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We establish the existence results for two-point boundary value problemof fractional differential equations at resonance bymeans of
the coincidence degree theory. Furthermore, a result on the uniqueness of solution is obtained. We give an example to demonstrate
our results.

1. Introduction

Fractional differential equations have been studied exten-
sively. It is caused both by the intensive development of the
theory of fractional calculus itself and by the applications
such as physics, chemistry, phenomena arising in engineer-
ing, economy, and science; see, for example, [1–5].

Recently, more and more authors have paid their atten-
tions to the boundary value problems of fractional differential
equations; see [6–21]. Moreover, there have beenmany works
related to the existence of solutions for boundary value
problems at resonance; see [12–21]. It is considerable that
there are many papers that have dealt with the solutions of
multipoint boundary value problems of fractional differential
equations at resonance (see, e.g., [12, 16]).

In [12], Bai and Zhang considered a three-point boundary
value problem of fractional differential equations with non-
linear growth given by

𝐷
𝛼

0
+𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝐷

𝛼−1

0
+ 𝑢 (𝑡)) , 0 < 𝑡 < 1,

𝑢 (0) = 0, 𝑢 (1) = 𝜎𝑢 (𝜂) ,

(1)

where 1 < 𝛼 ≤ 2, 0 < 𝜂, 𝜎 < 1 > 0, 𝜎𝜂𝛼−1 = 1, 𝐷𝛼
0
+ is

Riemann-Liouville fractional derivative, and 𝑓, 𝑔 : [0, 1] ×
R2 → R are given functions.

In [13], Hu et al. have studied a two-point boundary value
problem for fractional differential equation at resonance

𝐷
𝛼

0
+𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥

󸀠

(𝑡)) , 0 ≤ 𝑡 ≤ 1,

𝑥 (0) = 0, 𝑥
󸀠

(0) = 𝑥
󸀠

(1) ,

(2)

where 1 < 𝛼 ≤ 2, 𝐷𝛼
0
+ is Caputo fractional derivative, and

𝑓 : [0, 1] ×R2 → R satisfies Carathéodory conditions.
As far as we know, there are few works on the existence

of two-point boundary value problems of the fractional
differential equations at resonance. Motivated by the works
above, we discuss the existence and uniqueness of solutions
for the following nonlinear fractional differential equation:

𝐷
𝛼

0
+𝑢 (𝑡)

= 𝑓 (𝑡, 𝑢 (𝑡) , 𝐷
𝛼−1

0
+ 𝑢 (𝑡) , 𝐷

𝛼−2

0
+ 𝑢 (𝑡) , . . . , 𝐷

𝛼−(𝑁−1)

0
+ 𝑢 (𝑡)) ,

𝑢 (0) = 𝐷
𝛼−2

0
+ 𝑢 (0) = ⋅ ⋅ ⋅ = 𝐷

𝛼−(𝑁−1)

0
+ 𝑢 (0) = 0,

𝐷
𝛼−1

0
+ 𝑢 (0) = 𝐷

𝛼−1

0
+ 𝑢 (1) ,

(3)

where 0 < 𝑡 < 1, 𝑁 − 1 < 𝛼 < 𝑁, 𝐷𝛼
0
+ is Riemann-Liouville

fractional derivative, and 𝑓 : [0, 1] × R2 → R is continuous
function.
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More precisely, we use the coincidence degree theorem
due to Mawhin [22]. The rest of this paper is organized
as follows. In Section 2, we give some necessary notations,
definitions, and lemmas. In Section 3, we study the existence
of solutions of (3) by the coincidence degree theory. Finally,
an example is given to illustrate our results in Section 4.

The two-point boundary value problem (3) happens
to be at resonance in the sense that the associated linear
homogeneous boundary value problem

𝐷
𝛼

0
+𝑢 (𝑡) = 0,

𝑢 (0) = 𝐷
𝛼−2

0
+ 𝑢 (0) = ⋅ ⋅ ⋅ = 𝐷

𝛼−(𝑁−1)

0
+ 𝑢 (0) = 0,

𝐷
𝛼−1

0
+ 𝑢 (0) = 𝐷

𝛼−1

0
+ 𝑢 (1) ,

(4)

has 𝑢(𝑡) = 𝑐
1
𝑡
𝛼−1 as a nontrivial solution.

2. Preliminaries

In this section, we present the necessary definitions and
lemmas from fractional calculus theory.These definitions and
properties can be found in the literature. For more details see
[1–3].

Definition 1 (see [1]). The Riemann-Liouville fractional inte-
gral of order 𝛼 > 0 of a function 𝑓 : (0,∞) → R is given
by

𝐼
𝛼

0+
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠, (5)

provided that the right-hand side is pointwise defined on
(0,∞).

Definition 2 (see [1]). The Riemann-Liouville fractional de-
rivative of order 𝛼 > 0 of a continuous function 𝑓 : (0,∞) →
R is given by

𝐷
𝛼

0
+𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

0

𝑓 (𝑠)

(𝑡 − 𝑠)
𝛼−𝑛+1

𝑑𝑠, (6)

where 𝑛 − 1 < 𝛼 ≤ 𝑛, provided that the right-hand side is
pointwise defined on (0,∞).

Lemma 3 (see [1]). Let 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑢 ∈ 𝐶(0, 1)⋂𝐿1(0, 1);
then

𝐼
𝛼

0+
𝐷
𝛼

0+
𝑢 (𝑡) = 𝑢 (𝑡) + 𝐶

1
𝑡
𝛼−1

+ 𝐶
2
𝑡
𝛼−2

+ ⋅ ⋅ ⋅ + 𝐶
𝑛
𝑡
𝛼−𝑛

, (7)

where 𝐶
𝑖
∈ R, 𝑖 = 1, 2, . . . 𝑛.

Lemma 4 (see [1]). If 𝛼 > 0, 𝑚 ∈ N and 𝐷 = 𝑑/𝑑𝑥. If the
fractional derivatives𝐷𝛼

0+
𝑢(𝑡) and 𝐷𝛼+𝑚

0+
𝑢(𝑡) exist, then

𝐷
𝑚

𝐷
𝛼

0+
𝑢 (𝑡) = 𝐷

𝛼+𝑚

0+
𝑢 (𝑡) . (8)

Lemma 5 (see [1]). The relation

𝐼
𝛼

𝑎+
𝐼
𝛽

𝑎+
𝑓 (𝑥) = 𝐼

𝛼+𝛽

𝑎+
𝑓 (𝑥) (9)

is valid in following cases𝛽 > 0,𝛼+𝛽 > 0, and𝑓(𝑥) ∈ 𝐿
1
(𝑎, 𝑏).

Now let us recall some notations about the coincidence
degree continuation theorem.

Let𝑌,𝑍 be real Banach spaces, let 𝐿 : dom 𝐿 ⊂ 𝑌 → 𝑍 be
a Fredholm map of index zero, and let 𝑃 : 𝑌 → 𝑌, 𝑄 : 𝑍 →
𝑍 be continuous projectors such that ker 𝐿 = Im𝑃, Im 𝐿 =
ker𝑄, and 𝑌 = ker 𝐿⊕ ker𝑃,𝑍 = Im 𝐿⊕ Im𝑄. It follows that
𝐿|dom𝐿∩ker𝑃 : dom 𝐿 ∩ ker𝑃 → Im 𝐿 is invertible. We denote
the inverse of this map by𝐾

𝑃
. IfΩ is an open bounded subset

of 𝑌, the map 𝑁 will be called 𝐿-compact on Ω if 𝑄𝑁(Ω) is
bounded and𝐾

𝑃,𝑄
𝑁 = 𝐾

𝑃
(𝐼 − 𝑄)𝑁 : Ω → 𝑌 is compact.

Theorem 6. Let 𝐿 be a Fredholm operator of index zero and𝑁
be 𝐿-compact on Ω. Suppose that the following conditions are
satisfied:

(1) 𝐿𝑥 ̸= 𝜆𝑁𝑥 for each (𝑥, 𝜆) ∈ [(dom 𝐿 \ ker 𝐿) ∩ 𝜕Ω] ×
(0, 1);

(2) 𝑁𝑥 ∉ Im 𝐿 for each 𝑥 ∈ ker 𝐿 ∩ 𝜕Ω;
(3) deg(𝐽𝑄𝑁|ker𝐿, Ω ∩ ker 𝐿, 0) ̸= 0, where 𝑄 : 𝑍 → 𝑍

is a continuous projection as above with Im 𝐿 = ker𝑄
and 𝐽 : Im𝑄 → ker 𝐿 is any isomorphism.

Then the equation𝐿𝑥 = 𝑁𝑥 has at least one solution indom𝐿∩
Ω.

3. Main Results

In this section, we will prove the existence results for (3).
We use the Banach space 𝐸 = 𝐶[0, 1] with the norm

‖𝑢‖
∞
= max

0≤𝑡≤1
|𝑢(𝑡)|. For 𝛼 > 0, 𝑁 = [𝛼] + 1, we define

a linear space

𝑋 = {𝑢 | 𝑢,𝐷
𝛼−𝑖

0+
𝑢 ∈ 𝐸, 𝑖 = 1, 2, . . . , 𝑁 − 1} . (10)

By means of the functional analysis theory, we can prove that
𝑋 is a Banach space with the norm ‖𝑢‖

𝑋
= ‖𝐷
𝛼−1

0+
𝑢‖
∞
+ ⋅ ⋅ ⋅ +

‖𝐷
𝛼−(𝑁−1)

0+
𝑢‖
∞
+ ‖𝑢‖
∞
.

Define 𝐿 to be the linear operator from dom(𝐿)⋂𝑋 to 𝐸
with dom(𝐿) = {𝑢 ∈ 𝑋 | 𝐷𝛼

0+
𝑢(𝑡) ∈ 𝐸, 𝑢(0) = 𝐷𝛼−2

0
+ 𝑢(0) =

⋅ ⋅ ⋅ = 𝐷
𝛼−(𝑁−1)

0
+

𝑢(0) = 0, 𝐷
𝛼−1

0+
𝑢(0) = 𝐷

𝛼−1

0+
𝑢(1)} and

𝐿𝑢 = 𝐷
𝛼

0+
𝑢, 𝑢 ∈ dom (𝐿) . (11)

We define𝑁 : 𝑋 → 𝐸 by

𝑁𝑢 (𝑡)

= 𝑓 (𝑡, 𝑢 (𝑡) , 𝐷
𝛼−1

0
+ 𝑢 (𝑡) , 𝐷

𝛼−2

0
+ 𝑢 (𝑡) , . . . , 𝐷

𝛼−(𝑁−1)

0
+ 𝑢 (𝑡)) .

(12)

Then the problem (3) can be written by 𝐿𝑢 = 𝑁𝑢.

Lemma 7. The mapping 𝐿 : dom(𝐿) ⊂ 𝐸 is a Fredholm oper-
ator of index zero.

Proof. It is clear that

ker (𝐿) = {𝑐
1
𝑡
𝛼−1

} ≅ R
1

. (13)
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Let 𝑥 ∈ Im 𝐿, so there exists a function 𝑢 ∈ dom 𝐿 which
satisfies 𝐿𝑢 = 𝑥. By (11) and Lemma 3, we have

𝑢 (𝑡) = 𝐼
𝛼

0+
𝑥 (𝑡) + 𝑐

1
𝑡
𝛼−1

+ 𝑐
2
𝑡
𝛼−2

+ ⋅ ⋅ ⋅ + 𝑐
𝑁
𝑡
𝛼−𝑁

. (14)

By 𝑢(0) = 𝐷𝛼−2
0
+ 𝑢(0) = ⋅ ⋅ ⋅ = 𝐷

𝛼−(𝑁−1)

0
+

𝑢(0) = 0, we can obtain
𝑐
2
= ⋅ ⋅ ⋅ = 𝑐

𝑁
= 0. Hence

𝑢 (𝑡) = 𝐼
𝛼

0+
𝑥 (𝑡) + 𝑐

1
𝑡
𝛼−1

. (15)

Then, we have

𝐷
𝛼−1

0+
𝑢 (𝑡) = 𝐷

𝛼−1

0+
(𝐼
𝛼

0+
𝑥 (𝑡) + 𝑐

1
𝑡
𝛼−1

)

= 𝐷
𝛼−1

0+
𝐼
𝛼

0+
𝑥 (𝑡) + 𝑐

1

Γ (𝛼)

Γ (1)

= ∫

𝑡

0

𝑥 (𝑠) 𝑑𝑠 + 𝑐
1
Γ (𝛼) .

(16)

Taking into account𝐷𝛼−1
0
+ 𝑢(0) = 𝐷

𝛼−1

0
+ 𝑢(1), we obtain

∫

1

0

𝑥 (𝑠) 𝑑𝑠 = 0. (17)

On the other hand, suppose 𝑥 satisfy ∫1
0

𝑥(𝑠)𝑑𝑠 = 0. Let 𝑢(𝑡) =
𝐼
𝛼

0+
𝑥(𝑡), we can easily prove 𝑢(𝑡) ∈ dom(𝐿).
Thus, we conclude that

Im (𝐿) = {𝑥 : ∫
1

0

𝑥 (𝑠) 𝑑𝑠 = 0} . (18)

Consider the linear operators 𝑄 : 𝐸 → 𝐸 defined by

𝑄𝑥 (𝑡) = ∫

1

0

𝑥 (𝑠) 𝑑𝑠. (19)

Take 𝑥(𝑡) ∈ 𝐸; then

𝑄 (𝑄𝑥 (𝑡)) = 𝑄(∫

1

0

𝑥 (𝑠) 𝑑𝑠)

= ∫

1

0

(∫

1

0

𝑥 (𝑡) 𝑑𝑡) 𝑑𝑠

= ∫

1

0

𝑥 (𝑠) 𝑑𝑠 = 𝑄𝑥 (𝑡) .

(20)

We can see 𝑄2 = 𝑄.
For 𝑥(𝑡) ∈ 𝐸 in the type 𝑥(𝑡) = 𝑥(𝑡) − 𝑄𝑥(𝑡) + 𝑄𝑥(𝑡),

obviously,𝑥(𝑡)−𝑄𝑥(𝑡) ∈ Ker(𝑄) = Im(𝐿) and𝑄𝑥(𝑡) ∈ Im(𝑄).
That is to say, 𝐸 = Im(𝐿) + Im(𝑄). If 𝑢 ∈ Im(𝐿)⋂ Im(𝑄), we
have 𝑢 = 𝑐

1
; then ∫1

0

𝑐
1
𝑑𝑠 = 0. As a result 𝑐

1
= 0, and we get

𝐸 = Im(𝐿) ⊕ Im(𝑄).
Note that Ind 𝐿 = dim ker 𝐿 − codim Im 𝐿 = 0. Then 𝐿 is

a Fredholm mapping of index zero.

We can define the operators 𝑃 : 𝑋 → 𝑋, where

𝑃𝑢 =
1

Γ (𝛼)
𝐷
𝛼−1

0+
𝑢 (0) 𝑡

𝛼−1

. (21)

For 𝑢 ∈ 𝑋,

𝑃 (𝑃𝑢) = 𝑃(
1

Γ (𝛼)
𝐷
𝛼−1

0+
𝑢 (0) 𝑡

𝛼−1

)

=
1

Γ (𝛼)
𝐷
𝛼−1

0+
𝑢 (0) 𝑡

𝛼−1

= 𝑃𝑢.

(22)

So we have 𝑃2 = 𝑃.
Note that

Ker (𝑃) = {𝑢 : 𝐷𝛼−1
0+
𝑢 (0) = 0} . (23)

Since 𝑢 = 𝑢 − 𝑃𝑢 + 𝑃𝑢, it is easy to say that 𝑢 − 𝑃𝑢 ∈ Ker(𝑃)
and 𝑃𝑢 ∈ Ker(𝐿). So we have 𝑋 = Ker(𝑃) + Ker(𝐿). If 𝑢 ∈
Ker(𝐿)⋂Ker(𝑃), then 𝑢 = 𝑐

1
𝑡
𝛼−1. We can derive 𝑐

1
= 0 from

𝐷
𝛼−1

0+
𝑐
1
𝑡
𝛼−1

|
𝑡=0
= 0. Then

𝑋 = Ker (𝐿) ⊕ Ker (𝑃) . (24)
For 𝑢 ∈ 𝑋,

‖𝑃𝑢‖
𝑋
=

1

Γ (𝛼)

󵄨󵄨󵄨󵄨󵄨
𝐷
𝛼−1

0+
𝑢 (0)

󵄨󵄨󵄨󵄨󵄨
⋅
󵄩󵄩󵄩󵄩󵄩
𝑡
𝛼−1
󵄩󵄩󵄩󵄩󵄩𝑋

=
1

Γ (𝛼)

󵄨󵄨󵄨󵄨󵄨
𝐷
𝛼−1

0+
𝑢 (0)

󵄨󵄨󵄨󵄨󵄨
⋅ [
󵄩󵄩󵄩󵄩󵄩
𝑡
𝛼−1
󵄩󵄩󵄩󵄩󵄩∞
+
󵄩󵄩󵄩󵄩󵄩
𝐷
𝛼−1

0+
𝑡
𝛼−1
󵄩󵄩󵄩󵄩󵄩∞

+ ⋅ ⋅ ⋅ +
󵄩󵄩󵄩󵄩󵄩
𝐷
𝛼−(𝑁−1)

0+
𝑡
𝛼−1
󵄩󵄩󵄩󵄩󵄩∞
]

= (

𝑁−1

∑

𝑖=1

1

Γ (𝑖)
+

1

Γ (𝛼)
)
󵄨󵄨󵄨󵄨󵄨
𝐷
𝛼−1

0+
𝑢 (0)

󵄨󵄨󵄨󵄨󵄨

= 𝑎
󵄨󵄨󵄨󵄨󵄨
𝐷
𝛼−1

0+
𝑢 (0)

󵄨󵄨󵄨󵄨󵄨
,

(25)

where 𝑎 = 1/Γ(𝛼) + ∑𝑁−1
𝑖=1
(1/Γ(𝑖)).

We define 𝐾
𝑃
: Im 𝐿 → dom 𝐿 ∩ ker𝑃 by 𝐾

𝑝
𝑥 = 𝐼
𝛼

0+
𝑥.

For 𝑥 ∈ Im(𝐿), we have
𝐿𝐾
𝑝
𝑥 = 𝐿𝐼

𝛼

0+
𝑥 = 𝐷

𝛼

0+
𝐼
𝛼

0+
𝑥 = 𝑥. (26)

For 𝑢 ∈ dom(𝐿)⋂Ker(𝑃), we have 𝐷𝛼−1
0+
𝑢(0) = 0. And for

𝑢 ∈ dom(𝐿), the coefficients 𝑐
1
, . . . , 𝑐

𝑁
in the expressions

𝑢 = 𝐼
𝛼

0+
𝐷
𝛼

0+
𝑢 (𝑡) + 𝑐

1
𝑡
𝛼−1

+ 𝑐
2
𝑡
𝛼−2

+ ⋅ ⋅ ⋅ + 𝑐
𝑁
𝑡
𝛼−𝑁 (27)

are all equal to zero. Thus, we obtain
𝐾
𝑝
𝐿𝑢 = 𝐼

𝛼

0+
𝐷
𝛼

0+
𝑢 = 𝑢. (28)

This shows that 𝐾
𝑝
= (𝐿dom(𝐿)⋂Ker(𝑃))

−1. Again for each 𝑥 ∈
Im(𝐿),
󵄩󵄩󵄩󵄩󵄩
𝐾
𝑝
𝑥
󵄩󵄩󵄩󵄩󵄩𝑋

=
󵄩󵄩󵄩󵄩𝐼
𝛼

0+
𝑥
󵄩󵄩󵄩󵄩𝑋

=
󵄩󵄩󵄩󵄩𝐼
𝛼

0+
𝑥
󵄩󵄩󵄩󵄩∞
+
󵄩󵄩󵄩󵄩󵄩
𝐷
𝛼−1

0+
𝐼
𝛼

0+
𝑥
󵄩󵄩󵄩󵄩󵄩∞
+ ⋅ ⋅ ⋅ +

󵄩󵄩󵄩󵄩󵄩
𝐷
𝛼−(𝑁−1)

0+
𝐼
𝛼

0+
𝑥
󵄩󵄩󵄩󵄩󵄩∞
;

≤ (

𝑁−1

∑

𝑖=1

1

Γ (𝑖 + 1)
+

1

Γ (𝛼 + 1)
) ‖𝑥‖

∞

= 𝑏‖𝑥‖
∞
,

(29)

where 𝑏 = 1/Γ(𝛼 + 1) + ∑𝑁−1
𝑖=1
(1/Γ(𝑖 + 1)).
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Lemma8. AssumeΩ ⊂ 𝑌 is an open bounded subset such that
dom 𝐿⋂𝑌 ̸= 0; then map𝑁 is 𝐿-compact on Ω

Proof. By the continuity of 𝑓, we can get that 𝑄𝑁(Ω) and
𝐾
𝑃
(𝐼 − 𝑄)𝑁(Ω) are bounded. So, in view of the Arzela-

Ascoli theorem, we need only to prove that 𝐾
𝑃
(𝐼 − 𝑄)𝑁(Ω)

is equicontinuous. From the continuity of 𝑓, there exists a
constant 𝑟 > 0, such that |(𝐼 − 𝑄)𝑁(𝑢(𝑡))| ≤ 𝑟, for all 𝑢 ∈ Ω,
𝑡 ∈ [0, 1].

For 0 ≤ 𝑡
1
≤ 𝑡
2
≤ 1, 𝑢 ∈ Ω, we have

󵄨󵄨󵄨󵄨𝐾𝑃,𝑄𝑁𝑢 (𝑡2) − 𝐾𝑃,𝑄𝑁𝑢 (𝑡1)
󵄨󵄨󵄨󵄨

=
1

Γ (𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
2

0

(𝑡
2
− 𝑠)
𝛼−1

(𝐼 − 𝑄)𝑁 (𝑢 (𝑠)) 𝑑𝑠

−∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝛼−1

(𝐼 − 𝑄)𝑁 (𝑢 (𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝑟

Γ (𝛼)
∫

𝑡
1

0

[(𝑡
1
− 𝑠)
𝛼−1

− (𝑡
2
− 𝑠)
𝛼−1

] 𝑑𝑠

+
𝑟

Γ (𝛼)
∫

𝑡
2

𝑡
1

(𝑡
2
− 𝑠)
𝛼−1

𝑑𝑠

=
𝑟

Γ (𝛼 + 1)
(𝑡
𝛼

2
− 𝑡
𝛼

1
) .

(30)

Furthermore, we have

󵄨󵄨󵄨󵄨󵄨
𝐷
𝛼−𝑖

0+
𝐾
𝑃,𝑄
𝑁𝑢 (𝑡

2
) − 𝐷
𝛼−𝑖

0+
𝐾
𝑃,𝑄
𝑁𝑢 (𝑡

1
)
󵄨󵄨󵄨󵄨󵄨

=
1

Γ (𝑖)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
2

0

(𝑡
2
− 𝑠)
𝑖−1

(𝐼 − 𝑄)𝑁 (𝑢 (𝑠)) 𝑑𝑠

−∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝑖−1

(𝐼 − 𝑄)𝑁 (𝑢 (𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝑟

Γ (𝑖)
∫

𝑡
1

0

[(𝑡
1
− 𝑠)
𝑖−1

− (𝑡
2
− 𝑠)
𝑖−1

] 𝑑𝑠

+
𝑟

Γ (𝑖)
∫

𝑡
2

𝑡
1

(𝑡
2
− 𝑠)
𝑖−1

𝑑𝑠

=
𝑟

Γ (𝑖 + 1)
(𝑡
𝑖

2
− 𝑡
𝑖

1
) ,

(31)

where 𝑖 = 1, 2, . . . , 𝑁 − 1. Since 𝑡𝛼 and 𝑡𝑖 are uniformly
continuous on [0, 1], we can get that𝐾

𝑃
(𝐼 − 𝑄)𝑁 : Ω → 𝑌 is

compact. The proof is completed.

To obtain our main results, we need the following condi-
tions.

(H
1
) There exist functions 𝜑, 𝜓

𝑖
∈ 𝐿
1

[0, 1], 𝑖 = 1,𝑁, such
that for all 𝑢 ∈ R2, 𝑡 ∈ [0, 1],

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥1, 𝑥2, . . . , 𝑥𝑁)
󵄨󵄨󵄨󵄨

≤ 𝜑 + 𝜓
1

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨 + 𝜓2

󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ + 𝜓𝑁

󵄨󵄨󵄨󵄨𝑥𝑁
󵄨󵄨󵄨󵄨 .

(32)

(H
2
) There exists a constant 𝐴 > 0 such that for every 𝑦 ∈
R, if |𝑥

2
| > 𝐴 for all 𝑡 ∈ [0, 1], then

𝑓 (𝑡, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
) ̸= 0. (33)

(H
3
) There exists a constant 𝐷 > 0 such that, for each 𝑐

𝑖
,

𝑖 = 1, 2 satisfying min{|𝑐
1
|, |𝑐
2
|} > 𝐷. We have either

at least one of the following:

𝑐
1
𝑁(𝑐
1
𝑡
𝛼−1

) > 0 (34)

or

𝑐
1
𝑁(𝑐
1
𝑡
𝛼−1

) < 0. (35)

(H
4
) ∑𝑁
𝑖=2
𝜌
𝑖
< 1, where 𝜌

𝑖+1
= (𝑎 + 𝑏)‖𝜓

𝑖
‖
1
, 𝑖 = 1, 2, . . . , 𝑁.

Lemma 9. Ω
1
= {𝑢 ∈ dom(𝐿) \ Ker(𝐿) | 𝐿𝑢 = 𝜆𝑁𝑢, 𝜆 ∈

[0, 1]} is bounded.

Proof. For 𝑢 ∈ Ω
1
, 𝜆 ̸= 0 and 𝐿𝑢 = 𝜆𝑁𝑢. By (12), 𝐿𝑢 = 𝜆𝑁𝑢 ∈

Im(𝐿) = Ker(𝑄); that is,

𝜆∫

1

0

𝑓 (𝑡, 𝑢 (𝑡) , 𝐷
𝛼−1

0
+ 𝑢 (𝑡) , 𝐷

𝛼−2

0
+ 𝑢 (𝑡) , . . . , 𝐷

𝛼−(𝑁−1)

0
+ 𝑢 (𝑡)) 𝑑𝑡

= 0.

(36)

By the integralmean value theorem, there exits a constant 𝑡
0
∈

[0, 1] such that

𝑓 (𝑡
0
, 𝑢 (𝑡
0
) , 𝐷
𝛼−1

0
+ 𝑢 (𝑡

0
) , 𝐷
𝛼−2

0
+ 𝑢 (𝑡

0
) , . . . , 𝐷

𝛼−(𝑁−1)

0
+ 𝑢 (𝑡

0
))

= 0.

(37)

Form (H
2
), we can get |𝐷𝛼−1

0+
𝑢(𝑡
0
)| ≤ 𝐴.

Again for𝑢 ∈ Ω
1
, (𝐼−𝑃)𝑢 ∈ dom(𝐿)\Ker(𝐿) and𝐿𝑃𝑢 = 0.

From (29), we have

‖(𝐼 − 𝑃)𝑢‖
𝑋
=
󵄩󵄩󵄩󵄩󵄩
𝐾
𝑝
𝐿(𝐼 − 𝑃)𝑢

󵄩󵄩󵄩󵄩󵄩𝑋
=
󵄩󵄩󵄩󵄩󵄩
𝐾
𝑝
𝐿𝑢
󵄩󵄩󵄩󵄩󵄩𝑋
≤ 𝑏‖𝑁𝑢‖

∞
.

(38)

Now by Lemma 4

󵄨󵄨󵄨󵄨󵄨
𝐷
𝛼−1

0+
𝑢 (0)

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
𝐷
𝛼−1

0+
𝑢 (𝑡
0
)
󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡
0

0

𝐷
𝛼

0+
𝑢 (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨
𝐷
𝛼−1

0+
𝑢 (𝑡
0
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝑡0
󵄨󵄨󵄨󵄨 max
0≤𝑡≤𝑡

0

󵄨󵄨󵄨󵄨𝐷
𝛼

0+
𝑢 (𝑡)

󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨
𝐷
𝛼−1

0+
𝑢 (𝑡
0
)
󵄨󵄨󵄨󵄨󵄨
+
󵄩󵄩󵄩󵄩𝐷
𝛼

0+
𝑢(𝑡)
󵄩󵄩󵄩󵄩∞

≤ 𝐴 + ‖𝐿𝑢‖
∞
= 𝐴 + ‖𝑁𝑢‖

∞
.

(39)

That is,
󵄨󵄨󵄨󵄨󵄨
𝐷
𝛼−1

0+
𝑢 (0)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐴 + ‖𝑁𝑢‖

∞
. (40)
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From (25) and (38), we have

‖𝑢‖
𝑋
= ‖𝑃𝑢 + (𝐼 − 𝑃)𝑢‖

𝑋
≤ ‖𝑃𝑢‖

𝑋
+ ‖(𝐼 − 𝑃)𝑢‖

𝑋

≤ 𝑎
󵄨󵄨󵄨󵄨󵄨
𝐷
𝛼−1

0+
𝑢 (0)

󵄨󵄨󵄨󵄨󵄨
+ 𝑏‖𝑁𝑢‖

∞
.

(41)

Furthermore, it follows from (40) and (H
1
) that

‖𝑢‖
𝑋

≤ (𝑎
󵄨󵄨󵄨󵄨󵄨
𝐷
𝛼−1

0+
𝑢 (0)

󵄨󵄨󵄨󵄨󵄨
+ 𝑏‖𝑁𝑢‖

∞
)

≤ 𝑎 (𝐴 + ‖𝑁𝑢‖
∞
) + 𝑏‖𝑁𝑢‖

∞
= 𝑎𝐴 + (𝑎 + 𝑏) ‖𝑁𝑢‖

∞

≤ 𝑎𝐴 + (𝑎 + 𝑏)

×
󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑡, 𝑢 (𝑡) , 𝐷

𝛼−1

0
+ 𝑢 (𝑡) , 𝐷

𝛼−2

0
+ 𝑢 (𝑡) , . . . , 𝐷

𝛼−(𝑁−1)

0
+ 𝑢 (𝑡))

󵄩󵄩󵄩󵄩󵄩∞

≤ 𝑎𝐴 + (𝑎 + 𝑏) (
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩1
+
󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩1‖
𝑢‖
∞
+
󵄩󵄩󵄩󵄩𝜓2
󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩󵄩
𝐷
𝛼−1

0+
𝑢
󵄩󵄩󵄩󵄩󵄩∞

+ ⋅ ⋅ ⋅ +
󵄩󵄩󵄩󵄩𝜓𝑁

󵄩󵄩󵄩󵄩1

󵄩󵄩󵄩󵄩󵄩
𝐷
𝛼−(𝑁−1)

0+
𝑢
󵄩󵄩󵄩󵄩󵄩∞
)

= 𝑎𝐴 + (𝑎 + 𝑏)
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩1
+ 𝜌
2
‖𝑢‖
∞
+ 𝜌
3

󵄩󵄩󵄩󵄩󵄩
𝐷
𝛼−1

0+
𝑢
󵄩󵄩󵄩󵄩󵄩∞

+ 𝜌
4

󵄩󵄩󵄩󵄩󵄩
𝐷
𝛼−2

0+
𝑢
󵄩󵄩󵄩󵄩󵄩∞
+ ⋅ ⋅ ⋅ + 𝜌

𝑁+1

󵄩󵄩󵄩󵄩󵄩
𝐷
𝛼−(𝑁−1)

0+
𝑢
󵄩󵄩󵄩󵄩󵄩∞
.

(42)

By the definition ‖𝑢‖
𝑋

and (H
4
), it is easy to see that

‖𝐷
𝛼−1

0+
𝑢‖
∞
, . . . , ‖𝐷

𝛼−(𝑁−1)

0+
𝑢‖
∞

and ‖𝑢‖
∞

are bounded. So,Ω
1

is bounded.

Lemma 10. Ω
2
= {𝑢 ∈ Ker(𝐿) : 𝑁𝑢 ∈ Im(𝐿)} is bounded.

Proof. Let 𝑢 ∈ Ker(𝐿), so we have 𝑢 = 𝑐
1
𝑡
𝛼−1, 𝑐
1
∈ R. For

𝑁𝑢 ∈ Im(𝐿) = Ker(𝑄),

∫

1

0

𝑓(𝑡, 𝑐
1
𝑡
𝛼−1

, 𝑐
1
Γ (𝛼) , . . . ,

Γ (𝛼)

Γ (𝑁 − 1)
𝑐
1
𝑡
𝑁−2

)𝑑𝑡 = 0. (43)

By the integralmean value theorem, there exits a constant 𝑡
1
∈

[0, 1] such that

𝑓(𝑡
1
, 𝑐
1
𝑡
𝛼−1

1
, 𝑐
1
Γ (𝛼) , . . . ,

Γ (𝛼)

Γ (𝑁 − 1)
𝑐
1
𝑡
𝑁−2

1
) = 0. (44)

From (H
2
), it follows that |𝑐

1
| ≤ 𝐴/Γ(𝛼). Hence, Ω

2
is

bounded.

Lemma 11. Ω
3
= {𝑢 ∈ Ker(𝐿) : 𝜆𝑢 + (1 − 𝜆)𝑄𝑁𝑢 = 0, 𝜆 ∈

[0, 1]} is bounded.

Proof. Let 𝑢 ∈ Ker(𝐿), so we have 𝑢 = 𝑐
1
𝑡
𝛼−1, 𝑐
1
∈ R. If 𝜆 = 0,

then |𝑐
1
| ≤ 𝐷. If 𝜆 = 1, we have 𝑐

1
= 0.

If 𝜆 ̸= 0 and 𝜆 ̸= 1, then

𝜆𝑐
1
𝑡
𝛼−1

+ (1 − 𝜆)𝑄𝑁 (𝑢) = 0. (45)

It follows that

𝜆𝑐
1
𝑡
𝛽−1

+ (1 − 𝜆)

× ∫

1

0

𝑓(𝑡, 𝑐
1
𝑡
𝛼−1

, 𝑐
1
Γ (𝛼) , . . . ,

Γ (𝛼)

Γ (𝑁 − 1)
𝑐
1
𝑡
𝑁−2

)𝑑𝑡 = 0.

(46)

Then we get

𝜆𝑐
2

1
𝑡
𝛼−1

+ (1 − 𝜆)∫

1

0

𝑐
1
𝑓 (𝑡, 𝑐

1
𝑡
𝛼−1

, . . . , 𝑐
2
Γ (𝛼)) 𝑑𝑡 = 0, (47)

which, together with (H
3
), implies |𝑐

1
| ≤ 𝐷. Here, Ω

3
is

bounded.

Remark 12. If the other parts of (H
3
) hold, then the set Ω󸀠

3
=

{𝑢 ∈ Ker(𝐿) : −𝜆𝑢 + (1 − 𝜆)𝑄𝑁𝑢 = (0, 0), 𝜆 ∈ [0, 1]} is
bounded.

Theorem 13. Suppose (H
1
)–(H
4
) hold; then the problem (3)

has at least one solution in 𝑌.

Proof. LetΩ be a bounded open set of 𝑌, such that⋃3
𝑖=1
Ω
𝑖
⊂

Ω. It follows from Lemma 8, 𝑁 is 𝐿-compact on Ω. By
Lemmas 9, 10, and 11, we get the following:

(1) 𝐿𝑢 ̸= 𝜆𝑁𝑢, for every 𝑢 ∈ [(dom 𝐿 \ Ker 𝐿)⋂ 𝜕Ω] ×
(0, 1);

(2) 𝑁𝑢 ∉ Im 𝐿 for every 𝑢 ∈ Ker 𝐿⋂𝜕Ω;
(3) let 𝐻(𝑢, 𝜆) = ±𝜆𝐼𝑢 + (1 − 𝜆)𝐽𝑄𝑁𝑢, where 𝐼 is

the identical operator. Via the homotopy property of
degree, we obtain that

deg (𝐽𝑄𝑁|ker𝐿, Ω ∩ ker 𝐿, 0)

= deg (𝐻 (⋅, 0) , Ω ∩ ker 𝐿, 0)

= deg (𝐻 (⋅, 1) , Ω ∩ ker 𝐿, 0)

= deg (𝐼, Ω ∩ ker 𝐿, 0) = 1 ̸= 0.

(48)

Applying Theorem 6, we conclude that 𝐿𝑢 = 𝑁𝑢 has at least
one solution in dom 𝐿 ∩ Ω.

Under the stronger conditions imposed on 𝑓, we can
prove the uniqueness of solutions to the (3) studied above.

Theorem 14. Suppose the conditions (H
1
) in the theorem are

replaced by the following conditions.

(H
1
)󸀠 There exist positive constants 𝑎

𝑖
, 𝑖 = 0, 1, . . . , 𝑁−1, such

that, for all (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
), (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑁
) ∈ R𝑁,

one has
󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥1, 𝑥2, . . . , 𝑥𝑁) − 𝑓 (𝑡, 𝑦1, 𝑦2, . . . , 𝑦𝑁)

󵄨󵄨󵄨󵄨

≤ 𝑎
0

󵄨󵄨󵄨󵄨𝑥1 − 𝑦1
󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ + 𝑎𝑁−1

󵄨󵄨󵄨󵄨𝑥𝑁 − 𝑦𝑁
󵄨󵄨󵄨󵄨 .

(49)

(H
1
)󸀠󸀠 There exist constants 𝑙

𝑖
, 𝑖 = 1, 2, . . . , 𝑁 − 1, such that

for all (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
), (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑁
) ∈ R𝑁, one has

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥1, 𝑥2, . . . , 𝑥𝑁) − 𝑓 (𝑡, 𝑦1, 𝑦2, . . . , 𝑦𝑁)
󵄨󵄨󵄨󵄨

≥ −𝑙
0

󵄨󵄨󵄨󵄨𝑥1 − 𝑦1
󵄨󵄨󵄨󵄨 + 𝑙1

󵄨󵄨󵄨󵄨𝑥2 − 𝑦2
󵄨󵄨󵄨󵄨 − 𝑙2

󵄨󵄨󵄨󵄨𝑥3 − 𝑦3
󵄨󵄨󵄨󵄨

− ⋅ ⋅ ⋅ − 𝑙
𝑁−1

󵄨󵄨󵄨󵄨𝑥𝑁 − 𝑦𝑁
󵄨󵄨󵄨󵄨 .

(50)
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Then, the BVP (3) has a unique solution, provided that

𝑎𝑙
0

𝑙
1

+ 𝑎𝑎
0
+ 𝑎
0
𝑐 +

𝑁−1

∑

𝑖=2

𝑎𝑙
𝑖

𝑙
1

+ (𝑎 + 𝑐)

𝑁−1

∑

𝑖=1

𝑎
𝑖
< 1. (51)

Proof. Let 𝑦
𝑖
= 0, 𝑖 = 1, 2, . . . , 𝑁, and 𝜑

1
= |𝑓(𝑡, 0, . . . , 0)|;

then the condition (H
1
) is satisfied. According toTheorem 13,

BVP (3) has at least one solution. Suppose 𝑢
𝑖
∈ 𝑌, 𝑖 = 1, 2 are

two solutions of (3); then

𝐷
𝛼

0
+𝑢
𝑖
(𝑡)

= 𝑓 (𝑡, 𝑢
𝑖
(𝑡) , 𝐷

𝛼−1

0
+ 𝑢
𝑖
(𝑡) , 𝐷

𝛼−2

0
+ 𝑢
𝑖
(𝑡) , . . . , 𝐷

𝛼−(𝑁−1)

0
+ 𝑢

𝑖
(𝑡)) ,

𝑖 = 1, 2.

(52)

Note that 𝑢 = 𝑢
1
− 𝑢
2
, so 𝑢 satisfy the equation

𝐷
𝛼

0
+𝑢 = 𝑓 (𝑡, 𝑢

1
, 𝐷
𝛼−1

0
+ 𝑢
1
, . . . , 𝐷

𝛼−(𝑁−1)

0
+ 𝑢

1
)

− 𝑓 (𝑡, 𝑢
2
, 𝐷
𝛼−1

0
+ 𝑢
2
, . . . , 𝐷

𝛼−(𝑁−1)

0
+ 𝑢

2
) .

(53)

According to Im(𝐿) = Ker(𝑄), we have

∫

1

0

𝑓 (𝑡, 𝑢
1
, 𝐷
𝛼−1

0
+ 𝑢
1
, . . . , 𝐷

𝛼−(𝑁−1)

0
+ 𝑢

1
)

− 𝑓 (𝑡, 𝑢
2
, 𝐷
𝛼−1

0
+ 𝑢
2
, . . . , 𝐷

𝛼−(𝑁−1)

0
+ 𝑢

2
) 𝑑𝑡 = 0.

(54)

By the integral mean value theorem, there exists 𝜂 ∈ [0, 1],
such that

𝑓 (𝜂, 𝑢
1
(𝜂) , 𝐷

𝛼−1

0
+ 𝑢
1
(𝜂) , . . . , 𝐷

𝛼−(𝑁−1)

0
+ 𝑢

1
(𝜂))

− 𝑓 (𝜂, 𝑢
2
(𝜂) , 𝐷

𝛼−1

0
+ 𝑢
2
(𝜂) , . . . , 𝐷

𝛼−(𝑁−1)

0
+ 𝑢

2
(𝜂)) = 0.

(55)

By (H
1
)󸀠󸀠, we have

0 =
󵄨󵄨󵄨󵄨󵄨
𝑓 (𝜂, 𝑢

1
(𝜂) , 𝐷

𝛼−1

0
+ 𝑢
1
(𝜂) , . . . , 𝐷

𝛼−(𝑁−1)

0
+ 𝑢

1
(𝜂))

−𝑓 (𝜂, 𝑢
2
(𝜂) , 𝐷

𝛼−1

0
+ 𝑢
2
(𝜂) , . . . , 𝐷

𝛼−(𝑁−1)

0
+ 𝑢

2
(𝜂))

󵄨󵄨󵄨󵄨󵄨

≥ −𝑙
0

󵄨󵄨󵄨󵄨𝑢 (𝜂)
󵄨󵄨󵄨󵄨 + 𝑙1

󵄨󵄨󵄨󵄨󵄨
𝐷
𝛼−1

0
+ 𝑢 (𝜂)

󵄨󵄨󵄨󵄨󵄨
− 𝑙
2

󵄨󵄨󵄨󵄨󵄨
𝐷
𝛼−2

0
+ 𝑢 (𝜂)

󵄨󵄨󵄨󵄨󵄨

− ⋅ ⋅ ⋅ − 𝑙
𝑁−1

󵄨󵄨󵄨󵄨󵄨
𝐷
𝛼−(𝑁−1)

0
+ 𝑢 (𝜂)

󵄨󵄨󵄨󵄨󵄨
.

(56)

We can have

󵄨󵄨󵄨󵄨󵄨
𝐷
𝛼−1

0
+ 𝑢 (𝜂)

󵄨󵄨󵄨󵄨󵄨
≤
𝑙
0

𝑙
1

󵄨󵄨󵄨󵄨𝑢 (𝜂)
󵄨󵄨󵄨󵄨 +
𝑙
2

𝑙
1

󵄨󵄨󵄨󵄨󵄨
𝐷
𝛼−2

0
+ 𝑢 (𝜂)

󵄨󵄨󵄨󵄨󵄨

+ ⋅ ⋅ ⋅ +
𝑙
𝑁−1

𝑙
1

󵄨󵄨󵄨󵄨󵄨
𝐷
𝛼−(𝑁−1)

0
+ 𝑢 (𝜂)

󵄨󵄨󵄨󵄨󵄨

≤
𝑙
0

𝑙
1

‖𝑢‖
∞
+

𝑁−1

∑

𝑖=2

𝑙
𝑖

𝑙
1

󵄩󵄩󵄩󵄩󵄩
𝐷
𝛼−𝑖

0
+ 𝑢
󵄩󵄩󵄩󵄩󵄩∞
.

(57)

Thus, we can obtain

󵄨󵄨󵄨󵄨󵄨
𝐷
𝛼−1

0+
𝑢 (0)

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
𝐷
𝛼−1

0+
𝑢 (𝜂)

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜂

0

𝐷
𝛼

0+
𝑢 (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨
𝐷
𝛼−1

0+
𝑢 (𝜂)

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨max
0≤𝑡≤𝜂

󵄨󵄨󵄨󵄨𝐷
𝛼

0+
𝑢 (𝑡)

󵄨󵄨󵄨󵄨

≤
𝑙
0

𝑙
1

‖𝑢‖
∞
+

𝑁−1

∑

𝑖=2

𝑙
𝑖

𝑙
1

󵄩󵄩󵄩󵄩󵄩
𝐷
𝛼−𝑖

0
+ 𝑢
󵄩󵄩󵄩󵄩󵄩∞
+
󵄩󵄩󵄩󵄩𝐷
𝛼

0+
𝑢(𝑡)
󵄩󵄩󵄩󵄩∞

=
𝑙
0

𝑙
1

‖𝑢‖
∞
+

𝑁−1

∑

𝑖=2

𝑙
𝑖

𝑙
1

󵄩󵄩󵄩󵄩󵄩
𝐷
𝛼−𝑖

0
+ 𝑢
󵄩󵄩󵄩󵄩󵄩∞
+ ‖𝐿𝑢‖

∞
.

(58)

According to (25), (38), and (58), we have

‖𝑢‖
𝑋
= ‖𝑃𝑢 + (𝐼 − 𝑃)𝑢‖

𝑋
≤ ‖𝑃𝑢‖

𝑋
+ ‖(𝐼 − 𝑃)𝑢‖

𝑋

=
𝑎𝑙
0

𝑙
1

‖𝑢‖
∞
+

𝑁−1

∑

𝑖=2

𝑎𝑙
𝑖

𝑙
1

󵄩󵄩󵄩󵄩󵄩
𝐷
𝛼−𝑖

0
+ 𝑢
󵄩󵄩󵄩󵄩󵄩∞
+ 𝑎‖𝐿𝑢‖

∞
+ 𝑐‖𝐿𝑢‖

∞
;

≤
𝑎𝑙
0

𝑙
1

‖𝑢‖
∞
+

𝑁−1

∑

𝑖=2

𝑎𝑙
𝑖

𝑙
1

󵄩󵄩󵄩󵄩󵄩
𝐷
𝛼−𝑖

0
+ 𝑢
󵄩󵄩󵄩󵄩󵄩∞

+ (𝑎 + 𝑐)(𝑎
0
‖𝑢‖
∞
+

𝑁−1

∑

𝑖=1

𝑎
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩
𝐷
𝛽−𝑖

0
+
𝑢
󵄩󵄩󵄩󵄩󵄩󵄩∞
) .

(59)

From the definition of ‖𝑢‖
𝑋
and the assumption (51), we have

‖𝑢‖ = 0, so that 𝑢
1
= 𝑢
2
.

4. Example

Let us consider the following boundary value problems:

𝐷
2.5

0
+ 𝑢 (𝑡) =

𝑡

5
+
1

9
𝐷
1.5

0
+ 𝑢 (𝑡) + sin2 (𝐷0.5

0
+ 𝑢 (𝑡)) + arctan 𝑢 (𝑡) ,

0 < 𝑡 < 1,

𝑢 (0) = 𝐷
0.5

0
+ 𝑢 (0) = 0, 𝐷

1.5

0
+ 𝑢 (0) = 𝐷

1.5

0
+ 𝑢 (1) .

(60)

Corresponding to the problem (3), we have that 𝛼 = 2.5 and

𝑓 (𝑡, 𝑥, 𝑦, 𝑧) =
𝑡

5
+ arctan𝑥 + 1

9
𝑦 + sin2 (𝑧) . (61)

Moreover,

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥, 𝑦, 𝑧)
󵄨󵄨󵄨󵄨 ≤
1

5
+
𝜋

2
+
1

9

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 + 1.

(62)

We can get that the condition (H
1
) holds; that is, 𝜑 = (12 +

5𝜋)/10, 𝜓
1
= 𝜓
3
= 0, and 𝜓

2
= 1/9. Taking 𝐴 = 25, 𝐷 = 19,

we can calculate that (H
2
)–(H
4
) hold.

Hence, byTheorem 13, we obtain that (60) has at least one
solution.
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