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As an epidemic mathematical model, the SIR model represents the transition of the Susceptible, Infected, and Recovered. The
profound implication of the SIR model is viewed as the propagation and dynamic evolutionary process of the different internal
components and the characteristics in a complex system subject to external effect. The uniaxial stress-strain curve of engineering
material represents the basic constitutive relation, which also represents the damage propagation in the units of the damaged
member. Hence, a novel dynamic stress-strain model is established based on the SIR model. The analytical solution and the
approximate solution for the proposed model are represented according to the homotopy analysis method (HAM), and the
relationship of the solution and the size effect and the strain rate is discussed. In addition, an experiment on the size effect of
confined concrete is carried out and the solution of SIR model is suitable for simulation. The results show that the mechanical
mechanism of the parameters of the uniaxial stress-strain model proposed in this paper reflects the actual characteristics of the
materials.The solution of the SIRmodel can fully and accurately show the change of the mechanical performance and the influence
of the size effect and the strain rate.

1. Introduction

Engineering material means the material used for engineer-
ing or the materials used to produce other materials which
may be used in engineering. The traditional material in
civil engineering includes concrete, steel, soil, wood, and
alloy. These materials have different qualities about strength,
workability, durability, and resistance against corrosion [1].
The materials differ also in their structure, texture, and per-
formance.The strength, toughness, and ductility of construc-
tion material are the fundamental guarantee for engineering
reliability.With the development of civil engineering, the type
and form of civil engineering materials are unceasingly rich
and the performance is enhanced also, and the corresponding
research and application on experimental techniques, theo-
retical analysis, numerical simulation, and actual engineering
are improved constantly. However, there are still more phe-
nomena to be interpreted and more research issues should
be given attention because the engineering material has
microcrack, heterogeneity, and evolution in micromechanics
and shows elastoplasticity, discreteness, and randomness in

themicromechanics. In addition, themechanical behaviors of
engineering materials are also related to the size, the loading
rate, the external environment, and other factors. Therefore,
the mechanical properties of different engineering materials
have obvious differences; the demand about the experiment
and numerical simulation for various materials are diverse.
Researchers normally investigate the mechanic property of
the specified material, and the study on the generalized
characteristics for various construction materials is still not
intense.

The uniaxial stress-strain curve indicates the simple
mechanic property of thematerial subjected to pure compress
or pure tension; representing the basic material constitutive
relation and the uniaxial stress-strain relation is also the foun-
dation to establish multiple compound constitutive models.
In the elastoplasticity or nonlinear analysis, the uniaxial
stress-strain curve plays a decisive role in the accuracy of the
numerical results. Furthermore, the computational analysis
of the engineering structure subjected to dynamic or cyclic
loadings requires the stress-strain models to simulate the
response of the structure [2, 3].
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There are many types of stress-strain curves models for
different material or even one kind of material. As known
to all, the stress-strain curve of concrete has a variety of
forms or functions because concrete is a type of composite
material and the discreteness is obvious. Numerous concrete
models have been proposed in the last years. For example,
the compressive stress-strain function for concrete consists
of five kinds of equations as polynomial, exponential, and
trigonometric function, rational fraction, and sectional form
and the total number of the corresponding formulas is over
20 [2].

In the macroscopic level, three broad categories can be
distinguished: models derived from the theory of elasticity,
models based on the theory of plasticity, and models based
on the continuum damage theory [3, 4]. Also, some coupled
models based on the association of plasticity and continuum
damage theory have been recently developed. Although it has
been proved that themodels derived from theory of plasticity
and continuum damage theory can accurately simulate the
observed behavior of concrete, the engineering application of
these models is less. This is motivated by the great amount
of parameters that are usually needed and the difficulty to
obtain them through conventional laboratory tests. From the
perspective of another point of view, the structural member
with definite shape and materials is a complex system which
has huge amounts of units, and the units have the whole
process of sustained force, damage, interact, transmitting
energy, and propagation, until failure. The characteristics
of all the units generally constitute the property of the
macromaterial and member.

Hence, taking the damage propagation and transmit
in the microunits into consideration, establishing a new
and generalized uniaxial constitutive model which can take
into account that both the versatility and the dirigibility is
necessary.

2. SIR Model and Its Connection between
Constitutive Relations of Material

An epidemic represents the sudden outbreak and propaga-
tion of a disease, often occurring on a short temporal scare
and affecting a significant portion of a population. Epidemics
also may exhibit some periodic behavior, as opposed to
endemics, which are diseases that are always present to some
extent in a population. Epidemiology is the branch of science
which essentially deals with the mathematical modeling of
propagation of diseases. The first mathematical model of
epidemiology was formulated and solved by Daniel Bernoulli
in 1760. Kermack andMcKendrick [5] illustrated that diseases
showed a threshold type of behavior. In other words, if a
single person infected by a particular disease passed on the
infection tomore than one person in turn, an epidemicwould
occur, while if less than one secondary infection occurred in
each primary one, the disease would die out. The study of
mathematical epidemiology has grown rapidly, with a large
variety of models having been formulated and applied to
infectious diseases. The epidemic model can describe the
dynamic process of the epidemic, and spread characteristics

will be grasped based on the information of the change of
population; then the epidemic can be effectively controlled.
The general epidemic model belongs to first order ordinary
differential equations, and the most representative is the SIR
model.

The SIR epidemicmathematical model is presented based
on a system of first order ordinary differential equations
and it has been used in the modeling of several infectious
diseases, where the parameters need to be estimated by epi-
demiological data [6]. In this model, the variables represent
subpopulations of the Susceptible (S) who can catch the
disease, the Infected (I) who are infected and can transmit the
disease to the Susceptible, and the Removal (R) who had the
disease and recovered or died or have developed immunity or
have been removed from contact with the other classes.Thus,
the model describes the propagation and transformation
between different classes. Assume that the total number of
population is one unit for the sake of simplicity and the SIR
model is written as

𝑑𝑖 (𝑡)

𝑑𝑡
= 𝜆𝑖 (𝑡) 𝑠 (𝑡) − 𝜇𝑖 (𝑡) ,

𝑑𝑠 (𝑡)

𝑑𝑡
= − 𝜆𝑖 (𝑡) 𝑠 (𝑡) + 𝜂𝑖 (𝑡) − 𝜌𝑖

2
(𝑡) 𝑠 (𝑡) ,

(1)

where 𝑖(𝑡) and 𝑠(𝑡) denote the Infected and the Susceptible,
respectively, and 𝑟(𝑡) is Removal and 𝑡 is time. Hence, 𝑠(𝑡) +
𝑖(𝑡) + 𝑟(𝑡) = 1 is satisfied. 𝜆 is the infectivity coefficient
of the typical Lotka-Volterra interaction term, which means
the daily contact rate (i.e., the population that each patient
effectively contact with the healthy persons every day). 𝜇
is the daily recovery rate or number of patients cured or
removed out accounting for the proportion of the total
patients. 𝜂 is the increasing rate of Susceptible persons when
patients are increasing. 𝜌 is the speed parameter after taking
preventive and control measures. The SIR model is subject to
the initial conditions 𝑖(0) = 𝑖

0
and 𝑠(0) = 𝑠

0
, where 𝑖

0
> 0 and

𝑠
0
> 0 are given constants.
From the introduction above, it is significant that the SIR

model is not simply an equation representing the spread of
an epidemic, while it actually describes the propagation and
dynamic evolution process of the different internal compo-
nents and the characteristics in a complex system subject
to external effect. In general, the SIR model embodies the
general characteristics and rules in the similar system with
propagation and transformation.The continuous damage and
destruction will occur for the material specimen in civil
engineering under increasing load, and the unstressed units,
the stressed units, and the fractured or invalid units in anyone
state should be included. The stress-strain relationship is the
typical representation of the propagation and the dynamic
evolution. Therefore, an innovative model for the material
can be presented referencing to the SIR model, and the two
models have similar parameters. To validate this interpreta-
tion, a compressed concrete specimen with 60mm diameter
and 120mm height is selected as an example. The uniaxial
failure process of the specimen is simulated based on the
three-dimensional mesolevel finite element method [7, 8],
and the failure charts in different stage are shown in Figure 1.



Journal of Applied Mathematics 3

(a) Initial stage (b) Stressed stage (c) Failure stage

Unstressed units (susceptible)
Stressed units (infected)

Fractured or invalid units (removal)
Cracks

Figure 1: Damage propagation process and different units based on microlevel simulation.

It is clear that there are unstressed units, stressed units,
and the fractured or invalid units in all stages, whereas the
damage propagation and the proportion of each part are
time-variant.The unstressed units are majority and fractured
units are few at the initial stage. With the compression being
enhanced, the units participate in the resistance gradually
and the stressed units boom. After the counteragent in
most units decreases, the invalid units increase and the
cracks appear, though the stressed units decline and the
specimen collapses. In conclusion, the SIR model is suitable
for illustrating the failure process of materials, that is, typical
damage propagation process in a complex system.

Strain 𝜀 reflects the deformation capability and damage
process of material, corresponding with the time variable 𝑡 in
the SIR model. 𝑠(𝜀), 𝜎(𝜀), and 𝑟(𝜀) represent the equivalent
stress in unstressed units, the equivalent stress in stressed
units, and the equivalent stress in fractured or invalid units,
respectively. This model subjects to the initial conditions
𝜎(0) = 𝜎

0
and 𝑠(0) = 𝑠

0
, where 𝜎

0
> 0 and 𝑠

0
> 0 are given

constants. In the same manner, 𝑠(𝜀) + 𝜎(𝜀) + 𝑟(𝜀) = 1. In this
case, 𝜆 can be viewed as the transmissibility rate in units, and
𝜇 represents the failure rate in units. 𝜂 can be expressed as the
increase rate of stressed units when the invalid units grow,
and 𝜌 is the reduced speed parameter for invalid units due to
stress transmission and distribution. Finally, the stress-strain
model of material can be expressed as

𝑑𝜎 (𝜀)

𝑑𝜀
= 𝜆𝜎 (𝜀) 𝑠 (𝜀) − 𝜇𝜎 (𝜀) ,

𝑑𝑠 (𝜀)

𝑑𝜀
= − 𝜆𝜎 (𝜀) 𝑠 (𝜀) + 𝜂𝜎 (𝜀) − 𝜌𝜎

2
(𝜀) 𝑠 (𝜀) .

(2)

Equation (2) is nonlinear differential equations which
represent the coupling and transformation of the three types

of units and the full complex process for the material from
intact to failure. The system of equations has the unique
solution, but the analytical solution cannot be obtained by
normal mathematical methods and the results are calculated
usually by numerical methods.

Assume the basic condition of the equation above is that
𝜆 is 1.00, 𝜇 is 0.15, 𝜂 is 0.1, 𝜌 is 0.8, and 𝜎(0) is 0.02. The
consequences of the equivalent stress 𝜎(𝜀) under different
parameters are solved by numerical method, as shown in
Figure 2. It is obvious that the full curves accurately indicate
the linear ascent stage, nonlinear yield stage, and the decline
stage or strengthening stage after peak stress. Further, the
variation of 𝜇, 𝜂, or 𝜌 can obviously affect peak and ductility
of the stress-strain curve, and different forms of the curve
can be obtained according to the overall adjustment of the
corresponding parameters.

Different solutions of SIRmodel in various conditions can
represent the stress-strain curves of diverse types ofmaterials.
Figure 3 reveals the stress-strain curves including concrete or
rock-soil in compression or tension as well as different types
of stress-strain curves of soils and steel obtained by numerical
methods. The comparison curves of the real experimental
data and numerical solution about the concrete and steel are
shown in Figures 4 and 5, respectively. In order to compare
the regularity but not the specific data, the peak strain is
normalized. By changing the parameter appropriately, the full
stress-strain curve obtained from (2) can simulate the peak
stress, ductility, and softening stage of concrete with different
strength, as shown in Figure 6. The results above show that
the SIR model can really represent different mechanical
properties of materials generally. It is worth noting that the
initial values of the curves obtained by (2) are adjusted to
the origin of coordinate and the coordinate values only have
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Figure 2: Numerical solutions of SIR for different parameter.

relative significance; it can be adjusted to a proportional
coefficient to real physical value in practical applications.

3. Analytical Solution and Approximate
Solution of SIR Model

The numerical solution of the SIR model is accurate but it
must be calculated for any specific case, not representing the
panorama and rule of the solution. Therefore, the analytical
solution of the SIR model is necessary and it has important
mathematical andmechanicalmeaning.Many corresponding
studies of the analytical solution of the SIR model have been
carried out, but the problem is not solved perfectly because
the model has strong nonlinearity. There are some classic

nonlinearity techniques that can be considered, such as Ado-
mian decompositionmethod [9, 10], delta expansionmethod,
and perturbation method [11, 12]. All these methods have
some limitations, such that these techniques do not provide a
convenient way to adjust and control the convergence region
and rate of approximation series.

To overcome the mentioned limitations, Liao has pro-
posed the homotopy analysis method (HAM) for nonlinear
problems and then modified it step by step [13], and many
nonlinear problems in different fields have been successfully
solved by HAM.

Many problems such as boundary layer similarity solu-
tion for forced, natural, and mix convection in porous
medium, heat transfer, and fluid mechanic problems are
nonlinear inherently. The analytical solutions of nonlinear
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Figure 3: Constitutive curves for different engineering material based on SIR model.

ordinary differential equations can be solved by HAM [14–
16].

HAM is based on homotopy, a concept in topology. The
notion of equivalent maps or processes, where one can be
deformed into the other, is the fundamental structure of
homotopy. Two maps 𝑓, 𝑔 : 𝑋 → 𝑌 of topological spaces
are homotopic if there exists a map 𝜙 : 𝑋 × 𝐼 → 𝑌 such
that 𝜙(𝑥, 0) = 𝑓(𝑥) and 𝜙(𝑥, 1) = 𝑔(𝑥) for 𝑥 ∈ 𝑋. Here,
𝑋×𝐼 denotes the product of𝑋with unit interval [0, 1] of real
numbers.Themap 𝜙 is called the homotopy between𝑓 and 𝑔.
The basic idea of HAM is shown in the nonlinear differential
equation as follows:

𝑁[𝑓 ( ⃗𝑟, 𝑡)] = 0, (3)

where 𝑁 is nonlinear operator, ⃗𝑟 is a vector of spatial
variables, 𝑡 denotes time, and 𝑓( ⃗𝑟, 𝑡) is an unknown function.
Boundary or initial conditions can be treated in a similar
manner, which we avoid here just for simplicity [17].

Generalizing the concept of traditional homotopy, the so-
called zero-order deformation equation is established as

(1 − 𝑞) 𝐿 [𝜙 ( ⃗𝑟, 𝑡; 𝑞) − 𝑓
0
(𝑡)] = 𝑞ℎ𝐻 ( ⃗𝑟, 𝑡)𝑁 [𝜙 ( ⃗𝑟, 𝑡; 𝑞)] ,

(4)

where 𝑞 ∈ [0, 1] is the embedding parameter, 𝜙( ⃗𝑟, 𝑡; 𝑞) is
an unknown function, 𝐻( ⃗𝑟, 𝑡) is an auxiliary function, 𝐿
is a linear operator, 𝑓

0
(𝑡) is the initial guess, and ℎ is a

convergence-control parameter. As 𝑞 increases from 0 to 1,
𝜙( ⃗𝑟, 𝑡; 𝑞) vary from initial trial 𝑓

0
(𝑡) to the exact solution

𝑓( ⃗𝑟, 𝑡). If this variation is smooth enough, we construct the
Maclaurin series of 𝜙( ⃗𝑟, 𝑡; 𝑞) at 𝑞 = 0 and the coefficients
of all the higher terms can be obtained from the higher-
order deformation equations. Differentiating the zeroth-
order deformation equation above 𝑚 times with respect to
the embedding parameter 𝑞, then setting 𝑞 = 0, and finally
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Figure 4: Concrete constitutive curves for different results.
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Figure 5: Steel constitutive curves for different results.

dividing by𝑚!, we have the so-called𝑚th-order deformation
equations:

𝐿 [𝜙
𝑚
( ⃗𝑟, 𝑡; 𝑞) − 𝜒

𝑚
𝜙
𝑚−1
( ⃗𝑟, 𝑡; 𝑞)] = ℎ𝐻 ( ⃗𝑟, 𝑡) 𝑅

𝑚 (5)

with 𝑅
𝑚
= (𝜕
𝑚
𝑁[𝜙( ⃗𝑟, 𝑡; 𝑞)]/(𝑚!𝜕𝑞

𝑚
))|
𝑞=0
= 𝑚! ⋅ 𝑓

𝑚
(𝑡).

In this way, a nonlinear equation is transformed into a
series of linear equations. The exact solution of 𝑓( ⃗𝑟, 𝑡) is then
approximated by the summation of the Maclaurin series at
𝑞 = 1. One has great freedom for the choice of linear operator
𝐿. For example, one can even select linear operator of different
order as compared to the original nonlinear problem. To
simplify the applications of HAM, Liao has suggested some
rules, that is, the rule of solution expression, the rule of
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Figure 6: Constitutive curves for concrete based on SIR model.

solution existence, and the rule of ergodicity for coefficients
of homotopy series solution [13].

In HAM, there is sufficient space for the convergence of
the approximation by the introduction of ℎ which greatly
improves the early homotopy analysis method. It provides
us with a simple way to ensure the convergence of the series
solutions of nonlinear problems.This is an obvious advantage
of HAM over homotopy perturbation method (HPM). In
fact, HPM is just a special case of HAM when ℎ = −1, as
pointed out by Liao and Abbasbandy and, in general, proved
by Sajid and Hayat [18, 19]. Liao also has pointed out that
HAM logically contains other nonperturbationmethods such
as Adomian’s decomposition method [9], the 𝛿-expansion
method, and Lyapunov’s artificial small parameter method
[12].

From (2), we are led to define the two nonlinear operators
as

𝑁
𝑆
[𝜎 (𝜀; 𝑞) , 𝑆 (𝜀; 𝑞)]

=
𝜕𝜎 (𝜀; 𝑞)

𝜕𝜀
− 𝜆𝜎 (𝜀; 𝑞) 𝑆 (𝜀; 𝑞) + 𝜇𝜎 (𝜀; 𝑞) ,

𝑁
𝐼
[𝜎 (𝜀; 𝑞) , 𝑆 (𝜀; 𝑞)]

=
𝜕𝑆 (𝜀; 𝑞)

𝜕𝜀
+ 𝜆𝜎 (𝜀; 𝑞) 𝑆 (𝜀; 𝑞) − 𝜂𝜎 (𝜀; 𝑞)

+ 𝜌𝜎
2
(𝜀; 𝑞) 𝑆 (𝜀; 𝑞) .

(6)

Let 𝑠
0
(𝜀) and 𝜎

0
(𝜀) denote the initial guesses of 𝑠(𝜀) and

𝜎(𝜀), 𝐿
𝑆
and 𝐿

𝜎
the two auxiliary linear operators, 𝐻

𝑆
(𝜀)

and 𝐻
𝜎
(𝜀) the two auxiliary functions, and ℎ an auxiliary

parameter, all of whichwill be determined later. Let 𝑞 ∈ [0, 1];
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denote the embedding parameter. We construct the wroth-
order deformation equations:

(1 − 𝑞) 𝐿
𝑆
[𝑆 (𝜀; 𝑞) − 𝑠

0
(𝜀)]

= 𝑞ℎ𝐻
𝑆
(𝜀)𝑁
𝑆
[𝑆 (𝜀; 𝑞) , 𝜎 (𝜀; 𝑞)] ,

(7)

(1 − 𝑞) 𝐿
𝜎
[𝜎 (𝜀; 𝑞) − 𝜎

0
(𝜀)]

= 𝑞ℎ𝐻
𝜎
(𝜀)𝑁
𝜎
[𝑆 (𝜀; 𝑞) , 𝜎 (𝜀; 𝑞)] ,

(8)

subject to the initial conditions 𝑆(0; 𝑞) = 𝑠(0) and 𝜎(0; 𝑞) =
𝜎(0).

Expand 𝑆(𝜀; 𝑞) and𝜎(𝜀; 𝑞) in the Taylor series with respect
to 𝑞; assuming that 𝐻

𝑆
(𝜀) and 𝐻

𝜎
(𝜀) are properly chosen so

that the above two series converge at 𝑞 = 1, the solution series
are

𝑆 (𝜀) = 𝑠
0
(𝜀) +

+∞

∑

𝑚=1

𝑠
𝑚
(𝜀) ,

𝜎 (𝜀) = 𝜎
0
(𝜀) +

+∞

∑

𝑚=1

𝜎
𝑚
(𝜀) .

(9)

Differentiating the wroth-order deformation equations
(7) and (8)𝑚 times with respect to the embedding parameter
𝑞, then setting 𝑞 = 0, and finally dividing by𝑚!, the so-called
𝑚th-order deformation equations are

𝐿
𝑆
[𝑠
𝑚
(𝜀) − 𝜒

𝑚
𝑠
𝑚−1
(𝜀)] = ℎ𝐻

𝑆
(𝜀) 𝑅
𝑆

𝑚
(𝜀) , (10)

𝐿
𝜎
[𝜎
𝑚
(𝜀) − 𝜒

𝑚
𝜎
𝑚−1
(𝜀)] = ℎ𝐻

𝜎
(𝜀) 𝑅
𝜎

𝑚
(𝜀) , (11)

subject to the initial conditions 𝜎
𝑚
(0) = 0 and 𝑠

𝑚
(0) = 0,

where 𝑅𝑆
𝑚
(𝜀) = 𝑠



𝑚−1
(𝜀) + 𝜆∑

𝑘=0
𝜎
𝑘
(𝜀) 𝑠
𝑚−1−𝑘

(𝜀) and 𝑅𝜎
𝑚
(𝜀) =

𝜎


𝑚−1
(𝜀)+𝜇𝜎

𝑚−1
(𝜀)−𝜆∑

𝑘=0
𝜎
𝑘
(𝜀)𝑠
𝑚−1−𝑘

(𝜀). 𝜒
𝑚
is 0 when𝑚 is

not greater than 1, and 𝜒
𝑚
is 1 in other cases.

Thus, 𝑠(𝜀) and 𝜎(𝜀) can be expressed as

𝑠 (𝜀) = 𝑠 (∞) +

+∞

∑

𝑘=1

𝑏
𝑘
𝑒
−𝑘𝛽𝜀
,

𝜎 (𝜀) =

+∞

∑

𝑘=1

𝑎
𝑘
𝑒
−𝑘𝛽𝜀
.

(12)

From (1) and (2), 𝜎(0) = 𝜆𝜎(0)𝑆(0) − 𝜇𝑆(0) and 𝑆(0) =
−𝜆𝜎(0)𝑆(0) + 𝜂𝜎(0) − 𝜌𝜎

2
(0)𝑆(0). To obtain solutions in the

form of (12), the initial guesses 𝑠
0
(𝜀) and 𝜎

0
(𝜀) are expressed

as follows:

𝑠
0
(𝜀) = 𝑠 (∞) + 𝛾

0,1
𝑒
−𝛽𝜀
+ 𝛾
0,2
𝑒
−2𝛽𝜀
, (13)

where 𝛾
0,1
= 2(𝑠(0)−𝑠(∞))−(𝜆𝑠(0)+𝜌𝑠(0)𝑖(0)−𝜂)𝑖(0)/𝛽 and

𝛾
0,2

= 𝑠(∞) − 𝑠(0) + (𝜆𝑠(0) + 𝜌𝑠(0)𝑖(0) − 𝜂)𝑖(0)/𝛽.
Consider

𝜎
0
(𝜀) = 𝛿

0,1
𝑒
−𝛽𝜀
+ 𝛿
0,2
𝑒
−2𝛽𝜀
, (14)

where 𝛿
0,1
= 2𝜎(0) + 𝜎(0)(𝜆𝑠(0) − 𝜇)/𝛽 and 𝛿

0,2
= −𝜎(0) −

𝜎(0)(𝜆𝑠(0) − 𝜇)/𝛽.

By choosing the auxiliary linear operators and from
deformation equations anddeformation derivative condition,
we have

𝑠
𝑚
(𝜀) =

3𝑚+2

∑

𝑘=1

𝛾
𝑚,𝑘
𝑒
−𝑘𝛽𝜀
,

𝜎
𝑚
(𝜀) =

3𝑚+2

∑

𝑘=1

𝛿
𝑚,𝑘
𝑒
−𝑘𝛽𝜀
,

(15)

where 𝛿
𝑚,𝑘

and 𝛾
𝑚,𝑘

are coefficients. Substituting the above
expressions into (10) to (11), the recurrence formulas are

𝛿
𝑚,1
= −

3𝑚+2

∑

𝑗=2

𝛿
𝑚,𝑗
,

𝛾
𝑚,1
= −

3𝑚+2

∑

𝑗=2

𝛾
𝑚,𝑗
,

𝛿
𝑚,𝑗
= 𝜒
𝑚
𝜒
3𝑚−𝑗+1

𝛿
𝑚−1,𝑗

− (
ℎ

𝛽
)
𝑎
𝑚,𝑗−1

𝑗 − 1
, 2 ≤ 𝑗 < 3𝑚 + 2,

𝛾
𝑚,𝑗
= 𝜒
𝑚
𝜒
3𝑚−𝑗+1

𝛾
𝑚−1,𝑗

− (
ℎ

𝛽
)
𝑏
𝑚,𝑗−1

𝑗 − 1
, 2 ≤ 𝑗 < 3𝑚 + 2,

(16)

where 𝑎 and 𝑏 are parameters to meet deformation equation.
Finally, we get analytic solution of expressions in (2):

𝜎 (𝜀) =

+∞

∑

𝑚=1

3𝑚+2

∑

𝑘=1

𝛿
𝑚,𝑘
𝑒
−𝑘𝛽𝜀
,

𝑠 (𝜀) = 𝑠 (0) +

+∞

∑

𝑚=1

3𝑚+2

∑

𝑘=1

𝛾
𝑚,𝑘
𝑒
−𝑘𝛽𝜀
.

(17)

At this point, 𝛽 = 𝜇 − 𝜆𝑠(∞) ≈ 𝜇. According to the above
conclusions and characteristics of solution, the approximate
analytical solution of (17) can be expressed as

𝜎 (𝜀) =

𝑛

∑

𝑖=1

(−1)
𝑖+1
𝑐
𝑖
𝑒
−𝑘𝑖𝜇𝜀, (18)

where 𝑛 belongs to even number and 𝑐
𝑖
= 𝑐
𝑖+1

when 𝑖 is
an odd number. The above approximate analytical solution
can usually achieve adequate satisfactory results when 𝑛 is 2
or 4. As a simplified format, the equation above can also be
transformed as follows:

𝜎 (𝜀) = 𝑐
1
(𝑒
−𝑘1𝜇𝜀 − 𝑒

−𝑘2𝜇𝜀) . (19)

The comparison of the real concrete strain-stress curve,
the numerical solution curve, and the approximate analytical
solution of the SIR model is shown as Figure 4, and the
comparison of steel is shown in Figure 5. It can be seen
that both the numerical solution and the approximate ana-
lytical solution fit the original value precisely. It is worth
noting that the approximate analytical solution reflects the
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Figure 7: Approximate solutions based on SIR model with different parameter.

connotation and characteristics of the analytical solutions,
but it nevertheless has a certain similarity, and the specific
value of 𝑐

𝑖
in the solution should be adjusted appropriately

according to actual condition and the numerical solution
in order to obtain better accuracy. In addition, Umemura
and Aoyama [20] have presented an exponential constitutive
relation for concrete, which is similar with the model as (18)
in 𝑛 equals 2. However, the original exponential relation is
determined by experimental data fitting, and the proposed
solution in this paper has the theoretical basis and generality;
the results can be verified with each other. The effect of
various parameters in (18) on solutions is shown in Figure 7.
The stress-strain curve of compression concretewith different
strength is shown as Figure 8, and the simulation curves are
similarwith the experimental data in shapes and the variation

rules, indicating that the approximate analytical solution
put forward in this paper can also embody the intrinsic
characteristics and variation of the SIR model.

4. Size Effect and Strain Rate
Based on SIR Solution

For real engineering materials, the mechanical properties
also related to size, load mode, and external environment
besides their own composition and characteristics andmainly
include size effects, strain rate, and multiaxis loading. In this
paper, the uniaxial stress-strain curve on the influence of size
effect and strain rate of are mainly discussed.

The size effect of material strength refers to phenomenon
that large size member in brittle material usually fractures
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based on approximate solutions.

under a lower nominal stress than geometrically similar
small-size member (the nominal stress being defined as the
load divided by the characteristic cross section area). Early
researchers suppose that any observed size effect should be
described by extreme value statistics prevailed in structural
engineering. In the mid 1970s, the fact that there exists a
purely deterministic size effect, caused by energy release
associated with stress redistribution prior to failure and that
this energetic size effect usually dominates in the so-called
quasibrittle structures (i.e., structures in which fracture prop-
agation is preceded by a relatively large fracture process zone
which, in contrast to brittle ductile fracture ofmetals, exhibits
almost no plastic deformations but undergoes progressive
softening due to microcracks) gradually emerged.

Bažant andChen [21] andBažant and Planas [22] summa-
rized sixmain causations for size effect which include bound-
ary layer, diffusion phenomena, hydration heat, randomness
of material strength, energy release, and the fractal character
of the crack surface. Recent research focuses on three main
types of size effects, namely, the statistical size effect due to
randomness of strength, the energy release size effect, and the
possible size effect due to fractality of fracture ormicrocracks.

Recent research has shown that the elastic modulus and
the peak stress of brittle material will gradually decrease with
the increase of the member size and depth-width ratio; at the
same time, the strain value at the peak stress changes a little,
and the descent rate of stress and fragility at the softening
section will also reduce [23], as shown in Figures 2 and 7. In
some cases, the curves of different sizes in softening section
can even intersect as shown in Figures 6 and 8.

In fact, for the large size member with the same axial
force, the total number and size of microcracks are bigger
and the domain that the sustained damage occurs is larger.
Hence, the equivalent strain energy for damage needs fewer
paths and the damage propagation needs shorter paths,

which lead to the probability of regional brittle failure;
that is, the failure rate in unit and its growth rate both
increase.

Considering the above characteristic of size effect, the SIR
model can simulate the size effect of brittle material and the
whole process of failure. The advantage of the application of
the SIR model is the physical significance being explicit and
the variation can be realized by enhancing the failure rate in
unit 𝜇 and the reduced speed parameter for invalid elements
due to stress transmission and distribution 𝜌, referring to
Figure 2.

The materials such as concrete and rocks are typical rate
sensitive for their strength, ductility, and failure mode will
significantly change in different strain rates. Existing research
shows that the elastic modulus and the ultimate strength of
rate sensitive material will enhance with increasing strain
rate, and the strain value at the peak stress changes a little [23].
In different strain rates, the stress-strain full curve of concrete
is basically consistent with the whole curve under static load
in shape; however, the ductility increases slightly, as shown in
Figures 2 and 7.

For the materials subjected to the same axial force, if the
strain rate increased, the internal microcracks in the mortar
substrate are late to fully extent, but the quantity and degree
of the damaged aggregate relatively increase which lead to the
enhancement of the failure strength. At the same time, the
unit failure rate increased, and the increase rate of the stressed
unit sustainably grows.

Therefore, the SIR model can show the influence of the
strain rate from the physical sense by properly adjusting
parameters, and the simulation is realized by enhancing the
failure rate 𝜇 and the increase rate of stressed units when the
invalid units grow 𝜂, referring to Figure 2.

The above discussion illustrates the direct relationship
between size effect, strain rate, and the SIR model with its
numerical solution from mechanical principle and propaga-
tion characteristic. In practical applications, the approximate
analytic solution of the model is more convenient, so the
study below will discuss the adjustment of coefficient 𝑐

𝑖
in the

approximate analytic solution for the purpose of representing
size effect and strain rate.

The most widely used theory is the size effect law
proposed by Bažant and Chen [21] based on a large number
of experiments, and this method put forward the size effect
unified formula in certain extent according to plasticity
theory or elastic theory:

𝜎
𝑁

𝑓
𝑐

=
𝐵

√1 + (𝐷/𝐷
0
)

, (20)

where𝜎
𝑁
is the nominal stress whenmaterial is damaged,𝐵 is

dimensionless parameter,𝑓
𝑐
is the strength of the quasi brittle

material, 𝐷 is the characteristic length of the structure, and
𝐷
0
is the constant related to structural shape. It can be seen

from Figure 6 that the consideration about size effect can be
realized by modulating 𝑐

𝑖
and 𝑘
𝑖
properly in the approximate

analytical solution of SIR.
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In the usual study, the strain rate effect coefficient of com-
pression concrete is described as the following exponential
form according to European standard [24]:

𝜎cd
𝜎cs
= (

̇𝜀

̇𝜀
0

)

1.026𝛼

, ̇𝜀 ≤ 30/s,

𝜎cd
𝜎cs

= 𝛾
𝑠
(
̇𝜀

̇𝜀
0

)

1/3

, ̇𝜀 > 30/s,

(21)

where ̇𝜀 is the current material strain rate, ̇𝜀
0
is the quasi static

strain rate, taken as 3 × 10−5/s, and 𝜎cs and 𝜎cd are the static
and dynamic compression strength of concrete, respectively.
One has 𝛼 = 1/(5 + 0.9 𝜎cs) and log 𝛾

𝑠
= 6.156 𝛼 − 2.

For tensioned concrete

𝜎td
𝜎ts
= (

̇𝜀

̇𝜀
0

)

1.016𝛿

, ̇𝜀 ≤ 30/s,

𝜎td
𝜎ts
= 𝛽(

̇𝜀

̇𝜀
0

)

1/3

, ̇𝜀 > 30/s,

(22)

where ̇𝜀 is the current material strain rate and ̇𝜀
0
is the quasi

static strain rate, taken as 3 × 10−5/s, and 𝜎cs and 𝜎cd are the
static and dynamic tension strength of concrete, respectively.
One has 𝛿 = 1/(10 + 0.6) 𝜎ts and log𝛽 = 7.11𝛿 − 2.33.

The strain rate effect coefficient of steel I is as follows:
𝑓yd

𝑓ys
= (1 +

𝑑
1

𝑓ys ln ( ̇𝜀/ ̇𝜀0)
)

𝑓ud
𝑓us

= (1 +
𝑑
2

𝑓us ln ( ̇𝜀/ ̇𝜀0)
) ,

(23)

where ̇𝜀 is the current material strain rate and ̇𝜀
0
is the quasi

static strain rate, taken as 3 × 10−4/s, and 𝑓ys and 𝑓yd are the
static and dynamic strength, respectively. 𝑑

1
and 𝑑

2
are the

test parameters obtained by regression analysis method [25,
26].

Referring to Figure 7, the strain rate effects on concrete
can be simulated by modulating 𝑐

𝑖
and 𝑘

𝑖
properly for the

approximate analytical solution of SIR model. In addition,
if 𝑘
𝑖
is taken as a small negative number when 𝑖 is an odd,

the characteristics of strengthening after yielding for metal
materials can also be simulated, and the stress-strain curve of
metal with high strain rate or high strength can be obtained
by enlarging the absolute value of 𝑐

𝑖
or 𝑘
𝑖
, as shown in

Figure 9.
In conclusion, it is significant that the coefficient 𝑐

𝑖

of the approximate analytical solution implies the multiple
parameters interaction in SIR model, and the size effect and
strain rate in the whole load process can be achieved by
regulating 𝑐

𝑖
. The factor 𝜁

𝑠
on size effect can be achieved from

(19) and the factor 𝜁
𝑑
on strain rate can be achieved from (21)

to (23). Thus, the correction coefficient about 𝑐
𝑖
is

𝑐
𝑖𝑐
= (𝑘
𝑠
𝜁
𝑠
+ 𝑘
𝑑
𝜁
𝑑
) 𝑐
𝑖
, (24)

where 𝑘
𝑠
and 𝑘

𝑑
are adjustment coefficient on size effect and

strain rate, respectively, and the more precise value should be
determined by experimental data.
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Figure 9: Constitutive relation of steels with different strain rate
based on approximate solutions.
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Figure 10: Configurations of stirrups.

5. Test on the Size Effect of Confined Concrete

As mentioned above, the uniaxial construction relationship
of single material based on SIR model and HAM method is
presented. However, the normal member of civil engineering
consists of both concrete and steel, and the constructive
relationship of reinforced concrete and confined concrete
and corresponding properties such as size effect need more
research.

In order to verify the feasibility of the construction
relationship for confined concrete based on the SIR model,
six reinforced concrete prism specimens confined by square
stirrupsweremade. Each type of specimen contains two same
members, and the volumetric percentage of stirrups is 1.26%
for all. The configurations of stirrups are shown in Figure 10.
The design parameters of the specimens are listed in Table 1.
For the concrete used, the normal prismatic compressive
strength is 42.67N/mm2, the ultimate compression strain
is 0.0022, and Young’s modulus is 3.08 × 104N/mm2. For
the steel bars, the average yield strength is 480N/mm2, the
ultimate strength is 665N/mm2, and Young’s modulus is
2.05 × 105N/mm2.

The electrohydraulic servo testing machine with 4 ×
104 kN maximum range was used as the load device and the
continuous axial monotonic load was applied, as shown in
Figure 11. When the force is less than the ultimate bearing
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Figure 11: Loading and measuring instruments.

Figure 12: Final failure mode of specimens.

Table 1: Design parameters of the specimens.

Parameters
(unit) Notation Specimen size

Small Middle Large
𝐵 (mm) Section length 400 600 800
𝐻 (mm) Height of specimen 1200 1800 2400
𝑑
𝑠
(mm) Diameter of stirrups 10 12 14

𝑠 (mm) Spacing of stirrups 103 132 169
𝑐 (mm) Thickness of protective layer 20 30 40
𝑑
𝑙
(mm) Diameter of longitudinal bars 12 18 22

capacity, the load was controlled by force and then by
displacement. The measured parameters include axial loads,
axial deformation, and stirrups strain.The final failuremodes
of specimens are shown in Figure 12.

The axial load value is measured by the strain force
transducer with 1 × 104 kN measuring range. The axial
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Figure 13: Stress-strain curve of gross area for all prism specimens.

Table 2: Parameters of the approximate solution.

𝑐
1

𝑘
1

𝑘
2

1.345 2.305 20.546
1.386 2.727 23.785
1.391 3.119 28.267

compression is measured by the displacement meter with
200mm measuring range and the gauge length is 2/3 of the
specimen height. The average stress-strain relation of cross
section curves of the specimens with different sizes is shown
in Figure 13. The abscissa 𝜀 is obtained by the measured dis-
placement divided by the respective gauge length. Ordinate 𝜎
is the relative stress, equal to the axial load value divided by
the cross-sectional area of the specimen.

According to the stress-strain relation of the specimens
with different sizes, the approximate solution based on non-
linear data fitting and (19) is presented as shown in Figure 14.
The failure rate 𝜇 is assumed as 0.1, and the parameters in
(19) are listed in Table 2. It is significant that the curves of
the approximate solution fit well with the original data and
the variation trend and the variance rule among the curves
are clearly revealed. The SIR model and the corresponding
approximate solution are suitable for confined concrete and
complex composite material with size effect.

6. Conclusion

Though there are various constitutive relationmodels of engi-
neering material at present, the united constitutive relation
model is rare and it is necessary to establish a model which
can present many properties in different materials by concise
form.

Under the external load, the member composed of
engineering materials is damaged inevitably and the damage
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Figure 14: Stress-strain curve comparison of test value and approximate solution.

will propagate in the units and the system.This phenomenon
has similar rule as the infectious disease. During infectious
disease, the population includes the Susceptible people, the
Infected people, and the Removal people. The SIR model
originates from the infectious disease transmission dynamics
and the complex system of population, which reflects the
dynamic characteristics and the transmit laws of different
parts of the system under the action of external factors and
patterns. Hence, the SIR model can be used for reference and
to indicate the full stress-strain curve in uniaxial material
with high precision. The numerical results show that the
constitutive relation in different materials can be simulated
by choosing appropriate parameters in the SIR equations.

In this paper, the SIR models are described by coupled
nonlinear differential equations, and the analytic solution

form and approximate analytic solution of SIR model are
obtained by means of an analytic technique for nonlinear
problems, namely, the homotopy analysis method (HAM).
According to the different solutions on the variation of the
parameters in the SIR model, the mechanical characteristics
of various materials are compared and the factors of the size
effect and the strain rate are discussed. The results show that
the SIR model and its solution presented in this paper have
versatility and can provide unified constitutive relations for a
variety of engineering materials.

However, the SIR model only has an implicit form, which
differs with the traditional constitutive relations established
by experimental results, damage mechanics, and fracture
mechanics, and the intension and laws need further study.
Furthermore, the SIR model and its solution are merely
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suitable for the materials under uniaxial load.Themodels for
materials undermultiaxial load and fatigue load are necessary
to be developed and discussed.
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