.

(36)

Since V is smooth outside a compact set𝐾 ⊂ Ω, it follows and
applies to the Hopf lemma as above for some 𝜖 > 0,

V (𝑥) ⩾ 𝜖 dist (𝑥, 𝜕Ω) in Ω \ 𝐵. (37)

The conclusion of Theorem 10 is a direct consequence of the
following.

Claim 2. One has 𝑢 ⩾ V in Ω.

Proof of Claim 2. Given any 𝛼 > 0, we will prove that

𝑢 = 𝑢 + 𝛼 ⩾ V in Ω. (38)

The claim then follows.
Note that 𝑤 = 𝑢 − V satisfies

(−Δ + 𝑘)𝑤 + |𝑢|
𝑝−2

𝑢 − |V|𝑝−2V

= (1 − 𝜁) 𝜇 + |𝑢|
𝑝−2

𝑢 − |𝑢|
𝑝−2

𝑢 + 𝑘𝛼 ⩾ 0 in Ω

(39)

𝑤 ⩾ 0 in 𝑁
𝜂
= {𝑥 ∈ Ω; dist (𝑥, 𝜕) < 𝜂} (40)

provided 𝜂 is sufficiently small (depending on 𝛼). The
property (39) follows from the inequality |𝑢|

𝑝−2
𝑢 − |𝑢|

𝑝−2
𝑢 ⩾

0, a.e. 𝑥 ∈ Ω, when 𝑢 = 𝑢 + 𝛼 > 𝑢. The last property (40)
follows from the fact that V is smooth near 𝜕Ω and V = 0 on
𝜕Ω.

Let 𝜌
𝑗
be a sequence of mollifiers with supp 𝜌

𝑗
⊂ 𝐵(0, 1/𝑗)

and set 𝑤
𝑗
(𝑥) = ∫

Ω
𝜌
𝑗
(𝑥 − 𝑦)𝑤(𝑦).
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Clearly 𝑤
𝑗
is smooth, and, by (39) and the mean value

theorem with 𝜉 = 𝜃𝑢 + (1 − 𝜃)V, we have

(−Δ + 𝑘 + (𝑝 − 1)
󵄨󵄨󵄨󵄨𝜉

󵄨󵄨󵄨󵄨

𝑝−2

)𝑤
𝑗
⩾ 0 in Ω \ 𝑁

1/𝑗
. (41)

On the other hand, we deduce from (40) that

𝑤
𝑗
⩾ 0 on 𝜕 (Ω \ 𝑁

1/𝑗
) (42)

provided 𝜂 > 2/𝑗.Themaximum principle (Corollary 3.2 P33
[3]) of choosing 𝑐(𝑥) = (𝑝 − 1)|𝜉|

𝑝−2
⩾ 0 implies that

𝑤
𝑗
⩾ 0 in Ω \ 𝑁

1/𝑗
(43)

when 𝜂 > 2/𝑗. Passing to the limit as 𝑗 → ∞, we see that

𝑤 ⩾ 0 in Ω (44)

which is the desired conclusion.The similar argument is also
true as 𝑘 is replaced by the nonnegative continuous function
𝑐(𝑥) ∈ 𝐶(Ω) and the proof of Theorem 10 is completely
finished.

Now we are in a position to proveTheorem 9.

Proof of Theorem 9. On the basis of our above results, we can
proveTheorem 9 by the similar argument as [7] and rewrite it
here for the reader’s convenience. We introduce an auxiliary
function. Set

𝑓 (𝑥, 𝑠) =

{{

{{

{

𝑓(𝑥, 𝑢 (𝑥)) if 𝑠 < 𝑢 (𝑥)

𝑓 (𝑥, 𝑠) if 𝑢 (𝑥) ⩽ 𝑠 ⩽ 𝑢 (𝑥)

𝑓 (𝑥, 𝑢 (𝑥)) if 𝑠 > 𝑢 (𝑥) ;

(45)

it is continuous in 𝑠. Then set

𝐹 (𝑥, 𝑢) = ∫

𝑢

0

𝑓 (𝑥, 𝑠) 𝑑𝑠,

Φ̃ (𝑢) =
1

2
∫

Ω

|∇𝑢|
2
+

1

𝑝
|𝑢|
𝑝

− ∫

Ω

𝐹 (𝑥, 𝑢) .

(46)

By the similar argument as Claim 1, there is a minimum 𝑢
0
∈

𝑋 satisfying

−Δ𝑢
0
+

󵄨󵄨󵄨󵄨
𝑢
0

󵄨󵄨󵄨󵄨

𝑝−2

𝑢
0
= 𝑓 (𝑥, 𝑢

0
) in Ω. (47)

And, with Lemma 8, we can get 𝑢
0
∈ 𝑊
2,𝑝, for all 𝑝 < ∞.We

claim that 𝑢 ⩽ 𝑢
0

⩽ 𝑢; we will just prove the first inequality.
Indeed, we have

𝐿 (𝑢) − 𝐿 (𝑢
0
) ⩽ 𝑓 (𝑥, 𝑢) − 𝑓 (𝑥, 𝑢

0
) (48)

and in particular

𝐿 (𝑢) − 𝐿 (𝑢
0
) ⩽ 0 in 𝐴 = {𝑥 ∈ Ω; 𝑢

0
(𝑥) < 𝑢 (𝑥)} . (49)

Since 𝑢 − 𝑢
0

⩽ 0 on 𝜕𝐴, it follows from the comparison
principle (i.e., Lemma 11) that 𝑢 − 𝑢

0
⩽ 0 in 𝐴. Therefore,

𝐴 = 0 and the claim is proved.

Returning to (48), we have

𝐿 (𝑢) − 𝐿 (𝑢
0
) + 𝑘 (𝑢 − 𝑢

0
)

⩽ (𝑓 (𝑥, 𝑢) + 𝑢) − (𝑓 (𝑥, 𝑢
0
) + 𝑘𝑢

0
) ⩽ 0.

(50)

Since 𝑢 is not a solution, it follows fromTheorem 10 that there
is some 𝜖 > 0, such that

𝑢 (𝑥) − 𝑢
0
(𝑥) ⩽ −𝜖 dist (𝑥, 𝜕Ω) , ∀𝑥 ∈ Ω. (51)

Similarly, for 𝑢, we have

𝑢 (𝑥) + 𝜖 dist (𝑥, 𝜕Ω) ⩽ 𝑢
0
(𝑥) ⩽ 𝑢 (𝑥) − 𝜖 dist (𝑥, 𝜕Ω) ,

∀𝑥 ∈ Ω.

(52)

It follows that, if 𝑢 ∈ 𝐶
1

0
(Ω) and ‖ 𝑢 − 𝑢

0
‖
𝐶
1 ⩽ 𝜖, then

𝑢 ⩽ 𝑢 ⩽ 𝑢 in Ω. (53)

Finally, we apply the fact that 𝐹(𝑥, 𝑢) − 𝐹(𝑥, 𝑢) is a function
of 𝑥 alone for 𝑢 ∈ [𝑢(𝑥), 𝑢(𝑥)]. In particular, Φ(𝑢) − Φ̃(𝑢) is
constant for ‖𝑢 − 𝑢

0
‖
𝐶
1 ⩽ 𝜖. Hence, 𝑢

0
is a local minimum of

Φ in the𝐶
1 topology (since it is a global minimum for Φ̃). So,

fromTheorem 1, we know that 𝑢
0
is also a local minimum of

Φ in the 𝑋 topology and the proof of Theorem 9 is finished.
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