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In the world today, with the rapid development of modern agriculture and industry, a large quantity of pollutants enter into
ecosystems one by one, which is a threat to the persistence of the exposed populations. This paper investigates a stochastic delayed
competitive system with impulsive toxicant input in a polluted environment. Under a simple condition, sufficient and necessary
conditions for stability in the mean and extinction of each species are established. Some recent works are improved and extended
greatly. Some numerical simulations are also included to illustrate and support the findings.

1. Introduction

In this paper, we consider the following stochastic delay
competitive model in polluted environments with impulsive
toxicant input:
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(𝑡) is the toxicant loss from the environment

itself; 𝛾 is the period of the impulsive effect about the
exogenous input of toxicant; 𝑏 is the amount of toxicant input
at every time.𝑊

𝑖
(𝑡) is a standard Brownianmotion defined on

a complete probability space (Ω,F,P); 𝜆2
𝑖
is the intensity of

the environmental noise.
Recently, population models with toxicant effect have

received great attention; see, for example, [1–18]. Liu and
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Zhang [15] considered the following competitive model in
polluted environments with impulsive toxicant input:
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For model (3), the authors [15] proved the following.
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From the work of Liu and Zhang [15], some important
and interesting questions arise naturally.

(Q1) In the real world, the growth of population is
inevitably affected by random environmental fluctua-
tions. May [19] have claimed that population systems
should be stochastic. Therefore, what happens if
system (3) is affected by environmental fluctuations?

(Q2) Gopalsamy [20] have pointed out that, in order to
be reality, time delays should not be ignored. Hence,
what happens if system (3) incorporates with time
delays?

(Q3) Can we improve the results obtained in Lemma 1?

The aims of this paper are to investigate the above questions.
Recall that 𝑟

𝑖0
stands for the growth rate. In practice, we often

estimate it by an average value plus an error term. Generally,
by the famous central limit theorem, the error term follows

a normal distribution. Hence, for short correlation time, we
can replace 𝑟
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is the intensity of the noise. At the

same time, incorporating with time delays, we get model (1).
For model (1), we will show the following.
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Remark 4. In comparison with most of the existing results,
our key contributions in this paper are as follows.

(i) To the best of our knowledge, this paper is the
first attempt to consider stochastic delay competitive
model in polluted environments.

(ii) Our conditions are much weaker. For example, the
authors [15] supposed Γ

1
> 0 and Γ

2
> 0 which are

dropped in this paper.
(iii) Our results improve some recent works. For example,

Lemma 1 indicates that the superior limit is positive
while Theorem 2 proves that the limit exists and
establishes the explicit form of the limit.
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In other words, we have shown that
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𝑡−𝜏
1

𝑁
2
(𝑠) 𝑑𝑠 − ∫

0

−𝜏
1

𝑁
2
(𝑠) 𝑑𝑠]

− 𝑟
11
∫

𝑡

0

𝐶
0
(𝑠) 𝑑𝑠 − 𝑎

11
∫

𝑡

0

𝑁
1
(𝑠) 𝑑𝑠 + 𝜆

1
𝑊
1
(𝑡) ,

ln𝑁
2
(𝑡) − ln𝑁

2
(0)

= (𝑟
20
− 0.5𝜆

2

2
) 𝑡 − 𝑟

21
∫

𝑡

0

𝐶
0
(𝑠) 𝑑𝑠

− 𝑎
21
∫

𝑡

0

𝑁
1
(𝑠 − 𝜏
2
) 𝑑𝑠 − 𝑎

22
∫

𝑡

0

𝑁
2
(𝑠) 𝑑𝑠 + 𝜆

2
𝑊
2
(𝑡)

= (𝑟
20
− 0.5𝜆

2

2
) 𝑡 − 𝑎

21
∫

𝑡

0

𝑁
1
(𝑠) 𝑑𝑠

+ 𝑎
21
[∫

𝑡

𝑡−𝜏
2

𝑁
1
(𝑠) 𝑑𝑠 − ∫

0

−𝜏
2

𝑁
1
(𝑠) 𝑑𝑠]

− 𝑟
21
∫

𝑡

0

𝐶
0
(𝑠) 𝑑𝑠 − 𝑎

22
∫

𝑡

0

𝑁
2
(𝑠) 𝑑𝑠 + 𝜆

2
𝑊
2
(𝑡) .

(22)

(I) Assume that 𝜂
1
= 𝑟
10
− 0.5𝜆

2

1
− 𝑟
11
𝐾 < 0 and 𝜂

2
=

𝑟
20
− 0.5𝜆

2

2
− 𝑟
21
𝐾 < 0. In view of (22),

𝑡
−1 ln 𝑁1 (𝑡)

𝑁
1
(0)

≤ 𝑟
10
− 𝑟
11
∫

𝑡

0

𝐶
0
(𝑠) 𝑑𝑠 − 0.5𝜆

2

1
+ 𝑡
−1
𝜆
1
𝑊
1
(𝑡) .

(23)

By lim
𝑡→+∞

𝑊
𝑖
(𝑡)/𝑡 = 0 a.s., 𝑖 = 1, 2 (19) and 𝑟

10
< 0.5𝜆

2

1
+

𝑟
11
𝐾 we have that

lim sup
𝑡→+∞

𝑡
−1 ln𝑁

1
(𝑡) ≤ 𝑟

10
− 0.5𝜆

2

1
− 𝑟
11
𝐾 = 𝜂

1
< 0. (24)

Therefore, lim
𝑡→+∞

𝑁
1
(𝑡) = 0, a.s. Similarly, it follows from

(9) that if 𝜂
2
< 0, then lim

𝑡→+∞
𝑁
2
(𝑡) = 0, a.s.

(II) Assume that 𝜂
1
> 0 and 𝜂

2
< 0. Since 𝜂

2
< 0, then, by

(I), lim
𝑡→+∞

𝑁
2
(𝑡) = 0, a.s. Hence, for arbitrary 𝜀 > 0, there

exists 𝑇 > 0 such that for 𝑡 ≥ 𝑇

−
𝜀

2
≤ 𝑎
12
𝑡
−1
∫

𝑡

0

𝑁
2
(𝑠 − 𝜏
1
) 𝑑𝑠 ≤

𝜀

2
,

−
𝜀

2
≤ 𝑡
−1 ln𝑁

1
(0) ≤

𝜀

2
.

(25)

When the above inequalities and (20) are used in (22), we can
obtain that, for 𝑡 ≥ 𝑇,

ln𝑁
1
(𝑡) ≤ (𝜂

1
+ 2𝜀) 𝑡 − 𝑎

11
∫

𝑡

0

𝑁
1
(𝑠) 𝑑𝑠 + 𝜆

1
𝑊
1
(𝑡) , (26)

ln𝑁
1
(𝑡) ≥ (𝜂

1
− 2𝜀) 𝑡 − 𝑎

11
∫

𝑡

0

𝑁
1
(𝑠) 𝑑𝑠 + 𝜆

1
𝑊
1
(𝑡) . (27)

Note that 𝜂
1
> 0; we can let 𝜀 be sufficiently small such that

𝜂
1
−2𝜀 > 0. Applying (i) and (ii) in Lemma 6 to (26) and (27),

respectively, one can see that
𝜂
1
− 2𝜀

𝑎
11

≤ lim inf
𝑡→+∞

⟨𝑁
1
(𝑡)⟩ ≤ lim sup

𝑡→+∞

⟨𝑁
1
(𝑡)⟩

≤
𝜂
1
+ 2𝜀

𝑎
11

, a.s.
(28)

It therefore follows from the arbitrariness of 𝜀 that

lim
𝑡→+∞

⟨𝑁
1
(𝑡)⟩ =

𝜂
1

𝑎
11

, a.s. (29)

The proof of (III) can be obtained similarly and hence is
omitted.

Now, we are in the position to prove (IV). Assume that
𝜂
1
> 0 and 𝜂

2
> 0. For 𝑖 = 1, 2, consider the following

stochastic equation:

𝑑𝑦
𝑖
(𝑡) = 𝑦

𝑖
(𝑡) [𝑟
𝑖0
− 𝑟
𝑖1
𝐶
0
(𝑡) − 𝑎

𝑖𝑖
𝑦
𝑖
(𝑡)] 𝑑𝑡 + 𝜆

𝑖
𝑦
𝑖
(𝑡) 𝑑𝑊

𝑖
(𝑡) ,

𝑦
𝑖
(𝜃) = 𝜓 (𝜃) , 𝜃 ∈ [−𝜏, 0] .

(30)

By the classical stochastic comparison theorem [30], one can
see that

𝑁
1
(𝑡) ≤ 𝑦

1
(𝑡) , 𝑁

2
(𝑡) ≤ 𝑦

2
(𝑡) . (31)

Note that 𝑟
𝑖0
> 0.5𝜆

2

𝑖
+ 𝑟
𝑖1
𝐾, 𝑖 = 1, 2; an argument, identical

to the argument used in the proof of (II), shows that

lim
𝑡→+∞

⟨𝑦
𝑖
(𝑡)⟩ = lim

𝑡→+∞

𝑡
−1
∫

𝑡

0

𝑦
𝑖
(𝑠) 𝑑𝑠 =

𝜂
𝑖

𝑎
𝑖𝑖

a.s., 𝑖 = 1, 2.

(32)

Consequently,

lim
𝑡→+∞

𝑡
−1
∫

𝑡

𝑡−𝜏
1

𝑦
2
(𝑠) 𝑑𝑠

= lim
𝑡→+∞

(𝑡
−1
∫

𝑡

0

𝑦
2
(𝑠) 𝑑𝑠 − 𝑡

−1
∫

𝑡−𝜏
1

0

𝑦
2
(𝑠) 𝑑𝑠) = 0,

lim
𝑡→+∞

𝑡
−1
∫

𝑡

𝑡−𝜏
2

𝑦
1
(𝑠) 𝑑𝑠 = 0, a.s.

(33)

This, together with (31), implies that

lim
𝑡→+∞

𝑡
−1
∫

𝑡

𝑡−𝜏
1

𝑁
2
(𝑠) 𝑑𝑠 = 0,

lim
𝑡→+∞

𝑡
−1
∫

𝑡

𝑡−𝜏
2

𝑁
1
(𝑠) 𝑑𝑠 = 0, a.s.

(34)
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On the other hand, computing (9) ×𝑎
11
− (22) ×𝑎

21
gives

𝑎
11
ln 𝑁2 (𝑡)
𝑁
2
(0)

= 𝑎
11
𝑎
21
[∫

𝑡

𝑡−𝜏
2

𝑁
1
(𝑠) 𝑑𝑠 − ∫

0

−𝜏
2

𝑁
1
(𝑠) 𝑑𝑠]

− 𝑎
21
𝑎
12
[∫

𝑡

𝑡−𝜏
1

𝑁
2
(𝑠) 𝑑𝑠 − ∫

0

−𝜏
1

𝑁
2
(𝑠) 𝑑𝑠]

+ 𝑎
21
ln 𝑁1 (𝑡)
𝑁
1
(0)

+ (Γ
2
− Γ̃
2
) 𝑡 − Γ

2
∫

𝑡

0

𝐶
0
(𝑠) 𝑑𝑠

− Γ∫

𝑡

0

𝑁
2
(𝑠) 𝑑𝑠 − 𝑎

21
𝜆
1
𝑊
1
(𝑡) + 𝑎

11
𝜆
2
𝑊
2
(𝑡) .

(35)

In view of (13) and (34), for arbitrary 𝜀 > 0, there exits 𝑇 > 0
such that, for 𝑡 ≥ 𝑇,

𝑡
−1
𝑎
21
ln 𝑁1 (𝑡)
𝑁
1
(0)

<
𝜀

3
, 𝑡

−1
𝑎
11
ln𝑁
2
(0) <

𝜀

3
,

𝑡
−1
𝑎
11
𝑎
21
[∫

𝑡

𝑡−𝜏
2

𝑁
1
(𝑠) 𝑑𝑠 − ∫

0

−𝜏
2

𝑁
1
(𝑠) 𝑑𝑠]

− 𝑡
−1
𝑎
21
𝑎
12
[∫

𝑡

𝑡−𝜏
1

𝑁
2
(𝑠) 𝑑𝑠 − ∫

0

−𝜏
1

𝑁
2
(𝑠) 𝑑𝑠] ≤

𝜀

3
.

(36)

When the above inequalities and (20) are used in (35), we can
see that for 𝑡 > 𝑇
𝑎
11
ln𝑁
2
(𝑡)

≤ (Γ
2
− Γ
2
𝐾 − Γ̃
2
+ 2𝜀) 𝑡

− Γ∫

𝑡

0

𝑁
2
(𝑠) 𝑑𝑠 − 𝑎

21
𝜆
1
𝑊
1
(𝑡) + 𝑎

11
𝜆
2
𝑊
2
(𝑡) .

(37)

Similarly, computing (22) ×𝑎
22
− (9) ×𝑎

12
gives

𝑎
22
ln 𝑁1 (𝑡)
𝑁
1
(0)

= 𝑎
22
𝑎
12
[∫

𝑡

𝑡−𝜏
1

𝑁
2
(𝑠) 𝑑𝑠 − ∫

0

−𝜏
1

𝑁
2
(𝑠) 𝑑𝑠]

− 𝑎
12
𝑎
21
[∫

𝑡

𝑡−𝜏
2

𝑁
1
(𝑠) 𝑑𝑠 − ∫

0

−𝜏
2

𝑁
1
(𝑠) 𝑑𝑠]

+ 𝑎
12
ln 𝑁2 (𝑡)
𝑁
2
(0)

+ (Γ
1
− Γ̃
1
) 𝑡 − Γ

1
∫

𝑡

0

𝐶
0
(𝑠) 𝑑𝑠

− Γ∫

𝑡

0

𝑁
1
(𝑠) 𝑑𝑠 + 𝑎

22
𝜆
1
𝑊
1
(𝑡) − 𝑎

12
𝜆
2
𝑊
2
(𝑡) .

(38)

Hence, for sufficiently large 𝑡,

𝑎
22
ln𝑁
1
(𝑡)

≤ (Γ
1
− Γ
1
𝐾 − Γ̃
1
+ 2𝜀) 𝑡

− Γ∫

𝑡

0

𝑁
1
(𝑠) 𝑑𝑠 + 𝑎

22
𝜆
1
𝑊
1
(𝑡) − 𝑎

12
𝜆
2
𝑊
2
(𝑡) .

(39)

(A) Assume that Γ
1
> Γ
1
𝐾 + Γ̃

1
and Γ
2
< Γ
2
𝐾 + Γ̃

2
. Since

Γ
2
< Γ
2
𝐾+ Γ̃
2
, then we can let 𝜀 be sufficiently small such that

Γ
2
−Γ
2
𝐾−Γ̃
2
+2𝜀 < 0. Applying (i) in Lemma 6 to (37) results

in lim
𝑡→+∞

𝑁
2
(𝑡) = 0, a.s. The proof of lim

𝑡→+∞
⟨𝑁
1
(𝑡)⟩ =

𝜂
1
/𝑎
11
a.s. is the same as that in (II) and hence is omitted.The

proof of (B) is similar to that of (A) and hence is omitted.
(C) Assume that Γ

1
> Γ
1
𝐾+ Γ̃
1
and Γ
2
> Γ
2
𝐾+ Γ̃
2
. Notice

that Γ
2
> Γ̃
2
; then, by (37) and Lemma 6,

lim sup
𝑡→+∞

⟨𝑁
2
(𝑡)⟩ ≤

Γ
2
− Γ
2
𝐾 − Γ̃
2
+ 2𝜀

Γ
, a.s. (40)

It then follows from the arbitrariness of 𝜀 that

lim sup
𝑡→+∞

⟨𝑁
2
(𝑡)⟩ ≤

Γ
2
Γ
2
𝐾 − Γ̃
2

Γ
, a.s. (41)

Similarly, by (39), Lemma 6, and the arbitrariness of 𝜀, we
have

lim sup
𝑡→+∞

⟨𝑁
1
(𝑡)⟩ ≤

Γ
1
− Γ
1
𝐾 − Γ̃
1

Γ
, a.s. (42)

Let 𝜀 be sufficiently small satisfying 𝑎
11
((Γ
1
−Γ
1
𝐾−Γ̃
1
)/Γ)−𝜀 >

0. Substituting (34), (41), and (20) into (22) yields

𝑡
−1 ln𝑁

1
(𝑡)

= 𝑡
−1 ln𝑁

1
(0) + 𝑟

10
− 𝑟
11
⟨𝐶
0
(𝑡)⟩ − 0.5𝜆

2

1

− 𝑎
11
⟨𝑁
1
(𝑡)⟩ − 𝑎

12
⟨𝑁
2
(𝑡)⟩ + 𝜆

1
𝑊
1

(𝑡)

𝑡

+ 𝑎
12
𝑡
−1
[∫

𝑡

𝑡−𝜏
1

𝑁
2
(𝑠) 𝑑𝑠 − ∫

0

−𝜏
1

𝑁
2
(𝑠) 𝑑𝑠]

≥ 𝜂
1
− 2𝜀 − 𝑎

11
⟨𝑁
1
(𝑡)⟩ − 𝑎

12
lim sup
𝑡→+∞

⟨𝑁
2
(𝑡)⟩

+ 𝜆
1
𝑊
1

(𝑡)

𝑡

≥ 𝜂
1
− 2𝜀 − 𝑎

11
⟨𝑁
1
(𝑡)⟩ − 𝑎

12

Γ
2
− Γ̃
2

Γ
+ 𝜆
1
𝑊
1

(𝑡)

𝑡

= 𝑎
11

Γ
1
− Γ
1
𝐾 − Γ̃
1

Γ
− 2𝜀 − 𝑎

11
⟨𝑁
1
(𝑡)⟩ + 𝜆

1
𝑊
1

(𝑡)

𝑡
,

(43)

for sufficiently large 𝑡. By (ii) in Lemma6 and the arbitrariness
of 𝜀, one can observe that

lim inf
𝑡→+∞

⟨𝑁
1
(𝑡)⟩ ≥

Γ
1
− Γ
1
𝐾 − Γ̃
1

Γ
, a.s. (44)

Similarly, when (34) and (42) and (20) are used in (9), we can
see that lim inf

𝑡→+∞
⟨𝑁
2
(𝑡)⟩ ≥ (Γ

2
− Γ
2
𝐾 − Γ̃

2
)/Γ, a.s. This,

together with (41), (42), and (44), indicates that

lim
𝑡→+∞

⟨𝑁
1
(𝑡)⟩ =

Γ
1
− Γ
1
𝐾 − Γ̃
1

Γ
,

lim
𝑡→+∞

⟨𝑁
2
(𝑡)⟩ =

Γ
2
− Γ
2
𝐾 − Γ̃
2

Γ
, a.s.

(45)
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Figure 1: Solutions of system (1) for 𝑟
10
= 0.7, 𝑟

20
= 0.5, 𝑎

11
= 0.8, 𝑎

12
= 0.5, 𝑎

21
= 0.4, 𝑎

22
= 0.7, 𝜏

1
= 10, 𝜏

2
= 12, 𝑘 = 𝑔 = 𝑚 = 0.2, ℎ = 0.5,

𝑏 = 0.1, 𝛾 = 1, 𝐶
0
(0) = 𝐶

𝑒
(0) = 0.1, and step size Δ𝑡 = 0.001. (a) is with 𝜆

1
= 1.1, 𝜆

2
= 1; (b) is with 𝜆

1
= 1, 𝜆

2
= 1; (c) is with 𝜆

1
= 1.2,

𝜆
2
= 0.8; (d) is with 𝜆

1
= 1, 𝜆

2
= 0.8484; (e) is with 𝜆

1
= 1.058, 𝜆

2
= 0.8; (f) is with 𝜆

1
= 1, 𝜆

2
= 0.8.

3. Numerical Simulations

In this section, using the classical Milstein method (see, e.g.,
[31]), we work out some numerical figures to support the
analytical results. In Figure 1, we choose 𝑟

10
= 0.7, 𝑟

20
= 0.5,

𝑎
11
= 0.8, 𝑎

12
= 0.5, 𝑎

21
= 0.4, 𝑎

22
= 0.7, 𝜏

1
= 10,

𝜏
2
= 12, 𝑘 = 𝑔 = 𝑚 = 0.2, ℎ = 0.5, 𝑏 = 0.1, and 𝛾 = 1.

Then, Γ = 0.36, Γ
1
= 0.24, Γ

2
= 0.12,Γ

1
= 0.2, Γ

2
= 0.4,

and 𝐾 = 𝑘𝑏/𝛾ℎ(𝑔 + 𝑚) = 0.1. The only difference between
conditions of Figures 1(a), 1(b), 1(c), 1(d), 1(e), and 1(f) is that
the values of 𝜆

1
and 𝜆

2
are different.

(a) In Figure 1(a), we choose 𝜆
1
= 1.1, 𝜆

2
= 1. Then,

𝜂
1
= 𝑟
10
− 𝑟
11
𝐾 − 0.5𝜆

2

1
= −0.12, 𝜂

2
= 𝑟
20
− 𝑟
21
𝐾 −

0.5𝜆
2

2
= −0.1. By virtue of (I) in Theorem 2, both 𝑁

1

and𝑁
2
are extinct; see Figure 1(a).

(b) In Figure 1(b), we set 𝜆
1
= 1, 𝜆

2
= 1. Then, 𝜂

1
=

0.1, 𝜂
2
= −0.1. In view of (II) in Theorem 2, 𝑁

2
is

extinct and lim
𝑡→+∞

𝑡
−1
∫
𝑡

0
𝑁
1
(𝑠)𝑑𝑠 = 𝜂

1
/𝑎
11
= 0.125.

Figure 1(b) confirms this.

(c) In Figure 1(c), we let 𝜆
1
= 1.2, 𝜆

2
= 0.8. Then, 𝜂

1
=

−0.12, 𝜂
2
= 0.08. It follows from (III) in Theorem 2

that𝑁
1
is extinct and

lim
𝑡→+∞

𝑡
−1
∫

𝑡

0

𝑁
2
(𝑠) 𝑑𝑠 =

𝜂
2

𝑎
22

= 0.1143. (46)

See Figure 1(c).

(d) In Figure 1(d), we set 𝜆
1
= 1, 𝜆

2
= 0.8484. Then, 𝜂

1
=

0.1, 𝜂
2
= 0.04, Γ

1
= 0.24 > Γ

1
𝐾 + Γ̃

1
= 0.19, and

Γ
2
= 0.12 < Γ

2
𝐾 + Γ̃

2
= 0.128. According to (A) in

Theorem 2,𝑁
2
is extinct and

lim
𝑡→+∞

𝑡
−1
∫

𝑡

0

𝑁
1
(𝑠) 𝑑𝑠 =

𝜂
1

𝑎
11

=
0.1

0.8
= 0.125. (47)

Figure 1(d) confirms this.

(e) In Figure 1(e), we choose 𝜆
1
= 1.058, 𝜆

2
= 0.8. Then,

𝜂
1
= 0.04, 𝜂

2
= 0.08,Γ

1
= 0.24 < Γ

1
𝐾+Γ̃
1
= 0.252, and
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Γ
2
= 0.12 > Γ

2
𝐾 + Γ̃

2
= 0.072. By (B) in Theorem 2,

𝑁
1
is extinct and

lim
𝑡→+∞

𝑡
−1
∫

𝑡

0

𝑁
2
(𝑠) 𝑑𝑠 =

𝜂
2

𝑎
22

=
0.08

0.7
= 0.1143. (48)

See Figure 1(e).
(f) In Figure 1(f), we let 𝜆

1
= 1, 𝜆

2
= 0.8. Then, Γ

1
=

0.24 > Γ
1
𝐾 + Γ̃

1
= 0.21 and Γ

2
= 0.12 > Γ

2
𝐾 + Γ̃

2
=

0.096. It follows from (C) inTheorem 2 that

lim
𝑡→+∞

𝑡
−1
∫

𝑡

0

𝑁
1
(𝑠) 𝑑𝑠 =

Γ
1
− Γ
1
𝐾 − Γ̃
1

Γ
=
0.03

0.36
= 0.0833,

lim
𝑡→+∞

𝑡
−1
∫

𝑡

0

𝑁
2
(𝑠) 𝑑𝑠 =

Γ
2
− Γ
2
𝐾 − Γ̃
2

Γ
= 0.0667.

(49)

See Figure 1(f).

4. Conclusions and Future Directions

This paper investigates a stochastic delay competitive model
in a polluted environment with impulsive toxicant input.
For each population, the critical value between stability in
the mean and extinction is obtained. Some recent works are
extended and improved. OurTheorem 2 has some important
and interesting interpretation.

(1) Time delay is harmless for stability in the mean and
extinction of the stochastic model (1).

(2) White noises can change the dynamics of the popula-
tion model greatly.

Some interesting problems deserve further study.One can
consider somemore realistic systems, for example, stochastic
delayed population model with the Markov switching (see,
e.g., [22, 23, 29]). It is also interesting to extendTheorem 2 to
𝑛-species case.
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Lévy noise,” Journal of Mathematical Analysis and Applications,
vol. 410, no. 2, pp. 750–763, 2014.

[23] X. Li and X. Mao, “Population dynamical behavior of non-
autonomous Lotka-Volterra competitive system with random
perturbation,”Discrete and Continuous Dynamical Systems, vol.
24, no. 2, pp. 523–545, 2009.

[24] M. Liu, K. Wang, and Q. Wu, “Survival analysis of stochastic
competitive models in a polluted environment and stochastic
competitive exclusion principle,” Bulletin of Mathematical Biol-
ogy, vol. 73, no. 9, pp. 1969–2012, 2011.

[25] M. Liu and K. Wang, “Stochastic logistic equation with infinite
delay,”MathematicalMethods in the Applied Sciences, vol. 35, no.
7, pp. 812–827, 2012.

[26] M. Liu and K.Wang, “A note on a delay Lotka-Volterra compet-
itive system with random perturbations,” Applied Mathematics
Letters, vol. 26, no. 6, pp. 589–594, 2013.

[27] M. Liu and K.Wang, “Population dynamical behavior of Lotka-
Volterra cooperative systems with random perturbations,” Dis-
crete and Continuous Dynamical Systems, vol. 33, no. 6, pp.
2495–2522, 2013.

[28] M. Liu and K. Wang, “Analysis of a stochastic autonomous
mutualismmodel,” Journal of Mathematical Analysis and Appli-
cations, vol. 402, no. 1, pp. 392–403, 2013.

[29] Y. Liu, Q. Liu, and Z. Liu, “Dynamical behaviors of a stochastic
delay logistic systemwith impulsive toxicant input in a polluted
environment,” Journal of Theoretical Biology, vol. 329, pp. 1–5,
2013.

[30] N. Ikeda and S.Watanabe, “A comparison theorem for solutions
of stochastic differential equations and its applications,” Osaka
Journal of Mathematics, vol. 14, no. 3, pp. 619–633, 1977.

[31] P. E. Kloeden and T. Shardlow, “The Milstein scheme for
stochastic delay differential equations without using anticipa-
tive calculus,” Stochastic Analysis and Applications, vol. 30, no.
2, pp. 181–202, 2012.


